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Abstract—This work develops a novel set of algorithms, al-
ternating Gradient Descent (GD) and minimization for MRI
(altGDmin-MRI1 and altGDmin-MRI2), for accelerated dynamic
MRI by assuming an approximate low-rank (LR) model on
the matrix formed by the vectorized images of the sequence.
The LR model itself is well-known in the MRI literature; our
contribution is the novel GD-based algorithms which are much
faster, memory-efficient, and ‘general’ compared with existing
work; and careful use of a 3-level hierarchical LR model. By
‘general’, we mean that, with a single choice of parameters, our
method provides accurate reconstructions for multiple acceler-
ated dynamic MRI applications, multiple sampling rates and
sampling schemes. We show that our methods outperform many
of the popular existing approaches while also being faster than
all of them, on average. This claim is based on comparisons on 8
different retrospectively undersampled multi-coil dynamic MRI
applications, sampled using either 1D Cartesian or 2D pseudo-
radial undersampling, at multiple sampling rates. Evaluations on
some prospectively undersampled datasets are also provided. Our
second contribution is a mini-batch subspace tracking extension
that can process new measurements and return reconstructions
within a short delay after they arrive. The recovery algorithm
itself is also faster than its batch counterpart.

Index terms: low-rank, compressed sensing, MRI

I. INTRODUCTION

Dynamic Magnetic Resonance Imaging (MRI) is a powerful
imaging modality to non-invasively capture time evolving phe-
nomena in the human body, such as the beating heart, motion
of vocal tract during speaking, or dynamics of contrast uptake
in brain. A long standing challenge in MRI is its slow imaging
speed which restricts its full potential in the achievable spatial
or temporal resolution. From a signal processing standpoint, in
MRI, one measures the 2D discrete Fourier transform (FT) of
a slice of the organ being imaged, one FT coefficient (or one
line of coefficients) at a time. This makes the imaging slow.
Accelerated/undersampled/compressive MRI is one of the key
practical applications where Compressive Sensing (CS) ideas
have been extensively used for speeding up the scan. This
includes both work that uses traditional (sparse) CS [2], [3]
for single image MRI, as well as later work that relies on the
low-rank (LR) assumption, e.g., [4], [5], [6], [7].

This work was partially supported by NSF grant CIF-2115200. An
early version of this work with the same title was presented at ICASSP
2022 [1]. This paper has supplementary downloadable material available
at http://ieeexplore.ieee.org., provided by the author. The material includes
dataset details. This material is one page in size.

A. Our Contributions

This work develops a fast, memory-efficient, and ‘general’
algorithm, called altGDmin-MRI, for accelerated dynamic
MRI by assuming an approximate LR model on the matrix
formed by the vectorized images of the sequence. In analogy
with traditional (sparse) CS, we refer to the problem of
reconstruction with this modeling assumption as approximate
LR column-wise CS (LRcCS). We should mention here that
LRcCS based models have been extensively used in past work
in MRI [4], [8], [5], [9], [6], [7]. Our contribution is a novel
set of algorithms that assume a 3-level hierarchical LR model;
and extensive experiments to demonstrate that these are both
fast and “general” (with a single set of parameters, these
provide good enough reconstructions for many different MRI
applications, sampling schemes and rates). Our methods are
modifications of a fast GD-based algorithm that was developed
and theoretically analyzed in our recent work [10].

Our second contribution is mini-batch and online “subspace
tracking” extensions of altGDmin-MRI that can process new
measurements and return reconstructions after a much shorter
data acquisition delay than the full batch solution. The online
extension needs to be initialized with a mini-batch of mea-
surements, but, after that, it returns the reconstruction as soon
as a new frame of measurements arrives. The reconstruction
algorithms are also faster and more memory-efficient than their
batch counterpart, but with a gradual degradation in quality as
batch size is reduced.

Reconstruction algorithm speed is an important concern in
applications needing low latency such as real-time interactive
MRI, interventional MRI, or biofeedback imaging. Moreover,
immediate reconstructions can also allow for on the fly
identification of certain artifacts, which can be immediately
corrected (e.g., adjusting center frequency to minimize off-
resonance artifacts, re-scanning if subject experiences sudden
motion such as cough, etc). Finally, even in offline settings, if a
reconstruction can be obtained without making the patient wait
too long, it would considerably improve clinical workflow and
overall throughput. Fast reconstructions therefore help reduce
the overhead cost associated with re-scheduling patient scans.

B. Existing work

Provable LRcCS solutions with only simulation experiments.
There are three existing provable solutions to the LRcCS
problem. The first is an Alternating Minimization (AltMin)
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solution that is designed to solve a generalization of LR-
cCS [11], [12], and hence also solves LRcCS. The second
studies a convex relaxation called mixed norm minimization
(MixedNorm) [13]. The third is the altGDmin solution [10]
that we modify in the current work. The convex solution is
extremely slow, both theoretically and experimentally; and
it has a worse sample complexity in regimes of practical
interest; see Table I and see [10]. The AltMin solution is
faster than the convex one, but still significantly slower than
AltGDmin [10]. All the proven theoretical guarantees are for
random Gaussian measurements (each entry of each Ak is an
independent identically distributed standard Gaussian) but, as
in case of (sparse) CS [14], [15], [2], we expect the qualitative
implications to remain true also for MRI which involves use
of undersampled Fourier measurements.
MRI literature: LR and sparsity based approaches. Since
the work on CS in the early 2000s there has been extensive
work on exploiting sparsity of the image or of the sequence in
different dictionaries and bases in order to enable accelerated
MRI, e.g., see [2], [16] and follow-up work. For settings where
joint reconstruction of a set of similar images is needed, LR is
a more flexible model since it does not require knowledge of
the sparsifying basis or dictionary. MR images change slowly
over time and hence are well-modeled as being approximately
LR. Prior LR model based solutions from the MRI literature
include [17], [8], [5], [9], [6], [7] can be classified into two
broad categories: (a) methods which enforce the LR constraint
explicitly, e.g., via explicit estimation of the temporal subspace
from low spatial, but high temporal resolution, training data
[4], [8], [9] and follow-up works in which improved self
navigated Partially Separable Function (PSF) models were
proposed [18], [19], and (b) methods that enforce the LR
constraint in an implicit manner, e.g., via the nuclear or
Schatten-p norm regularization with p < 1 as in k-t-SLR [5]
and follow-up work [6], [7]. Some of these, such as k-t-SLR
[5] and PSF-sparse [9], assume both sparsity and LR models
on the sequence.

A related line of work models the matrix formed by
the MRI sequence as being LR plus sparse (L+S). These
methods decompose the dynamic time series as a sum of a
LR component modeling smoothly varying time series (e.g.
object background, and/or smooth contrast changes as in
perfusion MRI), and a sparse component which models the
other changes in the image; see [20] (L+S-Otazo), [21] (L+S-
Lin), and follow-up works, e.g. [22], [23].

Furthermore, motion often breaks down the assumption of
low rank in dynamic MRI. There has been extensive work
on motion estimation and compensation before imposing the
structural assumptions [24], [25], [26], [16].

An important challenge with k-t-SLR, L+S-Otazo, L+S-Lin,
and most of the above works, is the need for carefully tuning
the parameters (regularization parameters and other hyper-
parameters associated with the iterative optimization algo-
rithm) for different dynamic MRI applications. Most published
work provides results and code/parameters that work well for
only the chosen application (e.g., different set of parameters
are provided for cardiac perfusion, and cardiac cine MRI in
the open source codes of k-t SLR and L+S-Otazo). A second

limitation of the iterative optimization algorithms developed in
the above works is that they are slow and memory-inefficient
(process the entire matrix X at each iteration). Both these lim-
itations are exaggerated for the motion compensation methods:
these have even more parameters and are even slower.
MRI literature: Deep Learning (DL) methods. There has been
much recent work on the use of various DL techniques in
the MRI literature. The most common ones are supervised
DL reconstruction schemes, e.g., [27], [28], [29], [30], [31],
[32], [33], [34], [35]. These need a large numbers of fully
sampled training data points. While such data can be ac-
quired in static imaging applications (e.g., by extending scan
times from cooperative volunteers, or compliant patients), it
is not straightforward to acquire sufficient number of fully
sampled image sequences for dynamic imaging applications,
and definitely not for high time resolution applications, which
warrant the need for highly under-sampled acquisitions in
the first place. For this reason, a majority of supervised DL
models have been used to perform reconstruction frame by
frame in dynamic MRI [27], [28], [29], [30], [31], [32],
[33]. This approach does not fully exploit redundancies along
the temporal dimension and hence often provides worse re-
constructions than sparsity or LR based methods. Moreover,
DL model learning/training can be very computationally, and
hence energy-wise, expensive since each parameter requires
retraining the network. Finally, the parameters are learned for
one specific MRI application, and the same network does not
give good results for another application. Good quality training
sequences can be acquired in situations where the motion may
be freezed, e.g., in breath held segmented cardiac cine MRI
by breathholding, and ECG gating [32], [33], [34], [35]. These
remove the first limitation above, but not the other two. Also,
their memory requirement is the biggest limitation.

In recent literature, unsupervised DL based approaches have
been proposed and evaluated, these can exploit spatio-temporal
redundancies without the need for fully sampled training
datasets [36], [37]. However, since these approaches do not
use a pre-trained network, but instead train the network on the
test/query data, they are orders of magnitude slower compared
with both query processing time of supervised DL methods or
ours or any of the LR or sparsity based methods.
Other related work on online or mini-batch algorithms. Other
somewhat related work from the compressive sensing MRI
literature that also develops online or minibatch algorithms
includes [38], [39], and follow-up methods.

