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Abstract
Weexplore the relationship betweenEulerian andLagrangian approaches formodeling
movement in vector-borne diseases for discrete space. In the Eulerian approach we
account for the movement of hosts explicitly through movement rates captured by
a graph Laplacian matrix L . In the Lagrangian approach we only account for the
proportion of time that individuals spend in foreign patches through a mixing matrix
P . We establish a relationship between an Eulerian model and a Lagrangian model for
the hosts in terms of the matrices L and P . We say that the two modeling frameworks
are consistent if for a given matrix P , the matrix L can be chosen so that the residence
times of the matrix P and the matrix L match. We find a sufficient condition for
consistency, and examine disease quantities such as the final outbreak size and basic
reproduction number in both the consistent and inconsistent cases. In the special case of
a two-patch model, we observe how similar values for the basic reproduction number
and final outbreak size can occur even in the inconsistent case. However, there are
scenarios where the final sizes in both approaches can significantly differ by means of
the relationship we propose.
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1 Introduction

Understanding how connectivity between different spatial locations affects vector-
borne disease dynamics is a fundamental issue in disease ecology and public health.
In particular, wide variation in disease transmission between locales is commonplace,
reflecting heterogeneity in breeding site availability, geography, climate, availability
of bed nets andwindow screens, demography, andmany other factors. How this spatial
heterogeneity interacts with connectivity through host and vector movement to inform
disease dynamics is not obvious. For example, empirical studies have shown how a
vector-borne disease may persist in cities where mosquito abundance is low or zero
(for example for malaria in Ochoa and Osorio (2006)). Some authors have shown
that this persistence can be explained by host movement. Stoddard et al. (2009) used
a conceptual model to show that even when the vector density is low, the risk of
acquiring the disease may be high due to movement. Similarly, Cosner et al. (2009)
constructed a spatial vector-borne disease model to study how human movement can
affect transmission, and discovered that human movement between heterogeneous
locations was sufficient to sustain disease persistence. In other situations, movement
can lead to disease extinction, even in areas with high local transmission (Tatem
and Smith 2010). Movement patterns also affect the spatial spread of vector-borne
diseases such as Lyme disease (Gaff and Gross 2007), West Nile Virus Liu et al.
(2006), Dengue Espana et al. (2019), Zika O’Reilly et al. (2018), Zhang et al. (2017),
andMalaria Tatem and Smith (2010), Wesolowski et al. (2012). Both connectivity and
local conditions for disease transmission are important considerations when designing
disease surveillance and control efforts (Woolhouse et al. 1997).

Many different approaches have been taken for modeling spatial vector-borne dis-
ease dynamics, including PDEs (Lewis et al. 2006), ODEs (Acevedo et al. 2015;
Pindolia et al. 2012; Ruktanonchai et al. 2016), stochastic models (Jovanovic and
Krstic 2012; Wanduku and Ladde 2012), and agent-based models (Bomblies 2014;
Jindal and Rao 2017). A widely-used building block for modeling mosquito-borne
disease is the Ross-MacDonald model (Reiner et al. 2013; Ross 1916). See (Smith
and McKenzie 2004) for derivation of the Ross-Macdonald system that is considered
here. This paper concerns extensions of the Ross-MacDonald framework to include
multiple discrete spatial locations. These locationsmight correspond to villages, cities,
health districts, or the like, with linkages between them through movement of host
and vector. Note that the connectivity patterns for host and vector may be different,
for example reflecting different movement scales of each. Regarding mosquito-borne
diseases, Service (Service 1997) provides a review of the types of mosquitoes move-
ment (long/short dispersal), which may vary significantly among different species.
Empirical studies using different capture methods (bed net catches, exit trap catches,
oviposition traps) allow us to have an idea of the spatial scale of mosquito movement
(Honório et al. 2003; Thomson et al. 1995). Given the importance that host and vector
movement may have for the spread of a vector-borne disease, in this paper we consider
both movements.

We now encounter a dichotomy in the modeling approaches: whether to treat indi-
viduals (host or vector) as residents of a particular patch and commuting to the others,
versus migration between patches without a fixed sense of home. Following the ter-
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minology of Cosner (2015), Cosner et al. (2009), we will refer to the former approach
as Lagrangian, and the latter as Eulerian. This terminology stems from similarities to
the Lagrangian and Eulerian modeling approaches for the description of fluid motion
in fluid mechanics (Krause 2005). For more on Eulerian and Lagrangian approaches
for modeling movement, see (Grunbaum and Okubo 1994; Gueron et al. 1996). Each
of these approaches has its strengths. Lagrangian models are often a natural choice on
small spatial scales and in settings where individuals have a sense of home. Eulerian
models may be suitable on large spatial scales, and in migratory settings where the
origin of the individuals is less important than their current location. This may include
situations where we are interested in introduction, reintroduction, or global spread of
disease, as discussed in Stoddard et al. (2009).

Eulerian and Lagrangian approaches are widely-used to model vector-borne dis-
ease dynamics on discrete space. See (Dye and Hasibeder 1986; Hasibeder and Dye
1988; Rodríguez and Torres-Sorando 2001; Ruktanonchai et al. 2016) for some studies
that have used the Lagrangian approach. For example, in Dye and Hasibeder (1986),
Hasibeder and Dye (1988), each study used a Lagrangian framework to examine how
heterogeneity in the distribution of Anopheles mosquitoes could lead to a larger repro-
duction number compared to the setting when the mixing is homogeneous. See also
(Allen et al. 2007; Gaff and Gross 2007; Hsieh et al. 2007; Liu et al. 2006) for applica-
tions of the Eulerian approach. For example, in Liu et al. (2006) an Eulerianmodel was
used to study how the long range dispersal of birds may explain discontinuities in the
spread of West Nile Virus. Combinations of the Eulerian and Lagrangian approaches
are taken in Arino et al. (2005), Arino and van den Driessche (2003), Arino and van
den Driessche (2006), Iggidr et al. (2017).

What are the functional implications of using one approach versus the other? Do the
Eulerian and Lagrangian approaches yield similar results regarding important disease
quantities such as the basic reproduction number and outbreak size? Eulerian models
tend to be analytically tractable, for example allowing establishment of asymptotic
disease profiles (Allen et al. 2007), global stability (Shuai and van den Driessche
2013), and application of techniques from spectral graph theory to estimate the basic
reproduction number (Tien et al. 2015).Wewould like to knowwhether one can safely
use an Eulerian approach to model vector-borne disease in a setting where Lagrangian
data are available (e.g., perhaps in terms of proportions of time spent in different
locations) or where spatial scales are small and commuting (vs. migration) is typical.
Comparing the Eulerian and Lagrangian approaches to modeling movement, and the
functional implications of using one approach versus the other in vector-borne disease
models, is the focus of this paper.

Consider vector-host disease dynamics on n spatial locations. We define two fam-
ilies of models for this setting, where both use an Eulerian framework for modeling
vector movement. In the first model we consider a Lagrangian approach for host move-
ment, and we refer to this as the Lagrangian model (Cosner et al. 2009; Martcheva
2015). In the second model we consider an Eulerian framework for host movement,
and we refer to this model as the Eulerian model (Cosner et al. 2009; Martcheva
2015). The Lagrangian character of the first model is captured by a mixing matrix
P = (pi j )i, j≤n , where pi j is the fraction of time that a resident of patch j spends
in patch i . The Eulerian character of the second model is captured by an adjacency
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matrix A = (mi j )i, j≤n , with mi j being the per capita movement rate from patch j
to patch i . We will work extensively with the unnormalized (‘combinatorial’) graph
Laplacian L = W − A, where W diagonal with Wii = ∑n

k=1 Aki . The graph Laplacian
L is a basic object in graph theory that conveys a great deal of structural information
about the network associated with A, including the number of connected components,
spanning trees, community structure, and more (Chung and Graham 1997; Ng et al.
2002; Von Luxburg 2007).

Themain goal of this paper is studying the relationship between the Lagrangian and
Eulerian models. Specifically, we obtain a relationship between the matrices L and P
through a fundamental matrix that captures the expected time that an individual from
one location spends in another. We give criteria for when the Eulerian and Lagrangian
frameworks are consistent, meaning that the two frameworks can exactly match in
terms of this fundamental matrix, and consider the functional implications for disease
dynamics in both the consistent and inconsistent settings. These results can serve as a
guide for when one framework can be substituted for the other.

The following is the distribution of the content of this paper. In Section 2 we define
the Lagrangian and Eulerian systems that we study, and we give the disease-free
equilibria and the basic reproduction numbersRlag

0 ,Reul
0 for both systems. In Section

3 we relate the Lagrangian and Eulerian systems through a minimization problem
involving the matrices P and L . We say that the two systems are consistent if this
minimization problem can be solved exactly. Following some preliminaries in Section
3.1, we formulate this minimization problem in Section 3.2. In Section 3.3 we look at
the consistent scenario. We first provide a sufficient condition for the consistency of
the proposed relationship in Section 3.3.1, and then, we give an example of a consistent
relationship in Section 3.3.2. In Section 3.4 we give examples where the relationship
is inconsistent. In Section 4 we study the relationship between the Lagrangian and
Eulerian approaches for a simple network consisting of two patches. In Section 4.1
we compare the final outbreak sizes and basic reproduction numbers of both systems
under an inconsistent example. In Section 4.2 we compare the basic reproduction
numbers of consistent examples when we vary the entries of the mixing matrix. In
Section 5 we explore some examples of matrices P from empirical and hypothetical
data. In Section 6 we present the main conclusions of the paper. Finally, we give the
details of some results of the previous sections in an appendix in Section 7.

2 Modeling frameworks

The basic building block for the modeling frameworks considered in this paper is the
Ross-MacDonald vector-host model, as considered by Smith and McKenzie (2004).
For a single spatial location, the model equations are:

Ṡ = � − β S
N Iv − μS

İ = β S
N Iv − (γ + μ)I

Ṙ = γ I − μR
Ṡv = �v − βv

I
N Sv − μv Sv

İv = βv
I
N Sv − μv Iv .

(1)
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System (1) takes a Susceptible-Infectious-Recovered (SIR) framework for host
and Susceptible-Infectious (SI) framework for vector. S represents the number of
susceptible hosts, I represents the number of infectious hosts, and R represents the
number of recovered hosts. Similarly, Sv denotes the number of susceptible vectors
and Iv denotes the number of infected vectors. The total host population is denoted
by N . � and �v are the constant recruitment rates for host and vector, respectively.
The transmission rate from vector to host is βi and the transmission rate from host
to vector is βv,i . The parameters μ and μv correspond to the mortality rates for host
and vectors. Many modifications to this framework are possible, including incubation
periods, seasonal forcing, and much more (see Childs and Boots 2009 for an example
of seasonal forcing and (Smith et al. 2012) for a more general review). We consider
here the very simple system (1) in order to focus on the impact of connectivity between
different spatial locations.

