

1 **Reflections on designing in the wild:** 2 **How Theories of Design Information** 3 **Manifest in Practice**

4
5
6 **Nicole B. Damen**

7 University of Nebraska at Omaha
8 Peter Kiewit Institute 367
9 Omaha, NE 68182
10 ndamen@unomaha.edu
11 ASME Member

12
13 **Christine A. Toh**¹

14 University of Nebraska Omaha
15 Peter Kiewit Institute 284-A
16 Omaha, NE 68182
17 ctoh@unomaha.edu
18 ASME Member

19
20 **ABSTRACT**

21
22
23 *Information acquisition, utilization and communication are integral to the design process, but systematic*
24 *investigation of information behavior is complicated by its variety and the ways in which designers engage*
25 *with information throughout the design process. Our previous work developed a theoretical framework to*
26 *categorize the various types of information used during the design process, known as the Information*
27 *Archetypes Framework. This paper explores how these information dimensions manifest in design practice,*
28 *as reflected on by experienced practicing designers. Deep qualitative analysis of eight interviews with*
29 *practicing designers revealed that the designers intentionally adapt their behavior to match situation*
30 *specific needs, and navigate the tensions between information dimensions through trajectories and loops.*

31
32 ¹ Corresponding Author

33 **INTRODUCTION**

34 From early fundamental theories on how individuals generate creative thought

35 (Wallas, 1926), to more recent explorations of how designers can use information

36 technology to perform large-scale searches of the solution space (Martin, 2012),

37 information has played a crucial role in how we understand the science of modern

38 design. The very act of design itself is said to center around the transformation of

39 information from the environment into actionable knowledge that drives the intent

40 behind design activities (Mistree et al., 1990). The way that designers engage with

41 information during the design process is as varied and dynamic as the process of design

42 itself. Thus, we consider design information as content ranging from requirements, best

43 practices, and designer experiences, to descriptions of technical and social systems

44 (Heisig et al., 2010). All of these types of information are valued for their role in enabling

45 designers to meet goals and consumer needs in their design endeavors (Ogot & Okudan-

46 Kremer, 2004).

47 At the same time, technological advancements have led to an increased ability to

48 develop and capture information from what was once a highly sought-after advantage,

49 to a freely available commodity for innovation (Kalay, 2006). In addition, the

50 complexities of modern design require designers to organize and share information

51 more effectively because of trends towards life-long product support, products-as-

52 services, efficiency improvements, and innovative solutions (Wong et al., 2008). Within

53 these complex engagements, it remains unclear how designers navigate these rich

54 sources of information and how this behavior might relate to the quality of design (Sio

55 et al., 2015; Thekinen & Grogan, 2021; Viswanathan & Linsey, 2012; Youmans, 2011).

56 Further compounding this uncertainty is the fact that design is an increasingly
57 social process due to the participation of many designers and stakeholders in
58 collaborative design that enable designers to share expertise, ideas, resources, and
59 responsibilities to improve design outcomes. Within these collaborative design
60 engagements, designers must efficiently use and share information, coordinate tasks
61 and resources (Chiu, 2002). However, collaborative design often requires a great deal of
62 time and energy on information preparation and sharing, which may take even longer if
63 the information is unstructured (Chiu, 2002). Thus, there is a need to improve
64 understanding of what designers' information needs are in practice (Vijaykumar &
65 Chakrabarti, 2008), specifically around its utilization and sharing practices (Heisig et al.,
66 2010).

67 The realities of design practice have historically received very little attention in
68 the research literature. The complexities of the types of information and activities used
69 in design practice are not easily captured in highly controlled laboratory experiments,
70 leading to the tendency for design research to happen in isolation, without detailed
71 understanding of industrial practices and context (Stempfle & Badke-Schaub, 2002).
72 Tools and methods developed in academic spaces often suffer from lack of adoption by
73 practitioners. This is partly due to a fundamental lack of understanding what industrial
74 demands are, and how these tools and methods will be applied in context (Alelyani et
75 al., 2017; Birkhofer et al., 2005). Thus, academically created tools and methods face
76 significant barriers to adoption by practitioners (Clarkson & Eckert, 2010; Gerrike et al.,
77 2017). For example, a lack of contextual understanding by academics leads to the

78 development of tools and methods that lack integration into the organizational
79 processes that practitioners operate in. Additionally, the presentation of tools and
80 methods is often abstract and rigid, with unclear communication of the value that these
81 formalized tools and methods can provide for the design process. Another major
82 challenge to the transfer of knowledge from research into practice is our lack of
83 consideration of the information needs, capabilities, and working styles of practicing
84 designers (Albers et al., 2014). Thus, before research can prescribe methods to improve
85 design practice, we must first systematically describe the behaviors, information needs,
86 and context of use of these methods in practice.

87 Therefore, the overarching goal of this research is to develop a theoretical
88 framework for adding to the understanding of what and how information is used during
89 the design process. The specific focus of this paper is to draw on designers' experiences
90 working with these information types in practice to further develop this framework. The
91 following sections outline prior work conducted to develop this theoretical framework.

92

93 **1.1 Prior Work On The Information Archetypes Framework Development**

94 The previous section highlighted the importance of understanding designers'
95 interactions with information. Our prior work has developed a foundation for
96 addressing this knowledge gap through the development of a typological framework
97 that captures the various types of information encountered by and used by designers
98 during this process (Damen & Toh, 2020; Lumbard et al., 2018; Yi et al., 2019). The
99 output of our prior work in this space has produced the Information Archetypes

100 Framework, and this current work builds on this framework for classifying information
101 types found during the design process.

102 In sum, the Information Archetypes Framework is a theoretical framework to study
103 information use in design through the lens of building typologies to develop a
104 theoretical understanding of applied phenomena (Doty & Glick, 1994). This approach of
105 using typologies to build theory has been applied in disciplines such as organizational
106 science and social psychology (see (Brandtzæg, 2010; Büchel et al., 2016; O'Raghallaigh
107 et al., 2010)), but is most strongly associated with the creation of taxonomies (a
108 hierarchical typology) to describe the natural order of the animal kingdom (British
109 Museum, 1933). Typologies in this research, similar to typologies of the animal kingdom,
110 serve to provide a theoretical understanding of complex entities and their relationships
111 to one another, but also provide pragmatic guidance to practitioners within that
112 domain. In design, the stakeholders of typologies certainly include design researchers,
113 but also those who practice design (individuals, organizations, funding sources), those
114 who consume the end product of designs (customers, users), and those who teach
115 design (educators, design methodologists) (Dorst & Overveld, 2009). While Dorst and
116 van Overveld's work proposed a typology for describing the *practice* of design (Dorst &
117 Overveld, 2009), in this work, we take a step back and instead advance a typology of the
118 *information* used in design, recognizing that design practice must engage with
119 information prior to acting on goals during the design process. Such a framework of
120 design information can contribute to the understanding of how designers navigate
121 complex design spaces using information and help to develop tangible guidelines for

122 designers and enhance design instruction.
123 This typological framework consists of *dimensions*, which themselves are found in
124 unique combinations “in the wild”, forming what are known as *Archetypes* (Doty &
125 Glick, 1994) (see Figure 1).

126 These dimensions were developed through detailed analysis of the prior literature,
127 reflections from field work with practicing designers, and rigorous qualitative coding
128 procedures outlined in a prior publication (Lumbard et al., 2018). In all, five main
129 dimensions with two corresponding levels each were identified. The details of each
130 dimension are as follows:

131 **Information Source:** This investigates the origin of information with respect to the
132 individual or organization that generated the idea of the design. Novel designs can be
133 developed using external information such as new technology or trends in the market
134 (López-Mesa & Bylund, 2011), but expert designers also rely on internal information
135 such as their own past experiences and their ability to recognize design problem
136 patterns (Akin, 1990).

137 **Abstraction of Information:** This focuses on the details provided by the information and
138 the extent to which it deals with high-level concepts versus discrete real-life events.
139 Designers engage with abstract information to maximize the effectiveness of their
140 solutions (Ball et al., 1997), while concrete information can help in simplifying complex
141 problems (Christensen & Schunn, 2009).

142 **Generality of Information:** This describes the extent to which information can be
143 generalized to other design tasks, projects and areas. In contrast to such cross-cutting

144 features (Li et al., 2002), information can also capture core paradigms that are specific
145 to a particular domain (Osman, 2015).

