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GLOBAL MOD p GALOIS REPRESENTATIONS

NAJMUDDIN FAKHRUDDIN,
CHANDRASHEKHAR KHARE AND STEFAN PATRIKIS

We show that under a suitable oddness condition, for p �F n irreducible

n-dimensional mod p representations of the absolute Galois group of an

arbitrary number field F have characteristic zero lifts which are unramified

outside a finite set of primes and trianguline at all primes of F dividing p.

We also prove a variant of this result under some extra hypotheses for

representations into connected reductive groups.

1. Introduction

For any field F we let 0F be its absolute Galois group. In [13] and [14] we
constructed geometric (in the sense of Fontaine–Mazur) lifts for odd representations
⇢̄ : 0F ! G(k), where F is a totally real number field, and G is a split reductive
group (possibly disconnected) over the ring of integers O of a p-adic field E with
residue field k, when ⇢̄ satisfies certain additional conditions. For example, if
G is connected, ⇢̄|0F(⇣p ) is absolutely irreducible, and lifts (which are regular de
Rham at primes dividing p) exist locally at all primes of F, then global lifts exist
whenever p is sufficiently large by [13, Theorem A]. In [14] we constructed lifts
for reducible representations under some more technical hypotheses. The oddness
assumption is crucial, but if G = GLn and n > 2 then no ⇢̄ is odd in the sense of [13,
Definition 1.2], so the results of the latter paper and [14] cannot be used to construct
geometric lifts.1 In fact, Calegari has proved [6, Theorem 5.1] that without any
oddness condition whatsoever, geometric lifts need not exist even when n = 2 and
F = Q. The goal of this note is to show that if we weaken the requirement that the
lift be geometric to being unramified outside a finite set of primes and trianguline2

at all primes above p, then the methods of [13] and [14] can be adapted to apply

MSC2020: 11F80.
Keywords: Galois representations, deformations of Galois representations.

1The results of these papers do apply — and have interesting consequences — when G = GLn and
F is a global function field, and even for number fields if we do not impose any conditions at primes
dividing p.

2The reader may consult [2] for a survey of trianguline representations; we give a brief sketch of
the definition in Section 2B.
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even when G = GLn and F is an arbitrary number field, if we assume the following
weaker oddness condition:

Definition 1.1. (1) An involution c in GLn(K ), where K is a field of characteristic
6= 2, is said to be GLn-odd if |n+(c)� n�(c)|  1, where n+(c) (resp. n�(c))
is the number of eigenvalues of ⇢(c) which are equal to +1 (resp. �1).

(2) Let F be a number field and ⇢ : 0F ! GLn(K ) a continuous representation,
where K is any topological field of characteristic 6= 2. We say that ⇢ is
GLn-odd3 if for every real place v of F with cv 2 0Fv the corresponding
complex conjugation, the involution ⇢(cv) is odd as in (1).

All Galois representations corresponding to cohomological automorphic forms
or the cohomology (possibly with torsion coefficients) of locally symmetric spaces
for GLn/F are GLn-odd when F is totally real by results of Caraiani and Le Hung
[7], so there is a plethora of such representations.

Trianguline representations were introduced by Colmez [9], motivated by work
of Kisin [17] on Galois representations attached to overconvergent modular forms,
and are closely related to the theory of eigenvarieties. For example, Hansen has
conjectured [15, Conjecture 1.2.3] that any (semisimple) GLn-odd representation
⇢ :0F !GLn(E) which is unramified outside a finite set of primes and is trianguline
at all primes above p arises as the representation associated (in [16, Theorem B]) to
a point on one of the eigenvarieties for GLn/F constructed in [15], so the condition
imposed on the lifts is a natural weakening4 of geometricity. We also mention
that conjecturally the set of isomorphism classes of geometric representations is
a countable set, but (global) trianguline representations vary in p-adic families,
e.g., the families of representations associated to eigenvarieties are expected to be
trianguline, and our constructions do produce nontrivial families of trianguline lifts
(see Remark 3.11).

For F any number field and S a finite set of finite places of F, we let 0F,S

denote the Galois group of the maximal extension of F (inside a fixed algebraic
closure) unramified outside all places in S (and the infinite places). The following
is a special case of the main result of this note.

Theorem 1.2. Let F be an arbitrary number field and ⇢̄ : 0F,S ! GLn(k) a
GLn-odd representation. If p �n,F 0 and ⇢̄|0F(⇣p ) is absolutely irreducible, then
there exists a finite set of places S

0 � S and a finite extension E 0 of E with ring
of integers O

0 such that ⇢̄ lifts to a GLn-odd representation ⇢ : 0F,S 0 ! GLn(O
0)

3This is often simply called odd in the literature, but we have added GLn here to distinguish this
notion from the stronger notion of oddness used in [13] for representations into general reductive
groups G.

4Almost: all crystalline, and even semistable, representations are trianguline, but not all de Rham
representations are trianguline, see [2].
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which is regular trianguline at all primes of F above p. Furthermore, one can also
ensure that ⇢(0F ) contains an open subgroup of SLn(O

0).

In the main text this is Corollary 3.12. It is deduced from Theorem 3.8 which
allows one to construct trianguline lifts under weaker hypotheses, e.g., for ⇢̄ which
might not be irreducible.

We recall that for odd irreducible mod p representations over totally real fields
the Khare–Wintenberger method allows one to construct geometric lifts (for many
G) without the need for enlarging S. However, this depends crucially on potential
modularity results, but since (global) trianguline representations do not in general
correspond to classical automorphic forms, it is not possible to apply this method
to construct trianguline lifts. In other words, in the trianguline setting there is no R
and no T for which a potential R = T theorem could lead to the construction of
trianguline lifts.