C. Paper Organization

We provide the notation and the 3-level approximate-LRcCS
problem formulation in Sec. II. The algorithms are devel-
oped in Sec. III. Mini-batch and online subspace tracking
approaches are described in Sec. IV. Detailed experimental
evaluations and comparisons are provided in Sec. V. Our ex-
perimental conclusions and various other issues are discussed
in Sec. VI. We conclude in Sec. VII.
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II. NOTATION AND PROBLEM FORMULATION

A. Notation and problem setting

We use [q] := {1, 2, . . . , q}. Everywhere, ‖.‖F denotes
the Frobenius norm, ‖.‖ without a subscript denotes the
(induced) l2 norm, > denotes (conjugate) transpose, and
M † := (M>M)−1M>. For a vector w, |w| computes the
magnitude of each on entry of w. For a scalar γ, 1(w ≤ γ)
returns a vector of 1s and 0s of the same size as w with 1s
where w(k) ≤ γ and zero everywhere else. Here w(k) is the
k-th entry of w. We use ◦ to denote the Hadamard product
(.* operation in MATLAB). Thus z := w ◦ 1(|w| ≤ γ)
zeroes out entries of w with magnitude larger than γ. For
two n×r matrices U1,U2 with orthonormal columns, we use
SD(U1,U2) := ‖(I−U1U1

>)U2‖F as the Subspace Distance
(SD) between the subspaces spanned by their columns.

Let n be the number of pixels in each (unknown) image
of the sequence and let q be the total number of images in
the sequence. We denote the vectorized (unknown) image at
frame k by z∗k; this is an n-length vector. We denote the
matrix formed by all the q images in the sequence by Z∗.
Thus Z∗ := [z∗1 , z

∗
2 , . . . , z

∗
k, . . . , z

∗
q ] is an n × q matrix.

The acquired undersampled MRI data/measurements (after
some pre-processing) are linear functions of each image. For
simplicity of explaining the algorithms (and for comparing the
with older theoretical work in this area), we model this linear
transformation using a matrix Ak of size mk × n. Thus, our
goal is to recover the image sequence matrix Z∗ from

yk := Akz
∗
k, k ∈ [q] (1)

when mk � n, by making structural assumptions on the
matrix Z∗. For single-coil dynamic MRI,

Ak = HkF

where F is an n × n matrix that models computing the 2D
discrete Fourier Transform (DFT) of the vectorized image as a
matrix-vector product. The matrix Hk is a matrix of size mk×
n with entries being either one or zero. It contains exactly one
1 in each row (corresponding to the observed DFT frequency
location converted to 1D coordinates). The mask matrix Hk

is decided by the sampling trajectory (specified in Sec. V).
In case of multi-coil dynami MRI with mc coils, there are

mc receive channels with each measuring a subset of Fourier
coefficients of a differently weighted version of the cross-
section to be imaged.

In matrix-vector notation, this can be modeled as follows.
Let yk,j denote the measurements at the j-th coil. Then,

yk =


yk,1
yk,2

...
yk,mc

 =


HkFD1

HkFD2

...
HkFDmc


︸ ︷︷ ︸

Ak

z∗k

where Dj = diag(dj , j = 1, 2, . . . , n) are n × n diagonal
matrices with diagonal entries (entries of the vector dj) being
the coil sensitivities of the j-th coil. We should point out that
Djx = dj ◦ x, thus Djx is equivalent to weighting the l-th

pixel xl by (dj)l. Each yk,j is of length mk, thus yk is of
length mk ·mc.

Let m = maxk(mk). We define the m × n matrix
Y = [(y1)long, (y2)long, · · · , (yq)long] with (yk)long being
the vector yk followed by (m − mk) zeros. Similarly let
(Ak)long be an m × n matrix with (m −mk) rows of zeros
at the end. Then, the above model can also be expressed as

Y = A(X∗) := [(A1)long(x∗1), (A2)long(x∗2), . . . , (Aq)long(x∗q)]
(2)

Similarly A>(Y ) returns the n× q matrix X = A>(Y ) :=
[(A1)>long(y1)long, (A2)>long(y2)long, . . . , (Aq)

>
long(yq)long].

The above matrix vector model remains valid when the
observed samples are available on Cartesian grid; either they
are acquired on a Cartesian grid or are mapped onto a
Cartesian grid. In actual algorithm implementation, all of the
above is implemented efficiently using the 2D fast Fourier
transform (fft2) function along with appropriate undersampling
or use of Hadamard product. When directly using true radial
samples, the main ideas above and in our algorithms given
below are still exactly the same, except that fft2 gets replaced
by non-uniform FT (NUFT). We use the method of [40] for a
fast NUFT.

Writing the model as above makes the ideas easier to follow
for readers who are not MRI experts.

B. Hierarchical LR model on image sequence matrix, Z*

Most MRI sequences have a certain baseline component
that is roughly constant across the entire sequence. Denote
this baseline component or “mean” image by z̄∗. It can be
verified experimentally that this mean image has significantly
larger energy compared to the residual image obtained after
subtracting it out. Secondly, even after mean subtraction,
MR image sequences are only approximately LR, i.e., the
residual image obtained after subtracting the mean and the
LR components is still not zero, but has a small magnitude
compared to the LR component. It is therefore easier to
estimate it once the projections of the estimates of the first
two components have been subtracted out. Similarly the LR
component is easier to estimate once the projections of the
mean estimate have been subtracted out. Thus the following
3-level model is the most appropriate for dynamic MRI: the
k-th vectorized MR image, z∗k , satisfies

z∗k = z̄∗ + x∗k + e∗k, for all k ∈ [q],

with the assumption that ‖e∗k‖ � ‖x∗k‖ � ‖z̄∗‖, and the
x∗k’s form a rank r matrix X∗ := [x∗1, . . . ,x

∗
k, . . . ,x

∗
q ] with

r � min(n, q). Here e∗k is the unstructured residual signal
component, which we refer to as the modeling error. We will
consider two models on e∗k. The first does not assume any
structure on e∗ks except assuming that their magnitude is small.
The second assumes that e∗ks are small magnitude, and sparse
in the temporal Fourier domain (rows of the matrix E∗ are
Fourier sparse).

The first model can be interpreted as a 3-level LR model:
the first level is a special case of the LR model with rank 1:
the “mean image” matrix, z̄∗1> (where 1 is a vector of q
1’s) has rank = 1; the second level is matrix X∗ which has
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Algorithm 1 altGDmin-MRI. CGLS is the code from [41].

1) Solve minz̄

∑q
k=1 ‖yk −Akz̄‖2 using CGLS with tol-

erance 10−3 and maximum number of iterations 10.
Denote the solution by z̄.

2) a) For each k ∈ q, compute ỹk := yk −Akz̄.
b) Run Algorithm 2 (auto-altGDmin) with ỹk,Ak as

its inputs. Its output is X .
3) a) For each k ∈ q, compute ˜̃yk := yk−Akz̄−Akxk.

b) Run step 1 (altGDmin-MRI1) OR step 2
(altGDmin-MRI2) of Algorithm 3 The output of
either is the matrix E.

Output Z := [z1, z2, . . . , zq] with zk = z̄ + xk + ek.

rank = r; and the third level is the rank = min(n, q) matrix
E∗. Our assumption implies ‖z̄∗1>‖F � ‖X∗‖F � ‖E∗‖F .

III. ALTGDMIN-MRI ALGORITHMS

A. AltGDmin-MRI overall idea

We develop a 3-level hierarchical algorithm that first re-
covers z̄∗, then the x∗ks, and then e∗ks. Under the modeling
assumption that ‖z̄∗‖ � ‖x∗k‖ � |e∗k‖, the recovery of z̄∗

becomes the following least squares (LS) problem:

min
˜̄z

q∑
k=1

‖yk −Ak ˜̄z‖2.

Denote its solution by z̄. Next, we estimate the rank-r matrix
X∗ (and the rank r itself) from the measurement residuals,

ỹk := yk −Akz̄, k ∈ [q]

by using an automated version of altGDmin for LRcCS [10]
applied to ỹks. This is described below in Sec. III-B. Denote
its output by X . The last step, which we refer to as Modeling
Error Correction (MEC), involves estimating the modeling
error e∗k from the new measurement residuals

˜̃yk := yk −Akz̄ −Akxk, k ∈ [q]

Depending on which of the two models is assumed on e∗k,
the steps to estimate it are different. We describe them in Sec.
III-C. Denote the output of either step by E.

The final output is Z := [z1, z2, . . . , zq] with zk = z̄ +
xk + ek. We summarize these steps in Algorithm 1.

B. Automated AltGDmin

Recall that ỹk’s are the measurement residuals after sub-
tracting the projections of the estimated mean. Our next goal
is to estimate a rank r matrix X that minimizes

f̃(X) :=

q∑
k=1

‖ỹk −Akxk‖2

Motivation for a novel GD-based algorithm. We would like
a GD based solution since those are known to be much faster
than both AltMin and convex relaxation methods [42], [10].
As explained in detail in [10], neither of the two commonly
used GD approaches from LR recovery literature, and LR
matrix completion (LRMC) in particular, – projected GD on

Algorithm 2 auto-altGDmin: altGDmin with automated pa-
rameter setting. Let M † := (M>M)−1M>.