146 **Effectuation of Information:** This explores the varied thinking styles of designers or
147 design teams when addressing design problems. Decision-makers can generate effective
148 solutions to identified problems by either using existing resources such as their existing
149 knowledge and network (effectuation), or by identifying a specific market need and
150 working towards addressing that need by using and acquiring additional resources
151 (causal) (Sarasvathy, 2001). Prior work stemming from this framework has shown that
152 effectual and causal information play a complex role in influencing creativity in design
153 (Abid et al., 2018).

154 **Representation of Information:** This revolves around the form of communication used
155 to deliver information during the design process. Designers typically share their ideas
156 with other designers through emails with links to examples and short descriptions
157 (Herring et al., 2009). Some researchers have claimed that direct communication in the
158 early stages has an impact on the creativity of the final product (Brown & Paulus, 2002).
159 Others found a negative relationship between chat messages and design outcome
160 performance (Thekinen & Grogan, 2021).

161
162 While this initial Design Information Archetypes Framework can be used to build a
163 theory about how information is used in creative design and to allow researchers to
164 empirically test the impact of specific types of information on design outcomes,
165 empirical validation of this framework is still needed to advance its predictive and

166 explanatory capabilities. One important aspect of studying information utilization during
167 design is designers' own evaluations of relevant information early on during ideation.
168 Self-reflections are an important tool to gain insight into the cognitive processes that
169 designers employ during ideation. However, researchers have long noted discrepancies
170 between people's reported and actual behavior (Olson & Fazio, 2008).

171

172 *1.1 Research Objectives*

173 To further the development of a theoretical framework on information usage during the
174 design process, this paper explores the experiences of practicing designers to provide a
175 more applied context to Information Archetypes Framework. The specific research
176 objectives for this work are:

177 **RQ1: How do individual dimensions of information manifest in design practice?** The
178 information dimensions that make up the Information Archetypes Framework originate
179 from a combination of prior literature and reflections from fieldwork. The purpose of
180 this research objective is to investigate how these individual dimensions of information
181 take form and are used in design practice.

182 **RQ2: How are the information dimensions structured in design practice?** The
183 information dimensions are discrete but not disconnected from each other. This
184 research objective explores how the designers understand the relationship between
185 information dimensions and how the overall structure of the framework takes form in
186 design practice.

187

188 **2 METHOD**

189 To understand how practicing designers engage with different types of information
190 found in our Information Archetypes Framework, eight practicing designers were invited
191 to attend a 3-hour individual design session with the research team. All participants
192 were identified using purposeful sampling through the authors' professional networks.
193 Where probability sampling serves to select a "truly random and statistically
194 representative sample that will permit confident generalization from the sample to a
195 larger population" (Patton, 1990, p. 169), the goal of purposeful sampling is to select
196 information-rich cases for an in-depth study to gain deeper insight into issues of central
197 importance to the research (Patton, 1990). Purposeful sampling has been used in
198 cognitive science (Chase & Simon, 1973; Morais et al., 2013) and engineering (Tomko et
199 al., 2018) to uncover valuable insights on complex phenomena and human experience
200 through a detailed analysis of in-depth protocol studies on behavioral patterns,
201 performance, and reflections. In this study, specific cases (experienced designers) were
202 chosen that intensely manifest the phenomenon of interest (routinely structuring
203 information to facilitate the design process). Specifically, only designers who had
204 obtained at least 3 years of software design experience (through educational training,
205 certification, or job training) *and* currently engage in design activities as their primary
206 function in their full-time jobs were recruited for this study. Consequently, each
207 designer had between 3 to 17 years of experience. Six designers were employed by
208 small to medium software design and development companies in a U.S. midwestern
209 metropolitan area (see Table 1), while two also taught at the university (in a different

210 department) where the research took place. Reflecting the interdisciplinary nature of
211 complex, real-world problems and following the notion of design as a discipline in itself
212 rather than being unique to various domains such as Mechanical Engineering or
213 Industrial Engineering (Cross, 1995; Daly, 2009), the participating designers come from a
214 range of backgrounds varying from art and design to software development and
215 engineering.

216

217 **2.1 Procedure**

218 The data used for this research was obtained from a larger dataset that was generated
219 by a protocol study relating information categorization and idea generation. More
220 details about this study procedure can be found in (Damen & Toh, 2020). In summary,
221 each designer was asked to organize several information sheets that were provided to
222 them and use these to engage with a hypothetical design challenge. The designers'
223 resulting information organizations and rationale were analyzed to understand the
224 cognitive organization strategies used by designers in the early stages of the design
225 process. All participants received the same instructions, design challenge, and
226 information sheets. This paper uses the data that resulted from the semi-structured
227 interview that concluded the study session.

228 During this interview, participants were asked about their design practice and how they
229 typically engage with information to address design problems. Since many of the
230 cognitive processes affiliated with the design process rely on tacit knowledge, we used
231 the theoretical framework described in Section 1.1. to provide designers a structured

232 approach to discuss these abstract concepts. We prompted the designers to critically
233 reflect on how this framework related to their own understanding of the types of
234 information used during their design activities. To do this, the participants were
235 provided with a brief explanation about each information dimension, similar to the
236 description provided in Section 1.1. Next, the participants were asked about their high-
237 level thoughts about the framework. Participants were specifically informed that the
238 framework only represents one perspective of design information, and a work in
239 progress, so their open and honest feedback was welcome. Once the framework and its
240 dimensions were described, the following semi-structured interview guide was used to
241 drive the conversation:

242 1. At first glance, what are your thoughts about the information dimensions?
243 2. To what extent are these dimensions representative of your work process?
244 3. How could the framework be helpful for you?
245 4. How could the framework be expanded upon?
246 On average, each interview lasted around 30 minutes, resulting in a total of 240 minutes
247 (around 4 hours) of recording that was transcribed and analyzed.

248

249 **2.2 Qualitative coding analysis**

250 The eight interviews were transcribed and analyzed for recurring patterns and themes
251 using deductive content analysis. In accordance with the research questions, the
252 material was analyzed for how the designers related their design practice to the
253 individual information dimensions and the framework as a whole, which were

254 developed in previous work (Lumbard et al., 2018). An iterative thematic analysis
255 process was followed in which the participants' descriptions of how each of the
256 information dimensions appeared in their design practice were iteratively extracted
257 from the interview transcripts, and then used to construct emergent patterns across
258 participants. The participants' discussion regarding the structure of the overall
259 framework were captured and analyzed using a similar process. Analysis of the first few
260 interviews revealed several rough themes, which became increasingly more nuanced
261 and refined as additional interview data revealed similar or closely related codes. Once
262 additional interview data no longer revealed new themes that were substantially
263 different from themes that were already uncovered, the data was considered saturated
264 and data collection was halted. The findings of these analyses are presented in the
265 following sections and illustrated through the presentation of the most relevant or
266 concise quotes.

267

268 **3 RESULTS**

269 A short summary of the findings of both research questions can be found in Table 2.
270 Throughout the results section, participant quotes have been provided to increase
271 transparency into the data. The quotes have been shortened and paraphrased where it
272 was possible to do so without changing the speaker's intent. Longer quotes showcase
273 the participants' chains of reasoning while shorter quotes illustrate how our
274 interpretation and themes arose from the data.

275

276 **3.1 RQ1: How do dimensions of information manifest in design practice?**

277 *3.1.1 Source (Internal & External)*

278 The information dimension Source refers to the place that the information originates
279 from. This can be internal when the information comes from within the individual, team,
280 or organization, or external when it is acquired from outside the individual, team, or
281 organization.

282 In literature, external information is often viewed as a source of inspiration (Eckert &
283 Stacey, 2000; Song & Fu, 2019) and as a means of obtaining feedback on the design
284 (Poltrock et al., 2003; Stobbeleir et al., 2011; Vredenburg et al., 2002). The designers in
285 this study discussed the source of information largely in the context of acquiring and
286 verifying information. One designer noted how essential acquiring external information
287 is to the design process since "*design is not something I can do on my own*" (D8). In this
288 sense, deliberately seeking out external information serves to fill in missing gaps in
289 existing knowledge: "*I need a majority of external information to even internally create*
290 *my own information. So it's externally collecting and then internally organizing and*
291 *creating or designing*" (D8).

