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Abstract

Wetlands are vital components of landscapes that sustain a range of important eco-

system services. Understanding how wetland-rich landscapes—or wetlandscapes—

will evolve under a changing climate and increasing anthropogenic encroachment is

urgent. Wetlandscapes are highly heterogeneous, and scaling local modelling insights

from individual instrumented wetlands to characterize landscape-scale dynamics has

been a pervasive challenge. We investigate the potential to use water extent infor-

mation from satellite imagery to calibrate landscape-scale process-based hydrological

models. Applications to wetlandscapes in the Prairie Pothole Region (PPR) in North

Dakota and the Texas Playa Lakes (TPL) shed light on two important trade-offs. First,

in-situ monitoring provides accurate water extent information on an arbitrary subset

of wetlands, whereas satellite imagery captures landscape-scale hydrological dynam-

ics but suffers persistent water-detection challenges. Satellite imagery is a superior

source of data for model calibration in sparsely monitored and spatially heteroge-

neous landscapes like the PPR, where the sampling uncertainty of monitored wet-

lands exceeds the water detection uncertainty of remote sensing. The two data

sources are equivalent for more homogeneous landscapes like the TPL. The second

tradeoff concerns the spatial resolution and temporal coverage of satellite imagery.

In that regard, the 20 years of bi-weekly images captured by Landsat 7 provides

unprecedented insights into the dynamic nature of the ecohydrological characteris-

tics of wetlandscapes, such as seasonal and inter-annual changes of their metapopu-

lation capacity. In the PPR, the amplitude of these dynamics far exceeds the bias

introduced by Landsat's inability to capture ecologically important connectivity

details due to its coarse spatial resolution compared to more recent imagery.
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1 | INTRODUCTION

Wetlands are vital eco-hydrological components of landscapes. Their

spatiotemporal dynamics affect several important ecosystem services

(Keddy, 2010; LaBaugh, 1986), including flood protection (Acreman &

Holden, 2013), nutrients and carbon cycling (Cheng & Basu, 2017;

Cronk & Fennessy, 2016), and they also serve as critical habitats to a

wide range of unique flora and fauna (Dudgeon et al., 2006; Euliss

et al., 2004). Wetlands can consist of a wide range of hydrologic fea-

tures, from large permanent waters that provide important hydrologic

Received: 20 May 2022 Revised: 3 October 2022 Accepted: 4 October 2022

DOI: 10.1002/hyp.14739

Hydrological Processes. 2022;36:e14739. wileyonlinelibrary.com/journal/hyp © 2022 John Wiley & Sons Ltd. 1 of 13

https://doi.org/10.1002/hyp.14739

https://orcid.org/0000-0002-5982-3736
mailto:lbertass@nd.edu
http://wileyonlinelibrary.com/journal/hyp
https://doi.org/10.1002/hyp.14739
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fhyp.14739&domain=pdf&date_stamp=2022-11-01


functions to smaller ephemeral ponds that provide important biogeo-

chemical functions (Evenson et al., 2018). These features do not func-

tion in isolation but form a landscape mosaic (here referred to as

wetlandscape) that sustains unique and fragile ecosystems (Brice

et al., 2022; Dahl, 1990; Erwin, 2009; Van Meter & Basu, 2015;

Walpole & Davidson, 2018). Ephemeral wetlands, in particular,

account for approximately 60% of global wetlands (Papa et al., 2006)

and are critically important in their ability to generate windows of

transient connectivity for species dispersal and occupancy. Because

wetlands often occur as discrete, heterogeneous patches distributed

within a matrix of upland habitat (Leibowitz, 2003; Mushet

et al., 2016), many species of wetland-dependent fauna exist as meta-

populations that exchange individuals among patches through dis-

persal (Gibbs, 2000). Local populations of wetland species are often

small and isolated (Semlitsch & Bodie, 1998). They are therefore vul-

nerable to spatiotemporal fluctuations in the suitability and/or con-

nectivity of ephemeral wetlands, which are particularly sensitive to

climate change and anthropogenic encroachment (Johnson

et al., 2010). Understanding how wetlandscapes will evolve in

response to these changes, and evaluating their ability to sustain the

critical ecosystems that they contain, are vital for conservation and

policy purposes.

Process-based hydrological models are an important set of

approaches to support that effort. Recent work has advanced the abil-

ity of models to explicitly capture hydrological processes at the local

scale, including cascading surface water fill-spill processes (Evenson

et al., 2018; Shaw et al., 2013), wetland recharge and discharge in

relation to downstream waters (Ameli & Creed, 2017; Evenson

et al., 2018), and local surface water-groundwater exchanges between

wetlands and their surrounding upland areas (Jones et al., 2018;

McLaughlin et al., 2014; Shaw et al., 2013). These recent efforts led to

enhanced simulation of wetland processes, and therefore improved

potential to quantify aggregate impacts of wetlands at the catchment

or landscape scales (Cohen et al., 2016; Evenson et al., 2016; Liu &

Schwartz, 2011). Process-based models are promising in their ability

to distinguish the effects of climate change and anthropogenic alter-

ations (e.g., urbanization, intensive agriculture, landscape drainage,

and groundwater pumping) on the spatio-temporal dynamics of

changing wetlandscapes. A proper representation these dynamics,

which determine habitat suitability (e.g., through metapopulation

capacity), is critical for conservation and management of aquatic and

semiaquatic species (Semlitsch & Bodie, 1998; Werner et al., 2007).