Consider n distinct spatial locations, each with local Ross-MacDonald dynamics as
in (1) with patch-specific parameters. We will consider two modeling frameworks that
differ in how the spatial locations are coupled through host movement: one using
a Lagrangian approach, and the other an Eulerian approach (Cosner et al. 2009;
Martcheva 2015).

In the Lagrangian approach, coupling is a mixing matrix P = (pi j )i, j≤n , where
pi j is the proportion of time a resident of patch j spends in patch i . By contrast, in
the Eulerian approach, coupling is via the adjacency matrices MX = (mX

i j )i, j≤n of

weighted, directed graphs, where mX
i j is the per capita migration rate of hosts in state

X ∈ {S, I,R}.
In both modeling frameworks, vector movement is modeled using an Eulerian

framework, with Mv the weighted adjacency matrix for vector movement. Thus the
two frameworks considered are Lagrangian (host) / Eulerian (vector), and Eulerian
(host) / Eulerian (vector). For brevity we will refer to these frameworks as simply
Lagrangian in the former, and Eulerian in the latter.

In the ensuing analysis we will make extensive use of the (unnormalized) graph
Laplacian L Aggarwal (2014). Let A be the adjacencymatrix for a (weighted, directed)
graph G, with Ai j the weight of the edge from j to i . Let W be the diagonal out-degree
matrix with Wii = ∑n

i=1 Ai j . Then the graph Laplacian is defined as

L = W − A . (2)

The graph Laplacian is a fundamental quantity in graph theory that conveys struc-
tural information about G, including the number of connected components, spanning
trees, community structure, and more (Aggarwal 2014; Chung and Graham 1997;
Ng et al. 2002). In the context of infectious disease dynamics, the Laplacian arises
naturally in the calculation of R0 for migration models (Tien et al. 2015).

All model parameters throughout are assumed to be non-negative. The adjacency
matrices MX, for X ∈ {S, I,R}, and Mv are assumed to have zero diagonal (the
corresponding graphs for Eulerian movement have no self-edges). By definition, the
columns of the mixing matrix P sum to one.
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2.1 Lagrangian for host, Eulerian for vector

The Lagrangian approach can be viewed as a multigroup model with groups corre-
sponding to hosts that are residents of the different spatial locations. The number
of susceptible, infectious and recovered individuals that are residents of patch i are
denoted by Si , Ii and Ri respectively, and the number of susceptible and infectious
vectors in patch i are denoted by Sv,i and Iv,i respectively. The proportion pi j is the
ratio between the time spent by a resident of j in patch i to the whole time spent
by a resident of j in all the visited patches. All of these proportions are collected
by the mixing matrix P = (pi j )i, j≤n . The movement rate of a vector from patch j
to patch i is given by mv

i j , and all these rates are collected in the adjacency matrix
Mv = (mv

i j )i, j≤n . The transmission rates βi (from vectors to hosts) and βv,i (from
hosts to vectors) are intrinsic to the corresponding patch and determine the transmis-
sion rates in (3) by averaging according to the mixing rates. Namely, the transmission
rate for host residents of patch i is

∑n
j=1 β j p ji (Si/Ni ) Iv, j and the transmission rate

for vectors in patch i is βv,i

[(∑n
j=1 pi j I j

) / (∑n
j=1 pi j N j

)]

Sv,i . The transmis-

sion rate
∑n

j=1 β j p ji (Si/Ni ) Iv, j has been considered in Lagrangian models such
as in Cosner et al. (2009), Dye and Hasibeder (1986), Rodríguez and Torres-Sorando
(2001), Ruktanonchai et al. (2016). There exist other models that incorporate more
complex transmission rates for the host. For example, Bichara and Castillo-Chavez
(2016) considered

∑n
k=1 p jk Nk instead of Ni in the denominator of the transmission

rate for host individuals under other assumptions. However, the transmission rate con-
sidered here is justified by its inclusion in other studies and its analytical tractability.

The transmission rate βv,i

[(∑n
j=1 pi j I j

) / (∑n
j=1 pi j N j

)]

Sv,i for vectors has

been adopted in studies such as (Ruktanonchai et al. 2016). Moreover, the whole
Lagrangian system that we consider was also studied in Ruktanonchai et al. (2016).

The recruitment, mortality and recovery rates for host residents of patch i are
�

lag
i , μ

lag
i , and γ

lag
i , respectively. The recruitment and mortality rates for vectors in

patch i are�v,i andμv,i , respectively. Let δ
lag
i = μ

lag
i +γ

lag
i and δv,i = μv,i denote the

host and vector removal rates, respectively. Equations for the Lagrangian framework
are given in system (3):

Ṡi = �
lag
i − ∑n

j=1 β j p ji
Si
Ni

Iv, j − μ
lag
i Si

İi = ∑n
j=1 β j p ji

Si
Ni

Iv, j −
(
γ
lag
i + μ

lag
i

)
Ii

Ṙi = γ
lag
i Ii − μ

lag
i Ri

Ṡv,i = �v,i − βv,i

∑n
j=1 pi j I j

∑n
j=1 pi j N j

Sv,i + ∑n
j=1 mv

i j Sv, j − ∑n
j=1 mv

j i Sv,i − μv,i Sv,i

İv,i = βv,i

∑n
j=1 pi j I j

∑n
j=1 pi j N j

Sv,i + ∑n
j=1 mv

i j Iv, j − ∑n
j=1 mv

j i Iv,i − μv,i Iv,i ,

(3)
for i = 1, . . . , n.

We assume the following throughout:
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Table 1 Parameters for systems (3) and (8)

Parameter Meaning Units

�
lag
i , �eul

i Recruitment rate of susceptible host in patch i Hosts × Days−1

�v,i Recruitment rate of susceptible vectors in patch i Vectors × Days−1

γ eul
i Per capita recovery rate of hosts in patch i . Days−1

μeul
i Per capita mortality rate of hosts in patch i Days−1

δeuli Per capita removal rate of infectious hosts in patch i Days−1

γ
lag
i Per capita recovery rate of hosts from patch i Days−1

μ
lag
i Per capita mortality rate of hosts from patch i Days−1

δ
lag
i Per capita removal rate of infectious hosts from patch i Days−1

p ji Proportion of time that a host from patch i spends in patch j Dimensionless

βi Transmission rate to hosts per vector in patch i Hosts × Days−1× Vectors−1

βv,i Per capita transmission rate to vectors in patch i Days−1

mX
j i Per capita movement rate of hosts in state X Days−1

from patch i to j , for X ∈ {S, I,R}
mv

j i Per capita movement rate of vectors from patch i to j Days−1

A1: The adjacency matrix for vector movement has zeros on the diagonal (i.e. mv
i i =

0 for all i).
A2: The parameters βi , βv,i are non-negative.
A3: The parameters �

lag
i ,�v,i , γ

lag
i , μlag

i and μv,i are all positive.
A4: The mixing matrix P is non-negative, with

∑n
i=1 pi j = 1 for all j .

Table 1 contains the parameters used for system (3).
Let Gv := Lv + Dδv , where Lv is the graph Laplacian corresponding to the

adjacency matrix Mv that captures the vector movement, Dδv := diag
{
δv,i

}
and

Dlag
μ := diag

{
μ
lag
i

}
. Note that Gv has the Z-sign pattern (Berman and Plemmons

1994), and under assumption A2 has positive column sums. Thus Gv is a non-singular
M-matrix Berman and Plemmons (1994). The disease-free equilibrium (DFE) of the
susceptible compartments of model (3) is then

(
Slag

)∗ = (
N lag

)∗ =
(

Dlag
μ

)−1
�lag ,

(
Slag
v

)∗ =
(

N lag
v

)∗ = G−1
v �v ,

(4)

where
(
Slag

)∗
,
(
N lag

)∗
,

(
Slag
v

)∗
,
(

N lag
v

)∗
, �v and �lag are column vectors with

components
(

Slag
i

)∗
,
(

N lag
i

)∗
,
(

Slag
v,i

)∗
,
(

N lag
v,i

)∗
, �v,i and �

lag
i , respectively. (The

superscript ∗ indicates evaluation at the DFE.)
Consider the basic reproduction number Rlag

0 for system (3), computed using the
next generation matrix approach (van den Driessche and Watmough 2002). Then
(
Rlag

0

)2 = ρ
((

F lag
) (

V lag
)−1

)
, where ρ denotes the spectral radius, and F lag and

V lag denote the fecundity and transfer matrices for system (3). Let Dβ := diag{βi },
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N̂∗ := P(N lag)∗, Dlag
βv

:= diag
{
βv,i

(
N lag

v,i

)∗
/N̂i

∗}
and Dlag

δ := diag
{
δ
lag
i

}
. The

resulting fecundity and transfer matrices are

F lag =
(

0 PTDβ

Dlag
βv

P 0

)

(5)

and

V lag =
(

Dlag
δ 0
0 Gv

)

, (6)

with basic reproduction number

(
Rlag

0

)2 = ρ

((
F lag

) (
V lag

)−1
)

= ρ

(

PTDβG−1
v Dlag

βv
P

(
Dlag

δ

)−1
)

. (7)

Details are provided in Appendix 7.1. The next generation matrix is the product of two
terms: PTDβG−1

v corresponding to secondary host infections created by infectious

vectors, and Dlag
βv

P
(

Dlag
δ

)−1
corresponding to secondary vector infections created

by infectious hosts. Note that for the Lagrangian model, host movement influences
the next generation matrix via the mixing matrix P appearing in the fecundity matrix
F lag.