1: Input: ỹk,Ak, k ∈ [q].
2: Initialization:
3: Compute γ = 36

∑
ki |ỹki|2/mq, ỹk,tnc = ỹk ◦ 1{|ỹk| ≤√

γ}, m̄ =
∑q
k=1mk/q, and compute

X0 :=

[
1√
m1m̄

(A>1 ỹ1,tnc), ...,
1√
mkm̄

(A>k ỹk,tnc), ...,

1√
mqm̄

(A>q ỹq,tnc)

]

4: Let σj = σj(X0). Set r̂ as the smallest integer for which

r∑
j=1

σ2
j ≥ (b/100) ·

min(n,q,mcminkmk)/10∑
j=1

σ2
j , b = 85.

5: Set U0 ← top r̂ left singular vectors of X0

6: GDmin iterations: Set Tmax = 70
7: for t = 1 to Tmax do
8: Let U ← Ut−1.
9: Update B: For all k ∈ [q], bk ← (AkU)†ỹk.

10: Update X: For all k ∈ [q], xk ← Ubk
11: Gradient compute:

∇Uf(U ,B)←
q∑

k=1

A>k (AkUbk − ỹk)b>k

12: If t = 1, set η = 0.14/‖∇Uf(U ,B)‖.
13: GD step for U : U+ ← U − η∇Uf(U ,B)

14: Projection for U : U+ QR
= U+R+. Set Ut ← U+.

15: EXIT loop if SD(U ,U+)/
√
r̂ < εexit = 0.01

16: end for
17: Output: X := [x1,x2, . . . ,xq].

X (projGD-X) [42] or alternating GD with a norm balancing
term (altGDnormbal) [43], [44] – provably works for the
LRcCS measurement model. The reason is that, in both cases,
the estimates of the columns x∗k are too coupled. Moreover,
even for LRMC for which these approaches do work, projGD-
X is memory-intensive: it requires memory of order nq;
while altGDnormbal is slow: it needs a GD step size that is
1/r or smaller [43], [44], making it r-times slower than GD
with a constant step size. The following modification, that
we dub altGDmin, is as fast per-iteration as projGD-X , as
memory-efficient as altGDnormbal, and yet its estimate are
only mildly coupled (they are uncoupled given an estimate
of the column span of X∗). Because of this, AltGDmin is
amenable to analysis that helps show that, in the random
Gaussian measurement setting, the algorithm converges fast –
the required number of iterations to achieve ε accuracy grows
as log(1/ε) – while needing a small number of samples [10].
AltGDmin algorithm. Rewrite the unknown matrix X as X =
UB, where U is n× r and B is r × q, and consider

f(U ,B) := f̃(UB) =

q∑
k=1

‖ỹk −AkUbk‖2.
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AlGDmin involves iterating over the following two steps after
starting with a carefully designed initialization for U .

1) For each new estimate of U , we solve for B by mini-
mizing over it while keeping U fixed at its current value.
Because our measurements are column-wise decoupled
(ỹk does not depend on any other image except the k-
th one), the minimization step gets decoupled for the
different columns of B, i.e.,

min
B

f(U ,B) =

q∑
k=1

min
bk
‖ỹk −AkUbk‖2.

This problem is now a very quick column-wise least
squares (LS) problem with bk being an r-length vector
and AkU being an mk×r matrix. Thus, the complexity
is only mkr

2 · q (for solving q individual LS problems)
plus the cost of computing AkU for all k ∈ [q]. The
total complexity for this step is thus similar to that of
one GD step for U .

2) We use projected GD for updating U : one GD step w.r.t.
U followed by projecting onto the space of orthonormal
matrices (by using QR decomposition).

Finally, since f(U ,B) is not convex in the unknowns
{U ,B}, the above algorithm needs a careful initialization of
one of them. Using the standard approach from LR recovery
literature, we can initialize U by computing the top r left
singular vectors of the matrix

X0 =

[
1

m
A>1 ỹ1, . . . ,

1

m
A>k ỹk, . . . ,

1

m
A>q ỹq

]
When the measurement matrices Ak are random Gaussian,

a truncation/thresholding step, that zeros out entries of ỹk
with magnitude much larger than the root mean squared value√∑

ki ỹ
2
ki/mq, is required on each ỹk before computing the

above matrix. This step helps to filter out the very large
measurements (those whose ỹ2

ki is much larger than the
expected value) and helps ensure that the new matrix has
entries which are sub-Gaussian1. In the MRI setting, since the
matrices Ak are subsampled Fourier, if the measurements are
indeed noise-free as assumed in (1) and the matrix satisfies
the incoherence assumption given earlier, then the above is
not needed. The reason is, in this case, ‖aki‖2 = 1 2 and
so, ỹ2

ki ≤ maxk ‖z∗k − z̄‖2 for all i, k. However, in practice,
there have be either measurement or image outliers: in some
acquisitions, there may be occasional large noise or, certain
images z∗k may be outliers, e.g., this would happen if the
subject took a deep breath during acquisition. The truncation
step helps filter out such measurements. If there are no outliers
or large noise, then it does nothing and hence it does not
worsen performance either. Another minor change is needed:
since mk 6= m1 (time varying number of measurements), in
order to prove a guarantee similar to our result from [10],
one needs to replace the 1/m factor by 1/

√
mkm̄ where

m̄ =
∑q
k=1mk/q. We specify X0 with these modifications

in line 5 of Algorithm 2.

1In our proofs, this allows us to use the sub-Gaussian Hoeffding inequality
[45] to get our desired bound the initialization error.

2or some constant that is the same for all i, k and depends on how the
Fourier matrix is normalized

AltGDmin parameter setting. The parameters for AltGDmin
are the rank r, the GD step size η, and the maximum number
of iterations T along with a stopping criterion to exit the loop
sooner if the estimates do not change much.

For approximately LR matrices, there is no one correct
choice of r. We use the following constraints to find a good
approach. We need our choice of rank, r̂, to be sufficiently
small compared to min(n, q) for the algorithm to take ad-
vantage of the LR assumption. Moreover, for the LS step for
updating bk’s to work well (for its error to be small), we also
need it to be small compared with mcminkmk. Based on just
these constraints, one can set r̂ = min(n, q,mcminkmk)/10.
Or, one can compute the “b% energy threshold” of the first
min(n, q,mcminkmk)/10 singular values, i.e., compute r̂ as
the smallest value of r for which

r̂∑
j=1

σj(X0)2 ≥ (b/100) ·
min(n,q,mcminkmk)/10∑

j=1

σj(X0)2.

for a b ≤ 100. Here σj(X0) is its j-th singular value. We use
this latter approach with b = 85. We have experimented with
other values as well in the 80-95% range, and the algorithm
is not very sensitive to this choice.

We set the GD step size η = 0.14/‖∇Uf(U0,B0)‖
where U0,B0 are the initial estimates. Assuming that the
gradient norm decreases over iterations, this implies that
η · ‖∇Uf(Ut,Bt)‖ ≤ 0.14 < 1 always. Since ‖Ut‖ = 1 (due
to the QR decomposition step), this ensures that a GD step is
never too big. To decide T (maximum number of iterations),
we stop the GD loop when SD(Ut−1,Ut) < εexit

√
r while

setting Tmax = 70 so that no more than 70 iterations are run.
We set εexit = 0.01.

We summarize the complete algorithm, with the above
parameter settings, in Algorithm 2.

As suggested in [10], one can also set η as η =
c/(m‖U0B0‖2) with a c < 1. This is a conservative approach
that is needed for proving guarantees which are only sufficient
conditions and will lead to slower convergence.
AltGDmin guarantee. Theorem 2.1 of [10] proved the follow-
ing for AltGDmin with parameters as specified there.

Theorem 3.1. Suppose that Z∗ = X∗, i.e., it is a ma-
trix with rank r, and ỹk = yk. Suppose also that each
Ak is m × n and i.i.d. random Gaussian. Assume that
maxk ‖x∗k‖2 ≤ µ2‖X∗‖2/q for a constant µ (incoherence
parameter) that is only a little larger than one. Let xk denote
the AltGDmin estimates after T = Cκ2 log(1/ε) iterations.
If mq ≥ Cκ4µ2(n + q)r2 log(1/ε), if the algorithm param-
eters are set as described in [10, Theorem 2.1], then, with
probability at least 1 − n−10, ||x∗k − xk|| ≤ ε||x∗k|| for all
k = 1, 2, . . . , q.

In the above result κ is the ratio of the first to the r-th
singular value of X∗. Treating κ, µ as numerical constants,
this is equivalent to requiring that maxk ‖x∗k‖2 ≤ C‖X∗‖2F /q
for a constant C. In practice, this means that, the different
(vectorized) images x∗k in the sequence have similar enough
energy so that the maximum energy of any one of them is
not much larger than its average, ‖X∗‖2F /q. This fact is very
valid for MRI datasets.



6

C. Model error correction (MEC): two models and algorithms

MEC using Model 1 (no structure on E∗): altGDmin-MRI1.
Recall that this model assumes no structure on e∗k except that
it has small magnitude. We thus recover each ek individually
by solving

min
e
‖˜̃yk −Ake‖2

for each k, while imposing the assumption that ‖e‖2 is small.
An indirect way to enforce this, while also getting a fast
algorithm, is to start with a zero initialization and run only a
few iterations of GD to solve the above minimization problem.
Parameter setting for MEC-1. We use the Stanford Conju-
gate Gradient LS (CGLS) code [41] for solving the above
minimization. We used this code with tolerance of 10−36 and
maximum number of iterations 3.