Recently, a definition of trianguline representations with values in general (con-
nected) reductive groups G has been given by Vincent de Daruvar in his thesis [11];
one expects that these are related to eigenvarieties for groups that are not forms of
GLn . Using his results we can extend the above theorem to general (connected)
reductive groups, see Theorem 3.16, with the caveat that the main result of loc. cit.
depends on two assumptions: first, the existence of a sufficiently general trianguline
lift of ⇢̄, and second, that G should have no factors of type G2, F4 and E8. One
expects that the first assumption always holds and the second is unnecessary.

It is an interesting question to extend the definition of trianguline representations
to disconnected groups G and to prove analogues of the results of [11] in this case.
If this is done, the methods of [13] and [14] should allow one to construct global
trianguline lifts also for such G.

1A. Our proofs are based on the methods developed in [13] and [14] and as far as
the global arguments go there are no essential changes, except that in Section 3 we
axiomatise in Section 3A and Section 3B the conditions under which the methods
of loc. cit. lead to the construction (in Theorem 3.6) of lifts, unramified outside a
finite set of primes, of a very general class of Galois representations. The main
improvements are in the local arguments, so we describe these briefly here.

In the original lifting arguments of Ramakrishna [19], which are generalised in
[13] and [14], it is assumed that one is given smooth local conditions at all primes
at which ⇢̄ is ramified, i.e., smooth quotients of the framed local deformation rings,
and these should have sufficiently large dimension. One of the key improvements
of this method in [13] was that we were able to dispense with the smoothness
condition, but the dimension condition cannot be relaxed if we want our lifts to
be geometric; in particular, the geometric lifting results there require the field F
to be totally real. However, if we only require that our local lifts be trianguline at
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primes dividing p, then the dimension condition can indeed be relaxed to overcome
the first obstacle to constructing lifts for arbitrary n and F, but we face the further
problem that trianguline lifts are not parametrised by a quotient of the universal
framed deformation ring. Section 2 is devoted to showing how we can avoid this
difficulty: in Section 2A we explain how the method of [13, §4] can be modified to
deal with more general local conditions, and in Section 2B we show that this can
be applied in the setting of trianguline lifts using the properties of the “trianguline
variety” of Breuil, Hellmann and Schraen [5, théorème 2.6] and the generalisation
thereof in [11]. Once these local improvements are in place the proofs of the main
results follow by specialising Theorem 3.6 to the case where the local lifts are
assumed to be trianguline.

2. Cocycle constructions

2A. A general cocycle construction. Let E be a finite extension of Qp, O its ring
of integers, mO = ($ ) its maximal ideal and k = O/mO its residue field. Let
G be a reductive group scheme over O (possibly disconnected) and g be its Lie
algebra. Let Gder be the derived group of the identity component of G and gder its
Lie algebra.

Let 0 be any topologically finitely generated profinite group. Given a continuous
homomorphism ⇢̄ : 0 ! G(k), there exists a complete local Noetherian O-algebra
R⇤,univ with residue field k and a homomorphism ⇢univ : 0 ! G(R⇤,univ) represent-
ing the functor of lifts of ⇢̄ on the category of complete local Noetherian O-algebras
with residue field k. For any such algebra A, we set bG(A) := ker(G(A) ! G(k)).
The conjugation action of bG(O) on G(R⇤,univ) and the universal property of ⇢univ

induces an action of bG(O) on R⇤,univ.
Let R be a quotient of R⇤,univ by an ideal which is invariant under this action.

We assume that R is reduced and flat over O. We also assume that R corresponds
to “fixed-multiplier” liftings of ⇢̄, by which we mean that the map 0 ! G/Gder(R)

induced from ⇢⇤,univ by the maps R⇤,univ ! R and G ! G/Gder factors through
a fixed map 0 ! G/Gder(O).5

For any representation ⇢ : 0 ! G(O) we will denote by ⇢r the reduction of ⇢

modulo $ r . Also, for any representation ⇢r : 0 ! G(O/$ r ), ⇢r (gder) will denote
gder ⌦O O/$ r equipped with the Ad � ⇢r action.

The following result is essentially contained in [13, §4].

Proposition 2.1. Assume that Spec(R) has an O-valued point y such that the
corresponding point of Spec(R[1/$ ]) is contained in the smooth locus, and let
⇢ : 0 ! G(O) be the corresponding lift of ⇢̄. Then there is an open (in the p-adic

5This is not essential, but it is convenient for our applications to impose this condition. The results
below hold in general if one removes all occurrences of the superscript “der”.
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topology) subset Y ⇢ Spec(R)(O) with y 2 Y having the properties below, where
Yn is the image of Y in Spec(R)(O/$ n) and for integers n, r � 0, the natural maps
are denoted ⇡Y

n,r : Yn+r ! Yn.

(1) Given r0 > 0 there exists n0 > 0 such that for all n � n0 and 0  r  r0 the
fibres of ⇡Y

n,r are nonempty principal homogeneous spaces over a submodule
Zr ⇢ Z1(0, ⇢r (gder)) which is free of rank d over O/$ r , where d is the
dimension of Spec(R[1/$ ]) at y.

(2) B1(0, ⇢r (gder)) ⇢ Zr .

(3) The O-module inclusions O/$ r�1 ! O/$ r , mapping 1 to $ , and the sur-
jections O/$ r ! O/$ r�1 induce inclusions Zr�1 ! Zr and surjections
Zr ! Zr�1.

(4) Let Lr be the image of Zr in H 1(0, ⇢(gder)⌦O/$ r ). The groups Lr are com-
patible with the maps on cohomology induced by the inclusions O/$ r�1 !
O/$ r and the surjections O/$ r ! O/$ r�1.

(5) |Lr | = |O/$ r |d · |⇢r (gder)0| · |⇢r (gder)|�1.