292 Another way that designers leveraged external information during the design process
293 was to supplement or verify information that has already been obtained and internally
294 curated: "*I don't trust my internal biases unless I'm meeting with an external source. So I*
295 *constantly have to say: "this is where I'm at, right? This is where we're at together,*
296 *right?" So I constantly need either to be researching to support myself or to have people*
297 *that can confirm my intuition*" (D5). One designer remarked that rather than looking at

298 whether the information came from an internal or external source, they would break
299 information into known or unknown. In other words, internal information was viewed as
300 information that was readily available, or were “known quantities”, whereas external
301 information was used to supplement or validate internal information: “*What I’m doing
302 in our process is determining the information that we have right away. If there’s a gap in
303 that information or we need to validate it more than it has been, then we go to known
304 external. That’s where we’re doing some upfront customer interviews or more usability
305 testing. I like to go into that with a very open mind, and then we’re sort of relating that
306 to the known information that we’ve gathered from previous relationships and customer
307 analysis. So it’s almost like I go directly to the known external, determine how to gather
308 the unknown external, and then once we have all the information we need, we move to
309 more ideation stage*” (D1).

310 3.1.2 Abstraction (Abstract & Concrete)

311 The information dimension Abstraction refers to the level of detail in the information.
312 Information is abstract when it contains little detail, is more vague, and deals with
313 concepts. Information is concrete when it is highly detailed, descriptive, and refers to
314 specific events or activities.
315 The designers in this study showed familiarity with the use of abstract information in the
316 design process. While a mix of concrete and abstract information was routinely used in
317 their practice, they reflected that the early stages of the design process relied more on
318 abstract information with concrete information being used in the later concept
319 refinement phases: “*I think that abstract is maybe when it’s starting as a vision and*

320 *concrete is when it's turning into a business*" (D3). Furthermore, participant D3 clearly
321 delineated between the abstract style of design thinking and inquiry early in problem
322 solving, from the more concrete solutions-focused activities in the design process: "*I
323 think I'm more of an abstract thinker up until I have to actually produce, but most of the
324 time what I produce is materialized. But as far as thinking through, I think I have more
325 questions than thoughts and ideas that are necessarily solutions*".
326 This affinity for operating with abstract information in design practice was reinforced by
327 another participant who commented that "*If you're a good designer, then you're always
328 thinking abstractly. I think that's the challenge of being a designer. Just being able to
329 look at concrete problems but then think abstractly as you're gathering more concrete
330 data*" (D1). These comments indicate that designers have a tendency to view much of
331 the design process as being abstract and conceptual. Indeed, prior work has shown how
332 abstract thinking is often used by expert designers to maximize solution finding (Ball et
333 al., 1997), particularly in the early stages of design (MacLellan et al., 2013). However,
334 the same designer acknowledged that it is likely that this may be different between
335 design teams: "*Product development [referring to the product actualization or product
336 refinement phase] is very concrete in a lot of teams where they have design handoffs
337 and they're essentially just meeting the requirements of the design. It's almost
338 mathematical in a way and there is some abstraction going on. But for designers, I feel
339 like half of your head space, it lives in the abstract*" (D1). Thus, while differences exist in
340 how designers engage with abstract information across different teams, abstract
341 information plays a prominent role in the practice of design.

342 3.1.3 *Generality (Cross-Cutting & Domain Specific)*

343 The information dimension Generality refers to how broadly applicable information is to
344 other areas. This can be cross-cutting when the information can be widely generalized
345 across various domains, or domain specific when it applies specifically to one domain of
346 interest.

347 The designers in this study related to the generality of information through their use of
348 cross-cutting sources of inspiration to increase creativity while generating ideas: "*When*
349 *you get too specific it's too narrow - I don't want blinders on. So I find more creative and*
350 *interesting solutions when I'm looking at other places that aren't direct resources*" (D5)
351 and "*I think that having a combination of these is what can really give an idea innovative*
352 *value, because I think the cross cutting is where it brings things into more of a unique*
353 *space at this point*" (D3). Our participants showed an appreciation for adapting ideas
354 across domains to address specific project requirements: "*I don't think enough time is*
355 *spent on cross-cutting. We had to look at a signature capture technology when we were*
356 *building the product that we built for the physicians. We had to look at what's currently*
357 *available for domain capture, what solutions are already in place, what those look like.*
358 *We looked at sign up documentations for businesses and legal tax documentation and*
359 *stuff like that. We brought in a lot of those findings and combined them with the domain*
360 *specific information to come up with the solution that's right for the scenario. This*
361 *solution had to be impersonal, for instance. Most signature capture software does not*
362 *have that requirement, that's the purpose of it [signature capture software]*" (D1). As
363 this participant described, existing solutions in a particular domain do not always fulfil

364 project requirements, necessitating inspiration from other domains.

365 On the other end of the spectrum, designers in our study also valued domain-specificity

366 in an effort to develop a creative identity and focus their contributions to a specific area

367 of design. One designer drew from the notion of the designer as an expert curator of

368 information: *"There's this idea that a designer should do everything and be able to come*

369 *up with any kind of solution, but the people who I see flourish the most are those who*

370 *have a singular voice. There's a lot of variables in there, but if they have become a*

371 *master of one or two styles, they seem to be the most successful because their work is*

372 *really consistent and they become experts. It kind of reminds me of Italian Renaissance*

373 *masters; they might experiment a little bit, but it's small shifts, not large ones. Our*

374 *resources are just so abundant that it's easy to shift, but the people that I see whose*

375 *work only moves a little bit are the people I've seen to be really, really successful"* (D5).

376 Across these two modes of relating to generality, the designers in this study showed a

377 nuanced understanding of what it meant to be creative in their industries. The designers

378 commented on the tension of drawing from interdisciplinary domains to broaden their

379 base of knowledge while also maintaining enough focus to contribute specifically to a

380 domain or to apply their knowledge to a specific application area (Fu et al., 2013).

381 3.1.4 *Effectuation (Effectual & Causal)*

382 The information dimension Effectuation refers to the approach taken when presented

383 with a design problem. This can be effectual when the design is created with the

384 available resources in mind, or causal when it is created with the end goals in mind.

385 The designers in this study understood causal information through the frame of project

386 goals and requirements, while they related to effectual information as the available
387 resources during a design project. Causal information could be used to drive the
388 direction and activities of a design project. One participant showed particular sensitivity
389 to the provenance of the causal information, paying attention to where the project
390 requirements originated from and questioning the relevance of the requirements and
391 the constraints surrounding the project: *“Now that I think about it, this [causal*
392 *information] is really critical. This is the requirements. Even this [referring to an*
393 *information sheet], I want to know what this is based on. On some executive who says*
394 *that they need something, or customers, feedback, data, or a problem within the*
395 *company that can be solved with a solution. Where is this information coming from?*

396 *Causal to me is related to some of the externals that we might be gathering. I think a lot*
397 *of designers blow past this. Like “these are the requirements of the process, but let’s do*
398 *this” and then they’ll start gathering information but they never really go back to check*
399 *if it’s really the problem or the requirement that we need to address”* (D1). Indeed,
400 working with constraints, understanding the problem frame, and exploring the problem
401 space has long since been recognized as a crucial step in the design process (Dorst &
402 Cross, 2001; Harfield, 2007).

403 With regards to effectual information, another participant emphasized the importance
404 of other people’s perspective to enhance the design process, highlighting the potential
405 of effectual information to shape the direction of a design project: *“I don’t trust myself a*
406 *hundred percent to create something without bringing multiple people in and that’s*
407 *something that, especially in the design community, people are very adamant about.*

408 *Like one of my professors. Once you graduate she's like, "no, you graduated. I'm your*
409 *colleague, I'm not your professor". So she really encourages it, and especially with design*
410 *because collaboration is, you know, everyone has such different ideas and such a unique*
411 *way to approach a design problem or design issue. It's almost a disservice to design to*
412 *not bring multiple people in. Because my ideas for creating a design are specific to my*
413 *experiences in life and everyone has completely different experiences, so those diverse*
414 *ideas are really interesting, at least to me, to understand before designing something"*
415 (D8). Prior work has shown that effectual thinking is a hallmark of entrepreneurial
416 thinking (Sarasvathy, 2001), involving the use of project resources (the means) to shape
417 the goals of a project (ends).

418 3.1.5 *Representation (Asynchronous & Synchronous)*

419 The information dimension Representation refers to the way that information is
420 delivered to the recipient. This can be asynchronous when the information is not
421 delivered in person or in real-time, or synchronous when it is delivered in person or in
422 real time.