This is summarized in Algorithm 3.
MEC using Model 2 (Temporal Fourier sparse E∗):
altGDmin-MRI-2. Our second model assumes Fourier sparsity
of the modeling error along the time axis. To be precise, we
are assuming that

S∗ := Frow(E∗)

is a row sparse matrix (matrix whose rows are sparse vectors).
Here, the operator Frow computes the 1D DFT of each row
of its argument. We thus have the following model on the
images’ matrix Z∗:

Z∗ = (z̄∗1>) + X∗ + E∗, E∗ := F−1
row(S∗)

with ‖E∗‖F � ‖X∗‖F �
√
q‖z̄∗‖ and S∗ being row sparse.

To estimate E∗ under this model, we use the Iterative Soft
Thresholding Algorithm (ISTA) for sparse recovery [46] which
was also used in [20]. For recovering an unknown sparse s
from y := As, this starts with a zero initialization, s = 0,
and runs the iterations: s ← SThrω(s + A>(y − As)).
Here SThrω(s) is the Soft-Thresholding operator; it zeroes
out entries of s that are smaller than ω while shrinking the
larger magnitude entries towards zero by ω, i.e. [SThrω(s)]i =
sign(si)(|si|−ω) if |si| > ω and [SThrω(s)]i = 0 otherwise.

For our model, this translates to the following iteration.
Compute the residual ˜̃Y := Y −A(z̄1>)−A(X). Update E
by running the following iteration starting with E = 0:

E ← F−1
row(SThrω(Frow(E +A>( ˜̃Y −A(E)))))

This is summarized in Algorithm 3.
The temporal Fourier sparsity model has been used for

imposing the L+S assumption for dynamic MRI in [20],
[21], and follow-up works. We should clarify that, in this
work, we are not imposing the L+S model, instead we are
assuming a 3-level hierarchical model, with sparsity being
used to model the residual in the third level. The assumption
‖E∗‖F � ‖X∗‖F makes our model different from the regular
L+S model which assumes Z∗ = X∗+E∗ with no assumption
on one of them being smaller in magnitude than the other.
From our experiments in Sec. V, in an average sense, our
algorithm, altGDmin-MRI2 that uses our model, gives better
reconstructions (both in terms of error and visually). However,
this may be either because the assumed models are different or

Algorithm 3 altGDmin-MRI1 or altGDmin-MRI2:

• Unstructured MEC (altGDmin-MRI1)
Run the following

– For each k ∈ [q], run 3 iterations of CGLS to solve
mine ‖˜̃yk −Ake‖2. Denote the output by ek.

or
• Sparse MEC (altGDmin-MRI2)

Run the following ISTA algorithm
– E0 = 0, τ = 0. Repeat the following steps

∗ Mτ ← Frow(Eτ +A>( ˜̃Y −A(Eτ )))
∗ If τ = 0, set ω = 0.001 · ‖M0‖max where ‖.‖max

is the maximum magnitude entry of the matrix.
∗ τ ← τ + 1
∗ Eτ ← F−1

row(SThrω(Mτ ))

Until τ = 10 or ‖Mτ−Mτ−1‖F
‖Mτ−1‖F < 0.0025

Output E.

because the reconstruction algorithms are very different too:
we use a GD-based algorithm, while [20], [21], use different
algorithms to solve the convex relaxation of the L+S model.
This issue will be explored in more detail in future work where
we plan to also develop and evaluate a GD-based algorithm
under the L+S assumption.
Parameter setting for MEC-2. We used soft thresholding with
threshold as given in Algorithm 3.

D. Implementation

We write things as above only for ease of explanation. In our
implementation, we never use matrix-vector multiplication for
computing Akx or A>k y, since that is much more memory
intensive and much slower than using Fast FT (FFT). Also,
we use various MATLAB features and linear algebra tricks to
remove “for” loops wherever possible. Code is provided at the
link given in Sec. V.

IV. ALTGDMIN BASED SUBSPACE TRACKING

The algorithms discussed so far are batch methods, i.e., they
require waiting for all the measurements to be taken. This
means that they cannot be used in applications that require
near real-time reconstructions (explained in Sec. I-A).

A. Mini-batch Subspace Tracking

Consider the pseudo-real-time setting in which the algo-
rithm processes each new mini-batch of the data (here a set
of α consecutive yks) as soon as it arrives. Thus, instead of
waiting for all q measurements yk to be obtained, it only
waits for a new set of α < q measurements before processing
them. For algorithms that use the LR assumption on the data,
such an algorithm can be referred to as a Subspace Tracking
solution since it is implicitly assuming that consecutive mini-
batches of data lie close to the same or slightly different r-
dimensional subspaces. One can utilize this “slow subspace
change” assumption in the following fashion. For the first
mini-batch, use the altgdmin-MRI algorithm with q replaced
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Algorithm 4 altGDminMRI-ST1 and altGDminMRI-ST2:
Mini-batch Subspace Tracking with MEC model 1 (ST1) or
model 2 (ST2)

1) Let j = 1. Run Algorithm 1 on first mini-batch of α1

yks. Thus q ≡ α1 and we let Tmax,1 = 70. Denote its
final subspace estimate by U (1).

2) For each j > 1 do
a) Run Algorithm 1 with the following two changes:

(i) replace the Initialization step of altGDmin
(Algorithm 2) by U0 ← U (j−1); and (ii) set
Tmax,j = 5.
Denote its final subspace estimate by U (j).

End For

Algorithm 5 altGDminMRI-onlineST: Online Subspace
Tracking

1) For the first mini-batch of α frames, run Algorithm 1.
Denote the computed mean image by z̄(1) and the final
subspace estimate by U (1).

2) For k > α+ 1 do:
a) Compute ỹk = yk −Akz̄

(1)

b) Let U = U (1).
c) Compute bk ← (AkU)†ỹk.
d) Compute ˜̃yk = ỹk −AkUbk
e) Compute ek by running 3 iterations of CGLS to

solve mine ‖˜̃yk−Ake‖2. Denote the output by ek.
f) Output xk = z̄(1) + Ubk + ek

End For

by α. For later mini-batches, use altgdmin-MRI with two
changes. (1) Use the final estimated U from the previous
mini-batch, denoted U (j−1), as the initialization for the current
one. This means that we replace lines 2-6 of Algorithm 2 by
U0 ← U (j−1). (2) Second, reduce the maximum number of
iterations for the j-th minibatch, denoted Tmax,j , to a much
lower value for j > 1 than for j = 1.

The complete algorithm is summarized in Algorithm 4. We
use Tmax,1 = 70 and Tmax,j = 5 for j ≥ 2. Depending on
the MEC step being used, we refer to the resulting algorithms
as altGDminMRI-ST1 and altGDminMRI-ST2.

B. Online Subspace Tracking

In certain other applications, after an initial short delay, a
true real-time (fully online) algorithm is needed. This means
that, each time a new yk is obtained, it should return a new
estimate xk. To obtain such an algorithm we eliminate the
mean computation step and the U update steps in online mode.
Both these are computed only for the first mini-batch and used
at all later times. Suppose the first mini-batch consists of α1

frames. For all times k > α1, we use the estimated mean
z̄ and the estimated U from the first mini-batch. For k >
α1, for each new yk, we only update bk and ek and only
using MEC model 1 (unstructured e∗k). We summarize this
algorithm, altGDminMRI-onlineST, in Algorithm 5.

altGDmin altGDmin-mean AltMin MixedNorm

Gauss. 0.010 (0.15) 0.009 (0.18) 0.113 (13) 0.029 (42)

Four. 0.331 (0.50) 0.002 (0.55) 0.025 (86) 1.0 (145)

TABLE I: We report Error (Reconstruction Time in seconds).
Here Error is the Monte Carlo average of ‖X −X∗‖2F /‖X∗‖2F over
50 realizations. Comparisons on a 30 x 30 x 90 image piece of the
PINCAT sequence (n = 900, q = 50) using m = n/10 random
Gaussian (Gaussian) or random Fourier (Four.) measurements.

V. EXPERIMENTS

The code for all our experiments is posted at https://github.
com/Silpa1/comparison of algorithms. We show results on
both retrospective and prospective datasets. The retrospective
undersampling is either 2D golden-angle based pseudo-radial3

or 1D Cartesian undersampling using the sampling scheme
of [20]. Radial sampling provides a way to non-uniformly
undersample the 2D Fourier plane in such a way that more
samples are acquired in the center of the 2D Fourier plan (low
frequency regions in both dimensions). Directly using radially
sampled data requires use of the computationally expensive
non-uniform FT (NUFT) which makes the algorithm very
slow. Previous research has shown negligible loss in image
quality if the polar coordinates of radially undersampled data
are regridded onto the Cartesian grid, followed by use of fast
FT (FFT) algorithms in the reconstruction algorithms [48],
[49], [50]. In fact, for CS-based methods, there is sometimes
an improvement in reconstruction quality as well when using
this type of regridded data (pseudo-radial data) and we observe
this in some of our experiments too.