Proof. This is proved in [13, Proposition 4.7 together with Lemma 4.5 for (2)] for
0 the absolute Galois group of a local field and some specific choices of rings R
for which the dimension d is also known, but the proof given there works without
any changes under the conditions that we have given. In particular, the proof of the
formula for |Lr | there extends to give the formula in (5). ⇤

The goal of this subsection is to formulate a generalisation of Proposition 2.1
which will be the key to our construction of trianguline lifts in Section 3D, allowing
us to circumvent the fact that there is no quotient of R⇤,univ parametrising the
trianguline lifts of ⇢̄. In the next proposition, R is as above, but we emphasise that the
manifold U will no longer be assumed open in Spec(R[1/$ ])(E) (= Spec(R)(O)).
For m > 0, let ( dGder)(m)(O) = ker(Gder(O) ! Gder(O/$ m)).

Proposition 2.2. Let U be a compact E-adic manifold of some dimension d con-
tained in the smooth locus of Spec(R[1/$ ])(E) with v 2 U, and let ⇢ be the lift of
⇢̄ corresponding to v. Assume that there exists m � 0 such that the ( dGder)(m)(O)-
orbit of v is contained in U. Then there is an open (in the p-adic topology)
subset V ⇢ U with v 2 V having the properties below, where Vn is the image
of V in Spec(R)(O/$ n) and for integers n, r � 0, the natural maps are denoted
⇡V

n,r : Vn+r ! Vn.

(1) Given r0 > 0 there exists n0 > 0 such that for all n � n0 and 0  r  r0 the
fibres of ⇡V

n,r are nonempty principal homogeneous spaces over a submodule
Zr ⇢ Z1(0, ⇢(gder) ⌦O O/$ r ) which is free of rank d over O/$ r .

(2) B1(0, ⇢(gder) ⌦O O/$ n) ⇢ Zr .
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(3) The O-module inclusions O/$ r�1 ! O/$ r , mapping 1 to $ , and the sur-
jections O/$ r ! O/$ r�1 induce inclusions Zr�1 ! Zr and surjections
Zr ! Zr�1.

(4) Let Lr be the image of Zr in H 1(0, ⇢(gder)⌦O/$ r ). The groups Lr are com-
patible with the maps on cohomology induced by the inclusions O/$ r�1 !
O/$ r and the surjections O/$ r ! O/$ r�1.

(5) |Lr | = |O/$ r |d · |⇢r (gder)0| · |⇢r (gder)|�1.

Proof. Fix r0. Then apply Proposition 2.1 by taking y = v and get an open set
Y ⇢ Spec(R[1/$ ])(O) with v 2 Y, an integer nY

0 and cocycles ZY
r satisfying all

its conclusions.
Any open subset of an E-adic manifold is an E-adic submanifold, so replacing

U by U \ Y we may assume that U ⇢ Y. By applying the result of Serre [20,
Proposition 11] to the inclusion v 2 U in the same way as in the proof of [13,
Lemma 4.3] we get an open submanifold V ⇢ U with v 2 V and free O/$ r

submodules Zr ⇢ ZY
r with the property in (1), with the proviso that the n0 associated

to r0 might be greater than the nY
0 obtained as an output of Proposition 2.1. (The

inclusion Zr ⇢ ZY
r follows from the definitions, since U ⇢ Y so each Un ⇢ Yn .)

Using the assumption on the ( dGder)(m)(O)-orbit of v we see that (2) holds in the
same way as in the proof of [13, Lemma 4.5].

The surjectivity part of (3) is clear from the defining property of the Zr . To prove
the injectivity part, we must examine the proof of [13, Lemma 4.3] (since there is no
analogue of Lemma 4.4 of that paper in the present setting) from which we obtain the
Zr . That proof proceeds by first choosing a formally smooth complete Noetherian
O-algebra A and a surjection of O-algebras A ! R. The Zr (corresponding to
U ) are then constructed as certain submodules of HomO(�A/O ⌦A,y O,O/$ r ) by
choosing local equations for U in the E-adic manifold Spec(A)(O) and reducing to
the case where U corresponds to the E-valued points of a formally smooth quotient
R0 of A. It is an immediate consequence of this construction that the map

HomO(�A/O ⌦A,y O,O/$ r�1) ! HomO(�A/O ⌦A,y O,O/$ r )

induced by the inclusion O/$ r�1 ! O/$ r maps Zr�1 injectively into Zr (since
this is true when A is replaced by R0). The map A ! R induces compatible (with
respect to O/$ r�1 ! O/$ r ) inclusions

HomO(�R/O ⌦R,y O,O/$ r ) ! HomO(�A/O ⌦A,y O,O/$ r )

from which (3) follows once we identify HomO(�R/O ⌦R,y O,O/$ r ) with a
submodule of Z1(0, ⇢(gder) ⌦O/$ r ) as in [13, §4.2].

Finally, (4) follows immediately from (3) and the definition of Lr and (5) follows
as in Proposition 2.1. ⇤
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2B. Cocycles for trianguline deformations. Let F be a finite extension of Qp and
let 0F = Gal(F/F) be its absolute Galois group. In this subsection we recall some
facts about trianguline representations of 0F and carry out the local analysis needed
in order to be able to construct the cocycles used to prove the existence of global lifts
of GLn-odd representations which are trianguline at primes above p. For a general
introduction to trianguline representations the reader may consult [2] (and also [11]
for the G-valued case), but we will only use the existence and some properties of the
rigid-analytic variety of (local) trianguline lifts from [5] (and [11] for the G-valued
case). However, to orient the reader not familiar with this notion, we mention briefly
that trianguline representations are defined by embedding the category of E-adic
representations of 0F (for E/Qp a finite extension) fully faithfully into a larger
category, the category of (�, 0)-modules, which are modules over a (Robba) ring
R with some extra structure. A Galois representation is said to be trianguline if the
corresponding (�, 0)-module has a filtration by subobjects such that the successive
subquotients are free of rank one as R-modules; the parameter � occurring below
corresponds to the ordered tuple of these subquotients. The condition for a G-
valued representation to be trianguline is formulated in Tannakian terms using the
tensor structure on the category of (�, 0)-modules or in the language of principal
G-bundles over R (with extra structure).