423 Given the prevalence of digital tools and the importance of communication in design
424 projects (Stempfle & Badke-Schaub, 2002), it is not surprising that researchers have
425 looked into the effectiveness of computer mediated communication (Chiu, 2002; Kvan
426 et al., 1998; Thekkinen & Grogan, 2021). For the designers in this study, the
427 representation of information was mainly interpreted as the communications between
428 designers and clients, and between designers within an organization. Several themes
429 emerged from the discussion, falling into three broad categories: 1) the ephemeral

430 nature of synchronous communication, 2) the functional benefit of synchronous
431 communication for quickly resolving issues or conflicts, and 3) the role of synchronous
432 communication for refining ideas and changing their own thinking. Generally, the
433 designers expressed the sentiment that synchronous and asynchronous types of
434 information had their own applications and were each better suited for different
435 purposes. For example, asynchronous information was more suited for confirming
436 decisions and record keeping, while synchronous information was more effective for
437 conveying complex information: "*Representation of information, that's important to*
438 *know because you need to know the limits of the information. For example, with emails*
439 *you have a written record, which is helpful if you want to have a written record of*
440 *someone approving either an estimate or the budget they provided. Emails are really*
441 *poor in trying to get some more information. As in, it takes a lot of time to type*
442 *something up. It's easier to get someone on the phone and ask what time does this*
443 *package need to arrive at your destination?*" (D7). Additionally, designer D8 indicated
444 that although design may be more skewed towards asynchronous information due to its
445 convenience, the information that was conveyed synchronously was considered highly
446 valuable information: "*For design, a lot of the time things tend to be asynchronous just*
447 *because graphic designers are attracted to the idea of working remotely and working*
448 *when you want to, how you want to, where you want to. So that convenience really*
449 *facilitates more of an asynchronous representation of information just because it's*
450 *convenient and you're not limited to reading information right now but you can come*
451 *back later. So while the majority is asynchronous, there is also, that's why I meet with*

452 *clients in person at the beginning, there is so much more, I think things get straighter*
453 *into the point. There's more, I don't know if honesty is the right word, but people tend to*
454 *give more real information. If you have however long to create a communication to*
455 *somebody, you can really think it through. Whereas if you're forced to just give an*
456 *answer right now, it's probably the most honest answer you're going to give. So I think*
457 *sending emails and information that's not time sensitive is 95% of what designers deal*
458 *with on a daily basis, but the 5% of communicating in person is extremely valuable. It*
459 *expands your understanding quicker. And it's not just words on a page, it's in the*
460 *moment and you have to focus on it. I think it's much more valuable."*

461

462 **3.2 RQ2: How are the information dimensions structured in design practice?**

463 Our second research question sought to go beyond the ways that individual information
464 dimensions appear in design practice by exploring the relationships between and
465 surrounding these dimensions. To some extent, the presentation of the Information
466 Archetypes Framework suggests a discrete distinction between information dimensions
467 and a binary difference between the two levels that further specify each information
468 dimension. Although they can be treated as such, and for data analysis purposes indeed
469 have been, these boundaries are much less distinct in practice: "*I think that having a*
470 *combination of these [cross-cutting and domain-specific] is what can really give an idea*
471 *innovative value, because cross cutting is where it brings things into more of a unique*
472 *space at this point*" (D1). The same designer drew a comparison using both causal and
473 effectual information in the design process: "*When you're going through the design*

474 *process, evaluating your problem's source is kind of effectual, and then your problem is*
475 *causal. So I think both of those pieces of information are necessary to make a good*
476 *judgment". In other words, the two different levels for each information dimension may*
477 *not be mutually exclusive, and certain types of information may indeed contain*
478 *multiplicities in each dimension such that a superposition of characteristics emerge in a*
479 *single piece of information.*

480 In some cases, the designers observed a directionality in the relationship between
481 information dimensions and their levels. Regarding Abstraction, several designers noted
482 that design activities move from the abstract conceptual design activities in the earlier
483 stages of design, to more concrete forms in the later design stages of the process. For
484 example, designer D5 remarked that "*when I think of the design process, at least what*
485 *I've worked on, it goes from abstract to concrete in that order. Because everything*
486 *creatively is extremely conceptual at early stages of design, and concrete isn't until some*
487 *of the last couple steps or the last few stages of it*". Notably, this movement from
488 abstract to concrete in the design process can manifest as a cycle in which one moves
489 from abstract to concrete to abstract, etc.: "*I think that you're inevitably going to have a*
490 *lot of abstract and concrete. I think that our clients usually start here [abstract] and we*
491 *try and work them here [concrete]. Just because I think that abstract is maybe when it's*
492 *starting as a vision and concrete is when it's turning into a business. I think that it*
493 *happens consistently throughout, it's like a cyclical process. Because even at the start of*
494 *a new design sprint you need to start with a vision and then get it to a concrete space.*

495 *And that can go for information as well as the development process in general [referring*

496 *to the overall design process]" (D3). This iterative structure of the design process has*
497 *long been acknowledged by both formal design methodologies as well as informal*
498 *observations of designers in practice (Wynn & Eckert, 2017). Perspectives on iteration in*
499 *design describe how the discovery of new information influences the direction of*
500 *project outcomes, which in turn modifies the search space that is considered relevant to*
501 *the project, and so on until a final outcome is reached (Chiu, 2002).*
502 *This movement from one level of a dimension to another can also take place at a*
503 *deeper, more personal level for the designer, as exemplified by one designers' reflection*
504 *on inspiration gathering. Designer D5 described a pattern of appropriating external*
505 *information to serve as personal and unique sources of internal inspiration: "There was*
506 *a typographic designer who was really, really talented and he said that he creates his*
507 *own galleries using this metadata off of his iPhone images from his everyday life. So if he*
508 *sees a cool bowling sign or "this sidewalk is kind of beautiful over here" then he just puts*
509 *in the metadata something like "texture" or "old signage." So he's doing all this pattern*
510 *categorizing to give himself things that he can pull up and bridge just by putting in the*
511 *metadata and getting all of the urban textures, or something like that. So he's seeing*
512 *how he views the world. It's like he's categorizing his references. He said "anybody can*
513 *pull up Google and get the exact same results I do, or anybody is going to go to Pinterest*
514 *to get the same first two pages, or any resource. So the solutions are going to be so*
515 *similar unless you deep dive which just takes so much more time".*
516 *In this example, while design inspiration was obtained externally, the process of*
517 *categorizing inspiration and placing an interpretive lens on the stimuli transformed the*

518 external information to highly personal internal information. As participant D5
519 explained: "...*by him making his own resources he's constantly tapping back into his own*
520 *creativity and so no one has his solutions. So he's drawing very direct and very real*
521 *creative stuff from his life, and his solutions are unique to him, and nobody else in his*
522 *work is going to be like him*". This quote highlights the dynamic nature of information
523 flow in design and demonstrates the utility of movement from one end of an
524 information dimension spectrum to another.
525 While information plays an important role in the design process, other factors such as
526 the designer's skills and expertise may affect how the information is interpreted and
527 manipulated. This may apply to the Information Archetypes Framework as well, where
528 individual differences between designers may affect how they engage with the
529 information dimensions in the design practice. In our study, designer D6 observed that
530 level of expertise plays a big role in a designers' ability to comfortably move between
531 and utilize different types of information during the design process: "*Designers know*
532 *the principles of design and they know the elements of design. So very foundational*
533 *things, like shape, color, size, texture, movement. If you know those things then you have*
534 *the playground to apply those things, but for students, they're still learning those skills,*
535 *so they have to learn at the same that they're playing and so of course their creative*
536 *output is not going to be as high as someone who's super comfortable with "I can do this*
537 *with a line, I can do this with a shape, I can create this this kind of visual contrast to*
538 *create this visual interest", and so on. You just have more freedom and play so you*
539 *generate more unique solutions*".

540 Individual preferences or tendencies may also influence designers' behaviors as they
541 engage with different information dimensions. Awareness of which type of information
542 is being used frequently in their practice can reveal information deficiencies that may
543 occur during this process. For example, designer D5 displayed a level of self-awareness
544 for certain thinking patterns that drives their information seeking behavior: "*There are*
545 *different thinking patterns that we've evolved as professionals that work for us. I already*
546 *know that I love talking about abstract concepts, but I need concrete. I love getting*
547 *concrete answers because I live in the abstract; I'm always trying to assess this, so I like*
548 *to hear direct things from other people, and tell me if I'm interpreting it wrong*". In this
549 way, the information dimensions also act as a kind of "compass" that designers use to
550 calibrate their design efforts and ensure they are meeting design goals.