All experiments were conducted in MATLAB on the
same PC. AltGDmin-MRI1 and AltGDmin-MRI2 were
compared with (1) the three provable techniques – mixed
norm min (MixedNorm) [13], AltMin (changed for the
current linear setting) [12] and basic AltGDmin [10];
with 4 state-of-the-art methods from the LR-based MRI
literature – k-t-SLR (uses an L&S model) [5], L+S-
Otazo [20], L+S-Lin [21], and PSF-sparse [9], [4]. For
all comparisons, we used author provided code: mixed
norm min (MixedNorm): https://www.dropbox.com/sh/
lywtzc0y9awpvgz/AABbjuiuLWPy 8y7C3GQKo8pa?dl=0,
AltMin: https://github.com/praneethmurthy/, k-t-SLR: code
was emailed by the author to us, L+S-Lin: https://github.
com/JeffFessler/reproduce-l-s-dynamic-mri, L+S-Otazo:
https://cai2r.net/resources/ls-reconstruction-matlab-code/,
PSF-sparse: http://mri.beckman.illinois.edu/software.html.

In all our experiments, one set of parameters was used. For
our two methods, parameters were set as given earlier in the
stepwise algorithms. For L+S-Lin, we evaluated it with using
author-provided parameters for cardiac data and for PINCAT.
Overall the cardiac parameters gave reduced errors and hence
we used these in all experiments. For L+S-Otazo and ktSLR
also, author-provided cardiac parameters were used, since
these gave the best results. In the codes of kt-SLR, L+S-Otazo

3The angular increment between successive radial spokes is determined by
the golden angle (111.25 degrees) [47]. The starting point is changed over time
so that the sampling masks are different for different images in the sequence.
The golden angle ensures maximum incoherent kspace coverage over time.

https://github.com/Silpa1/comparison_of_algorithms
https://github.com/Silpa1/comparison_of_algorithms
https://www.dropbox.com/sh/lywtzc0y9awpvgz/AABbjuiuLWPy_8y7C3GQKo8pa?dl=0
https://www.dropbox.com/sh/lywtzc0y9awpvgz/AABbjuiuLWPy_8y7C3GQKo8pa?dl=0
https://github.com/praneethmurthy/
https://github.com/JeffFessler/reproduce-l-s-dynamic-mri
https://github.com/JeffFessler/reproduce-l-s-dynamic-mri
https://cai2r.net/resources/ls-reconstruction-matlab-code/
http://mri.beckman.illinois.edu/software.html


8

Dataset kt-SLR L+S-Otazo L+S-Lin altGDmin-MRI1 altGDmin-MRI2 altGDminMRI- PSF-sparse
ST2, α=64,100

Cartesian
CardPerf-R8 0.6398 (420.71) 0.0110 (16.93) 0.0292 ( 5.99) 0.0201 (12.01) 0.0194 (14.74)
CardCine-R6 0.1377 (614.53) 0.0054 (24.57) 0.0069 (15.51) 0.0058 (37.55) 0.0055 (46.08)
Pseudo-radial
Brain(4) 0.0093 (127.92) 0.0167 ( 5.65) 0.0173 ( 2.53) 0.0125 ( 3.70) 0.0121 ( 4.86)
Brain(8) 0.0034 (102.33) 0.0086 ( 4.15) 0.0095 ( 2.48) 0.0054 ( 3.87) 0.0051 ( 5.11)
Brain(16) 0.0014 (75.57) 0.0049 ( 2.81) 0.0062 ( 2.44) 0.0027 ( 3.84) 0.0024 ( 4.98)
Speech(4) 0.1543 (5234.83) 0.1991 (537.91) 0.2545 (304.50) 0.1416 (131.87) 0.1395 (153.43) 0.1174 (86.57)
Speech(8) 0.0593 (5261.49) 0.1107 (491.11) 0.1284 (306.16) 0.0991 (152.35) 0.0952 (176.35) 0.0873 (87.64)
Speech(16) 0.0203 (5288.61) 0.0550 (426.10) 0.0557 (304.45) 0.0580 (236.85) 0.0540 (261.39) 0.0542 (100.75)
UnCardPerf(4) 0.0894 (4150.72) 0.0910 (189.88) 0.1424 (50.68) 0.0695 (70.97) 0.0684 (92.31)
UnCardPerf(8) 0.0442 (3472.96) 0.0591 (120.55) 0.0632 (50.44) 0.0470 (67.79) 0.0451 (90.66) 0.0531 (81.48)
UnCardPerf(16) 0.0206 (2873.30) 0.0370 (88.44) 0.0329 (50.47) 0.0298 (69.08) 0.0275 (90.16) 0.0328 (70.77)
CardOCMR16(4) 0.0362 (227.92) 0.0293 (10.73) 0.0515 ( 2.75) 0.0092 (10.52) 0.0092 (15.42) 0.3803 (2.39)
CardOCMR16(8) 0.0045 (225.98) 0.0064 ( 8.37) 0.0101 ( 2.73) 0.0033 ( 7.26) 0.0033 ( 8.64) 0.1200 (7.91)
CardOCMR16(16) 0.0015 (162.12) 0.0035 ( 4.64) 0.0030 ( 2.73) 0.0015 ( 5.39) 0.0014 ( 6.69) 0.0020 (5.24)
CardOCMR19(4) 0.0216 (399.70) 0.0251 (18.70) 0.0698 ( 5.06) 0.0095 (11.58) 0.0094 (14.10)
CardOCMR19(8) 0.0043 (409.01) 0.0092 (13.05) 0.0149 ( 5.06) 0.0051 (10.49) 0.0050 (12.91)
CardOCMR19(16) 0.0020 (269.01) 0.0052 ( 7.20) 0.0044 ( 5.05) 0.0032 ( 9.47) 0.0030 (12.00)
PINCAT(4) 0.0445 (34.85) 0.0381 (8.04) 0.1054 (2.26) 0.0278 (1.63) 0.0278 (1.77)
PINCAT(8) 0.0216 (31.54) 0.0162 (3.91) 0.0208 (2.22) 0.0166 (1.36) 0.0166 (1.31)
PINCAT(16) 0.0095 (23.31) 0.0065 (2.70) 0.0047 (2.25) 0.0097 (1.08) 0.0097 (1.13)
av-Err (av-Time) 0.0663 (1470.3) 0.0369 (99.3) 0.0515 (56.3) 0.0289 (42.4) 0.0280 (50.7)

TABLE II: Table format is Error (Recon time in seconds). The last row shows average-Error (average-Reconstruction time in seconds)
over all 20 rows of results. For PSF-Sparse, we generated data using the k-t sampling scheme from their paper [9] while ensuring same total
number of samples as the rest of the compared methods.

Fig. 1: Retrospective, Cartesian, CardPerf and CardCine: Comparisons of reconstruction algorithms on CardPerf-R8 and CardCine-R6 datasets.
In row 1 and row 3, we show one original frame (14th frame) and its reconstructions. In row 2 and row 4, we show the corresponding time profile
images. The chosen cut line is shown in Fig. 3. Error (recon time) of each algorithm is reported below the algorithm name. Observe that kt-
SLR has considerable noise enhancement in both the datasets. AltGDmin-MRI2 (proposed) provides qualitatively similar results to L+S-Lin and
L+S-Otazo.

and L+S-Lin, the input k-space data is needed in a different
format (the sequence of frequency locations is different, due to
different uses of the “fftshift” in MATLAB). To deal with this,
we converted all algorithms and ours so that all took input k-
space data in the same format as L+S-Lin. L+S-Lin code has
parameter settings that require the input k-space data to be
normalized in a certain way. To generate the best performance
for it, we did this normalization where needed.

A. Comparison with provably correct algorithms

We compared altGDmin-basic and altGDmin-mean
(altGDmin-MRI1 without the last MEC step) with MixedNorm

[13] and the AltMin algorithm of [11], [12], modified for the
linear LRcCS problem (replace the PR step for updating bk’s
by a simple LS step). Since these algorithms were designed
and evaluated only for random Gaussian measurements,
their code cannot be easily modified to handle large-sized
image sequences (requires use of the fft operator to replace
actual matrix-vector multiplications) or complicated MRI
sampling patterns. Hence, for this experiment, we use a
30 x 30 piece of the PINCAT image sequence with 50
frames (n = 900, q = 50 and simulate (i) random Gaussian
Ak’s and (ii) random Fourier Ak’s (the sampling mask is
obtained by selecting m 2D-DFT frequencies uniformly at
random from all n possible ones). We report the results
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Fig. 2: Retrospective, Pseudo-radial (4 radial lines), Speech: In row 1, we show one original frame and its reconstructions. In row 2, we show
the time profile image. This is a cut through the tongue and velum depicting the motion of these articulators. Only 100 out of 2048 image frames
are shown for the sake of brevity. The chosen cut line is shown in Fig. 3. Error (recon. time) of each algorithm is reported below the algorithm
name. Observe that k-t-SLR, L+S-Lin, and L+S-Otazo reconstructions have motion blurring and/or alias artifacts. In contrast, altGDmin-MRI2
reconstructions even with smaller batch sizes produce superior reconstructions. Last column shows a subspace tracking result.

(a) All datasets with 4 radial lines

(b) All datasets with 16 radial lines

Fig. 3: Retrospective, Pseudo-radial, All datasets: This figure is organized differently than the previous ones. Row 1 shows one original (fully
sampled) image for all datasets, row 2 shows reconstruction using only AltGDmin-MRI2. Row 3 and row 4 are the original and reconstructed
time profile images. Observe that it gives good results in all applications without any parameter tuning. Comparing Fig(a) and Fig(b, we observe
that with 16 radial lines the blurring effect in the recons reduced.

in Table I for m = n/10. As can be seen, altGDmin and
altGDmin-mean are more than 90-times faster than both
altMin and MixedNorm. Also, altGDmin-mean has the

lowest error. In the Gaussian setting, both altGDmin and
altGDmin-mean have similar and small errors. In the Fourier
setting, since we are selecting random frequencies, if enough
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Fig. 4: We plot the Error after each iteration t (y-axis) and the time taken until iteration t (x-axis) for the UnCardPerf and Speech datasets for
alGDminMRI (without the MEC steps), L+S-Lin, and L+S-Otazo. Observe that altGDmin-MRI converges fastest.