2B1. We will first consider the case of GLn since the results for general G are
slightly weaker and partly conditional. Let G = GLn and ⇢̄ : 0F ! G(k) be as
in Section 2A. Let X⇤

⇢̄ be the rigid analytic space over E corresponding to the
formal scheme Spf(R⇤,univ), where R⇤,univ is the universal lifting ring of ⇢̄; its
E-valued points are canonically equal to the O-valued points of Spec(R⇤,univ) and
similarly for all finite extensions of E . Let T denote the rigid analytic space over
Qp parametrising the continuous characters of F⇥. Let X⇤

tri(⇢̄) ⇢ X⇤
⇢̄ ⇥ T

n
E be

the space of trianguline deformations of ⇢̄ as in [5, définition 2.4]; our notation is
however slightly different. It is a Zariski closed rigid analytic subvariety of X⇤

⇢̄ ⇥T
n

E
defined as the Zariski closure of a subset U⇤

tri(⇢̄)reg. The points (x, �) of the latter
consist of certain trianguline lifts x of ⇢̄ together with a system of parameters � of
a triangulation of the associated (�, 0)-module; the assumption is that � is regular
in the sense explained in the paragraph before [5, définition 2.4]. For our purposes
what is important is that x corresponds to a trianguline lift, and the precise nature
of � plays no explicit role. We call the trianguline lifts of ⇢̄ which correspond to
points of X⇤

tri(⇢̄) good; we do not know whether all trianguline lifts are good.
The following result of Breuil, Hellmann and Schraen is the key input for the

construction of cocycles for trianguline lifts.

Lemma 2.3. (1) The space X⇤
tri(⇢̄) is nonempty and equidimensional of dimension

n2 + 1
2 [F : Qp]n(n + 1).
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(2) U⇤
tri(⇢̄)reg is a smooth Zariski open subvariety of X⇤

tri(⇢̄) which is Zariski dense.

(3) The projection map ⇡1 : X⇤
tri(⇢̄)!X⇤

⇢̄ is an immersion at all points of U⇤
tri(⇢̄)reg.

Proof. This is a part of [5, théorème 2.6]. The third part is not contained in the
statement there but is used in the proof, where it is deduced from results of Bellaïche
and Chenevier [1, §2.3]. We note that the proof of nonemptiness of U⇤

tri(⇢̄)reg in [5]
uses the existence of regular crystalline lifts of ⇢̄; this is a highly nontrivial result
for general ⇢̄ and was proved only recently in [12]. ⇤

The group dGLn(O) acts on X⇤
⇢̄ ⇥ T

n
E via its action on the first factor, and this

action preserves U⇤
tri(⇢̄)reg and X⇤

tri(⇢̄).
For our application we need to work with lifts of ⇢̄ which have a fixed determinant.

To arrange this we consider the morphism det :X⇤
⇢̄ !X⇤

det(⇢̄) which sends any lift of
⇢̄ to its determinant and the induced morphism det1 := det �⇡1 : X⇤

tri(⇢̄) ! X⇤
det(⇢̄).

The space X⇤
det(⇢̄) has dimension 1 + [F : Qp] and the morphism det1 commutes

with the action of dGLn(O), where the action on X⇤
det(⇢̄) is taken to be the trivial

action.
If � is a character of 0F with values in a finite extension E 0 of E with trivial

reduction modulo its maximal ideal, then taking the tensor product with � induces
an automorphism of X⇤

tri(⇢̄)E 0 which preserves U⇤
tri(⇢̄)reg. This is compatible with

the morphism det1 if we let � act on X⇤
det(⇢̄) by tensoring with �⌦n .

If p - n, then any character � as above has an n-th root. This implies that in this
case all the fibres of det1 over X⇤

det(⇢̄)(E 0) are isomorphic, for any finite extension
E 0 of E . It follows that for any point y of X⇤

det(⇢̄), U⇤
tri(⇢̄)reg \(det1)�1(y) is Zariski

dense in (det1)�1(y).

Lemma 2.4. Let ⇢̄ : 0F ! GLn(k) be a continuous homomorphism, and also let
⇢ :0F !GLn(O) be a lift of ⇢̄ corresponding to a point (x, �)2 X⇤

tri(⇢̄)(E). Assume
p - n. Then, after replacing E by a finite extension if necessary, the following holds:

(1) There is a quotient R of R⇤,univ by an ideal invariant under the action of
dGLn(O) which is reduced and flat over O.

(2) There is a compact E-adic submanifold U of Spec(R[1/$ ])(E) of dimension
d = n2 �1+[F : Qp]

� 1
2 n(n +1)�1

�
such that all the points of U correspond

to regular trianguline lifts ⇢ 0 of ⇢̄ with det(⇢) = det(⇢ 0).

(3) Given any integer N > 0, U can be chosen such that all ⇢ 0 corresponding to
points of U are congruent to ⇢ modulo $ N.

(4) There is a point v 2 U and an integer m > 0 such that the ( dGLn)
(m)(O)-orbit

of v is contained in U.

Proof. By replacing E with a finite extension if necessary, we may ensure that
U⇤

tri(⇢̄)reg(E) 6=?, so by Lemma 2.3 it has a natural structure of an E-adic manifold
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of dimension n2 + 1
2 [F : Qp]n(n + 1). Since the space X⇤

det(⇢̄) has dimension
1 +[F : Qp] and all (nonempty) fibres of det1 are geometrically isomorphic since
p - n, it follows from the results of [21, Part II, Chapter III, Section 10] that
F := (det1)�1(det1((x, �))) is of pure dimension d =n2�1+[F :Qp]

� 1
2 n(n+1)�1

�

and has a smooth Zariski dense open subset F 0 consisting of points in U⇤
tri(⇢̄)reg.