551

552 **4 CONTRIBUTIONS TO DESIGN RESEARCH**

553 The main goal of this study was to investigate how information dimensions manifest in
554 design practice, as reflected on by experienced designers. The interview data was
555 qualitatively analyzed, and the resulting themes were presented using participant
556 quotes and descriptions where possible. The main findings are that:

557 • Designers display an awareness and understanding of their own thought and
558 design process, and intentionally adapt their information usage according to their
559 information needs, which varies throughout the design process.

560 • Designers recognize the inherent tension that exists between levels of
561 dimensions, and deliberately and fluidly move between dimension levels through

562 1) trajectories and 2) loops.

563 The first contribution of our work brings the cognitive strategies used by designers

564 during their practice into focus. The designers' deliberate adoption of different

565 forms of information throughout the design process highlights that the Information

566 Archetypes Framework should not be taken as a prescriptive framework that

567 decrees a value judgment on information dimensions. Rather, it emphasizes how

568 each information dimension serves a different purpose at different points in the

569 design process. For example, in the generality information dimension, substantial

570 work has explored the cross-cutting level as a means of gaining inspiration (Fu et al.,

571 2013; Kaufman & Baer, 2005). On the other hand, the designers in this study

572 illustrated how a specialists' accumulation of domain-specific information can create

573 unique value through deep expertise, a notion that has received less attention in

574 design literature.

575 Throughout our study, our participants showed a nuanced understanding of the type

576 and purpose of different forms of information during design. While these reflections

577 can appear to be tacit, they mirror closely the "reflective practice" cognitive

578 processes discussed by Schon (1987), where expert designers demonstrate a

579 "knowing in practice" that guides their judgments and behaviors in highly uncertain

580 situations, as is common in design practice. Indeed, metacognition, defined as a

581 continual monitoring and control of cognition in the service of using effective

582 cognitive strategies, has been acknowledged as an important indicator of expertise

583 (Ackerman & Thompson, 2017), and plays an important role in a highly unstructured

584 and challenging environment such as design practice. Our work provides empirical
585 evidence of metacognitive strategies leveraged by designers in practice, and can
586 serve as a foundation for building tools and methods that support these
587 metacognitive strategies.

588 The second major contribution of this study is a conceptual understanding that
589 tensions exist between levels of an information dimension, and that designers move
590 between different forms of information during the design process. First, setting up
591 the dimension levels as two opposite ends on a spectrum creates an inherent
592 tension in each dimension that the designers treated as a natural part of the design
593 process. The following sections illustrate how these tensions manifest in the
594 designers' own work practice:

595 **Information Source:** The designers in our study circumvented the tension between
596 information that is already available (internal) versus acquiring additional
597 information (external) by approaching external information as a way to supplement
598 and verify already existing internal information. This finding provides nuance to the
599 generally accepted notion that designers are blank slates seeking inspiration from
600 external sources early in the design process (López-Mesa & Bylund, 2011). Instead,
601 designers in our study described a rich and complex network of internal inspiration
602 sources, sophisticated methods for curating their inspiration, and a critical approach
603 to modifying and updating their internal network with relevant external information.

604 **Abstraction of Information:** The designers in our study navigated the tension
605 between utilizing broader concepts (abstract) versus specific details (concrete) by

606 counterbalancing them throughout the design process, such as by advocating for
607 concretization of abstract ideas and keeping the abstract in mind when collecting
608 concrete information like user data. This finding extends previous literature by
609 showing how the complementary relationship between abstract information (used
610 to maximize the effectiveness of solutions (Ball et al., 1997)) and concrete
611 information (used to reduce complexity (Christensen & Schunn, 2009)) can be
612 tapped into continuously and concurrently, rather than across design phases or
613 activities.

614 **Generality of Information:** The designers in our study indicated that the desire to
615 draw from different disciplines (cross-cutting) is opposed by the desire to become an
616 expert in their specialization (domain specific). One designer emphasized the
617 importance of seeking input from other designers while another highlighted the role
618 of curating expertise as a means to providing unique value. The designers diverging
619 experiences are in line with previous literature which similarly argues that value can
620 come from deep, domain specific information (Osman, 2015) as well as from
621 conceptually distant information (Fu et al., 2013).

622 **Effectuation of Information:** The designers in our study moderated the tension
623 between leveraging existing resources (effectuation) versus focusing on the end-goal
624 (causal) by interpreting existing resources as the network of people that they could
625 tap into for additional expertise and different view-points to complement their own
626 as they sought to fulfil the causal project requirements and goals. This finding is
627 somewhat in line with previous work in the sense that people are considered as

628 resources that can be leveraged (effectual). However, the designers did not view
629 effectuation as an independent thinking style, but rather as a means to achieving
630 end-goals (causal) (Sarasvathy, 2001).

631 **Representation of Information:** The designers in our study indicated that the
632 tension between the desire to resolve conflict and quick passing of ideas
633 (synchronous) versus the need to record information (asynchronous) was inherent
634 to the nature of their work. The designers experiences regarding which channels
635 were used to communicate what kind of information was very much in line with
636 previous work, with the designers echoing previous literature by affirming that
637 although the majority of design work is done through asynchronous emails (Herring
638 et al., 2009), synchronous face-to-face communication is especially valuable in the
639 early stages of the design process (Brown & Paulus, 2002).

640

641 **4.1 Traversing Information Dimensions**

642 In considering the inherent tension that exists in these information dimensions,
643 designers described several ways that they moved within each dimension during
644 their design practice, as illustrated in Figure 2. Consider a hypothetical situation: A
645 client comes to a designer to develop a software product. *Path A* illustrates how the
646 designer loops through various modes of communication; The client will most likely
647 have reached out to the designer using asynchronous email, after which the
648 designer may set up a synchronous meeting in person. As the project continues, the
649 designer may use emails to update the client with progress (asynchronous), or call

650 them for additional clarification or questions (synchronous). Throughout the
651 process, the designer makes use of asynchronous information more frequently due
652 to its speed and convenience, but these asynchronous communication methods are
653 punctuated by synchronous meetings with the client to delve deeper into issues that
654 necessitate a face-to-face meeting. *Path B* illustrates how a designer may bring in
655 external information to verify existing internal information, for example by
656 conducting user studies and checking in with the client. The designer relies on
657 external information earlier in the design process, and then turns inward towards
658 the later stages of the design process to synthesize findings, reflect on their
659 knowledge, and generate innovative solutions to the design problem. Lastly, *Path C*
660 illustrates the overall directionality of the design process in which a client's abstract
661 ideas become a concrete solution. However this process is not linear, as the designer
662 must keep these abstract goals in mind as they evaluate concrete information and
663 make concrete design decisions. Ultimately, the generated solution is a concrete
664 manifestation of abstract concepts that the designer has kept in mind during the
665 design process, such as design principles and heuristics, desired messaging or
666 branding around the solution, and even design philosophies or approaches that they
667 are trying to advance (e.g., sustainable design, ethical design).
668 In the illustrative examples provided in Figure 2, designers described a general
669 movement over the course the design process towards a specific end of the
670 information dimension (e.g., moving from abstract to concrete in *Path A*). We call
671 these general movements over time *Trajectories* in the design process. In addition,

672 designers show a tendency to move back and forth between different levels of an
673 information dimension throughout the design process, either through periodic
674 cycles (e.g., asynchronous punctuated with synchronous in *Path B*) or through
675 tightening iterations (e.g., increasing reliance on internal information towards the
676 end in *Path C*). We call these iterative movements *Loops*.

677

678 **5 LIMITATIONS & FUTURE WORK**

679 The information dimensions that make up the Information Archetypes Framework were
680 developed through a combination of literature and field work (Lumbard et al., 2018). By
681 focusing on the ways in which information can be present in the design process and how
682 it varies, the framework is primarily descriptive in nature. This study contributes to the
683 Information Archetypes Framework by exploring how and when designers might use the
684 information dimensions. Although it has provided some insight into this matter, several
685 limitations must be noted. Firstly, although the designers who participated in this study
686 were experienced designers, future work should look into validating their responses
687 with a larger number of participants to investigate the generalizability of their claims.
688 For example, even though all eight designers provided valuable input for the results, not
689 all designers were equally represented in the quotes provided in this paper. To some
690 extent this can be attributed to the appropriateness of the quotes with the research
691 question, as well as differences in how eloquently people verbalized their thoughts and
692 how much people have reflected about their practice. Additionally, some dimensions
693 may be more relevant, less complex to understand, or more consciously accessible to

694 designers during an interview study.