Fig. 5: Demonstrating the utility of each step of our algorithms. In row 1, we show one original frame (1470th frame) and the estimates of
each step: the mean estimate z̄, the LR estimate xk obtained using altGDmin, and the modeling error estimates ek under our two models
(unstructured and sparse in temporal Fourier domain). In row 2, we show the corresponding time profile images. In row 3, we show how each
component improves image quality by showing z̄, z̄ +xk, and z̄ +xk +ek. In row 4, we show the corresponding time profile images. Observe
that altGDmin contributes to the details of each image. The last MEC steps improves finer details.

lower frequencies are not selected, the error is large. When
the mean image is estimated and subtracted, the energy in
the lower spatial frequencies is a lot lower. This is why use
of mean subtraction (altGDmin-mean) significantly reduces
the error in this case.

B. Comparisons on retrospectively undersampled datasets

The error value that we report in this and
later sections is normalized scale-invariant mean
squared error (N-S-MSE) computed as follows
Error = (

∑q
k=1 dist2(x∗k, x̂k))/‖X∗‖2F where

dist2(x∗, x̂) = ‖x∗ − x̂ x̂>x∗

‖x‖2 ‖
2 is the scale invariant

distance between two vectorized images with “scale” being a
complex number. The reconstructed images can be complex-
valued. We also report the time taken to reconstruct the entire

sequence. The reporting format is Error (Reconstruction
Time in seconds).

We used a total of 20 datasets: 2 datasets from [21]
which were retrospectively undersampled using Cartesian vari-
able density random undersampling at reduction factors (R);
R=8, R=6 respectively – cardiac perfusion R8 (CardPerf-R8)
and cardiac cine R6 (CardCine-R6); and 6 other applica-
tions that were retrospectively pseudo-radially undersampled
with 4, 8 and 16 radial lines – brain-T2-T1-rho (Brain),
free breathing ungated cardiac perfusion (UnCardPerf), a
long but low-resolution speech sequence (Speech), two car-
diac cine datasets from the OCMR database (CardOCMR16,
CardOCMR19)[51], and PINCAT. PINCAT data was single-
coil, while all others were multi-coil. Image sequence sizes:
CardPerf (n = 16384, q = 40), CardCine (n = 65536, q =
24), Brain (n = 16384, q = 24), Speech (n = 4624, q =
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(a) Speech: 4 radial lines

(b) Ungated Cardiac Perfusion (UnCardPerf): 16 radial lines

Fig. 6: Subspace Tracking results: Retrospective, Pseudo-radial , Speech(4 radial lines) and UnCardPerf (16 radial lines) reconstructed using
altGDminMRI-ST2. In row 1, we show one original frame and its reconstructions. In row 2, we show the time profile image. As expected,
smaller batch sizes produce faster reconstructions. With larger batch sizes, the temporal sharpness (or motion fidelity) improve but only subtly.

Fig. 7: Prospective, Radial, Abdomen: We compare our approach
with direct iNUFFT (baseline) and with L+S-Lin. When running L+S-
Lin with the cardiac perfusion parameters (the ones used in all earlier
experiments), the algorithm completely fails, see column 2. Thus, we
also implemented it using author-provided parameters for this dataset;
we refer to this as L+S-Lin1 which is shown in column 3. This gives a
good recovery similar to that of altGDmin-MRI2.

2048), UnCardPerf (n = 31104, q = 200), CardOCMR16
(n = 28800, q = 15), CardOCMR19 (n = 27648, q = 25),
PINCAT (n = 16384, q = 50).

Error and time comparisons are reported in Table II. In its
last row, we display Average Error (Average Reconstruction
Time) with the average taken over the 20 previous rows. Visual
comparisons are shown in Figs. 1, 2, 3. Observe that our
approaches have the best errors and are also the fastest. Both
visually, and error-wise, AltGDmin-MRI2 has either the best
or a close second-best reconstruction quality in all cases, while
also being very fast. It is not always the fastest, but it is the
fastest for long sequences and fast-enough for all. AltGDmin-
MRI1 also has low errors (only slightly higher than MRI2),
and is faster than MRI2. On the other hand, no other approach

is consistently good across all 20 datasets. Lastly, for the most
undersampled (4 radial lines) case, our methods have much
lower errors than all the others. We also compare with the
PSF-sparse algorithm of [9] for one dataset, UnCardPerf. This
is an improved version of the original kt-PCA method of [4].
This approach does not work for any given sampling scheme.
Hence, for it, we used the author provided “k-t sampling”
code (Cartesian undersampling with certain k-space locations
sampled at each time, and the rest of the locations being highly
undersampled). We changed its sampling rate parameter to
make its undersampling factor,

∑
kmk/(nq), similar to ours.

From Table II, clearly, the error of PSF-sparse is much higher
(38- and 12- times higher) in the 4 and 8 radial lines cases.

In this table, we have also added results for one mini-batch
size for altGDminMRI-ST2. As can be seen, in the speech
sequence case, the recovery error is in fact smaller. In the
cardiac case, there is marginal increase in recovery error. In
both cases, the time taken is lesser than that of altGDmin-
MRI2. More detailed evaluation is described below in Sec
V-E.

C. Error versus iteration time plot

In Fig. 4, we plot the error after each iteration t (y-axis)
and the time taken until iteration t (x-axis) for altGDmin-
MRI without the MEC step (just altGDmin+mean), L+S-Lin
and L+S-Otazo for the UnCardPerf and Speech datasets with 4
radial lines. Such a plot is more informative than error versus
iteration since it allows one to both see the error decay with
iterations and to also see the time taken for each iteration by
each method. The first marker in the altGDmin-MRI plot is
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(a) OCMR dataset 1 (b) OCMR dataset 2

Fig. 8: Prospective, Cartesian, Cardiac (OCMR): In both figures, in row 1, we show one image for direct inverse FFT (IFFT) of undersampled
kspace data (column 1), reconstructions using L+S-Lin (column 2) and our method, altGDmin-MRI2 (column 3). In row 2, we show the time
profile images for the three reconstructions in the same order. Observe that for both OCMR cardiac datasets, altGDmin-MRI2 reconstructions
are qualitatively better compared to L+S-Lin.

α altGDminMRI- altGDminMRI- altGDminMRI-
ST1 ST2 onlineST

Cardiac 16 radial lines
100 0.0355 (50.20) 0.0328 (70.77) 0.0782 (37.61)
50 0.0349 (45.29) 0.0323 (67.47) 0.0958 (27.35)

Cardiac 8 radial lines
100 0.0556 (59.51) 0.0531 (81.48) 0.1038 (48.05)
50 0.0579 (52.17) 0.0555 (75.73) 0.1271 (36.61)

Cardiac 4 radial lines
100 0.0705 (135.54) 0.0695 (164.97) 0.1273 (138.44)
50 0.0750 (87.31) 0.0737 (109.71) 0.1586 (70.05)

Speech 16 radial lines
1024 0.0575 (192.93) 0.0534 (219.95) 0.0895 (136.76)
512 0.0578 (148.53) 0.0534 (175.08) 0.1139 (94.19)
256 0.0584 (109.91) 0.0538 (136.52) 0.1318 (63.22)
128 0.0584 (86.09) 0.0538 (113.76) 0.1468 (46.94)
64 0.0589 (74.05) 0.0542 (100.75) 0.1613 (40.43)
32 0.0604 (67.24) 0.0554 (93.57) 0.1771 (37.45)

Speech 8 radial lines
1024 0.0888 (189.69) 0.0858 (212.63) 0.1260 (143.03)
512 0.0882 (124.93) 0.0850 (154.88) 0.1525 (89.61)
256 0.0885 (93.39) 0.0851 (119.25) 0.1735 (59.94)
128 0.0889 (74.42) 0.0853 (98.52) 0.1933 (45.93)
64 0.0911 (66.05) 0.0873 (87.64) 0.2115 (40.23)
32 0.1007 (61.85) 0.0960 (83.86) 0.2292 (36.87)

Speech 4 radial lines
1024 0.1202 (576.38) 0.1191 (594.78) 0.1642 (537.66)
512 0.1257 (212.70) 0.1242 (241.69) 0.2023 (184.72)
256 0.1201 (93.79) 0.1183 (119.46) 0.2226 (63.93)
128 0.1177 (71.25) 0.1157 (96.15) 0.2490 (46.26)
64 0.1195 (65.27) 0.1174 (86.57) 0.2715 (41.74)
32 0.1321 (62.40) 0.1293 (83.83) 0.2977 (37.70)

TABLE III: Subspace Tracking results: Comparing altGDminMRI-
ST1, altGDminMRI-ST2, and onlineST algorithms for the Speech and
the UnCardPerf sequences retrospectively undersampled using 16, 8,
4 radial lines and different choices of mini-batch size α.

time taken after the mean computation, the second marker also
adds the time taken after the initialization step, the third also
adds the time taken by first altGDmin iteration, and so on.
All three algorithms have their own exit loop and maximum
number of iterations and hence each plot ends at a different
time. For both the datasets, observe that altGDmin converges
much faster than the other two compared methods. kt-SLR is
not compared because it is much slower. From both figures,

we can also observe that use of our initialization step is very
useful, it helps reduce the error significantly. With just the
mean and initialization steps, the normalized error gets reduced
to 0.2 and 0.27 respectively.