2.2 Eulerian for host, Eulerian for vector

Consider now the settingwhere spatial locations are coupled viamigration of both host
and vector. The abundances of susceptible, infectious and recovered hosts in patch i
are Si , Ii and Ri , and the number of susceptible and infectious vectors are Sv,i and
Iv,i respectively. The per capita movement rate of hosts in state X from patch j to
patch i is mX

i j , for X ∈ {S, I,R}, and these rates are recorded in the host movement

adjacency matrix MX =
(

mX
i j

)

i, j≤n
. The assumption that the movement rate between

two patches depends on the state X ∈ {S, I,R} has been considered in studies such
as (Hsieh et al. 2007). Similarly, the per capita movement rate of vectors from patch
j to patch i is mv

i j and these rates are collected in the vector movement adjacency

matrix Mv =
(

mv
i j

)

i, j≤n
. As before, the host and vector transmission rates for patch

i are βi and βv,i . We treat these rates as intrinsic to the patch, and thus take them to
be the same as in model (3). The recruitment, mortality and recovery rate for hosts
in patch i are �eul

i , μeul
i and γ eul

i respectively. The recruitment and mortality rate for
vectors in patch i are �v,i and μv,i respectively, taken as the same as in model (3).
We also define the removal rates δeuli = μeul

i + γ eul
i and δv,i = μv,i . This comprises

a modeling framework where an Eulerian approach is used to model both host and
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vector movement. The corresponding equations are shown in (8):

Ṡi = �eul
i − βi

Si
Ni

Iv,i + ∑n
j=1 mS

i j S j − ∑n
j=1 mS

j i Si − μeul
i Si

İi = βi
Si
Ni

Iv,i + ∑n
j=1 mI

i j I j − ∑n
j=1 mI

j i Ii − (
γ eul

i + μeul
i

)
Ii

Ṙi = γ eul
i Ii + ∑n

j=1 mR
i j R j − ∑n

j=1 mR
j i Ri − μeul

i Ri

Ṡv,i = �v,i − βv,i
Ii
Ni

Sv,i + ∑n
j=1 mv

i j Sv, j − ∑n
j=1 mv

j i Sv,i − μv,i Sv,i

İv,i = βv,i
Ii
Ni

Sv,i + ∑n
j=1 mv

i j Iv, j − ∑n
j=1 mv

j i Iv,i − μv,i Iv,i ,

(8)

for i = 1, . . . , n.
A summary of the parameters of system (8) is given in Table 1. We assume A1-A2

hold for system (8). In addition, we assume A5-A7:

A5: The adjacency matrix for host movement has zeros on the diagonal (i.e. mX
i i = 0

for all i and X ∈ {S, I,R}).
A6: The parameters βi , βv,i ,�v,i , μv,i are intrinsic to the patch i , so they are con-

sidered to be the same as in system (3).
A7: The parameters �eul

i ,�v,i , γ
eul
i , μeul

i and μv,i are all positive.

Note that in system (8), individuals assume the characteristics of the patch they
are currently located in. For example, a host individual that migrates from j to i now
recovers from infection at rate γ eul

i . The force of infection for patch i in system (8)
depends only upon population abundances in patch i (in contrast to the Lagrangian
system (3), where the force of infection in i involves contributions from other patches
weighted by the mixing matrix P).

Let LX, Lv denote the graph Laplacians corresponding to the host (MX, for
X ∈ {S, I,R}) and vector (Mv) movement matrices, respectively. Let Gv := Lv + Dδv

as in Section 2.1, and let Deul
μ = diag

{
μeul

i

}
. Then at the DFE, the susceptible com-

partments of system (8) are given by

(
Seul

)∗ = (
N eul

)∗ = (
LS + Deul

μ

)−1
�eul ,

(
Seul
v

)∗ = (
N eul

v

)∗ = G−1
v �v ,

(9)

where
(
Seul

)∗
,
(
N eul

)∗
,
(
Seul
v

)∗
,
(
N eul

v

)∗
,�eul and �v are column vectors as before.

Notice that
(
N eul

v

)∗ =
(

N lag
v

)∗ = G−1
v �v , so we define the vector N∗

v := (
N eul

v

)∗ =
(

N lag
v

)∗
with entries N∗

v,i =
(

N eul
v,i

)∗ =
(

N lag
v,i

)∗
.

Consider the basic reproduction number Reul
0 for system (8), computed using

the next generation matrix approach. Define Dβ := diag{βi } and Deul
βv

:=
diag

{
βv,i

(
N eul

v,i

)∗
/
(
N eul

i

)∗}
. Let Deul

δ := diag{δeuli }, and G := L I + Deul
δ . Note

that assumption A2 implies that G is a non-singular M-matrix. We show in Appendix
7.1 that if

Feul =
(

0 Dβ

Deul
βv

0

)

(10)
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and

V eul =
(

G 0
0 Gv

)

, (11)

then (
Reul

0

)2 = ρ

((
Feul

) (
V eul

)−1
)

= ρ
(

DβG−1
v Deul

βv
G−1

)
. (12)

As for the Lagrangian model, the next generation matrix is the product of two
terms, one (DβG−1

v ) corresponding to secondary host infections created by infectious
vectors, and the other (Deul

βv
G−1) corresponding to secondary vector infections created

by infectious hosts. Note that for the Eulerian model, host movement affects the next
generation matrix via the transfer matrix V eul. This is in contrast with the Lagrangian
model, where host movement appears in the fecundity matrix F lag. Additionally, in
the Lagrangian model the host transmission rates in the next generation matrix are
scaled by host movement [i.e. the PTDβG−1

v term in (7)], whereas in the Eulerian
approach they are not [i.e. the DβG−1

v term in (12)]. Aswewill see in the next sections,

these differences lead to different values of Rlag
0 and Reul

0 (in particular, see the end

of Appendix 7.2 for intuition on the difference betweenRlag
0 andReul

0 in a two-patch
example).

3 Model comparison through a fundamental matrix

3.1 Preliminaries

Our objective is to compare the Lagrangian (3) and Eulerian (8) frameworks. As
pointed out by Cosner et al. (see Section 2.2.3 of Cosner et al. (2009)), the frameworks
are in general distinct if we try to relate the number of individuals of both systems.
Specifically, Cosner et al. showed that the dynamical system resulting from model-
ing the number of individuals currently located in each patch under the Lagrangian
framework does not correspond to an Eulerian model. Here, we take an alternative
approach: we compare systems (3) and (8) by tuning the host mobility matrix M so
that the expected amount of time spent in one location starting from another matches
between the two frameworks as closely as possible.

We begin with the analysis of Cosner et al. (2009), who considered when the
equilibria between an Eulerian and Lagrangian model can be matched. Let X denote
a host population type in {S, I , N }. To match population sizes, we should have that
the population size X eul

i in any patch i for the Eulerian model is equal to the total

combined proportions of number of residents X lag
j of any other patch j that are in i

for the Lagrangian model, which is
∑

j pi j X lag
j . In other words, if X eul and X lag are

column vectors with entries X eul
i and X lag

i respectively, we should have:

X eul = P X lag . (13)
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We will assume in the remainder of the paper that (13) holds at the DFE. Using
(
N eul

)∗ = (
LS + Deul

μ

)−1
�eul and

(
N lag

)∗ =
(

Dlag
μ

)−1
�lag, we set the following

assumption:

A8: We assume that the DFEs of systems (3) and (8) match in the sense of (13), so(
N eul

)∗ = P
(
N lag

)∗
. Specifically, let �eul and �lag be such that

(
LS + Deul

μ

)−1
�eul = P

(
Dlag

μ

)−1
�lag . (14)

The condition in (14) states that at the DFE the amount of susceptible individual
in patch i (Eulerian equilibrium

(
N eul

i

)∗
) is the average (weighted by the row i of P)

over all different patches j of the number of susceptible individuals that are residents

of j (Lagrangian equilibrium
(

N lag
j

)∗
). As pointed out by Cosner et al. (2009), in

general it may not be possible to satisfy equation (14). Namely, for a given �lag we

may find that
(
LS + Deul

μ

)
P

(
Dlag

μ

)−1
�lag has some negative entries, and since the

equation �eul = (
LS + Deul

μ

)
P

(
Dlag

μ

)−1
�lag is equivalent to (14), then (14) would

not be true for �eul with positive entries. However, since LS + Deul
μ is an M-matrix

(see Berman and Plemmons 1994, page 137), then LS + Deul
μ is semi-positive, i.e.,

there exists x > 0 such that
(
LS + Deul

μ

)
x > 0 (see Berman and Plemmons 1994,

page 136). Therefore, equation (14) can be satisfied for appropriate �lag,�eul.

In addition, since Dlag
βv

:= diag
{
βv,i

(
N lag

v,i

)∗
/N̂i

∗}
, Deul

βv
:= diag

{
βv,i

(
N eul

v,i

)∗

/
(
N eul

i

)∗}
,
(

N lag
v,i

)∗ =
(

N eul
v,i

)∗
and N̂∗ = P

(
N lag

)∗ = (
N eul

)∗
(under (14)), then

Dβv := Dlag
βv

= Deul
βv

.

Therefore, under A8 we have

(
Rlag

0

)2 = ρ

(

PTDβG−1
v Dβv P

(
Dlag

δ

)−1
)

,

(
Reul

0

)2 = ρ
(

DβG−1
v Dβv G−1

)
. (15)

We can also compare the recovery andmortality rates of both models. In general, these
parameters are distinct between the twomodeling frameworks. Consider, for example,
the mortality rate for patch i in each of the frameworks. In the Eulerian model, μeul

i

reflects only the characteristics of location i . By contrast, the mortality rate μ
lag
i in

the Lagrangian model reflects characteristics of all the spatial locations, weighted
according to the proportion of time that a resident of i spends in each location. Thus,
we model this relationship by averaging the rates μeul

j and setting μ
lag
i = ∑

j p jiμ
eul
j .

These considerations lead us to the following assumption:
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A9: We assume that the parameters μ
lag
i , γ lag

i , δlagi are related to μeul
i , γ eul

i , δeuli by

μ
lag
i =

∑

j

p jiμ
eul
j ,

γ
lag
i =

∑

j

p jiγ
eul
j ,

δ
lag
i =

∑

j

p jiδ
eul
j . (16)

In matrix form, this means Dlag
δ = diag

{
1TDeul

δ P
}
, where 1 = (1, 1, . . . , 1)T.

3.2 Problem formulation

Wecompare the Lagrangian and Eulerianmodeling frameworks through a relationship
that can be interpreted in terms of a fundamental matrix for a Markov process. Sys-
tems (3) and (8) are deterministic, not stochastic. However, aspects of both systems
can be interpreted in terms of a fundamental matrix for a continuous time random
walk (Dobrow 2016). We will use this fundamental matrix to relate the two systems.
Consider the next generation matrix Feul

(
V eul

)−1
for system (8) van den Driessche

and Watmough (2002). The transfer matrix V eul includes a block G = L I + Deul
δ that

generates an absorbing randomwalk on the host movement network. G−1 corresponds
to the fundamental matrix of this random walk, with (i, j) entry giving the expected
time that an infectious individual starting in j spends in i before being absorbed
(removed) from the system (Tavare 1979; van den Driessche and Watmough 2002).
This interpretation of the transfer matrix underlies intuition for FV −1 as giving the
number of infectious individuals in the ‘next generation’, and corresponding threshold
of ρ

(
FV −1

)
> 1 for disease invasion. See (van den Driessche and Watmough 2002).