695 Secondly, the designers in this study operate in different fields that could be viewed as

696 more technical (software design) and more visual (graphic design) areas. While this

697 study did not specifically sample from mechanical engineers, this broader definition of

698 design more accurately reflects the interdisciplinary realities of complex, real-world

699 problems that engineers in practice face (Roy & Roy, 2021). The growing need for

700 engineers to work beyond disciplinary boundaries has become integrated in engineering

701 education, as evidenced by the courses and learning outcomes that are prioritized in

702 major engineering institutions (Harrison et al., 2007; Lam et al., 2014) and the inclusion

703 of multidisciplinary skills as a necessary accreditation criterion for the ABET Engineering

704 Accreditation Commission (ABET, 2021). While the designers did provide responses that

705 spoke to the specifics of their respective fields (such as the examples they provided),

706 overall, there was substantial overlap in the participants' experiences as designers,

707 especially in the general approaches and processes that they employ. For example, the

708 inclusion of user-experience designers was particularly helpful for studying how

709 information is organized and structured around a wide variety of design projects due to

710 their focus on the holistic aspects of a users' experience (Hassenzahl, 2006), which was

711 used in this study to represent the range of considerations that may influence design

712 decision making in disciplines such as Mechanical Engineering design. Still, it is possible

713 that a more narrowly defined sample of designers may reveal specific insights,

714 constraints and considerations that may be unique to the engineering discipline. Thus,

715 further research exploring the practical context of mechanical engineering projects is

716 necessary.

717 Thirdly, the interview format enabled the designers to select experiences that they
718 deemed most relevant and generalize across multiple experiences. While interviews
719 provide insight into the participants' thoughts and feelings, they are less suitable for
720 determining what participants would actually do in a situation. The benefits of self-
721 reflections are often disputed with reliability concerns (Bennett-Levy, 2003), so future
722 work that observes in-situ could provide insight into how designers actually engage with
723 information throughout the design process versus how they think they do. Lastly,
724 although this work does not intend to make claims about when which information
725 dimension is more useful, relevant or important, such prescriptive statements could be
726 useful guidelines for ensuring that information is not unintentionally overlooked or
727 disproportionately favored over other information.

728

729 **ACKNOWLEDGMENT**

730 We would like to thank our research group, the BRIDGE lab
731 (<https://www.unomaha.edu/college-of-information-science-and-technology/bridge>),
732 and our participants for their help in this project.

733

734 **FUNDING**

735 This material is based upon work supported by the National Science Foundation under
736 Grant No. 1755864.

737

738 **REFERENCES**

739

740 ABET. (2021). *Criteria for Accrediting Engineering Programs, 2019 – 2020 | ABET*.
741 <https://www.abet.org/accreditation/accreditation-criteria/criteria-for-accrediting->
742 engineering-programs-2019-2020/

743 Abid, A., Shi, W., & Toh, C. A. (2018). The Ends or the Means? Understanding How
744 Students Use Causal and Effectual Information During Design Activities.
745 *International Design Engineering Technical Conferences and Computers and*
746 *Information in Engineering Conference, Volume 7: 30th International Conference*
747 *on Design Theory and Methodology*, V007T06A010.
748 <https://doi.org/10.1115/DETC2018-86065>

749 Ackerman, R., & Thompson, V. A. (2017). Meta-Reasoning: Monitoring and Control of
750 Thinking and Reasoning. *Trends in Cognitive Sciences*, 21(8), 607–617.
751 <https://doi.org/10.1016/j.tics.2017.05.004>

752 Akin, Ö. (1990). Necessary conditions for design expertise and creativity. *Design Studies*,
753 11(2), 107–113. [https://doi.org/10.1016/0142-694X\(90\)90025-8](https://doi.org/10.1016/0142-694X(90)90025-8)

754 Albers, A., Reiss, N., Bursac, N., Urbanec, J., & Ludcke, R. (2014). Situation-
755 Appropriate Method Selection in Product Development Process – Empirical
756 Study of Method Application. *DS 81: Proceedings of NordDesign 2014, Espoo,*
757 *Finland 27-29th August 2014*, 550–559.

758 Alelyani, T., Yang, Y., & Grogan, P. T. (2017, November 3). *Understanding Designers*
759 *Behavior in Parameter Design Activities*. ASME 2017 International Design
760 Engineering Technical Conferences and Computers and Information in
761 Engineering Conference. <https://doi.org/10.1115/DETC2017-68335>

762 Ball, L. J., Evans, J. St. B. T., Dennis, I., & Ormerod, T. C. (1997). Problem-solving
763 strategies and expertise in engineering design. *Thinking & Reasoning*, 3(4), 247–
764 270. <https://doi.org/10.1080/135467897394284>

765 Bennett-Levy, J. (2003). Reflection: A blind spot in psychology. *Clinical Psychology*,
766 27(7), 16–19.

767 Birkhofer, H., Jänsch, J., & Kloberdanz, H. (2005). An extensive and detailed view of the
768 application of design methods and methodology in industry. *DS 35: Proceedings*
769 *ICED 05, the 15th International Conference on Engineering Design*, 276–277.

770 Brandtzæg, P. B. (2010). Towards a unified Media-User Typology (MUT): A meta-
771 analysis and review of the research literature on media-user typologies.
772 *Computers in Human Behavior*, 26(5), 940–956.
773 <https://doi.org/10.1016/j.chb.2010.02.008>

774 British Museum, U. L. (1933). *A catalogue of the Works of Linnaeus (and publications*
775 *more immediately relating thereto) preserved in the Libraries of the British*
776 *Museum (Bloomsbury) and the British Museum (Natural History) (South*
777 *Kensington)*. (Vol. 132). London : British Museum (Natural History).
778 <https://www.cabdirect.org/cabdirect/abstract/19340700326>

779 Brown, V. R., & Paulus, P. B. (2002). Making group brainstorming more effective:
780 Recommendations from an associative memory perspective. *Current Directions*
781 *in Psychological Science*, 11, 208–212.

782 Büchel, F., Humprecht, E., Castro-Herrero, L., Engesser, S., & Brüggemann, M. (2016).
783 Building empirical typologies with QCA: Toward a classification of media
784 systems. *The International Journal of Press/Politics*, 21, 209–232.

785 Chase, W. G., & Simon, H. A. (1973). The mind's eye in chess. *Proceedings of the*
786 *Eighth Annual Carnegie Symposium on Cognition*, 215–281.
787 <https://doi.org/10.1016/B978-0-12-170150-5.50011-1>

788 Chiu, M.-L. (2002). An organizational view of design communication in design
789 collaboration. *Design Studies*, 23(2), 187–210. <https://doi.org/10.1016/S0142->
790 [694X\(01\)00019-9](https://doi.org/10.1016/S0142-694X(01)00019-9)

791 Christensen, B. T., & Schunn, C. D. (2009). The role and impact of mental simulation in
792 design. *Applied Cognitive Psychology*, 23(3), 327–344.
793 <https://doi.org/10.1002/acp.1464>

794 Clarkson, J., & Eckert, C. (Eds.). (2010). *Design Process Improvement: A review of*
795 *current practice*. Springer London.

796 Cross, N. (1995). Discovering design ability. In R. Buchanan & V. Margolin (Eds.),
797 *Discovering Design: Explorations in Design Studies*. University of Chicago Press.
798 <https://press.uchicago.edu/ucp/books/book/chicago/D/bo3642833.html>

799 Daly, S. R. (2009). *Design across disciplines* [Ph.D., Purdue University].
800 <https://www.proquest.com/docview/304501394/abstract/C055B36CFB904018PQ/1>

801 1

802 Damen, N. B., & Toh, C. (2020). Investigating Information: A Qualitative Analysis of
803 Expert Designers' Information Representation and Structuring Behaviors
804 (IDETC2019-98362). *Journal of Mechanical Design*, 1–53.
805 <https://doi.org/10.1115/1.4046647>

806 Dorst, K., & Cross, N. (2001). Creativity in the design process: Co-evolution of problem–
807 solution. *Design Studies*, 22(5), 425–437. <https://doi.org/10.1016/S0142->
808 [694X\(01\)00009-6](https://doi.org/10.1016/S0142-694X(01)00009-6)

809 Dorst, K., & Overveld, K. (2009). Typologies of design practice. *Philosophy of*
810 *Technology and Engineering Sciences*, 9, 455.