However, this requires that (i) the most salient hydrological processes

that govern wetlandscape dynamics at the landscape scale are ade-

quately identified, and (ii) the model parameters corresponding to

these processes are estimated. In practical applications, the cost and

logistical efforts involved in monitoring single wetlands (let alone com-

plete wetlandscapes) are substantial (Maleki et al., 2018), and in situ

data are generally missing for these two conditions to be rigorously

verified. Instead, model development and calibration is often based on

monitoring data from a small subset of wetlands (Bertassello

et al., 2022), or hermeneutic relationships to ancillary data (Brice

et al., 2022). This practice raises the need to determine whether (and

under what conditions) the arbitrary and sparse sample of instrumen-

ted wetlands is representative of the full population of wetlands in

the considered wetlandscape. It also raises the need for a direct

approach to develop and calibrate hydrological models of wetlands-

capes using observation data at the commensurate (i.e., landscape)

scale.

By providing a consistent space–time representation of the earth

system, images from spaceborne and airborne sensors are uniquely

able to monitor water variables at the scale of the landscape to attri-

bute hydrological change (Levy et al., 2018; Müller et al., 2016; Penny

et al., 2022). Yet they entail fundamental tradeoffs between spatial

resolution, temporal frequency, spatio-temporal coverage and detec-

tion ability. These tradeoffs are particularly relevant for wetlands-

capes because the smallest wetlands are often the most frequent, the

most hydrologically variable, and the hardest to detect using remote

sensing imagery (Hondula et al., 2021). For example, Wu et al. (2019)

combines high resolution aerial images from the National Agriculture

Imagery Program (NAIP) of the United States Department of Agricul-

ture with high accuracy LiDAR-based digital elevation models. The

resulting maps of wetland inundation are highly accurate with a spatial

resolution of 1 m, but the annual frequency of acquisition is too

coarse to capture hydrological dynamics at (sub-annual) ecologically

relevant time scales. In contrast, the Moderate resolution imaging

spectro-radiometer (MODIS) missions offer daily global imagery that

can capture these dynamics, but at a spatial resolution (200 m) that is

too coarse to capture small but eco-hydrologically significant wet-

lands. To address this tradeoff, optical and Synthetic Aperture Radar

(SAR) imagery from the Sentinel program (Sentinel 2 and Sentinel

1, respectively) have been used to map open water at both high reso-

lution (10–60 m) and temporal frequency (10–12 days) (Kaplan &

Avdan, 2017; Muro et al., 2016; Pérez Valentín & Müller, 2020). How-

ever, with launch dates between 2014 and 2016, the coverage period

of Sentinel imagery is limited, whereas a sufficiently large sample of

high-quality observations is necessary to ascertain and attribute

change with adequate statistical power (Müller & Levy, 2019).

By providing 30-m resolution, weekly to bi-weekly, global multi-

spectral scenes dating back to the early 1980s the various Landsat

missions are a promising source of data to address these various tra-

deoffs. Landsat imagery has been widely used to monitor wetland

dynamics (Frohn et al., 2009; Han et al., 2015; Huang et al., 2014;

Kayastha et al., 2012; Mao et al., 2020; Sader et al., 1995) and to cali-

brate process-based models of catchments that contain a dense popu-

lation of wetlands (Evenson et al., 2018; Lee et al., 2018). Yet cloud

cover and image quality issues have limited their use for the short spa-

tial and temporal scales that are ecologically relevant for wetlands-

capes with ephemeral wetlands. More recently, new gap-filling

algorithms have been proposed with promising ability to detect open

water on Landsat images in cloudy weather (Mullen et al., 2021;

Schwatke et al., 2019; Zhao & Gao, 2018), but their potential to

improve the monitoring of wetlandscape dynamics at the relevant

spatial and temporal scales remains to be evaluated. This paper fills

this gap by comparing gap-filled water cover estimates from Landsat

to two alternative data sources—namely in situ observations and
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metric-resolution imagery—each time focusing on a key application

and the most relevant tradeoff.

First, we focus on the tradeoff between spatial coverage and

detection accuracy as it pertains to calibration data for hydrological

models of wetlandscapes. On the one hand, gap-filled water cover

estimates derived from gap-filled Landsat imagery offer a landscape-

scale perspective but are potentially impeded by water detection

errors that might undermine a proper calibration of the hydrological

model. On the other hand, in situ-observations of water stage provide

(relatively more) accurate measurements of water extents, but only

for a limited sample of instrumented wetlands. The hydrological

dynamics of these instrumented wetlands may or may not be repre-

sentative of that of the wetlandscape that the model is intended to

capture. The extent to which the sampling error of in-situ observa-

tions compares with the measurement error of remote sensing obser-

vations determines the preferable data source for model calibration.

We investigate this matter over various spatial scales by comparing

the performance of a hydrological model calibrated using remote

sensing wetlandscape observations with that of the same model cali-

brated using in-situ observations of a sparse sample of wetlands.