Now using [13, Lemma 4.9]6 — this might again require replacing E with a finite
extension — we can find a sequence of points (x 0

N , �0
N )2F

0(E), N = 1, 2, . . . , such
that the lift of ⇢̄ corresponding to x 0

N is congruent to ⇢ modulo $ N. For any such
N , let U 0 ⇢ F

0(E) be an E-adic neighbourhood of (x 0
N , �0

N ) such that all the lifts
of ⇢̄ corresponding to points of U 0 are congruent to ⇢ modulo $ N. By shrinking
U 0 further using (3) of Lemma 2.3, we may assume that ⇡1 induces an embedding
of U 0 onto a compact E-adic submanifold U of Spec(R⇤,univ [1/$ ])(E).

Let eU 0 = dGLn(O) · U 0 ⇢ F
0(E) and let R be the reduced quotient of R⇤,univ

corresponding to the Zariski closure in Spec(R⇤,univ) of ⇡1(eU 0). Since ⇡1(eU 0) is
preserved by the action of dGLn(O), the kernel of the quotient map R⇤,univ ! R
is also preserved by this group. By the Zariski density of ⇡1(eU 0) in Spec(R) and
the reducedness of Spec(R), we may find a point v 2 ⇡1(eU 0) which is a smooth
point of Spec(R[1/$ ]). The dGLn(O)-equivariance of ⇡1 implies that we may take
v = ⇡1(v

0) for some v0 2 U 0. Replacing U 0 by a compact open neighbourhood of v0

we may assume that ⇡1(U 0) is contained in the smooth locus of Spec(R[1/$ ])(E).
Letting U = ⇡1(U 0) and v = ⇡1(v

0), it is clear from the above that (1), (2)
and (3) hold. To prove (4), we note that dGLn(O) acts continuously on F

0(E).
Since U 0 is an open neighbourhood of v0 in F

0(E) and the sequence of subgroups
( dGLn)

(m)(O) := ker(GLn(O) ! GLn(O/$ m)) of dGLn(O) forms a neighbourhood
basis of the identity, for all m � 0 the ( dGLn)

(m)(O)-orbit of v0 is contained in U 0.
The dGLn(O)-equivariance of ⇡1 then implies that for all m � 0 the ( dGLn)

(m)(O)-
orbit of v is contained in U. ⇤
Remark 2.5. If ⇢̄ is upper triangular with respect to some basis, then the points of
U⇤

tri(⇢̄)reg corresponding to pairs (x, �) with x being upper triangular with respect
to some basis form a nonempty dGLn(O)-invariant open subspace, as a consequence
of the inductive nature of the proof of existence of regular crystalline lifts in [12].
In this case one may arrange that all the points of the U constructed in Lemma 2.4
correspond to lifts of ⇢̄ which are upper triangular with respect to some basis.

2B2. Suppose G is a connected split reductive group over O. Then the notion of
trianguline representations of 0F valued in G(E) is defined in [11] using (�, 0)-
modules with G E -structure, these being defined by Tannakian methods. We do
not recall the details of the construction, but only mention that this definition
generalises the usual definition of trianguline representations in a natural way. The

6The lemma as stated does not quite apply here, but its proof gives what we claim.
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main result of [11], Theorem 6.22, is an analogue for G-valued representations of
[5, théorème 2.6], with some modifications and conditions which we briefly explain.

For ⇢̄ : 0F ! G(k), we let R⇤,univ and X⇤
⇢̄ be as before. For T a maximal

split torus of G contained in a Borel subgroup B, we let T _ be the dual torus and
we replace T

n
E by cT _, the rigid analytic space over E parametrising (continuous)

characters of T _(F). Then X⇤
tri(⇢̄) ⇢ X⇤

⇢̄ ⇥ cT _ is defined as the Zariski closure of
a subset U⇤

tri(⇢̄)vreg of very regular lifts. The points of the latter correspond to pairs
(x, �) where x is a trianguline lift of ⇢̄ in the sense of [11, Definition 4.9] with a
triangulation such that the associated parameter � is very regular in the sense of
[11, Definition 6.1]. We then have the following analogue of Lemma 2.3.

Lemma 2.6. Assume G has no factors of type G2, F4 and E8 and ⇢̄ has a very
regular trianguline lift. Then:

(1) The space X⇤
tri(⇢̄) is nonempty and equidimensional, and its dimension equals

dim(Gk) + [F : Qp] dim(Bk).

(2) U⇤
tri(⇢̄)vreg is a smooth Zariski open subvariety of X⇤

tri(⇢̄) which is Zariski
dense.

(3) The projection map ⇡1 : X⇤
tri(⇢̄) ! X⇤

⇢̄ is an immersion at all points of
U⇤

tri(⇢̄)vreg.

It is expected that the condition on G is unnecessary, the condition on ⇢̄ is always
satisfied, and “very regular” can be replaced by “regular”.

Proof. This is part of [11, Theorem 6.22], the last part being a consequence of the
proof using [11, Proposition 6.6]. ⇤

As in the case of GLn , we would like to work with “fixed determinant” lifts,
where now by “determinant” we mean the map det : G ! G/Gder, with Gder being
the derived group of G. This induces a map det :X⇤

⇢̄ !X⇤
det(⇢̄) which sends any lift

of ⇢̄ to its determinant, inducing a morphism det1 := det �⇡1 : X⇤
tri(⇢̄) ! X⇤

det(⇢̄).
Let n be the order of the kernel of the isogeny Z(G) ! G/Gder, where Z(G) is
the connected centre of G.

Lemma 2.7. Assume G has no factors of type G2, F4 and E8, and that p - n. Let
⇢̄ : 0F ! G(k) be a continuous homomorphism and let ⇢ : 0F ! G(O) be a lift of
⇢̄ corresponding to a point (x, �) 2 X⇤

tri(⇢̄)(E). Then, after replacing E by a finite
extension if necessary, the following holds:

(1) There is a quotient R of R⇤,univ by an ideal invariant under the action of bG(O)

which is reduced and flat over O.