Now consider the mixing matrix P for the Lagrangian system (3). The entries pi j

give the probability that a resident of j is in patch i , and 1/δlagj gives the expected time

that a resident of j stays infectious, so pi j/δ
lag
j represents the expected time that an

infectious host from patch j spends in patch i according to the Lagrangian approach.
Matching the expected ‘residence times’ (times spent in i , starting from j) for the
Eulerian and Lagrangian frameworks and applying A9, we have:

(
L I + Deul

δ

)−1 = P
(

Dlag
δ

)−1 = (P)
(
diag−1

{
1TDeul

δ P
})

. (17)

As we will see in Section 3.4, for a given Deul
δ and P it may not always be possible

to find a graph Laplacian matrix L I such that (17) holds. This fact leads us to the
following definition.

Definition 1 (Consistency) Assume A1-A9 and suppose that P and Deul
δ are given.

We say that systems (3) and (8) are consistent if there exists a graph Laplacian matrix
L I satisfying (17), and inconsistent if such a matrix does not exist.
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Note that as L I+Deul
δ and Dlag

δ are non-singular, if systems (3) and (8) are consistent,
then P is non-singular. However, as we will see in Section 3.4, the converse is not
necessarily true. We will assume in the following sections that P is non-singular.

A10: P is non-singular.

Notice that under A10, relationship (17) is equivalent to

L I = Dlag
δ P−1 − Deul

δ . (18)

Let p′
i j denote the (i, j) entry of the inverse of P , that is, let P−1 = (p′

i j )i, j≤n .

Then the j th column sum of Dlag
δ P−1 − Deul

δ is

(
∑

i

p′
i jδ

lag
i

)

− δeulj =
(

∑

i

p′
i j

∑

k

pkiδ
eul
k

)

− δeulj

=
(

∑

k

δeulk

∑

i

pki p′
i j

)

− δeulj = 0 . (19)

The above condition is consistent with the graph Laplacian having zero column
sums. However, we also want the off-diagonal elements of Dlag

δ P−1 − Deul
δ to be non-

positive, which is not in general the case as we will show in the example of Section
3.4. In consequence, we are interested in finding

E = inf
L∈Rn×n

{
‖L − (Dlag

δ P−1 − Deul
δ )‖F : L is a graph Laplacian matrix

}
, (20)

where we use the Frobenius norm defined by ‖B‖F = √
tr(B BT) for a given matrix

B. The Frobenius norm allows us to treat (20) as a non-negative least squares problem.
For example, in the 2 by 2 case, we have that

E = inf
m≥0

‖L∗m − x̄‖2 , (21)

where

L∗ =

⎛

⎜
⎜
⎝

1 0
−1 0
0 1
0 −1

⎞

⎟
⎟
⎠ , m =

(
m21
m12

)

, Dlag
δ P−1 − Deul

δ =
(

a c
b d

)

, x̄ = (a, b, c, d)T .

Notice that ‖m‖2 ≤ ‖L‖F = ‖L∗m‖2 ≤ ‖L∗m − x̄‖2 + ‖x̄‖2. Therefore, if
{mk}k≥1 is a sequence such that limk→∞‖L∗mk − x̄‖2 = E , then lim supk≥1‖mk‖2 ≤
E +‖x̄‖2. In consequence, {‖mk‖2}k≥1 is bounded and therefore infm≥0‖L∗m − x̄‖2
is attained, i.e., E = minm≥0‖L∗m − x̄‖2.
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In general, L∗ is an n2 × n(n − 1) matrix, and from the Karush-Kuhn-Tucker
conditions the optimum m̄ satisfies (L∗m̄ − x̄)TL∗m̄ = 0, m̄ ≥ 0 (see Section 10.10
of Byrne (2014)), giving

x̄TL∗m̄ = ‖L∗m̄‖22 ≥ 0, E2 = (L∗m̄ − x̄)T(L∗m̄ − x̄)

= ‖Dlag
δ P−1 − Deul

δ ‖2F − x̄TL∗m̄ . (22)

Hence we have the following upper bound for E :

E ≤ ‖Dlag
δ P−1 − Deul

δ ‖F . (23)

3.3 Consistency

3.3.1 Sufficient condition

By direct calculation we can show that the condition p12 + p21 < 1 guarantees that
systems (3) and (8) are consistent in the two-patch setting. This suggests that the off-
diagonal terms of the mixing matrix P must be sufficiently small for the Lagrangian
and Eulerian systems to be consistent. On the other hand, if

P =
⎛

⎝
9/10 0 0
0 1 1/10

1/10 0 9/10

⎞

⎠ , then Dlag
δ P−1 − Deul

δ =
⎛

⎜
⎝

10/9δlag1 − δeul1 0 0

1/81δlag2 δ
lag
2 − δeul2 −1/9δlag2

−10/81δlag3 0 10/9δlag3 − δeul3

⎞

⎟
⎠ .

(24)
From (24), Dlag

δ P−1 − Deul
δ has positive off-diagonal entries, and thus systems (3)

and (8) are inconsistent. In this example, some entries pi j of P are small (for example
p21 = 0), which suggests that non-diagonal entries of the mixing matrix must also be
sufficiently large in order for the Eulerian and Lagrangian frameworks to be consistent.
In Proposition 1 below, we prove that a sufficient condition for the consistency of
systems (3) and (8) is that the off-diagonal entries of the mixing matrix belong to an
intermediate range p∗ < pi j < p∗.

Proposition 1 Assume A1-A10 and let P = (pi j )i, j≤n be the mixing matrix associated
with system (3), where n ≥ 2. Let p∗ and p∗ be constant numbers in the interval (0, 1)
such that

4(n − 1)2 p∗

1 − p∗ < 1 and p∗ = 4(n − 1)2(p∗)2

1 − p∗ . (25)

In addition, suppose that
p∗ ≤ pi j ≤ p∗, for i 
= j . (26)

Then, the systems (3) and (8) are consistent.

Proof From (19), it follows that the column sums of Dlag
δ P−1 − Deul

δ are all zero.

Consequently, we just need to show that the off-diagonal entries of Dlag
δ P−1 − Deul

δ

are non-positive in order to prove that systems (3) and (8) are consistent. Observe that
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if p∗ goes to zero, then 4(n − 1)2 p∗/(1 − p∗) approaches to zero, so the first part of
(25) can be satisfied by small enough p∗. The condition (25) then implies that

p∗
p∗ = 4(n − 1)2 p∗

1 − p∗ < 1 .

Therefore, the interval [p∗, p∗] is non-empty and we can pick pi j such that (26) holds.

In order to show that the off-diagonal entries of Dlag
δ P−1 − Deul

δ are non-positive, it
suffices to prove that the off-diagonal entries of P−1 are non-positive. Let �P be a
matrix such that P = I − �P , and consider the matrix 1-norm defined by ‖B‖1 =
max j

∑
i |bi j | for a given matrix B. We can write P−1 = (I −�P)−1 = P(0) +P(1),

where P(0) = I + �P and P(1) = (�P)2
∑

k≥0(�P)k . If i 
= j , then P(0)
i j = −pi j ,

so we want to show |P(1)
i j | ≤ pi j to get that the off-diagonal elements of P−1 are

non-positive. Indeed, from (25) and (26) it follows that ‖�P‖1 ≤ 2(n − 1)p∗ and

|P(1)
i j | ≤ ‖P(1)‖1

≤ ‖�P‖21
∑

k≥0

‖�P‖k
1

= ‖�P‖21/(1 − ‖�P‖1)
≤ [

2(n − 1)p∗]2 /(1 − p∗)
= p∗ ≤ pi j ,

as we desired. ��
Proposition 1 establishes that systems (3) and (8) are consistent when the off-

diagonal entries of the mixing matrix P lie in an interval [p∗, p∗] ⊂ (0, 1). The upper
and lower bounds for this interval satisfy (25) and (26). We note that these bounds are
not unique, as more than one p∗ can satisfy (25) and (26). Furthermore, the width of
the resulting interval (p∗, p∗) may be small for large n.

For example, let n = 3. From (25) it suffices to choose p∗ such that p∗ < 1/17. Let
us consider, for instance, p∗ = 0.05. Consequently, from (25) we have p∗ = 0.0421
and then p∗ = 0.0239 ≤ pi j ≤ p∗ = 0.1324 is a sufficient condition for consistency
of systems (3) and (8). We note that this interval may not be the widest interval among
those obtained using other values of p∗ satisfying (25).

Additionally, (25) may be improved. Namely, we can write P−1 = P(0) + P(1)

where P(0) = I + �P + (�P)2 and P(1) = (�P)3
∑

k≥0(�P)k . By imposing the
condition p∗ ≤ pi j ≤ p∗, with i 
= j , we have that p∗ and p∗ must satisfy

−P(0)
i j ≥ p∗ + 2(n − 1)p2∗ − (n − 2)(p∗)2

≥
[
2(n − 1)p∗]3

1 − p∗

≥ |P(1)
i j | . (27)
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Fig. 1 Inequality (27) holds in
the blue region for n = 5. For
every point (p∗, p∗) on the top
boundary of the blue region we
have a consistency condition.
Namely, under A1-A10, if
pi j ∈ [p∗, p∗] for all i 
= j ,
then systems (3) and (8) are
consistent. For example, at the
black point A we have
p∗ = 0.0065 and p∗ = 0.022.
Therefore, if
0.0065 ≤ pi j ≤ 0.022 for
i 
= j , then the systems (3) and
(8) are consistent

Figure 1 shows the region of pairs (p∗, p∗) that satisfy the inequality (27) for n = 5.
Point A of Figure 1 indicates that p∗ = 0.0065 ≤ pi j ≤ p∗ = 0.022, for i 
= j , is
a sufficient condition for consistency of systems (3) and (8). This condition improves
(25), where p∗ = 0.015 is associated to p∗ = 0.0065 and the interval (0.0065, 0.015),
which is smaller than the interval (0.0065, 0.022) corresponding to (27).

3.3.2 A consistent example: star graphs

In this section we give an example where the Eulerian and Lagrangian systems are
consistent. Specifically, we consider a setting where the mixing matrix P corresponds
to a star graph, where the ‘hub’ node is the only location that residents of other patches
visit. This setting is motivated by empirical networks where there exist nodes k for
which all the pki are large. For example, in the data analyzed in Ruktanonchai et al.
(2016) on malaria in Namibia, non-residents are much more likely to visit a few
locations (e.g. the capital Windhoek) than others. A schematic of the class of mixing
matrices considered in this section is shown in Figure 2. We will show that for such
P , systems (3) and (8) are consistent.