Second, we evaluate the tradeoff between spatial resolution and

temporal frequency as it pertains to the ability to characterize the

metapopulation carrying capacity of wetlandscapes. On the one hand,

the spatial resolution of Landsat imagery (30 m) restricts its ability to

monitor small (<1 ha or 10 Landsat pixels) but potentially ecologically

significant wetlands. On the other hand, these features are captured

by higher (�1 m for NAIP; Wu et al., 2019) resolution imagery whose

limited temporal coverage and low frequency (due to high acquisition

costs) might fail to capture important temporal dynamics that occur

over shorter (sub-annual) time scales. We compared the two data

sources (Landsat and NAIP) based on their ability to evaluate the

metapopulation capacity of a subset of the Prairie Pothole Region.

The metapopulation capacity is an important ecological indicator that

describes the habitat suitability of wetlandscapes (Bertuzzo

et al., 2015). It is temporally variable and determined by the distribu-

tion of both the sizes individual wetland habitats and the distances

separating them (Bertassello et al., 2021), two characteristics whose

estimation is strongly affected by pixel resolution.

The manuscript is organized as follows. Section 2 describes the

study regions. Section 3 describes the remote sensing procedure to

monitor wetlandscape inundation (Section 3.1), the hydrological

model and its calibration (Section 3.2) and the metapopulation capac-

ity and its relation to wetlandscape dynamics (Section 3.3). Results are

discussed in Section 4. The remote sensing calibration of the hydro-

logical model is described and interpreted in Section 4.1. The relative

salience of sampling and detection errors are discussed in Section 4.2,

where the hydrological model is calibrated using different subsamples

of the wetlandscape. Considerations regarding the spatial resolution

and temporal coverage of remote sensing data sources are discussed

in Section 4.3 by comparing metapopulation capacities predicted

using alternative imagery sources with high (low) spatial resolution

and low (high) temporal coverage.

2 | SITE DESCRIPTIONS

2.1 | Prairie Pothole Region

We focus on a 20�20 km domain within the Prairie Pothole Region

in the Northern Great Plains of the United States (Figure 1) as a

highly studied (Bertassello et al., 2021; Euliss et al., 2004; Wu

et al., 2019) and ecologically significant wetlandscape with a (compar-

atively) high volume of available in-situ observations. The Prairie Pot-

hole Region, PPR, is a spatially heterogeneous region with thousands

of shallow wetlands known as potholes. These wetlands are impor-

tant breeding areas for migratory waterfowls and other wetland-

dependent wildlife, such as amphibians (Bertassello et al., 2021).

In-situ monitoring data was obtained for 16 wetlands in the Cotton-

wood Lake Study Area (CLSA) which is located in south-central North

Dakota. The CLSA has been the focus of biological, hydrological, and

geochemical research and is an important U.S. Fish and Wildlife Ser-

vice Waterfowl Production Area (Winter & LaBaugh, 2003). We used

monitoring data for water level (staff gauges) located in each wetland

at weekly intervals from April to October of each year from 2000 to

2015, when the wetland was ice-free (Mushet et al., 2016; Mushet &

Solensky, 2018).

2.2 | Texas Playa Lakes

The second considered wetlandscape is a 20�20 km domain within

the Texas Playa Lakes (TPL) region in the Southern High Plains of

Texas (Figure 1). Playa Lakes are circular intermittent wetlands, which

shape and size are comparable across the landscape. This configura-

tion contrasts with the highly spatially heterogeneous nature of the

PPR. Wetlands in the TPL provide important ecological services

(e.g., flood control) and serve as key recharge zones for the underlying

High Plains Aquifer system (Reeves & Reeves, 1996). We were not

able to obtain any situ observations of stage or water extent for indi-

vidual wetlands in the TPL (see Ganesan et al., 2016). This situation of

low data availability is typical of most global wetlandscapes.

3 | METHODS

3.1 | Remote sensing

Landsat 7 top-of-atmosphere (TOA) reflectance images (Collection

1 Tier 1) were acquired using Google Earth Engine (GEE) (Gorelick

et al., 2017). To discriminate clouds from clear-sky pixels, we used a

cloud score algorithm readily available in GEE that computes a simple

cloud-likelihood score ranging from 0 to 100 using a combination of

brightness, temperature and the Normalized Difference Snow Index

(NDSI) (see https://developers.google.com/earth-engine/Landsat).

Following Huang et al. (2017), we identified as cloudy (or ‘masked’)
pixels which score was greater than 10.

MULLEN ET AL. 3 of 13
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Once the clouds masked out, we proceeded to classify the

remaining pixels into land or open water based on their Modified Nor-

malized Difference Index (MNDWI) (Han-Qiu, 2005):

MNDWI¼B2�B5
B2þB5

,

where, B2 and B5 represent the green and Short-wave infrared bands

of the Landsat 7 Enhanced Thematic Mapper sensor (ETM+). The

MNDWI leverages the proclivity of water to preferentially reflect and

absorb the green and short wave infrared frequencies of the electro-

magnetic spectrum, respectively. We segmented the MNDWI images

into ‘dry’ and ‘wet’ pixels by using a k-means clustering algorithm

(Arthur & Vassilvitskii, 2006). The accuracy of unsupervised classifica-

tion is sensitive to the relative number of pixels assigned to each of

the two clusters, so the automatic identification of a segmentation

threshold can be problematic for images dominated by either land or

open water. Following Mullen et al. (2021), we addressed this issue by

(i) automatically classifying each image using k-means, (ii) recording

the segmentation threshold (i.e., the MNDWI level above which a pixel

is classified as water) for each image and (iii) using the median value of

the obtained segmentation thresholds to segment all the images.