(2) There is a compact E-adic submanifold U of Spec(R[1/$ ])(E) of dimension
d = dim(Gder)+[F : Qp](dim(B)�dim(Z(G))) such that all the points of U
correspond to very regular trianguline lifts ⇢ 0 of ⇢̄ with det(⇢) = det(⇢ 0).
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(3) Given any integer N > 0, U can be chosen such that all ⇢ 0 corresponding to
points of U are congruent to ⇢ modulo $ N.

(4) There is a point v 2 U and an integer m > 0 such that the bG(m)(O)-orbit of v

is contained in U.

Proof. This is proved in essentially the same way as Lemma 2.4 using Lemma 2.6
instead of Lemma 2.3. ⇤

3. Trianguline lifting theorems

In this section we formulate a general lifting theorem for representations of global
fields.

3A. Selmer and relative Selmer groups. Let F be a global field, and let E,O, $

be as before. Let G be a reductive group scheme over O, Gder the derived group
of its identity component and gder the Lie algebra of Gder. For some n � 1 let
⇢n : 0F ! G(O/$ n) be a continuous homomorphism. Let S be a finite set of
primes containing all primes at which ⇢n is ramified and also all primes dividing p.
We first recall some definitions and results from [13].

In what follows, when we have an integer 0 < r < n, we will write ⇢r for the
reduction ⇢n (mod $ r ). For each prime v 2 S we assume that for 0 < r  n we
have subgroups Zr,v ⇢ Z1(0Fv , ⇢r (gder)) such that

• each Zr,v contains the group of boundaries B1(0Fv , ⇢r (gder));
• as r varies, the inclusion and reduction maps induce short exact sequences

0 ! Za,v ! Za+b,v ! Zb,v ! 0

as in Proposition 2.2.

We let Lr,v ⇢ H 1(0Fv , ⇢r (gder)) be the image of Zr,v , and L?
r,v ⇢ H 1(0Fv , ⇢r (gder)⇤)

be the annihilator of Lr,v under the local duality pairing. Let Lr = {Lr,v}v2S ,
0 < r  n, and similarly define L

?
r . The Selmer group H 1

Lr
(0F,S, ⇢r (gder)) is

defined to be

ker
✓

H 1(0F,S, ⇢r (g
der)) !

M

v2S

H 1(0Fv , ⇢r (gder))

Lr,v

◆

and the dual Selmer group H 1
L?

r
(0F,S, ⇢r (gder)⇤) is defined analogously.

The definition below is a variant of the definition of balanced in [13, Definition
6.2], which is the condition when a = 0.

Definition 3.1. We say that the local conditions Lr , for 0 < r  n, are semibalanced
if there exists a nonnegative integer a such that

|H 1
Lr

(0F,S, ⇢r (g
der))| = |O/$ r |a · |H 1

L?
r
(0F,S, ⇢r (g

der)⇤)|



234 NAJMUDDIN FAKHRUDDIN, CHANDRASHEKHAR KHARE AND STEFAN PATRIKIS

for all 0 < r  n.

The basic objects that we need to control in order to prove lifting results using the
methods of [13] and [14] are the relative (dual) Selmer groups of [13, Definition 6.2],
so we recall them here:

Definition 3.2. For 0 < r  n, we define the r -th relative Selmer group to be

H 1
Lr

(0F,S, ⇢r (gder)) := Im
�
H 1

Lr
(0F,S, ⇢r (g

der)) ! H 1
L1

(0F,S, ⇢̄(gder))
�

and the r -th relative dual Selmer group to be

H 1
L?

r
(0F,S, ⇢r (gder)⇤) := Im

�
H 1

L?
r
(0F,S, ⇢r (g

der)⇤) ! H 1
L

?
1
(0F,S, ⇢̄(gder)⇤)

�
.

3B. Adequate cocycles and semibalancedness. We continue with the notation
from Section 3A, but now assume that F is a number field. We set ⇢̄ = ⇢1 and for
each infinite place v of F we let c(⇢̄, v) = dim(gder)0Fv .

The definition below is a modification of [13, Definition 1.4]; it is useful for lifting
representations which are more general than the odd representations considered
there.

Definition 3.3. We say that the O-submodules Lr,v ⇢ H 1(0Fv , ⇢r (gder)) are ade-
quate if for each finite place v there exists an integer av such that av = 0 for all but
finitely many v,

(3-1) |Lr,v| = |⇢r (g
der)0Fv | · |O/$ r |av ,

and
P

v finite av � P
v|1 c(⇢̄, v).

The following lemma is a variant of [13, Lemma 6.3].

Lemma 3.4. If the collection of O/$ r -modules Lr is adequate and the spaces of
invariants ⇢̄(gder)0F and (⇢̄(gder)⇤)0F are both zero, then the relative Selmer and
dual Selmer groups are also semibalanced in the sense that

dim
�
H 1

Ln
(0F,S, ⇢n(gder))

�
� dim

�
H 1

L?
n
(0F,S, ⇢n(gder)⇤)

�
.

Proof. The hypotheses together with the Greenberg–Wiles formula [10, Theorem
2.18] imply that the Selmer and dual Selmer groups are semibalanced: the integer a
of Definition 3.1 is

P
v finite av�P

v|1 c(⇢̄, v). From this the proof of semibalanced-
ness of the relative Selmer and dual Selmer group follows from [13, Lemma 6.1]
as in the proof of [13, Lemma 6.3]. ⇤

3C. The general lifting theorem. As previously, let F be a global field and let
⇢̄ : 0F ! G(k) be a continuous representation, where k is a finite field of charac-
teristic p and G is a split reductive group over the ring of integers O of a finite
extension E/Qp. The group G need not be connected, and if this is the case we
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assume that the component group of G has order prime to p and G is a semidirect
product of its identity component G0 and the component group. Let eF be the
smallest extension of F such that ⇢̄(0eF ) ⇢ G0(k) and let K = F(⇢̄, µp).

We let µ̄ : 0F ! (G/Gder)(k) be the map induced by ⇢̄ and the quotient map
G ! G/Gder, and we fix a lift µ : 0F ! G(O) of µ̄.