We will use the Sherman-Morrison formula
(

A + vuT
)−1 = A−1 − A−1vuT A−1

1 + uT A−1v
, (28)

where A is non-singular and v, u are column vectors such that 1 + uT A−1v 
= 0. Let
us suppose that

P = diag{1, 1 − p12, . . . , 1 − p1n} + (1, 0, . . . , 0)T(0, p12, . . . , p1n) , (29)

Dlag
δ = Deul

δ = Dδ = δ I and let bi j denote the (i, j) entry of Dlag
δ P−1 − Deul

δ . Using
the Sherman-Morrison formula (28), we get
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Fig. 2 Star graph as example of
consistency

P−1 = diag{1, 1/(1 − p12), . . . , 1/(1 − p1n)} − (1, 0, . . . , 0)T

×(0, p12/(1 − p12), . . . , p1n/(1 − p1n))

and

bi j = −δ pi j

1 − pi j
, for i 
= j .

Then, as pi j < 1 for i 
= j , systems (3) and (8) are consistent.
Moreover, let f : Rn×n → R

n×n be defined by f (P) := Dδ(P−1 − I ), and let U
denote the open set U = {M ∈ R

n×n : the off-diagonal entries of M are negative }.
If P0 is of the form (29), then f (P0) ∈ U .

By continuity of f , for P with small enough pi j , i 
= j and i 
= 1, we have that
f (P) ∈ U , i.e, systems (3) and (8) are consistent.

3.4 An inconsistent example

We now present an example where systems (3) and (8) are inconsistent, and in fact
the upper bound in (23) is attained.

Suppose that

pi j := pi , i 
= j ,

pii := 1 −
∑

k 
=i

pk . (30)

Let θ := 1 − ∑n
k=1 pk 
= 0. Then we have

P = θ I + (p1, . . . , pn)T(1, . . . , 1) .

As A := θ I is non-singular and 1 + (1, . . . , 1)A−1(p1, . . . , pn)T = 1 +
1
θ

∑n
k=1 pk = 1

θ

= 0, applying the Sherman-Morrison formula gives

P−1 = 1

θ
I − 1

θ
(p1, . . . , pn)T(1, . . . , 1) .
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In addition, suppose that δeuli := δ, i = 1, . . . , n, so that Dlag
δ = Deul

δ = δ I .

Therefore, if Dlag
δ P−1 − Deul

δ = δ(P−1 − I ) := (bi j )i, j≤n , then we have that

bi j = −δ pi

θ
, i 
= j . (31)

For sufficiently large pk (such that
∑

k pk > 1) we have θ < 0, leading to positive bi j

for i 
= j , which is inconsistent with the off-diagonal entries of a Laplacian matrix.
In this case the optimum in (22) is m̄ = 0 and the error is E = ||Dlag

δ P−1 − Deul
δ ||F ,

which is the largest possible error.
As a specific example, consider three patches with p1 = 0.8, p2 = 0.15, p3 =

0.15. Then θ = −0.1 < 0 and

P =
⎛

⎝
0.7 0.8 0.8
0.15 0.05 0.15
0.15 0.15 0.05

⎞

⎠ , (32)

for which L = 0 is the solution of (20). Thus it is possible for systems (3) and (8)
to not only be inconsistent, but in fact for the upper bound in (23) to be attained. We
note that the preceding example requires that some of the off-diagonal entries of P
are large, which may not be realistic in situations where host individuals spend the
majority of their time in a distinguished ‘home’ location.

4 Two-patch network

In this section we explore results obtained from consistency and inconsistency of
systems (3) and (8) for two-patch systems (n = 2). In Section 4.1 we compare the
final outbreak size and the basic reproduction number obtained from systems (3) and
(8) for an example where the systems are inconsistent. In Section 4.2 we state explicit
bounds for the relative difference between the basic reproduction numbers of systems
(3) and (8) when the transmission and removal rates are the same for both patches
in Proposition 2. In Section 4.2 we also compare the basic reproduction number of
both systems for a particular example where the removal rates for the two patches are
different.

4.1 Final outbreak size and basic reproduction number for an inconsistent
example

We now consider the functional implications of consistency / inconsistency of the
Eulerian and Lagrangian frameworks, in terms of important disease quantities such as
the basic reproduction number and final outbreak size.

Let us consider an example for a two-patch networkwhere P =
(
1 − p21 p12

p21 1 − p12

)

,

with p12 + p21 > 1. Let us also assume that Dlag
δ = Deul

δ = Dδ = δ I , Dβv = βv I ,
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(a) (b)

Fig. 3 In (a) we have the final outbreak size for the inconsistent example given in Section 4.1 (the recovered
individuals R1(T ) + R2(T ) for large enough T ). In (b) we have the comparison between the basic repro-
duction number of both models. The used parameters are a = 0.3, b = 0.1, μ = 0, δ = γ = 1/150, δv =
0.05, β = ab, mv = 0.02 (Ruktanonchai et al. 2016), and the units are as in Table 1. We also assume
Gv = mv(2I − 11T), Nv = 80, �v such that G−1

v �v = Nv1,�lag = �eul = (0, 0)T, N0 = 100. For

a given value of Reul
0 we choose βeul

v,1 = βeul
v,2 such that βv := βeul

v,i =
(
Reul

0

)2
δvδN0/(βNv). We also

define β
lag
v,1 and β

lag
v,2 such that D

lag
βv

= Deul
βv

= βv Nv/N0 I . The initial conditions are S1(0) = N0, S2(0) =
N0 − 1, I1(0) = 0, I2(0) = 1, R1(0) = R2(0) = 0, Sv,1(0) = Sv,2(0) = 50, Iv,1 = Iv,2 = 0 and the
final outbreak is taken at time T = 3000

Dβ = β I , Dδv = δv I and Lv = mv

(
1 −1

−1 1

)

. Then the Eulerian and Lagrangian

frameworks are inconsistent by the argument in Section 3.4, and L = 0 optimizes (20)
in this case,meaning that the solution to (20) corresponds to a completely disconnected
set of nodes in the Eulerian framework. Thus the networks in the Lagrangian and
Eulerian frameworks are wildly different. Here we examine how this difference in
connectivity corresponds to differences in R0 and final outbreak size.

In Figure 3 we use the parameters δ = 1/150, β = 0.3×0.1, δv = 0.05,mv = 0.02
(Ruktanonchai et al. 2016) and define p12 = 0.95, p21 = 0.1 (therefore p12+ p21 > 1,
which implies inconsistency). In Figure 3(a) we observe that the final outbreak size
obtained from the Lagrangian system is larger than the final outbreak size obtained
from the Eulerian system. Furthermore, for values ofReul

0 around one, we get a signif-
icant relative difference between the outbreak sizes for the two systems. For example,
whenReul

0 = 1.2, the outbreak size of Lagrangian system is 220% larger than the out-
break size of the Eulerian system. Thus inconsistency in terms of Definition 1 might
lead to significant differences in outbreak size between the Eulerian and Lagrangian
frameworks. Moreover, we can modify the example of Figure 3 so the systems are
consistent and there is still a significant difference in outbreak size for intermediate
values ofReul

0 . On the other hand, whenReul
0 = 1.6, the percentage change is 25.2%,

and when Reul
0 = 0.5 the final sizes are almost the same. In Figure 3(b) we observe

that Rlag
0 > Reul

0 if 0 ≤ Reul
0 ≤ 2. Additionally, Rlag

0 is linear with respect to Reul
0 ,

where Rlag
0 is at most 18.4% larger than Reul

0 .
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4.2 Homogeneous infection

In this section, we consider the special case where parameter values for transmission
and removal are the same across both locations in the two-patch network.Wewill show
that in this case we can bound the difference between the basic reproduction num-
bers for the Eulerian and Lagrangian frameworks. Furthermore, we show that in this
‘homogeneous infection’ setting, the basic reproduction number for the Lagrangian
model is greater than or equal to the reproduction number for the Eulerian model.

Consider the case where 0 < p12, p21 < 1/2. Under these conditions, the systems
(3) and (8) are consistent. We assume A1–A10, and pick the same transmission and
recovery parameters for both patches. We refer to this setting as the homogeneous
infection scenario. The following proposition describes the behavior of the quantities
Reul

0 and Rlag
0 for 0 < p12 < 1/2 in the homogeneous infection scenario. In this

proposition, we can interchange p12 by p21 and obtain symmetric results. A proof and
additional details are given in Appendix 7.2.

Proposition 2 Assume A1–A10 and suppose that Dβ = β I , Dβv = βv I , Deul
δ =

Dlag
δ = Dδ := δ I , Dδv = δv I and mv

12 = mv
21 = mv . Define M :=

DβG−1
v Dβv P

(
Dlag

δ

)−1
and fix p21 in the interval (0, 1/2). Then ρ(PTM) is a func-

tion of p12 where 0 < p12 < 1/2, and we have that:

a)
(Reul

0

)2 = ρ(M) = (ββv)/(δδv) is constant on 0 < p12 < 1/2.

b)
(
Rlag

0

)2 = ρ(PtM) is decreasing on (0, p21), increasing on (p21, 1/2) and

attains its absolute minimum over [0, 1/2] with value
(Reul

0

)2 = (ββv)/(δδv) at
p12 = p21.

c) In addition, we have the inequality

(
Rlag

0

)2 − (Reul
0

)2

(Reul
0

)2 = ρ(PTM) − ρ(M)

ρ(M)
≤ 1

4

δv

(2mv + δv)
. (33)

From (33) and using thatRlag
0 > Reul

0 , we get the following bound for the relative

difference Rlag
0 with respect toReul

0 :

Rlag
0 − Reul

0

Reul
0

≤ 1

4

Reul
0

Rlag
0 + Reul

0

≤ 1

8
.