We then used the approach described in Mullen et al. (2021) to

transform the three-class images (‘masked’, ‘dry’ and ‘wet’) into

binary water extent images (‘dry’ and ‘wet’). Note that the ‘masked’
pixel class includes both the pixels masked by clouds and the pixels

with no data due to the scanline corrector failure on Landsat 7 images

taken after September 2003. The algorithm infers the inundation sta-

tus of cloudy pixels using a supervised classification to relate the inun-

dation status of unmasked pixels to their inundation frequency, that

is, the fraction of time each pixel is inundated in the set of images

where it is unmasked.

F IGURE 1 Location of the studied wetlandscapes. The base map displays the estimated density of geographically isolated wetlands in the
United States, adapted from Lane and D'Amico (2016)
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Time series of binary inundation images were finally analysed

using dedicated GEE functions to obtain both the size distribution of

continuous inundation patches in a given images, and the time series

of total inundated area for a given (e.g., 20�20 km) footprint. The full

procedure used to obtain water extent time series of a given domain

is available as a self-contained GEE script at https://code.earthengine.

google.com/0578e09e7fecab4ca3171da29158cd1c.

We obtained annual 1 m resolution (compared to 30 m for Land-

sat) classified binary inundation images of the PPR for the 2009–2017

period from Wu et al. (2019) for an approximately 10 � 20 km subset

of the considered domain. We used this dataset both to evaluate our

classification output and to investigate the spatial versus temporal

resolution tradeoff discussed in Section 4.3. The validation dataset

combines aerial images from NAIP with high accuracy LiDAR-based

digital elevation models. These annual images represent wetland

water extents in the PPR when the NAIP image is captured, which is

typically sometime between May and July, and is taken as represent-

ing growing season conditions. To evaluate the performance of our

own classification outcomes, we selected the classified Landsat image

with acquisition date closest to that of the NAIP image. We then gen-

erated a random set of 5000 control points and compared the classes

(‘dry’ or ‘wet’) predicted by the two images at that location. Classifi-

cations from the two data sources (Landsat 7 or NAIP) matched with

an accuracy ranging between 89% and 97% for the 6 years when the

two data sources overlapped.

3.2 | Hydrological model

Water extent estimates (obtained from remote sensing or in situ

observations) were used to calibrate the process-based model of

wetlandscape hydrological dynamics developed in Bertassello et al.

(2019). Therein, the landscape is considered as populated by distribu-

tions of independent wetlands, all sharing identical stochastic precipi-

tation inputs (P) and evapotranspiration losses (PET), and all

exchanging water with shallow groundwater. The model neglects the

spatial variability of hydro-climatic forcing, which at the considered

spatial scales (’400 km2) are likely to have much smaller impact on

hydrological dynamics than temporal hydroclimate fluctuations. All

wetlands are assumed connected to a shallow groundwater for which

they act as a recharge sources, thus water tends to move from the

wetland into the shallow aquifer. Note that wetlands in the consid-

ered regions do not significantly contribute to regional subsurface

groundwater flow paths (Brooks et al., 2018; Winter &

Rosenberry, 1995). Given these assumptions, each wetland i of the

wetlandscape satisfies the water-balance equation:

dVi

dt
¼ PþNð ÞAc,i�ETAi Við Þ�Ks,iSi Við Þ, ð1Þ

where, dVi
dt represent the change in water volume stored by wetland i.

The first term on the right-hand side of Equation (1) represents water

inputs due to a sequence of precipitation P and snowfall N events

over the (constant) catchment area Ac,i. The second term accounts for

the volumetric water loss from the wetland at a time-averaged poten-

tial evapotranspiration rate ET over a contributing water surface area

Ai that changes over time. The third term quantifies the volumetric

water loss from the wetland to the connected aquifer. This process

occurs throughout the (time-varying) wetted area of the pool Si and is

modulated by the recession constant Ks,i. Although expressed in

Equation (1) as a function of wetland volume V, the wetlandscape

dynamics captured in the water balance could equivalently be

expressed as a function of water extent surface area A or wetland

stage h if the relationship between these three variables is known.

This relationship is determined by wetland bathymetry and is approxi-

mated as described in Supporting Information S1.