D. Effect of each step of altGDmin-MRI

In Fig.5, for one dataset, we show the output of each step
of our two algorithms. As can be seen each of the 3 steps
improves the reconstruction quality.

E. Subspace tracking algorithms evaluation

We evaluate these algorithms on the Speech and the UnCar-
dPerf sequence pseudo-radially undersampled using 16, 8, and
4 radial lines. We use these two sequences since these have
a larger value of q. This is needed to ensure that the mini-
batch sizes are not too small or at least the first mini-batch
size is large enough. We provide the results in Table III. We
evaluate mini-batch ST (Algorithm 4), with Tmax,1 = 70 and
Tmax,j = 5 for j > 1 for decreasing values of α. Observe
that for mini-batch sizes up to α ≥ 64, there is no appreciable
increase in error. But the improvement in reconstruction time
is very significant. It is much faster than any of the other
algorithms compared in Table II. We also compare with full
online ST (Algorithm 5). In this case, there is a significant
increase in error as the value of initial mini-batch α decreases.
But the speed is even better. We show visuals for different
values of α in Fig. 6. As can be seen, the quality is as good
as that of the full batch one. The reason is this approach is
modeling a slowly changing subspace rather than a fixed one,
and this can be a better assumption for speech sequences.

F. Experiments on 3 prospectively under-sampled radial data

We compare altGDmin-MRI2 with L+S-Lin (the overall
best algorithm in terms of performance and speed amongst
all compared methods) and with the baseline reconstruction
obtained using direct inverse Fourier Transform (FT), this uses
zeros where data is not observed. Results are show in Fig. 7,
8a, 8b. Our first dataset is a radially undersampled dynamic
contrast enhanced (DCE) abdomen taken from [20], [21]. The
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k-space data dimensions in the dataset were: 384 read out
points, 21 radial spokes (with golden angle based angular
increments) per frame, 28 time frames, and 7 virtual coils
after PCA based coil compression. Here 21 spokes per frame
means the total 21 ∗ 28 = 588 spokes were arranged into 28
time frames with the first 21 spokes forming the first time
frame, the next 21 forming the next time frame and so on.

For this dataset, we modified our code to use the non-
uniform Fast FT (NUFFT) code from [40] to replace FFT.
From Fig. 7, notice that, in the altGDmin-MRI2 (atGDmin2)
reconstruction, we can observe the contrast uptake dynamics
through the liver. The other blood vessels are well resolved
too. L+S-Lin (with the parameters used in all previous experi-
ments) failed completely. It returns a black image. So we used
the author provided parameters to see if that works, we label it
L+S-Lin1. This provides qualitatively similar results to ours.

Our next dataset is a Cartesian undersampled breath held
cardiac cine from the OCMR database with k-space dataset
dimensions 384 read out points, 14 phase encode lines per
time frame, 137 time frames and 18 coils. From Fig. 8a, ob-
serve that L+S-Lin reconstruction has motion blurring and/or
alias artifacts. In contrast, altGDmin2 result is good com-
paratively.Our last dataset is another Cartesian undersampled
cardiac dataset from the OCMR database with k-space data
dimensions 384 read out points, 16 phase encode lines per
time frame, 65 time frames and 34 coils. In Fig. 8b, we
compare the reconstructions. Both L+S-Lin and altGDmin-
MRI2 reconstructions are good.

VI. DISCUSSION

We first explain why our algorithms are “general”, memory-
efficient, and fast. Next, we provide a summary of our experi-
mental conclusions, a discussion of the most related works,
and of our subspace tracking methods (ST). We end with
describing the limitations of our work and ways to improve it.
AltGDmin-MRI methods are “general”. This is because these
have only a few parameters and are not very sensitive to their
choices. Moreover, our goal was to develop a single algorithm,
with one fixed set of parameters, that provides a good enough
performance across a wide range of applications, sampling
schemes, and sampling rates, while also being very fast; and
not necessarily the best one for each case. Hence we do not
do any application-specific tuning.

The reason our methods have only a few parameters is
two-fold. First, the LR model does not require any parameter
except the assumed rank (or parameters for the algorithm to
estimate the rank). This is unlike sparsity or structured sparsity
models, which require either picking the most appropriate
sparsifying basis or dictionary or learning one, and in either
case there are many parameters that need to be carefully
set to pick the best basis/dictionary. Second, AltGDmin is
a simple GD based algorithm. Besides rank, its only other
parameters are the GD step size η and the maximum number
of iterations Tmax, along with a loop exit threshold εexit. The
algorithm is not sensitive to the choice of Tmax as long as it is
large enough. AltGDmin-MRI1 is its modification that can be
understood as assuming a 3-level hierarchical LR model that

(i) first estimates the baseline/mean image across all frames
(approximately the r = 1 case), and computes the measure-
ment residual by removing this estimate; (ii) next it uses the
residual as input to auto-altGDmin (r = r̂ case, where r̂ is
the automatically estimated rank), and (iii) finally it estimates
the residual error in the above mean + LR model column-wise
(this is the r = min(n, q) case). In case of altGDmin-MRI2,
this last residual error is assumed to be temporally Fourier
sparse. The mean computation step (LS problem solved using
the Stanford CGLS code) and the MEC steps also require
only two parameters each, while being sensitive to only one of
them: loop exit tolerance and maximum number of iterations.
The ISTA algorithm used in case of altGDmin-MRI2 needs
one more parameter - the threshold for soft thresholding.
Memory-efficiency. The effect of memory complexity is not
very evident in this paper since we only do single-slice
imaging, but will be when working with dynamic multi-slice
imaging. In that case, n would be the number of voxels in
each volume (all slices at one time) with q still being the
sequence length. AltGDmin uses the X = UB factorization,
with U and B being matrices with r columns and rows
respectively. Here r is the assumed (low) rank. Storing and
processing U ,B requires memory of size only max(n, q)r
instead of nq. Our approach for estimating r caps its value
at r ≤ min(n, q,m)/10. The initial mean computation step
estimates an n-length vector z̄ using GD (CGLS code); it can
be made memory-efficient by using a for-loop to compute the
gradient sum at each iteration. For AltGDmin-MRI1, the last
MEC step is done individually for each e∗k. Thus both these
steps have memory complexity of order n only. The MEC
step of AltGDmin-MRI2 can be made memory-efficient by
processing each row separately using a for-loop over all n
rows. This step thus has memory complexity of order q. Thus
the overall memory complexity of both AltGDmin-MRI1 and
AltGDmin-MRI2 is order max(n, q)r with r � n, q, while
that of most other LR-based methods (except AltMin and PSF-
sparse) is nq.
Time complexity and speed. The most computationally expen-
sive part of both algorithms is altGDmin. The two expensive
steps of this algorithm are (i) computing the gradient w.r.t.
U , and (ii) computing AkU for the LS step to estimate bks.
When implemented for the MRI setting using the 2D-FFT
operators, AkU requires computing r 2D-FFTs for n1 × n2

images with n = n1 · n2. One 2D-FFT needs time of order
n2n1 log n1 + n1n2 log n2 ≤ 2n log n. Thus this step needs
time of order nr log n. The gradient computation needs q
2D inverse FFTs, thus its cost is nq log n. Since r ≤ q, the
overall cost is order nq log n per iteration. Without provable
guarantees for the MRI setting, we cannot say anything
theoretically about the number of iterations required. From our
experiments (see Fig. 4 and Tables I, II), our algorithm error
decays faster than that of all the other compared approaches.
Summary of experiments. In the highly undersampled setting
of only 4 radial lines (32 times acceleration), AltGDmin-MRI2
and AltGDmin-MRI1 have much lower errors and better visual
recon quality than all compared methods, while also being
the fastest. In all cases, on average, the AltGDmin-MRI2
errors and time taken are still the best (lowest). Our Subspace
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Tracking based mini-batch modifications are even faster, while
providing almost comparable, or better, quality reconstructions
for batch sizes α ≥ 64. For this reason, these can only be used
on longer sequences. Notice that the last model error correct
(MEC) step of altGDmin-MRI1 uses a maximum of only 3
iterations, while that of altGDmin-MRI2 uses a maximum of
10 iterations. As noted by an anonymous reviewer, this may be
one reason for the latter having slightly better performance. We
tried using 10 maximum iterations also for MEC of altGDmin-
MRI1 (not shown); with this, its computed error does reduce
further to almost the same level as MRI2. However, for a some
cases, the visual quality of MRI2 still is better.
Discussion of compared methods and DL-based methods.
MixedNorm, AltMin, and kt-SLR are much slower compared
with AltGDmin-MRI. For many of the pseudo-radial datasets,
kt-SLR has the lowest errors and visual performance, with
that of AltGDmin-MRI2 being either as good or only slightly
worse. But kt-SLR has very large errors for the Cartesian
undersampled ones and consequently its average error is large.
A possible reason for this is that its parameters have been
tuned for the pseudo-radial sampling. On the other hand, L+S-
Otazo and L+S-Lin have low errors for the two Cartesian
undersampled datasets (both of these were used in their
papers); but have larger errors for most of the pseudo-radial 4
and 8 radial lines (highly undersampled) datasets. The likely
reason again is similar.