In consequence, the percentage difference between the basic reproduction numbers for
systems (3) and (8) is at most 12.5% under homogeneous infection if 0 < p12, p21 <

1/2. In addition, the larger |p12 − p21| is, the larger the difference between Reul
0 and

Rlag
0 is as well, as Figure 4 shows.
In conclusion, under homogeneous conditions for both patches, the introduction of

infectious individuals creates more secondary infections according to the Lagrangian
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Fig. 4 Basic reproduction
number for system (3) in the
two-patch case as a function of
p12 with a = 0.3, b = 0.1, c =
0.214, δ = r = 1/150, δv =
0.1, m :=

(
N
lag
v,i

)∗
/N̂i

∗ =
(

N eul
v,i

)∗
/
(

N eul
i

)∗ = 1, β =
ab, βv = acm Ruktanonchai
et al. (2016), and units as in
Table 1. In this case, the largest
percentage difference has value

100
(
Rlag

0 − Reul
0

)
/Reul

0 =
3.36% and is attained at
p12 = 1/2

Fig. 5 Comparison reproduction
numbers for δv,1 > δv,2. The
used parameters are
a = 0.3, b = 0.1, c =
0.214, δ1 = δ2 = 1/150, δv,1 =
0.1, β1 = β2 = ab, βv,1 =
βv,2 = ac, mv = 0.02
Ruktanonchai et al. (2016), and
the corresponding units are as in
Table 1

dynamics for any matrix P . By contrast, if we suppose δv,1 > δv,2, it is then possible
that Rlag

0 < Reul
0 when p12 > p21 (see Figure 5).

5 Examples using data

We now turn to applying our analytical results and definition of consistency to empiri-
cal data. There is an abundance of empirical data onmobility and connectivity between
locations (Bengtsson et al. 2011; Lessler et al. 2015; Wesolowski et al. 2012, 2015),
and these data are being increasingly incorporated into mathematical and computa-
tional models of vector-borne disease dynamics (Iggidr et al. 2017; Ruktanonchai
et al. 2016). Many factors are involved for deciding whether to use a Lagrangian
or Eulerian modeling framework, including the spatial scale involved, mathematical
tractability, and type of data available. Here we consider two empirical data sets (Sec-
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tions 5.1, 5.2) and two hypothetical data sets (Sections 5.3, 5.4) on host movement
in the context of vector-borne disease on spatial scales ranging from within village
(Vazquez-Prokopec et al. 2009) to country-wide (Ruktanonchai et al. 2016), with data
sources including long-term GPS trackers (Vazquez-Prokopec et al. 2009) and mobile
phones (Ruktanonchai et al. 2016). Studies in (Iggidr et al. 2017; Ruktanonchai et al.
2016) incorporate the corresponding data into a Lagrangian modeling framework.
Here we examine whether the data are consistent with an Eulerian framework in the
sense of Definition 1, and discuss possible implications of using an Eulerian approach
for these specific settings in terms of the basic reproduction number.

5.1 Malaria in Namibia

Ruktanonchai et al. (2016) use mobile phone records to examine movement between
health districts in Namibia, in the context of malaria control efforts. Specifically,
the authors identified mobility sources / sinks from mobile phone records, together
with transmission hot spots from malaria parasite maps. The mobility data and local
transmission parameters are combined in a Lagrangian framework for vector-host
dynamics (Ruktanonchai et al. 2016) .

Anonymized mobile phone records were collected over a year from 1.2 million
phones, corresponding to approximately 85% of the adult population in Namibia. Call
and SMS data were used to identify locations at the health district level. Home health
districts and location changes were estimated, and aggregated to produce a Lagrangian
mixing matrix P (Ruktanonchai et al. 2016). For most of the locations in these data
we have that the quantities F (in)

i := ∑
j 
=i pi j and F (out)

i := ∑
j 
=i p ji are small.

Using the data considered in Ruktanonchai et al. (2016), we take the ten

health districts for which the quantity
(

F (in)
i

)2 +
(

F (out)
i

)2
is the largest and

define the 10 × 10 mixing matrix P for these locales. Parameter values used in
this example are as in Ruktanonchai et al. (2016): a = 0.3 Hosts × Days−1,
b = 0.1 Vectors−1, c = 0.214 Hosts−1, δ = r = 1/150 Days−1, δv =
0.1 Days−1, m :=

(
N lag

v,i

)∗
/N̂i

∗ =
(

N eul
v,i

)∗
/
(
N eul

i

)∗ = 1, β = ab Days−1,

βv = acm Days−1. In this case, systems (3) and (8) are inconsistent with small rela-

tive error ‖L −
(

Dlag
δ P−1 − Deul

δ

)
‖F/‖Dlag

δ P−1 − Deul
δ ‖F = 0.018, where L is the

solution of (20). In addition, the Lagrangian basic reproduction numberRlag
0 = 1.7049

is slightly larger than the Eulerian basic reproduction numberReul
0 = 1.6997. In con-

clusion, the basic reproduction numbers for both systems are similar, even though the
systems are not consistent (with small relative error).

5.2 Dengue in Brazil

Iggidr et al. (2017) use a Lagrangian framework to model dengue in eight locations
forming the metropolitan area of Rio de Janeiro. The host density in each location
was determined from the national census, and a 20% host-vector ratio was assumed
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in their simulations. The mixing matrix was estimated from data provided by the
transport authority of Rio de Janerio (see Appendix B of Iggidr et al. (2017)).

Consider the parameter values δi = 1/10.5 Days−1, δv,i = 1/5.5 Days−1, m :=(
N eul

v,i

)∗
/
(
N eul

i

)∗ = 1, βi = 0.3750 Days−1, βv,i = 0.3750 Days−1 used in Lee and

Castillo-Chavez (2015). In this case, systems (3) and (8) are inconsistent albeit with

relative error ‖L −
(

Dlag
δ P−1 − Deul

δ

)
‖F/‖Dlag

δ P−1 − Deul
δ ‖F = 0.0277, where L

is the solution of (20). Moreover, the Lagrangian basic reproduction number Rlag
0 =

2.8586 is nearly equal to the Eulerian basic reproduction numberReul
0 = 2.8498. Thus

despite the systems being inconsistent, similar reproduction numbers are obtained for
the Eulerian and Lagrangian modeling frameworks, suggesting flexibility in using
either framework in terms of the domain basic reproduction number.

5.3 Dengue in Iquitos, hypothetical mixingmatrix

In Vazquez-Prokopec et al. (2009), neck trap GPS devices were used to register move-
ments of a carpenter andmototaxi driver in Iquitos, Peru for approximately twoweeks.
The spatial scale of movement here is small, suggesting a Lagrangian framework. The
second column of Table 2 (‘Time’) corresponds to the time spent by the carpenter in 4
houses (P1, P2, P4, P5) during 14 days according to the GPS data. The third column
of Table 2 (‘Proportions’) corresponds to the ratios between the times in the second
column and the total hours in 14 days.

The mixing matrix P is a hypothetical arrangement based on the proportions in
Table 2.

P =

⎛

⎜
⎜
⎜
⎜
⎝

0.887 0.036 0.036 0.036 0.036
0.036 0.887 0.008 0.008 0.008
0.008 0.008 0.887 0.016 0.016
0.016 0.016 0.016 0.887 0.053
0.053 0.053 0.053 0.053 0.887

⎞

⎟
⎟
⎟
⎟
⎠

,

L =

⎛

⎜
⎜
⎜
⎜
⎝

0.0241 −0.0077 −0.0077 −0.0077 −0.0077
−0.0082 0.0236 −0.0014 −0.0014 −0.0014
−0.0015 −0.0015 0.0235 −0.0034 −0.0034
−0.0028 −0.0028 −0.0028 0.0241 −0.0121
−0.0116 −0.0116 −0.0116 −0.0116 0.0246

⎞

⎟
⎟
⎟
⎟
⎠

. (34)

Table 2 Time and proportion of
time spent in the most
frequented four visited houses
(other than home) by a carpenter
during two weeks in Iquitos
Vazquez-Prokopec et al. (2009)

House Time (hours) Proportion

P1 12.1 0.036

P2 3 0.008

P4 5.4 0.016

P5 18 0.053
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In this example we use the parameters δi = 1/10.5 Days−1, δv,i = 1/5.5 Days−1,

m :=
(

N lag
v,i

)∗
/N̂i

∗ =
(

N eul
v,i

)∗
/
(
N eul

i

)∗ = 1, βi = 0.3750 Days−1, βv,i =
0.3750 Days−1 given in Lee and Castillo-Chavez (2015). Here we obtain that systems

(3) and (8) are consistent, i.e, ‖L −
(

Dlag
δ P−1 − Deul

δ

)
‖F/‖Dlag

δ P−1 − Deul
δ ‖F = 0.

Furthermore, the Lagrangian basic reproduction number Rlag
0 = 2.8536 is approxi-

mately the Eulerian basic reproduction number Reul
0 = 2.8498.

5.4 Migratory hosts, hypothetical mixingmatrix

We consider the hypothetical 3 × 3 mixing matrix (32) from Section 3.4, where the
hosts in all the three patches spend most of their time in patch 1. A mixing matrix such
as (32) could correspond to the movement of migratory hosts that do not have a sense
of home. In this situation an Eulerian modeling framework is natural. Specifically,
consider systems (3) and (8) with P and L from (32) and patch parameters correspond-
ing to West Nile Virus in migratory birds, as used in Bergsman et al. (2016). These

parameters are δi = 0.2222 Days−1, δv,i = 0.0666 Days−1, m :=
(

N lag
v,i

)∗
/N̂i

∗ =
(

N eul
v,i

)∗
/
(
N eul

i

)∗ = 1, βi = 0.2479 Days−1, βv,i = 0.2479 Days−1. For this

example, systems (3) and (8) with the largest possible relative error, (L = 0 the solu-
tion to the minimization problem (20)). The Lagrangian basic reproduction number
Rlag

0 = 1.5796 is approximately 21% larger than the Eulerian basic reproduction
number Reul

0 = 1.3135. In conclusion, in this example the systems are inconsistent
and the connected movement network for the Lagrangian system is not reflected in the
disconnected movement network for the Eulerian system. In addition, the difference
in the values of the basic reproduction numbers from both systems may be significant.

Table 3 summarizes the comparison between the estimated reproduction numbers
in Sections 5.1, 5.2, 5.3 and 5.4, showing that in the inconsistent cases the Lagrangian
model gives a larger basic reproduction number, and the differences Rlag

0 − Reul
0

increases as the error increases for these examples. For each of these examples, the
basic reproduction numbers for the Eulerian and Lagrangian frameworks are similar
to one another. By contrast, in Section 5.4, we have an example where host movement
in Eulerian system that we obtain from (20) is totally disconnected (i.e., L = 0), and
the difference between the basic reproduction numbers may be significant.