The model was implemented using the National Wetland Inven-

tory map (Cowardin & Golet, 1995) as representative of the maximum

spatial extent of the wetlands. We modelled the daily hydrological

dynamics in each wetland (given as either V, h, or A) by integrating

Equation (1) and forcing it with daily precipitation and evapotranspira-

tion (ET) data. We used daily precipitation data from the National

Oceanic and Atmospheric Administration, NOAA, from the stations of

Jamestown Municipal Airport, ND (USW00014919) and Abernathy,

TX (USC00410012), respectively for the PPR and the TPL wetlands-

capes. Following Huang et al. (2013) we modelled the form of precipi-

tation as rainfall or snowfall based on the daily mean temperature

obtained from the same station. When the average daily temperature

is below 0�C, the falling precipitation is assumed to be snowfall

(Carroll et al., 2005). Snowfall accumulates on the ground as snow-

pack, modelled in terms of snow water equivalent (SWE) using a

snow-to-liquid ratio of 10:1 (Mekis & Brown, 2010). Following Carroll

et al. (2005) and Huang et al. (2013), snowpack melting was modelled

with the degree-day method as Nt ¼0:274 Tt, where Nt is the snow-

melt depth (m) on day t that runs off into the pond, Tt is the mean

daily temperature (�C) and 0.274 is the approximate degree-day ratio

(cm �C�1 d�1). When Tt<0�C, Nt ¼0 (i.e., no snowmelt). Air tempera-

ture was also used estimate potential evapotranspiration, PET, using

the Thornthwaite method. We modelled the temporal hydrologic

dynamics for each of the wetlands identified by the NWI map within

the considered 20�20 km domain. We then used the daily time

series of stored water volumes to estimate wetland areas using the

relationships described in SI, which we aggregated to obtain daily time

series of total inundated area in the wetlandscape, AT . We calibration

the recession constant, Ks,i, manually by comparing the modelled and

observed time series of AT .

3.3 | Metapopulation capacity

In classical metapopulation theory (Hanski & Ovaskainen, 2000), the

metapopulation capacity, λmax , captures the impact of landscape com-

plexity, that is the amount of patch habitat and its spatial configura-

tion, on metapopulation persistence. This key index can be evaluated

as the leading eigenvalue of the patch-landscape matrix M, derived

from the Jacobian of the system J¼ cM�eI (Bertuzzo et al., 2015;

MULLEN ET AL. 5 of 13
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Hanski & Ovaskainen, 2000), where c and e are respectively the colo-

nization and extinction rate of a given species. The matrix M contains

information about the landscape and the quality of the patches and its

elements, mij, are defined as:

mij ¼ exp �dij tð Þ=D
� �

Ai tð ÞAj tð Þ ð2Þ

For wetlandscapes, where wetlands play the role of habitat patches,

Ai (L
2) is the surface area of wetland i, dij (L) is the shortest distance

between wetlands i and j and D (L) is the dispersal ability of the con-

sidered species. Thus, combined with the hydrological model that

explicitly predicts connectivity (represented by inter-wetland distance

dij) and habitat suitability (represented by wetland area Ai) as functions

of time and hydroclimatic inputs, this approach can be used to model

the effect of the spatiotemporal dynamics of wetlandscapes on habi-

tat availability and accessibility for any considered focal species

(Bertassello et al., 2021). It is worth noting that here wetland area is

used as a surrogate metric for wetland habitat carrying capacity. How-

ever, several factors other than water area, such as water depth,

water temperature, salinity, and aquatic plant types and coverage,

might drive habitat suitability as well and can potentially be integrated

into our approach.

4 | RESULTS AND DISCUSSION

4.1 | Calibration results

Figure 2 shows model calibration results using remotely sensed water

cover as calibration data for the considered 20 � 20 km domains in

the PPR (left) and TPL (right). Figure 2b shows water cover time series

estimated from Landsat 7 (red) and predicted by the model (blue)

using precipitation inputs displayed in Figure 2a. Figure 2c which dis-

plays the histogram and empirical complementary cumulative density

functions of total water cover across observation dates. Out-of-

sample validation results against 5 additional years of data in the PPR

and 3 additional years of data in the TPL are presented in SI

(Figure S5).

Calibration results in the two wetlandscapes show distinct hydro-

logical behaviours. In the PPR, the hydrological regime is persistent

(Botter et al., 2013) with water present in the wetlandscape for nearly

all predictions and observations. This is especially true during the wet

period ranging from April to October where the comparison between

the output of the model and the remote sensing data is possible. Dur-

ing the remaining part of the year, the wetlandsape is covered by

snow, which both prevents an accurate detection of open water sur-

faces using remote sensing (Acharya et al., 2018) and limits suitability

as an aquatic habitat. Results suggests that model predictions (blue)

overestimate the total water extent area in the wetlandscape

between 2005 and 2010, when compared to the remote sensing esti-

mates used to calibrate it (red). This period has also seen an overall

reduction of the Palmer Hydrological Drought Index (see Figure S2).

This decrease in PHDI arises in the precipitation and

evapotranspiration data forcing the hydrological model but was not

visible in the observed water extents. This points to factors affecting

the PHDI and wetland water extents that are not included in the

model. In particular, the model does not incorporate anthropogenic

alteration. A substantial amount of pumping was documented at

Devil's Lake in the vicinity or our domain, starting mid-year 2005 and

ending in 2010 (McKenna et al., 2017; Todhunter, 2016), which might

have induced a temporary decrease in wetlandscape water levels. This

decrease is reflected in persistent negative monthly gravitational

anomalies starting in the summer of 2006 through 2009, from the

GRACE Tellus Monthly Mass Grid in the PPR study area (see

Figure S4). Thus, anthropogenic alterations are visible in the discrep-

ancy between model predictions and observed water extents. Note

that this insight is specifically enabled by the landscape scale of the

calibration data obtained from satellite imagery. It illustrates the

potential to identify landscape-scale hydrologic processes that might

be omitted by the current model, which can be leveraged within an

iterative model design process.