811 Doty, D. H., & Glick, W. H. (1994). Typologies as a unique form of theory building:
812 Toward improved understanding and modeling. *Academy of Management Review*,
813 19, 230–251.

814 Eckert, C., & Stacey, M. (2000). Sources of inspiration: A language of design. *Design*
815 *Studies*, 21(5), 523–538. [https://doi.org/10.1016/S0142-694X\(00\)00022-3](https://doi.org/10.1016/S0142-694X(00)00022-3)

816 Fu, K., Chan, J., Cagan, J., Kotovsky, K., Schunn, C., & Wood, K. (2013). The meaning
817 of “near” and “far”: The impact of structuring design databases and the effect of
818 distance of analogy on design output. *Journal of Mechanical Design*, 135(3).
819 <https://doi.org/10.1115/1.4023158>

820 Gerrike, K., Eckert, C., & Stacey, M. (2017, August 21). What do we need to say about a
821 design method? *21th International Conference on Engineering Design*.
822 <http://oro.open.ac.uk/50445/>

823 Harfield, S. (2007). On design ‘problematization’: Theorising differences in designed
824 outcomes. *Design Studies*, 28(2), 159–173.
825 <https://doi.org/10.1016/j.destud.2006.11.005>

826 Harrison, G. P., Ewen Macpherson, D., & Williams, D. A. (2007). Promoting
827 interdisciplinarity in engineering teaching. *European Journal of Engineering
828 Education*, 32(3), 285–293. <https://doi.org/10.1080/03043790701276775>

829 Hassenzahl, M. (2006). User Experience-Towards a unified view. *UX WS NordiCHI*.
830 https://www.academia.edu/2880260/User_Experience_Towards_a_unified_view

831 Heisig, P., Caldwell, N. H. M., Grebici, K., & Clarkson, P. J. (2010). Exploring
832 knowledge and information needs in engineering from the past and for the future
833 – results from a survey. *Design Studies*, 31(5), 499–532.
834 <https://doi.org/10.1016/j.destud.2010.05.001>

835 Herring, S. R., Chang, C.-C., Krantzler, J., & Bailey, B. P. (2009). Getting inspired!:
836 Understanding how and why examples are used in creative design practice.
837 *Proceedings of the SIGCHI Conference on Human Factors in Computing
838 Systems*, 87–96. <https://doi.org/10.1145/1518701.1518717>

839 Kalay, Y. E. (2006). The impact of information technology on design methods, products
840 and practices. *Design Studies*, 27(3), 357–380.
841 <https://doi.org/10.1016/j.destud.2005.11.001>

842 Kaufman, J. C., & Baer, J. (2005). *Creativity Across Domains: Faces of the Muse*.
843 Psychology Press.

844 Kvan, T., West, R., & Vera, A. H. (1998). Tools and Channels of Communication:
845 Dealing with the Effects of Computer Mediation on Design Communication.
846 *International Journal of Virtual Reality*, 3(3), 21–33.
847 <https://doi.org/10.20870/IJVR.1998.3.3.2628>

848 Lam, J. C. K., Walker, R. M., & Hills, P. (2014). Interdisciplinarity in Sustainability
849 Studies: A Review. *Sustainable Development*, 22(3), 158–176.
850 <https://doi.org/10.1002/sd.533>

851 Li, H., Krishnamurthi, S., & Fisler, K. (2002). Verifying cross-cutting features as open
852 systems. *ACM SIGSOFT Software Engineering Notes*, 27(6), 89–98.

853 López-Mesa, B., & Bylund, N. (2011). A study of the use of concept selection methods
854 from inside a company. *Research in Engineering Design*, 22(1), 7–27.

855 Lumbard, K., Abid, A., Toh, C., & Germonprez, M. (2018). Knowing and Designing:
856 Understanding Information Use in Open Source Design Through the Lens of
857 Information Archetypes. *Proceedings of the 51st Hawaii International
858 Conference on System Sciences*, 4065–4074.
859 <https://doi.org/10.24251/HICSS.2018.511>

860 MacLellan, C. J., Langley, P., Shah, J., & Dinar, M. (2013). A Computational Aid for
861 Problem Formulation in Early Conceptual Design. *Journal of Computing and
862 Information Science in Engineering*, 13(3). <https://doi.org/10.1115/1.4024714>

863 Martin, D. (2012). The cooperative use of material resources and contextual features in
864 graphic design work. *Design Studies*, 33(6), 589–610.
865 <https://doi.org/10.1016/j.destud.2012.06.007>

866 Mistree, F., Smith, W. F., Bras, B. A., Allen, J. K., & Muster, D. (1990). Decision-based
867 design: A contemporary paradigm for ship design. *Transactions, Society of Naval
868 Architects and Marine Engineers*, 98(1990), 565–597.

869 Morais, A. S., Olsson, H., & Schooler, L. J. (2013). Mapping the structure of semantic
870 memory. *Cognitive Science*, 37(1), 125–145. <https://doi.org/10.1111/cogs.12013>

871 Ogot, M., & Okudan-Kremer, G. (2004). *Engineering Design: A Practical Guide*.
872 Trafford Publishing.

873 Olson, M. A., & Fazio, R. H. (2008). Implicit and explicit measures of attitudes: The
874 perspective of the MODE model. In *Attitudes: Insights from the new implicit*
875 *measures* (pp. 19–63). Psychology Press.

876 O’Raghallaigh, P., Sammon, D., & Murphy, C. (2010). Theory-building using
877 Typologies—A Worked Example of Building a Typology of Knowledge
878 Activities for Innovation. *Proceedings of the 2010 Conference on Bridging the*
879 *Socio-Technical Gap in Decision Support Systems: Challenges for the Next*
880 *Decade*, 371–382.

881 Osman, K. A. (2015). *Data Science As A New Frontier For Design*. 189–198.

882 Patton, M. Q. (1990). *Qualitative evaluation and research methods*, 2nd ed. Sage
883 Publications, Inc.

884 Poltrack, S., Grudin, J., Dumais, S., Fidel, R., Bruce, H., & Pejtersen, A. M. (2003).
885 Information seeking and sharing in design teams. *Proceedings of the 2003*
886 *International ACM SIGGROUP Conference on Supporting Group Work*, 239–
887 247. <https://doi.org/10.1145/958160.958198>

888 Roy, M., & Roy, A. (2021). The Rise of Interdisciplinarity in Engineering Education in
889 the Era of Industry 4.0: Implications for Management Practice. *IEEE Engineering*
890 *Management Review*, 49(3), 56–70. <https://doi.org/10.1109/EMR.2021.3095426>

891 Sarasvathy, S. D. (2001). Causation And Effectuation: Toward A Theoretical Shift From
892 Economic Inevitability To Entrepreneurial Contingency. *Academy of*
893 *Management Review*, 26(2), 243–263. <https://doi.org/10.5465/amr.2001.4378020>

894 Schön, D. A. (1987). *Educating the reflective practitioner: Toward a new design for*
895 *teaching and learning in the professions* (pp. xvii, 355). Jossey-Bass.

896 Sio, U. N., Kotovsky, K., & Cagan, J. (2015). Fixation or inspiration? A meta-analytic
897 review of the role of examples on design processes. *Design Studies*, 39, 70–99.

898 Song, H., & Fu, K. (2019). Design-by-Analogy: Exploring for Analogical Inspiration
899 With Behavior, Material, and Component-Based Structural Representation of
900 Patent Databases. *Journal of Computing and Information Science in Engineering*,
901 19(2). <https://doi.org/10.1115/1.4043364>

902 Stempfle, J., & Badke-Schaub, P. (2002). Thinking in design teams—An analysis of team
903 communication. *Design Studies*, 23(5), 473–496. [https://doi.org/10.1016/S0142-694X\(02\)00004-2](https://doi.org/10.1016/S0142-694X(02)00004-2)

905 Stobbeleir, K. E. M., Ashford, S. J., & Buyens, D. (2011). Self-regulation of creativity at
906 work: The role of feedback-seeking behavior in creative performance. *Academy of*
907 *Management Journal*, 54(4), 811–831.