6 Discussion

Lagrangian and Eulerian approaches are important modeling tools for studying the
effects of heterogeneity and movement in disease dynamics Cosner (2015). We have
presented an approach for relating the Eulerian and Lagrangian systems through a
fundamental matrix by matching the time that infectious individuals reside in other
patches. We define the Eulerian and Lagrangian systems to be consistent when the
fundamental matrices match, in the sense that the minimum value of the optimization
problem (20) is zero.
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Table 3 Relative error Er = ‖L −
(

D
lag
δ P−1 − Deul

δ

)
‖F /‖D

lag
δ P−1 − Deul

δ ‖F and values of the basic

reproduction numbersRlag
0 and Reul

0 in the examples of Sections 5.1, 5.2, 5.3 and 5.4

Example Er Rlag
0 Reul

0

Malaria data in Namibia in Ruktanonchai et al. (2016) 0.018 1.7049 1.6997

Brazil transportation data in Iggidr et al. (2017) 0.0277 2.8586 2.8498

Dengue in Iquitos, hypothetical P 0 2.8536 2.8498

Migratory hosts, hypothetical P 1 1.5796 1.3135

As the star graph example in Section 3.3 and mixing matrix in Section 5.4 show,
both consistency and inconsistency between the two frameworks is possible. While
we do not have a complete characterization of when the Eulerian and Lagrangian
frameworks are consistent, Proposition 1 gives a sufficient condition. Specifically,
Proposition 1 gives intervals [p∗, p∗] such that if all the off-diagonal elements of the
mixing matrix are in [p∗, p∗], then the systems are consistent. The upper bound in the
sufficiency criterion can be interpreted in terms of Lagrangian models being suitable
for situations where individuals commute from a distinguished home location. This
setting often corresponds to individuals spending themajority of their time in the home
location, meaning that the off-diagonal entries of the mixing matrix are small Cosner
(2015). Inconsistent examples with large off-diagonal elements of the mixing matrix
such as in Section 5.4 thus conflict with the sense of home that Lagrangian models try
to capture. Inconsistency is also possible when the off-diagonal entries are small, as
for the mixing matrix in (24). Identifying additional necessary criteria for consistency
is an area for future work.

In Iggidr et al. (2017) it is discussed how to go from an Eulerian to a Lagrangian
framework where the movement rates are relatively larger than the removal rates. The
Eulerian framework considered in Iggidr et al. (2017) is different from the Eulerian
framework considered in this paper. Specifically, Iggidr et al. (2017) use an Eulerian
framework with n2 variables corresponding to residents of patch i that are currently
located in patch j . For example, Sh

i j (t) represents the number of susceptible hosts
whose home is patch i and are in patch j at time t . The movement rates corresponding
to Sh

i j are mi
k j for j 
= k (movement from j to k), from which we can define a

graph Laplacian Li for each home patch i . A mixing matrix P can be obtained from
L1, . . . , Ln under the assumption that the movement rates are large compared to the
removal rates. This is different than the Eulerian framework we consider, where the
movement rates are captured by a single graph Laplacian LX for every state X ∈
{S, I,R}. In addition, the consistency definition here requires the off-diagonal entries
of Dlag

δ P−1 − Deul
δ to be non-positive. Therefore, for given P and Deul

δ , consistency
depends only upon the sign of the off-diagonal elements of P−1 and does not depend
on the removal rates in Deul

δ . In consequence, in contrast to the time scales assumption
in Iggidr et al. (2017), the concept of consistency that we present does not depend on
the relative timescales of movement to removal.

The functional implications of using a Lagrangian versus an Eulerian approach are
important to consider. We find that the domain R0 values are similar under various
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scenarios when the two approaches are consistent. In the homogeneous consistent
case (Section 4.2), we obtain explicit bounds (Proposition 2) for the difference in
R0 between the Eulerian and Lagrangian frameworks. Furthermore, the behavior of
the Lagrangian basic reproduction number in Proposition 2 of Section 4.2 is consis-
tent with studies such as Lee and Castillo-Chavez (2015) (in the sense of attaining a
minimum value when p12 = p21, see Fig. 4 of Lee and Castillo-Chavez (2015)).

Although there is inconsistency in the examples of Sections 3.4, 5.1, 5.4, we observe
that the obtainedvalues of basic reproductionnumber are still alike. This suggests using
(20) to relate mixing matrices such as those given in Iggidr et al. (2017), Ruktanon-
chai et al. (2016) to Eulerian systems, and then studying the reproduction number of
the resulting Eulerian systems using techniques such as those in Jacobsen and Tien
(2018), Tien et al. (2015), can be an effective approach. The graph Laplacian matrix L
obtained from the optimization problem (20) (as in Sections 5.1 and 5.2) allows series
expansions for the basic reproduction number, and derivation of important quantities
such as the absorption inverse Ld (Jacobsen and Tien 2018) for analyzing the mobil-
ity network. For example, Ld captures the effect of absorption (that are the removal
rates in this case) on the movement network and also has applications in community
detection and node centrality (Benzi et al. 2019; Jacobsen and Tien 2018), leading to
extensions of the analysis of the mixing matrix P .

In contrast to R0, we observe significant differences in outbreak size between the
Eulerian and Lagrangian approaches. Indeed, differences in outbreak size can be large
not only when the systems are inconsistent (e.g. Figure 3), but for the consistent case
as well. Therefore, care must be taken when going from one approach to the other. It
would be useful to have a bound for the differences in outbreak size between the two
approaches. Analytical results quantifying how different the final sizes are is an area
for future work.
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7 Appendix

7.1 Basic reproduction number

In this section of the Appendix we use the next generation matrix approach (van den
Driessche and Watmough 2002) to derive the expressions for the basic reproduction
numbers (7) and (12) of systems (3) and (8) respectively.

We first compute the next generation matrix
(
F lag

) (
V lag

)−1
of the Lagrangian

system. Let us consider the equations

İi =
n∑

j=1

β j p ji
Si

Ni
Iv, j −

(
γ
lag
i + μ

lag
i

)
Ii
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İv,i = βv,i

∑n
j=1 pi j I j

∑n
j=1 pi j N j

Sv,i

+
n∑

j=1

mv
i j Iv, j −

n∑

j=1

mv
j i Iv,i − μv,i Iv,i (35)

corresponding to the infectious compartments of system (3). From (35) we define the
function F lag : R2n → R

2n by

F lag
i (I1, . . . , In, Iv,1, . . . , Iv,n) :=

n∑

j=1

β j p ji
Si

Ni
Iv, j ,

for i = 1, . . . , n, and

F lag
i (I1, . . . , In, Iv,1, . . . , Iv,n) := βv,i

∑n
j=1 pi j I j

∑n
j=1 pi j N j

Sv,i ,

for i = n+1, . . . , 2n. TheDFE of the Lagrangian systems is determined by
(

Slag
i

)∗ =
(

N lag
i

)∗
and

(
Slag
v,i

)∗ =
(

N lag
v,i

)∗
defined by (4). We then define the Jacobian matrix

F lag := ∂F lag/∂(I1, . . . , In, Iv,1, . . . , Iv,n)

∣
∣
∣

DF E
.

We have that
(
∂F lag

i /∂ Iv, j

)∣
∣
∣

DF E
= β j p ji , so the upper-right block of F lag is PTDβ ,

where Dβ := diag{βi }. We also have that
(
∂F lag

n+i/∂ I j

)∣
∣
∣

DF E
= βv,i

(
N∗

v,i/N̂i
∗)

pi j ,

so the lower-left block of F lag is Dlag
βv

P , where N̂i
∗ := ∑n

j=1 pi j

(
N lag

j

)∗
and Dlag

βv
:=

diag
{
βv,i N∗

v,i/N̂i
∗}
. Therefore, we have

F lag =
(

0 PTDβ

Dlag
βv

P 0

)

.

Similarly, we define the function V lag : R2n → R
2n by

V lag
i :=

(
γ
lag
i + μ

lag
i

)
Ii ,

for i = 1, . . . , n, and

V lag
i := −

n∑

j=1

mv
i j Iv, j +

n∑

j=1

mv
j i Iv,i + μv,i Iv,i ,
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for i = n + 1, . . . , 2n. We also define the Jacobian matrix

V lag := ∂V lag/∂(I1. . . . , In, Iv,1, . . . , Iv,n)

∣
∣
∣

DF E
.

If Lv is the graph Laplacian of the vector movement (with adjacency matrix Mv =(
mv

i j

)

i, j≤n
, see (2)) and Dlag

δ := diag
{
γ
lag
i + μ

lag
i

}
, then the upper-left block of V lag

is Dlag
δ and the lower-right block of V lag is Gv = Lv + Dδv . Therefore,

V lag =
(

Dlag
δ 0
0 Gv

)

.

Consequently,

(
F lag

) (
V lag

)−1 =
(

0 PTDβG−1
v

Dlag
βv

P
(

Dlag
δ

)−1
0

)

and

(Rlag
0 )2 = ρ

(

PTDβG−1
v Dlag

βv
P

(
Dlag

δ

)−1
)

.

We now compute the next generation matrix
(
Feul

) (
V eul

)−1
of system (8). The

equations of the infectious compartments of system (8) are

İi = βi
Si

Ni
Iv,i +

n∑

j=1

mI
i j I j −

n∑

j=1

mI
j i Ii −

(
γ eul

i + μeul
i

)
Ii

˙Iv,i = βv,i
Ii

Ni
Sv,i +

n∑

j=1

mv
i j Iv, j −

n∑

j=1

mv
j i Iv,i − μv,i Iv,i . (36)

From the equations in (36) we define the function

Feul(I1, . . . , In, Iv,1, . . . , Iv,n) := βi
Si

Ni
Iv,i ,

for i = 1, . . . , n, and

Feul(I1, . . . , In, Iv,1, . . . , Iv,n) = βv,i
Ii

Ni
Sv,i ,

for i = n + 1, . . . , 2n.
Using the DFE (9) of system (8), we have that

(
∂Feul

i /∂ Iv, j
)∣
∣

DF E = βi and
(
∂Feul

n+i/∂Feul
j

)∣
∣
∣

DF E
= βv,i N∗

v,i/
(
N eul

i

)∗
. Therefore, if

Feul := ∂Feul/∂(I1, . . . , In, Iv,1, . . . , Iv,n)

∣
∣
∣

DF E
,
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we then have

Feul =
(

0 Dβ

Deul
βv

0

)

,

where Dβ := diag{βi } and Deul
βv

:= diag
{
βv,i N∗

v,i/
(
N eul

i

)∗}
. Similarly, we define

the function

Veul(I1, . . . , In, Iv,1, . . . , Iv,n) := −
n∑

j=1

mI
i j I j +

n∑

j=1

mI
j i Ii +

(
γ eul

i + μeul
i

)
Ii ,

for i = 1, . . . , n, and

Veul(I1, . . . , In, Iv,1, . . . , Iv,n) := −
n∑

j=1

mv
i j Iv, j +

n∑

j=1

mv
j i Iv,i + μv,i Iv,i ,

for i = n + 1, . . . , 2n. Therefore, if

V eul := ∂Veul/∂(I1, . . . , In, Iv,1 . . . , Iv,n)

∣
∣
∣

DF E
,

we then have

V eul =
(

G 0
0 Gv

)

, (37)

whereG := L I+Deul
δ , L I is the graphLaplacian of the hostmovement [with adjacency

matrix M I = (mI
i j )i, j≤n , see (2)], Deul

δ := diag{γ eul
i + μeul

i }, and Gv = Lv + Dδv . In
consequence,

(
Feul

) (
V eul

)−1 =
(

0 DβG−1
v

Deul
βv

G−1 0

)

and (
Reul

0

)2 = ρ
(

DβG−1
v Deul

βv
G−1

)
.