The wetlandsacpe hydrological regime is comparatively more

erratic in the TPL, where the wetlandscape is completely dry for a

substantial portion of the year. This erratic regime arises for two

important reasons. First, evapotranspiration and infiltration processes

play a significant role in the water balance dynamics of the wetlands-

cape. Rainfall intensity has to exceed comparatively larger thresholds

than in the PPR to cause runoff events that inundate or flood the

playa lakes (Thompson et al., 1994). Second, wetlands are located in a

heavily cultivated region using groundwater as main irrigation source.

Groundwater pumping contributes to draining the groundwater-

connected playa lakes between rainfall events. While the hydrological

model results shows a good agreement with remote sensing calibra-

tion data during intense rainfall events (Figure 2), discrepancies are

generally larger during smaller events where the model overestimates

water cover. In addition to groundwater pumping, further analysis

using 3-m resolution daily imagery from Planet Labs has shown that

this discrepancy could also be caused by challenges in detecting small

and shallow bodies of water formed by turbid agricultural runoff on

Landsat 7 satellite imagery (see Figure S3).

4.2 | Sampling versus detection error

Monitored wetlands are equipped with water stage measuring gauges

and (assuming their bathymetry is well characterized) are not subject

to the type of measurement errors obtained for remotely sensed

water cover estimates. However, using in-situ observations from indi-

vidual wetlands to calibrate landscape-scale models requires that the

water extent fluctuations observed for the sampled wetlands are rep-

resentative of the wetlandscape dynamics captured by the model. The

extent to which the sampling error of in situ observations compares

to the measurement error of remote sensing observations determines

which data source is preferable to calibrate hydrological models.

We investigated this question in the PPR wetlandscape, where

stage observations were available for a sample of 16 instrumented

6 of 13 MULLEN ET AL.
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wetlands (orange in Figure 3). We used these in-situ data to calibrate

the model and the resulting predicted time distribution of daily water

extent within the 20 � 20 km domain are displayed in dashed orange

in Figure 3, where the corresponding observed distribution obtained

from remote sensing is displayed as a pink histogram. We replicated

the exercise this time using water extent estimates of the 16 wetlands

observed from remote sensing to calibrate the model, with predicted

distribution displayed in solid orange on Figure 3.

Comparing the two modelled distributions to each other informs

on the effect of detection errors on the calibrated model output: dis-

crepancies between the water extent of the 16 calibration wetlands

obtained using stage measurement and remote sensing observations

have a visible effect on model prediction. However, this effect is

dwarfed by the effect of sampling errors. The model calibrated with

observations (whether remotely sensed or in situ) from the arbitrary

wetlands underestimate both the variance and the average water

cover of the wetlandscape. To determine the extent to which this dis-

crepancy is associated with this specific sample of instrumented wet-

land, we replicated the analysis using remote sensing water cover

estimates from three randomly located 5 � 5 km subdomains (black

on Figure 3). Using these datasets to calibrate the model introduced

much larger negative biases in the predicted distributions of daily

F IGURE 2 Calibration results
for hydrological model of the
wetlandscape in the Prairie
Pothole Region (PPR, top) and
the Texas Playa Lakes (TPL,
bottom). (a) Daily precipitation
time series used as modelling
input. (b) Time series of daily
water extents within the

considered 20 � 20 km domains.
Predictions from the calibrated
model are represented in blue
and calibration data obtained
from Landsat 7 are represented
in red. (c) Histogram and
empirical complementary
Cumulative Distribution Function
of predicted (blue) and observed
(red) daily domain-wide water
extents
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water extents in the 20 � 20 km domain (dotted, dashed and solid

black lines on Figure 3).

In contrast to PPR, the TPL wetlandscape is characterized by

lower spatial heterogeneity, with all the playa lakes having comparable

shapes and sizes. Under these conditions a model calibrated using

remotely sensed water extents from a 5 � 5 km subdomain (black)

performs similarly to a model calibrated using the remotely sensed

data from the full 20 � 20 km domain (blue). Given the detection

challenges discussed in the previous section, this suggests that a

model calibrated using a sample of approximately 20 instrumented

playa lakes (the approximate number of wetland in a 5 � 5 km subdo-

main) might perform equivalently—or even outperform—a model cali-

brated using landscape-scale remote sensing data. Unfortunately, in

situ data are not available in the region to rigorously test this

hypothesis.

4.3 | Spatial resolution versus temporal coverage

Remote sensing data implies an inherent tradeoff between the spatial

resolution and spatial coverage. Satellites providing very high

(�meter) resolution images were, for the most part, launched within

the last decade, which limits the temporal coverage of the obtained

water cover estimates. Very high resolution imagery is also typically

costly to acquire, which limits the frequency of water cover informa-

tion that can be obtained. For example, the NAIP imagery used in Wu

et al. (2019) to create 1-m resolution water cover for the PPR is only

acquired once per year. In contrast, publicly available satellite imagery

from the Landsat 7 mission provides bi-weekly global images of the

earth surface since 1998 at no cost to the user. However, their spatial

resolution of 30 m is much coarser. Navigating this tradeoff is particu-

larly important for ecological processes in wetlandscapes, where both

the spatial and the temporal dynamics of water cover play a

critical role.