We also compared with the PSF-sparse algorithm of [52] for
one dataset; see Table II. This only works with the kt-sampling
scheme developed by the authors, so we used this sampling for
it while changing the code parameters to ensure comparable
mc
∑
kmk/(nq) (comparable acceleration factor). PSF-sparse

first estimates the row space of the unknown image sequence
matrix using the data at the frequency locations fully sampled
along time. This means it estimates the row span of B first.
Next, it estimates the column space, span of U , by minimizing
the error w.r.t. all observed data while also imposing a (tempo-
ral Fourier) sparsity constraint. The first step needs sufficient
number of low frequency samples for accurate recovery. This
is why, when

∑
kmk is small, either the first step recon is

bad or there are almost no samples left to get a good estimate
at all frequencies. In contrast, our algorithms simultaneously
estimate U ,B using multiple alternating iterations initialized
using a carefully designed spectral initialization for U .

Supervised DL methods need a lot of training data. Hence
for most MRI applications (except breath held cardiac or ECG
gating), these are designed for image-based reconstruction
and cannot model the spatiotemporal correlations across the
sequence. Consequently, their performance on dynamic MRI
is often worse than that of LR or LR+S based methods which
do not need any training data. Moreover, the energy cost for
training the DLs for entire image sequences can be prohibitive.

On the other hand, the new unsupervised DL methods can
model the spatiotemporal correlations without training data,
but these are slower on query data by orders of magnitude. The
reason is these do not use a pre-trained network but instead
train the deep network on the query data. As an example, to
reconstruct a typical speech sequence with n = 1002 = 10000
pixels and q = 500 frames, this class of approaches needs

45mins to an hour on a GPU. Our algorithm only needs
1-2 minutes for a similar dataset. Also, these need careful
hyperparameter tuning (cannot be used for different MRI
applications without tuning) while our methods do not.
Clarification that no binning is needed in this work. None of
our proposed approaches (not even the subspace tracking ones)
need raw data sorted into various predefined temporal phases
(such as defining cardiac phases) or “bins”. As an example,
for the cardiac cine sequence, we did not need knowledge of
which frames are pre-contrast and which are post-contrast.
Practical utility of Mini-batch and Online Subspace Tracking
(ST). Besides operating in mini-batch mode, the algorithm
speed of mini-batch ST is also much faster, and, from our
experiments, the increase in recovery error is insignificant
for mini-batch size α ≥ 64. In the speech sequence, the
error actually decreases when using ST. The reason is this
is a very long sequence and the subspace likely changes over
time. The ST method tracks this change. With online ST, the
reconstruction quality does suffer. But its speed is very fast,
and the algorithm works in true real time mode after the first
mini-batch of α1 frames is processed. Hence, in practice, a
combination of the two approaches would be the most useful:
in online mode, obtain real-time reconstructions which are
very fast but often not very accurate; and follow it up with
mini-batch updates (after the mini-batch has arrived) that are
much more accurate.

Because we do not need any binning, and because the ST
approaches provide a reconstruction as soon as a small mini-
batch of time frames are acquired, these would be suitable for
a variety of real-time ungated type of applications, where the
raw data is continuously being acquired without an a-priori
definition of temporal phases. Example applications include
free breathing ungated cardiac cine, real-time dynamic MRI
of vocal tract shaping during speech production, free breathing
dynamic contrast enhanced MRI (also see example in Fig. 8).
There is a need to have a fast on-the-fly reconstructions to
inspect quality of the dynamic reconstructions. For example,
in dynamic speech MRI, low latency reconstructions are useful
to adjust for localization planes, adjust center frequency to
minimize off-resonance artifacts, and to visualize articulatory
movements in biofeedback type experiments. Similarly, in
real-time ungated free breathing cardiac MRI experiments, a
fast reconstruction without a prior definition of cardiac phases
allows one to visualize arrhythmic events on the fly.
Limitations and how to tune parameters to tailor to applica-
tions. As can be seen from our results, the reconstruction
performance is not the best for all applications. In a few
cases, there is some visible blurring. The reason is our goal
was to show what our algorithm can achieve using a single
set of parameters. The blurring can be reduced by increasing
the rank r̂ that is used in AltGDmin while still ensuring
it is sufficiently smaller than min(mcminkmk, n, q); and/or
increasing the number of MEC step iterations. Making the
loop exit criterion more robust can also help, e.g., instead of
exiting after only two consecutive estimates of U are close in
subspace distance, one could exit if this happens consecutively
for a few iterations. The algorithm speed can be improved
further by using a variable step size ηt for the GD step:
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use larger values in the initial iterations and reduce it over
time. Lastly, the initial mean computation step of altGDmin-
MRI1 and altGDmin-MRI2 can be made more robust by using
truncation similar to that used in the initialization of altGDmin.

For both mini-batch and online ST methods, we need to
initialize using a mini-batch. From our experiments, the first
mini-batch needs to be at least 32-64 frames long. It is possible
to replace even the first mini-batch step by a fully-online one
if we replace the GD for updating U by stochastic GD that
only uses the gradient w.r.t. the data term for the current yk.
However, the tradeoff will be a worsened reconstruction qual-
ity. This approach will be explored in future work. Moreover,
our ST methods are not very robust to outliers, e.g., due to a
deep breath by the subject. One way to make them somewhat
robust is to re-initialize every so often. The second solution is
to develop an L+S model based algorithm.

VII. CONCLUSIONS AND FUTURE WORK

We developed a set of fast, memory-efficient, and “general”
algorithms for accelerated/undersampled approximately LR
dynamic MRI. Here, “general” means that it works with
the same set of parameters for multiple MRI applications,
sampling schemes and rates. We also developed an altGDmin-
MRI-based subspace tracking solution that operates in mini-
batch mode and provides comparable reconstruction quality
while being even faster. Unlike the supervised DL methods,
our algorithms do not need any training data, and also do not
need the hours or days of training time and computational
power. Unlike the newer unsupervised DL based methods,
our methods are orders of magnitude faster. In experimental
comparisons with the best known existing LR, L+S or L&S
based methods (kt-SLR, L+S-Otazo, L+S-Lin, PSF-sparse,
AltMin, MixedNorm), on average, our methods have the best
reconstruction quality, and are also the fastest. Future work
will explore reconstruction of 3D+t data (multi-slice dynamic
imaging) using the proposed approach and also try to develop
tensor-based modification of our ideas. A second goal will
be to design a fast and memory-efficient altGDmin-based
algorithm for the L+S model. We will also try to design a truly
online ST method that does not need mini-batch initialization.
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SUPPLEMENTARY MATERIAL

A. Dataset details - Retrospective case

Fully sampled multi coil datasets acquired on a Cartesian
grid in different dynamic MRI applications were retrospec-
tively downsampled using a 1D Cartesian undersampling
mask, or a 2D pseudo radial sampling mask. Details of
the full-sampled datasets are provided below. Using standard
format from MRI literature, the dimensions are stated as
kx × ky × q × mc where kx × ky is the image size, thus
n = kx ·ky; q is the number of frames; and mc is the number
of coils used. For our experiments, the raw data of datasets
in (3)-(6) below were coil-compressed into 8 virtual coils.
The virtual coil sensitivity maps were estimated using the
Walsh eigen decomposition algorithm [53] from time averaged
undersampled data. For datasets in (1), and (2), we did not
perform any coil compression, and used the author provided
coil sensitivity maps. For these, we used the author provided
retrospectively undersampled data which was undersampled
using 1D variable density random undersampling mask at
reduction factors (R); R=8, R=6 respectively.

1) A breath held cardiac perfusion dataset with dimensions
kx × ky × q ×mc = 128 × 128 × 40 × 12 previously
used in [20], [21].

2) A breath held cardiac cine dataset with dimensions of
kx × ky × q ×mc = 256 × 256 × 24 × 12 previously
used in [20], [21].

3) A low spatial but high temporal resolution speech data
set with dimensions of kx × ky × q ×mc = 68× 68×
2048 × 16. This data was acquired at the University
of Iowa on a healthy volunteer producing a variety of
speech sounds including uttering interleaved vowel and
consonant sounds (za-na-za-loo-lee-laa), and counting
numbers at the subjects natural speaking rate. Since
the subject was speaking at the natural rate, the spatial
resolution was compromised to 3.4 × 3.4mm2 and the
temporal resolution was maintained at 70 ms/frame to
capture the motion of the articulators.

4) A brain multi-parameter (T2, and T1-rho) mapping
dataset with dimensions of kx × ky × q ×mc = 128×
128 × 24 × 12 previously used in [20], [21]. This was
acquired on a normal volunteer at the University of Iowa.
Spin lock times and echo times were varied to estimate
T2, and T1-rho (T1 in rotating frame) time constants
from the resulting multi-contrast (or loosely dynamic)
image frames.

5) One free breathing ungated cardiac perfusion dataset,
previously used in [24] with dimensions kx × ky × q ×
mc = 288 × 108 × 200 × 32. This dataset had both
perfusion dynamics and motion dynamics due to cardiac
and breathing motion. The dataset was acquired at
the University of Utah with TR/TE=2.5/1ms; saturation
recovery time=100 ms.

6) Two representative breath held short axis cardiac cine
datasets from the OCMR database [51] with dimensions
respectively kx × ky × q ×mc = 192× 144× 25× 38;
and kx × ky × q ×mc = 192× 150× 15× 30.

7) PINCAT: Free breathing PINCAT perfusion phantom
containing dynamics due to perfusion uptake in the heart
as well as heavy breathing motion. This phantom was
previously used in the works of [5], [21].
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