Assumption A. (1) ⇢̄ and µ are unramified outside a finite set of places S of F
containing all places of F over p if F is a number field.

(2) If F is a function field we assume that p 6= char(F).

(3) H 1(Gal(K/F), ⇢̄(gder)⇤) = 0.

(4) ⇢̄(gder) and ⇢̄(gder)⇤ do not contain the trivial representation as a submodule.

(5) There is no surjection of Fp[0F ]-modules from ⇢̄(gder) onto any Fp[0F ]-module
subquotient of ⇢̄(gder)⇤.

We also need some local assumptions on ⇢̄ which we formulate separately.

Assumption B. There exists a finite extension E 0 of E with ring of integers
O 0 such that for each finite place v 2 S there exists a lift ⇢v of ⇢̄|0Fv

to a con-
tinuous homomorphism 0Fv ! G(O0) with fixed determinant µ|0Fv

. Further-
more, ⇢v is an element of an E-adic manifold Uv contained in Spec(R⇤,univ

⇢̄|0Fv

)(O0)
(= Spec(R⇤,univ

⇢̄|0Fv

[1/$ ])(E 0)), with fixed determinant as above, and which is invari-
ant under conjugation by dGder(O 0) and of dimension dv , with dv = dimk(gder), for
each finite v - p. Finally,

(3-2)
X

v finite

(dv � dim(gder)) �
X

v|1
c(⇢̄, v).

Remark 3.5. (1) We usually choose Uv to lie in the O
0-points of an irreducible

component of Spec(R), where R is a G(O0)-equivariant quotient of the uni-
versal local lifting ring of ⇢̄|0Fv

.

(2) The question of the existence of Uv is most delicate for primes v | p, but for
arbitrary groups G it is still unknown whether a lift ⇢v always exists even for
other (ramified) primes. In most applications, if v - p then we choose Uv so
that dv = dimk(gder) (see [13, Proposition 4.7]; this is the maximal possible),
in which case av = 0.

The following theorem is an easy consequence of the results of [13] and [14].

Theorem 3.6. Let ⇢̄ : 0F ! G(k) satisfy Assumptions A and B and assume that
p �G 0. Then there exists a finite set of places S

0 � S such that ⇢̄ lifts to a
continuous representation ⇢ : 0F,S 0 ! G(O0) such that

(1) the image ⇢(0F,S 0) intersects Gder(O0) in an open subgroup;
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(2) ⇢|0Fv
is an element of Uv for all v 2 S and ⇢ can be chosen so that ⇢|0Fv

is,
modulo dGder(O0)-conjugation, congruent to ⇢v modulo any prespecified power
of $ .

Proof. Assumption A and the existence of ⇢v in Assumption B imply that all the
arguments of Sections 3 and 4 of [14] go through without any changes to construct
lifts ⇢n as in Theorem 4.4 of loc. cit. The point is that neither the archimedean
primes, nor the dimensions dv, play any role in the proof of this theorem. To
complete the proof we must explain how to carry out the “relative deformation
theory” arguments of [14, Section 6].

To do this, we apply Proposition 2.2 to the sets Uv for each v 2 S to produce
cocycles Zr,v for all r  n. The condition on dv in Assumption B and (5) of
Proposition 2.2 implies that the Lr,v constructed from the Zr,v are adequate in the
sense of Definition 3.3. Then by Lemma 3.4, the relative Selmer and dual Selmer
groups are semibalanced. The first part of Assumption 5.1 of [14] is part of (4) of
Assumption A above, and this together with the existence of local lifts giving rise
to semibalanced relative Selmer and dual Selmer groups is exactly what is needed
for the proof of [14, Theorem 5.1] to go through to produce a lift ⇢ satisfying all
the claimed properties. ⇤

3D. Trianguline lifts of GLn-odd representations of number fields. Before prov-
ing our main theorem we need the following:

Lemma 3.7. If ⇢̄ : 0F ! GLn(k) is a GLn-odd representation, then for every real
place v of F,

(3-3) c(⇢̄, v) =
⇢

2m2 � 1 if n = 2m is even,

2m2 + 2m if n = 2m + 1 is odd.

Proof. This is an elementary computation. ⇤
We now restate and prove our main theorem.

Theorem 3.8. Let F be a number field and ⇢̄ : 0F,S ! GLn(k) a GLn-odd repre-
sentation. If p �n 0 and ⇢̄ satisfies all the conditions in Assumption A then there
exists a finite set of places S 0 � S and a finite extension E 0 of E with ring of integers
O

0 such that ⇢̄ lifts to a GLn-odd representation ⇢ : 0F,S 0 ! GLn(O
0) which is

regular trianguline at all primes of F above p. Furthermore, one can also ensure
that ⇢(0F,S 0) contains an open subgroup of SLn(O

0).

Proof. The proof is an application of Theorem 3.6.
We begin by choosing any lift µ of µ̄. The conditions of Assumption A hold

tautologically, so we only need to show that those of Assumption B also hold.
Since the group G in this case is GLn , for v - p this holds by [8, §2.4.4] with

dv = dimk(gder). The main change that we need to make is in the local arguments
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for primes v | p. For each such prime, we apply Lemma 2.4 (with the F there being
Fv) to obtain a set Uv of trianguline lifts of ⇢̄|0Fv

. For these Uv we have by (2) of
Lemma 2.4 dv = n2 � 1 + [Fv : Qp]

� 1
2 n(n + 1) � 1

�
.

Since
P

v|p[Fv : Qp] = [F : Q], we get
X

v|p

dv =
X

v|p

(n2 � 1) + [F : Q]
� 1

2 n(n + 1) � 1
�
.