In a spatially heterogeneous landscape like the PPR, 30-m resolu-

tion imagery might miss specific features of the landscape with dis-

proportionate ecological importance. In Figure 4, we compare a water

cover mask obtained from 30-m resolution Landsat imagery (red) to a

1-m resolution water cover mask estimated by Wu et al. (2019) for

the same month (August 2017) using very high resolution NAIP imag-

ery. The two water cover masks are compared based on the size dis-

tribution of contiguous water patches (Figure 4b) and the distribution

F IGURE 3 (a) Representative water extent obtained from the National Wetland Inventory for the considered 20 � 20 km domain in the
Prairie Pothole Region. The three considered 5 � 5 km subdomains are outlined in black (solid, dashed, and dotted). The 16 instrumented
wetlands located in the Cottonwood Lake Study Area, CLSA, are represented in orange in the detail. (b) Histograms and kernel density estimates
(KDE, bandwidth = 2 km2) of the distribution of daily total water cover in the 20 � 20 km domain. The pink histogram is constructed using
remote sensing observations and the different KDE curves are constructed using water extent predictions from models calibrated using (i) in-situ
observations from the 16 wetlands (dashed orange), (ii) remote sensing observations from the 16 wetlands (plain orange), (iii) remote sensing
observations from different 5 � 5 km subdomains (black) and remote sensing observations from the full 20 � 20 km domain (blue). Blue kernel
density estimate was constructed using model predictions. (c and d) Equivalent results for the Texas playa Lake wetlandscape (KDE,
bandwidth = 1 km2)
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of the distances between the nearest patches (Figure 4c). These two

distributions respectively represent the suitability and connectivity of

the habitat for aquatic species and drive the metapopulation capacity

of the wetlandscape, as described in Equation (2). As seen in the

details displayed on Figure 4b, the 30-m resolution mask underesti-

mates the fragmentation of the wetlandscape by missing small obsta-

cles like dikes and causeways. It also misses small wetlands that might

serve as stepping stones for migrating species and increase habitat

connectivity. These misclassifications are small in terms relative area

error, but they have a strong impact on the distributions of water

patch areas, (most visibly) inter-patch distances and habitat patch

occupancy. Overall, classification errors associated with a 30-m reso-

lution water mask cause the metapopulation capacity to be overesti-

mated by approximately 135% for that particular image (August

2017), compared to the corresponding 1-m resolution water mask.

On the other hand, temporal dynamics in the PPR are substantial

with seasonal variations of total water cover of about 30% of their

long term average (Figure 2b). These fluctuation also affect the distri-

bution of water patches within the landscape, as large wetlands frag-

ment into multiple components when draining (Figure S3) (Bertassello

et al., 2020). This causes variations in habitat suitability and

connectivity that are reflected in substantial fluctuations of metapo-

pulation capacity (see Equation (2)). Figure 5 displays metapopulation

capacity values computed for water extent estimates obtained from

all cloud-free Landsat 7 images obtained for the PPR wetlandscape

between 2000 and 2021. Metapopulation capacities were computed

for species with dispersal distanced D of 200m (green) and 1000m

(red), respectively. Equivalent metapopulation capacities computed

using the 1-m resolution water masks from Wu et al. (2019) are dis-

played based on the acquisition date of the NAIP imagery.

Depending on the year and species dispersal distance, we found

that the error on the metapopulation capacity obtained from Landsat

images ranges from 15% to 22%, compared to the ‘true’ metapopula-

tion value obtained from the 1-m resolution water mask obtained for

the same date. However, this spatial resolution error is dwarfed by

the annual (Figure 5a) and seasonal (Figure 5b) variability of metapo-

pulation capacities that arises from strong temporal variations in

wetlandscape water cover. Extreme water cover conditions (dashed

black line on Figure 5a) can cause the metapopulation capacity to

nearly double, compared to a rolling central tendency obtained from

non-parametric LOESS regression (solid coloured lines on Figure 5a).

In fact, most metapopulation capacity values obtained from 1-m

F IGURE 4 (a) Detail of the Prairie Pothole Region wetlandscape in August 2017 showing the water cover estimated from 30-m resolution
Landsat 7 imagery (red) and the 1-m resolution water cover obtained from Wu et al. (2019). The 30-m resolution mask misses several small
wetlands and fails to fragment the large wetland along the E-W road on the bottom left corner of the detail. (b) Empirical Complementary
Cumulative Distribution Function of wetland size distribution in August 2017 for the approximately 20 � 10 km footprint of the Pairie Pothole
Region analysed in Wu et al. (2019). Results obtained from the 30-m resolution water mask created from Landsat 7 and the 1-m resolution water
mask obtained from Wu et al. (2019) are given in red and green, respectively. (c) Empirical Complementary Cumulative Distribution Function
equivalent to panel (b), but representing the nearest distance between neighbouring wetlands, rather than wetland sizes
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resolution water masks are within the 95% confidence interval of

LOESS-regressed results obtained from the 30-m resolution data.