908 Thekinen, J., & Grogan, P. T. (2021). Information Exchange Patterns in Digital
909 Engineering: An Observational Study Using Web-Based Virtual Design Studio.
910 *Journal of Computing and Information Science in Engineering*, 21(4).
911 <https://doi.org/10.1115/1.4050087>

912 Tomko, M., Schwartz, A., Newstetter, W., Alemán, M., Nagel, R., & Linsey, J. (2018,
913 August 26). “A Makerspace Is More Than Just a Room Full of Tools”: What
914 Learning Looks Like for Female Students in Makerspaces. *Proceedings of the*
915 *ASME 2018 International Design Engineering Technical Conferences and*
916 *Computers and Information in Engineering Conference. Volume 7: 30th*

917 *International Conference on Design Theory and Methodology*.
918 <https://doi.org/10.1115/DETC2018-86276>

919 Vijaykumar, G., & Chakrabarti, A. (2008). Understanding the Knowledge Needs of
920 Designers During Design Process in Industry. *Journal of Computing and*
921 *Information Science in Engineering*, 8(1). <https://doi.org/10.1115/1.2840776>

922 Viswanathan, V., & Linsey, J. S. (2012). Physical Models and Design Thinking: A Study
923 of functionality, Novelty, and Variety of Ideas. *Journal of Mechanical Design*,
924 134(9).

925 Vredenburg, K., Mao, J.-Y., Smith, P. W., & Carey, T. (2002). A survey of user-centered
926 design practice. *Proceedings of the SIGCHI Conference on Human Factors in*
927 *Computing Systems*, 471–478. <https://doi.org/10.1145/503376.503460>

928 Wallas, G. (1926). *The Art of Thought*. Harcourt Brace.

929 Wong, S. C., Crowder, R. M., Wills, G. B., & Shadbolt, N. R. (2008). Knowledge
930 Transfer: From Maintenance to Engine Design. *Journal of Computing and*
931 *Information Science in Engineering*, 8(1). <https://doi.org/10.1115/1.2840777>

932 Wynn, D. C., & Eckert, C. M. (2017). Perspectives on iteration in design and
933 development. *Research in Engineering Design*, 28(2), 153–184.
934 <https://doi.org/10.1007/s00163-016-0226-3>

935 Yi, S., Lumbard, K., Damen, N., Germonprez, M., & Toh, C. (2019). Towards an
936 Information Archetypes Framework: Exploring the Types of Information Used in
937 Open Source Design Engagements. *International Design Engineering Technical*
938 *Conferences and Computers and Information in Engineering Conference*,
939 V007T06A055. <https://doi.org/10.1115/DETC2019-97956>

940 Youmans, R. J. (2011). Design fixation in the wild: How physical interactions and
941 collaboration affect fixation phenomena. *The Journal of Creative Behavior*, 101–
942 107.

943

944

Figure Captions List

945

Fig. 1 Doty and Glick's approach for building archetypes from unique combinations of dimensions to understand applied phenomena (Doty & Glick, 1994).

Fig. 2 Illustration of how designers may move more towards one information level or the other depending on their existing needs at that time. These charts are illustrative and do not represent actual data, rather, they exemplify how the need for an information dimension might fluctuate throughout the design process.

946

947

948
949

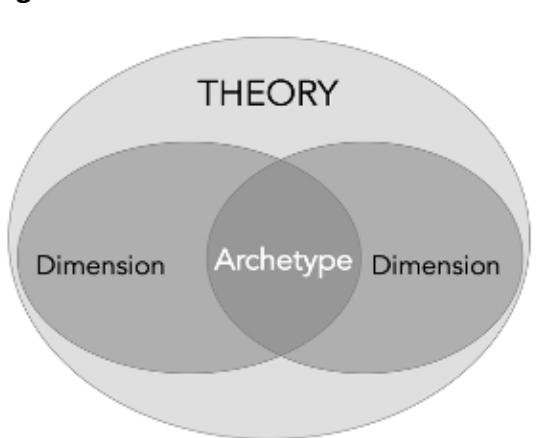
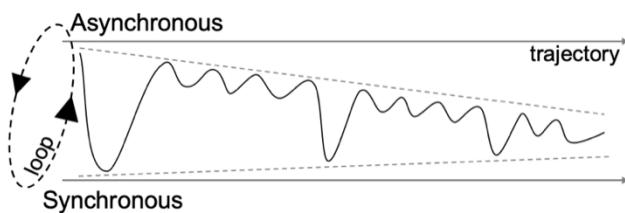

Table Caption List

Table 1 Relevant designer characteristics

Table 2 Summary of study findings

950
951

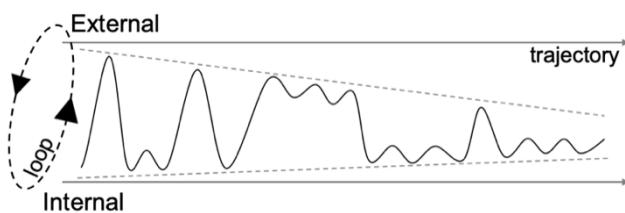
952 **Figure 1**


953
954

955 **Figure 2**

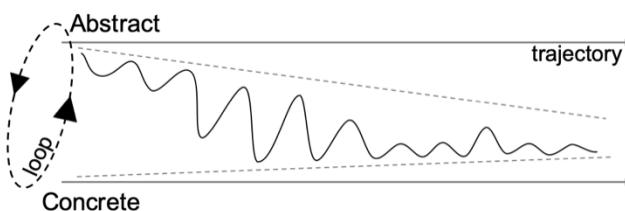
956

957 *Path A: Asynchronous communication with client punctuated by face-to-face meetings*


958 *for deeper discussions.*

959

960 *Path B: Designer relies on external information early on but then turns inward to*


961 *generate solutions to the design problem.*

962

963 *Path C: The generated solution is a concrete manifestation of abstract concepts that the*

964 *designer is trying to advance.*

965

966

967

Table 1

968

Designer, ~years design experience	Title, ~years in current position	Organization size & sector
D1, 8 yrs	User experience lead, 3 yrs	~ 51-200, mobile development & integration
D2, 7 yrs	Product designer, <1 yr	~51-200, managed hosting & web design
D3, 3 yrs	CTO, <1 yr	~1-50, custom software development & design
D4, 6 yrs	CEO, 3 yrs	~1-50, custom software development & design
D5, 17 yrs	Graphic design instructor, 7 yrs	~1000-5000, educational institution
D6, 15 yrs	Graphic design assistant professor, 14 yrs	~1000-5000, educational institution
D7, 5 yrs	Graphic designer, 3 yrs	~1-50, print, signage & marketing services
D8, 8 yrs	E-learning designer, <1 yr	~1-50, digital marketing solutions

969

970
971**Table 2**

Information dimension (section)	Description	Summary of RQ1: information dimension usage in practice	Summary of RQ2: manifestation of tensions between dimension levels
Source (3.1.1)	Where information originates from (internal vs external).	Mainly used to acquire and verify information.	Rather than relying on external information for inspiration, designers use external information to augment and verify internal information.
Abstraction (3.1.2)	How detailed the information is (high-abstract vs low-concrete).	Abstract is more a style of design thinking and inquiry than information itself.	To benefit from the complementary relationship between abstract and concrete information, designers draw from both continuously and concurrently.
Generality (3.1.3)	How applicable information is in other contexts (high-cross-	Mainly used cross-cutting for inspiration and creativity during idea generation. Deep domain information can foster a creative identity.	While inspiration from cross-cutting information is more common, inspiration and value can also come from deep domain specific information.

	cutting vs low-domain specific).		
Effectuation (3.1.4)	What information is focused on (resources-effectual vs end goals-causal).	Causal drives project direction and activities through framing of project goals, requirements, and constraints. Effectual can also guide project direction through available resources such as access to other people('s knowledge).	Designers view people and other resources (effectual) as a means of achieving their goals (causal).
Representation (3.1.5)	How information is delivered (in-person or real time-asynchronous vs not in-person or real time-synchronous).	Mainly understood as communication between designers and clients, and between designers within an organization. The more ephemeral synchronous information is mainly used to reduce complexity, such as quickly resolving issues or conflicts and refining ideas	The majority of design work is done through asynchronous information, although synchronous face-to-face communication is especially valuable in the early phases of the design process.

and changing thoughts.
Asynchronous is mostly
convenient and used for
confirming decisions and
record keeping.