7.2 Comparison of basic reproduction numbers

In this section we prove Proposition 2 of Section 4.2. Let βv,1 = βv,2, N∗
v :=

N∗
v,1 = N∗

v,2,
(
N eul

)∗ := (
N eul
1

)∗ = (
N eul
2

)∗
, and βv = βv,1N∗

v,1/
(
N eul
1

)∗ =
βv,2N∗

v,2/
(
N eul
2

)∗
. Define

(
N lag
1

)∗
and

(
N lag
2

)∗
such that

(
N eul
1

)∗ = p11
(

N lag
1

)∗ +
p12

(
N lag
2

)∗
and

(
N eul
2

)∗ = p21
(

N lag
1

)∗ + p22
(

N lag
2

)∗
. Hence A8 holds, and

δ = δeul1 = δeul2 , so we also get δ = δ
lag
1 = δ

lag
2 by A9. Let Dβ = β I ,
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Dβv = βv I , Deul
δ = Dlag

δ = Dδ := δ I , Dδv = δv I , Lv = mv

(
1 −1

−1 1

)

, P =
(
1 − p21 p12

p21 1 − p12

)

.

We fix all the parameters except p12 (we obtain analogous and symmetric results if

wefix p21). From (7) and (12),weobtain that
(
Rlag

0

)2 = ρ
(
PTDβG−1

v Dβv P (Dδ)
−1)

and
(Reul

0

)2 = ρ
(
DβG−1

v Dβv P(Dδ

)−1
). Therefore, if we define M := DβG−1

v

Dβv P
(

Dlag
δ

)−1
, we get

(
Rlag

0

)2 = ρ(PTM) and
(
Reul

0

)2 = ρ(M) . (38)

The following is the statement of the proposition.

Proposition 2 Assume A1–A10 and suppose that Dβ = β I , Dβv = βv I , Deul
δ =

Dlag
δ = Dδ := δ I , Dδv = δv I and mv

12 = mv
21 = mv . Define M :=

DβG−1
v Dβv P

(
Dlag

δ

)−1
and fix p21 in the interval (0, 1/2). Then ρ(PTM) is a func-

tion of p12 where 0 < p12 < 1/2 and we have that:

a) ρ(M) = (ββv)/(δδv) is constant on 0 < p12 < 1/2.
b) ρ(PtM) is decreasing on (0, p21), increasing on (p21, 1/2) and attains one abso-

lute minimum over (0, 1/2) with value (ββv)/(δδv) at p12 = p21.
c) In addition, we have the inequality

ρ(PTM) − ρ(M) ≤ ββv

δδv(2mv + δv)
|p12 − p21|(1 − p12 − p21)δv

≤ ββv

δδv(2mv + δv)
max

{
p21(1 − p21)δv, (1/2 − p21)

2δv

}

≤ ββv

δδv(2mv + δv)

δv

4
. (39)

Proof We have that

M = DβG−1
v Dβv P

(
Dlag

δ

)−1

= ββv

δδv(2mv + δv)

(
mv + (1 − p21)δv mv + p12δv

mv + p21δv mv + (1 − p12)δv

)

,

so the eigenvalues of M in this case are

ββv

δδv

and
ββv

δδv

(1 − p12 − p21)δv

2mv + δv

.
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In consequence, we get ρ(M) = (ββv)/(δδv). We can also get ρ(PTM) explicitly
by

ρ(PTM) = ββv

δδv(2mv + δv)
[mv + δv − (p12(1 − p12) + p21(1 − p21)) δv+

√

[mv + (p12(1 − p12) + p21(1 − p21)) δv]2 + [(p12 − p21)(1 − p12 − p21)δv]2
]

.

(40)

From this equation, it follows that when p12 = p21, we get

ρ(PTM) = ββv

δδv

= ρ(M) .

Moreover, ∂ρ(PTM)/∂ p12 = κββv/ [δδv(2mv + δv)], where

κ = 2p12 − 1 + mv(1 − 2p21) + δv
[
2p12(1 − p12)(1 − 2p12) + (p12 − p21) (2p12(1 − p12 − p21) + p12 + p21)

]

√[
mv + (p12(1 − p12) + p21(1 − p21)) δv

]2 + [
(p12 − p21)(1 − p12 − p21)δv

]2
.

(41)

In particular, if p12 = p21, then

∂ρ(PTM)

∂ p12
= 0 .

Assume that p12 > p21. Define

α :=
√

[mv + (p12(1 − p12) + p21(1 − p21)) δv]2 + [(p12 − p21)(1 − p12 − p21)δv]2

≤ [mv + (p12(1 − p12) + p21(1 − p21)) δv] + [(p12 − p21)(1 − p12 − p21)δv] ,

and

η := mv(1 − 2p21) + δv [2p12(1 − p12)(1 − 2p12) + (p12 − p21)

× (2p12(1 − p12 − p21) + p12 + p21)] .

We then have that

∂ρ(PTM)

∂ p12
= ββv

δδv(2mv + δv)

[
2p12 − 1 + η

α

]

and

(2p12 − 1)α + η ≥ (2p12 − 1) [mv + (p12(1 − p12) + p21(1 − p21)) δv

+(p12 − p21)(1 − p12 − p21)δv] + η
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= 2(p12 − p21)
[
mv +

(
(p12 − 1)2 + p212

)
δv

]
> 0 .

Therefore, p12 > p21 implies that

∂ρ(PTM)

∂ p12
= ββv

δδv(2mv + δv)

(2p12 − 1)α + η

α
> 0 .

Now, let us assume that p12 < p21. We then have that

α ≥ mv + (p12(1 − p12) + p21(1 − p21)) δv

and

(2p12 − 1)α + η ≤ (2p12 − 1) [mv + (p12(1 − p12) + p21(1 − p21)) δv] + η

= −(p21 − p12)(mv + δv(1 + (p21 − p12)(1 − 2p12))) < 0 .

Therefore, p12 < p21 implies that

∂ρ(PTM)

∂ p12
= ββv

δδv(2mv + δv)

(2p12 − 1)α + η

α
< 0 .

Using that α ≤ [mv + (p12(1 − p12) + p21(1 − p21)) δv]+|p12− p21|(1− p12−
p21)δv , we get

ρ(PTM) − ρ(M) ≤ ββv

δδv(2mv + δv)
|p12 − p21|(1 − p12 − p21)δv

≤ ββv

δδv(2mv + δv)
max

{
p21(1 − p21)δv, (1/2 − p21)

2δv

}

≤ ββv

δδv(2mv + δv)

δv

4
.

��

Let us try to get some intuition for the inequality Rlag
0 ≥ Reul

0 in the previous
proposition. Suppose that p21 < p12 and all the other parameters are assumed to be as
in Proposition 2. Assume that the systems (3) and (8) are at the DFE and suppose we
introduce the same number of infectious hosts in both patches, say Ih = Ih,1 = Ih,2.
From the last equation in (3) of the Lagrangian system and A3.1, the rates at which
vectors get infected in patches 1 and 2 are

βv,1
p11 Ih,1 + p12 Ih,2

p11
(

N lag
1

)∗ + p12
(

N lag
2

)∗ N∗
v,1 = βv Ih(1 + p12 − p21)
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and

βv,2
p21 Ih,1 + p22 Ih,2

p21
(

N lag
1

)∗ + p22
(

N lag
2

)∗ N∗
v,2 = βv Ih(1 + p21 − p12)

respectively. Since p12 > p21, the vector infection rate in patch 1 is greater than in
patch 2 (because 1 + p12 − p21 > 1 > 1 + p21 − p12). Therefore, over a period
�t , the number of infected vectors at patch 1, which is approximately �I lagv,1 :=
βv Ih(1+ p12 − p21)�t , would be larger than the amount of infected vectors at patch
2, which is approximately�I lagv,2 := βv Ih(1+ p21− p12)�t . From the second equation
in (3), the amount of new host infections in patches 1 and 2 caused by the new infected
vectors in DFE would be

�I lagh,1 := β1 p11
(
�I lagv,1

)
+ β2 p21

(
�I lagv,2

)
= β

(
p11

(
�I lagv,1

)
+ p21

(
�I lagv,2

))

and

�I lagh,2 := β1 p12
(
�I lagv,1

)
+ β2 p22

(
�I lagv,2

)
= β

(
p12

(
�I lagv,1

)
+ p22

(
�I lagv,2

))

respectively. Therefore, the total amount of new infected hosts would be

�I lagh := �I lagh,1 + �I lagh,2 = β
(
�I lagv,1 + �I lagv,2

)
+ β(p12 − p21)

(
�I lagv,1 − �I lagv,2

)
.

(42)
On the other hand, from the last equation in (8) of the Eulerian system, the rates at
which vectors get infected in patches 1 and 2 are

βv,1
Ih,1

(
N eul
1

)∗ N∗
v,1 = βv Ih and βv,2

Ih,2
(
N eul
2

)∗ N∗
v,2 = βv Ih

respectively. Therefore, over a period �t , the amounts of new infected vectors are
�I eulv,1 = �I eulv,2 = βv Ih�t . Notice that

�I lagv,1 + �I lagv,2 = 2βv Ih�t = �I eulv,1 + �I eulv,2 .

From the second equation in (8) of the Eulerian system, the total amount of new
infected hosts is

�I eulh = β(�I eulv,1 + �I eulv,2) = β(�I lagv,1 + �I lagv,2) . (43)

Since p12 > p21 and �I lagv,1 > �I lagv,2, we get that the term β(p12 − p21)
(
�I lagv,1

−�I lagv,2

)
in (42) is positive, and then using (43), we have that �I lagh > �I eulh , which

corresponds to Rlag
0 ≥ Reul

0 . Note that this implicitly relies upon the fact that the
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removal rates, the ratesβv,i and the ratesβi are the sameacross patches.Asweobserved
in Figure 5, imposing different removal rates, for instance, can lead toReul

0 > Rlag
0 .
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