Overall this suggests that, for the PPR wetlandscape, the benefits

arising from Landsat 7's ability to capture temporal variations of meta-

population capacity might exceed the errors arising from its inability

to capture spatial details of the landscape. Changes in size, shape and

connection of habitat patches induced by changes in water level may

generate ecological opportunities due to transient windows for con-

nectivity (Bertassello et al., 2021; Rinaldo & Rodriguez-Iturbe, 2022).

Therefore, being able to characterize these transient wetlandscape

conditions is of key importance for many ecological investigations.

5 | CONCLUSIONS

This paper evaluates the potential for using landscape-scale remote

sensing water cover estimates to calibrate hydrological models of

wetlandscapes. We showed that the current prevailing procedure of

using in-situ data from a small and arbitrary subset of instrumented

wetlands for calibration introduces a substantial error in model predic-

tions of water extents. In the Pairie Pothole Region, this sampling

error substantially exceeds the error associated with detecting water

on remote sensing imagery. This suggests that remote sensing stands

out as a promising calibration data source for landscape-scale models

in spatially heterogeneous wetlandscapes. Our results also suggests

that wetlanscape-scale dynamics can be adequately captured by a

small number of monitored wetlands in homogeneous landscapes like

the Texas Playa Lakes, where water was also incidentally more chal-

lenging to detect on remote sensing imagery.

The large variability in wetland areas across the PPR makes it

more challenging to fully capture the inundation dynamics from smal-

ler domain sizes. This is particularly true when the domain is charac-

terized by an abundant fraction of small wetlands that might be not

detected because they are often optically complex, obscured by vege-

tation, or below the resolvable size of satellite sensors (DeVries

et al., 2017). These small water bodies are also of key importance for

several landscape functions since they can facilitate the dispersal

among suitable habitat (Semlitsch & Bodie, 1998) or they should not

be overlooked in estimation of greenhouse gas emissions (Hondula

et al., 2021). This suggests that the spatial heterogeneity of the PPR

wetlandscape is such that care is needed in drawing ecological and

biogeochemical conclusions (e.g., species persistence or methane

emission) from limited spatial domains in complex and dynamic

habitats.

In situations where landscape-scale remote sensing observations

are beneficial, we proceeded to evaluate the tradeoff between spatial

resolution and temporal coverage that is inherent to satellite image

products. We found that a long running publicly available dataset

(Landsat 7) was able to capture important ecologically relevant tempo-

ral dynamics of the Prairie Pothole Region that were missed by recent

higher resolution (but lower temporal coverage) products. Nonethe-

less, limitations associated with the spatial resolution of Landsat are

important to keep in mind. This is particularly true in wetlandscape

with an abundant fraction of small wetlands that might be partially

obscured by vegetation, or below the resolvable size of satellite sen-

sors (DeVries et al., 2017). These small waterbodies might play a dis-

proportionate role in the landscape in terms, for example in terms of

facilitating species dispersal (Semlitsch & Bodie, 1998) or as biogeo-

chemical carbon sources (Hondula et al., 2021). In that regard, recent

and forthcoming high-frequency and high-resolution products have a

particularly important role to play for the characterization of changing

wetlandscapes. For instance, data from the NASA-ISRO SAR mission

will provide repeat long-wavelength SAR imagery and thus play an

important role in improving estimates of surface water dynamics; Sur-

face Water and Ocean Topography (SWOT) mission will provide

global scale data on surface water storage change. However, limita-

tions associated with the limited temporal coverage of these products

persists and call for more research into combining them with longer

running products like Landsat. In addition, the ease of use is also a

consideration when selecting remote sensing versus in-situ observa-

tions for model calibrations. While the former's availability is

1·1012

2·1012

3·1012

λ M
A
X

2000 2005 2010 2015 2020

(a)

(b)

F IGURE 5 (a) Time series of metapopulation capacity λmax

obtained from 30-m resolution Landsat-based water extent estimates
(red and green) and from the 1-m resolution water masks derived in
Wu et al. (2019) (blue and purple). Metapopulation capacities were
estimated using dispersal distances of D = 200m and D = 1000m for
purple and green symbols and for red and blue symbols, respectively.
Solid lines represent non-parametric (LOESS) regression estimate with
a bandwidth of 30 days, with grey-shaded areas representing the
corresponding 95% confidence intervals. Blue vertical columns
represent winter months (November–April), where no usable remote
sensing observation were available. (b) Landsat 7 real colour
background with gap-filled water classification (blue) for October
6, 2013, when λmax is approximately double its LOESS regression
estimate. No clouds can be seen on the image
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increasing, sometimes it is not readily used because (1) it is challenging

to process for model use and (2) measurements taken by the imagery

do not directly link to parameterization needed for a model.

Overall, our findings suggest that in-situ and remote sensing

observations (whether of high resolution or long time coverage) have

an important role to play in improving our understanding of wetlands-

cape dynamics and that the spatial heterogeneity of the landscape,

and the temporal variability of its climate drivers, might play an impor-

tant role in determining which wetlandscape will most benefit from

investments into each data source.
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