On the other hand
P

v|1 c(⇢̄, v) = P
v real c(⇢̄, v) + P

v complex c(⇢̄, v). Using
Lemma 3.7 we see that if v is a real place then c(⇢̄, v) 

� 1
2 n(n + 1)� 1

�
and if v

is a complex place then c(⇢̄, v) = n2 � 1  2
� 1

2 n(n + 1)� 1
�
. Using this it follows

that (3-2) holds, so the proof is complete. ⇤
Remark 3.9. It seems reasonable to expect that Assumption A and the assumption
that p �n 0 are superfluous and trianguline lifts as in Theorem 3.8 exist as long as
⇢̄ is GLn-odd.

Remark 3.10. If ⇢̄|0Fv
is upper triangular for a prime v above p, using Remark 2.5

one may arrange that the same holds for ⇢|0Fv
.

Remark 3.11. The proof of Theorem 3.8 actually gives a family of (fixed-determi-
nant) lifts of ⇢̄, unramified outside a fixed finite set S 0 and trianguline at all primes
above p, parametrised by a

�
[F : Q]

� 1
2 n(n + 1)� 1

�
�P

v|1 c(⇢̄, v)
�
-dimensional

E-adic manifold.

Corollary 3.12. Let F be an arbitrary number field and ⇢̄ : 0F,S ! GLn(k) a
GLn-odd representation. If p �n 0 and ⇢̄|0F(⇣p ) is absolutely irreducible, then there
exists a finite set of places S 0 � S and a finite extension E 0 of E with ring of integers
O

0 such that ⇢̄ lifts to a GLn-odd representation ⇢ : 0F,S 0 ! GLn(O
0) which is

regular trianguline at all primes of F above p. Furthermore, one can also ensure
that ⇢(0F ) contains an open subgroup of SLn(O

0).

Proof. This follows immediately from Theorem 3.8 once we note that the irreducibil-
ity assumption implies that (3), (4) and (5) of Assumption A automatically hold;
see [13, Corollary A.7] for a more general statement that holds for arbitrary G. ⇤
Remark 3.13. The recent results of [3] show that the second bulleted assumption
in [13, Theorem 6.21] is always satisfied for G = GLn . Consequently, if F is an
arbitrary number field, and we drop the GLn-odd assumption in Theorem 3.8, we
can construct characteristic zero lifts which are unramified outside a finite set of
primes, but without any control at primes dividing p.

Remark 3.14. As far as we are aware, it is not known whether or not every GLn-odd
representation has a geometric lift, even when F is Q — the examples of Calegari
mentioned in the introduction are not GLn-odd — and this question is closely related
to the question whether torsion cohomology classes of arithmetic subgroups of
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GLn lift to characteristic zero after passing to a finite index subgroup. However,
Conjecture 1.2.3 of [15] combined with Theorem 3.8 implies that any irreducible
representation ⇢̄ satisfying the hypotheses of the theorem is the reduction of the
Galois representation associated to the cohomology of an arithmetic subgroup of
GLn with coefficients in a suitable infinite dimensional module (see [16, §5]) which
is a Qp-vector space.

3E. Trianguline lifts for representations into connected reductive groups. Using
Lemma 2.7 (and the results of [13] and [14]) we now prove a generalisation of
Theorem 3.8 for representations valued in general split connected reductive groups
G satisfying the assumptions of the lemma. Before we can do this, we need an
analogue of the definition of GLn-odd used for GLn . The definition below, motivated
by the numerics of the trianguline local condition, is weaker than GLn-odd when
applied to GLn , but it still suffices to prove our lifting result.

Definition 3.15. (1) Let K be any field and G a split reductive group (not nec-
essarily connected) over K . An involution c 2 G(K ) is said to be t-odd if
dim(gder)c  dim(Bder), where Bder is a Borel subgroup of Gder.

(2) Let F be a number field, K any topological field, and G as above. We say that
a continuous representation ⇢̄ : 0F ! G(K ) is t-odd if for every real place
v of F and cv 2 0Fv the corresponding complex conjugation, the involution
⇢̄(cv) 2 G(K ) is t-odd as in (1).

We then have the following generalisation of Theorem 3.8.

Theorem 3.16. Let F be a number field, G a connected and split reductive group,
and ⇢̄ : 0F,S ! G(k) a t-odd continuous representation. Assume that p �G 0, ⇢̄

satisfies the conditions of Assumption A and G has no factor of type G2, F4 or E8.
Fix a lift µ of µ̄ as in Section 3C and also assume that after possibly replacing
E by a finite extension, for each finite prime v of F, ⇢̄|0Fv

has a lift to G(O) with
determinant µ|0Fv

which is trianguline and very regular if v | p. Then there exists a
finite set of places S

0 � S and an extension E 0 of E with ring of integers O
0 such

that ⇢̄ lifts to a t-odd representation ⇢ : 0F,S 0 ! G(O0) with determinant µ which
is very regular trianguline at all primes of F above p. Furthermore, one can also
ensure that ⇢(0F,S 0) contains an open subgroup of Gder(O0).

Proof. The proof is essentially the same as that of Theorem 3.8 after noting that
the definition of t-odd is designed precisely to ensure that the cocycles obtained by
applying Proposition 2.2 and Lemma 2.7 for primes v | p and [13, Proposition 4.7]
for other primes are adequate in the sense of Definition 3.3. This ensures, by
Lemma 3.4, that the (relative) Selmer and dual Selmer groups are semibalanced,
which is the key condition needed for the arguments of [13] to go through as in the
proof of Theorem 3.8. ⇤
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It will be clear to the reader that using this theorem one may also prove an
analogue of Corollary 3.12, but we do not formulate it explicitly here. The t-odd
assumption in the theorem can also be replaced by the slightly weaker conditionP

v|1 dim(gder)0Fv  [F : Q] dim(Bder).

Remark 3.17. The existence of lifts for primes v - p has been proved for some
groups other than GLn by Booher [4] and very regular trianguline (in fact, crystalline)
lifts for primes v | p are known to exist when ⇢̄|0Fv

is absolutely irreducible by
recent work of Lin [18].
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