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Hardness measurement is destructive and time consuming, but it is a very common

process with much historical study. Thus, we train an ML model that can quickly

predict hardness given a material structure. We also train a generative model that

can generate bioinspired structures. Using the predictive and generative models

together allows us to emulate the progress of nature and ‘‘evolve’’ structures that

possess desired hardness values. This process is an iterative approach for

targeted, bioinspired materials design.
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Deep learning virtual indenter maps nanoscale
hardness rapidly and non-destructively, revealing
mechanism and enhancing bioinspired design

Andrew J. Lew,1,2 Cayla A. Stifler,3 Astrid Cantamessa,4 Alexandra Tits,4 Davide Ruffoni,4

Pupa U.P.A. Gilbert,3,5,6,7 and Markus J. Buehler1,8,*
PROGRESS AND POTENTIAL

Bioinspired structures offer

exciting possible materials

configurations, but navigating

diverse structure spaces for

attaining desired properties

remains non-trivial. We focus on

the hardest biological tissue in

humans, tooth enamel, to

examine the structure-property

relationship. While typical

hardness measurements are time

consuming and destructive, we

propose that AI models can

predict properties directly and

enable high-throughput, non-

destructive characterization. We

train a deep image regression

neural network as a surrogate

model and visualize with gradient

ascent and saliency maps to

identify structural features

contributing most to hardness.

Using this rapid hardness testing

model, a generative adversarial

model, and a genetic algorithm

together allows for guided

materials design, yielding

proposed bioinspired structures

with precisely controlled

hardness. There is potential for

the approach to impact other

material systems and properties

given an appropriate training

dataset.
SUMMARY

Over evolution, organisms develop complex material structures fit
to their environments. Based on these time-tested designs, hu-
man-engineered bioinspired structures offer exciting possible ma-
terials configurations. However, navigating diverse structure spaces
for attaining desired properties remains non-trivial. We focus on the
hardest biological tissue in humans, tooth enamel, to examine the
structure-property relationship. While typical hardness measure-
ments are time consuming and destructive, we propose that artifi-
cial intelligence models can predict properties directly and enable
high-throughput, non-destructive characterization. We train a
deep image regression neural network as a surrogate model and
visualize with gradient ascent and saliency maps to identify struc-
tural features contributing most to hardness. This model demon-
strates improved spatial resolution and sensitivity compared with
experimental hardness maps. Using this rapid hardness testing
model, a generative adversarial model, and a genetic algorithm
that operates in latent space, allows for guided materials design,
yielding proposed designs for bioinspired structures with precisely
controlled hardness.

INTRODUCTION

Hardness measurement is a ubiquitous materials characterization technique that

is performed more frequently than any other mechanical test.1 Despite this, there

are numerous limitations on traditional indentation experiments. To name a few,

indentation is a destructive method that changes material properties, meaning it

cannot be used in production settings. Furthermore, this destruction limits how

closely spaced test points can be,2 otherwise measurements will suffer from

deformation artifacts. Additionally, imperfect indentation quality may lead to un-

clear results3 that depend on interpretation by the observer. Different operators

of varying skill levels may yield inconsistent measurements of similar samples.

Even when these elements are not of concern, the best-quality results are ob-

tained through low-throughput experiments with a large experimental time per

sample.4

Of course, such issues are only exacerbated when attempting high-throughput char-

acterization. Completing several thousands of indents in a reasonable time frame re-

quires shortening the typical testing rate of tens of measurements per hour.5 When

doing so, one must take care to choose a correct indentation depth6 that avoids

deformation overlap. This is because faster loading rates make consideration of
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strain rate sensitivity particularly important.5 In short, rapid, consistent, and scalable

hardness testing remains an issue of great import and active research.

Artificial intelligence (AI)-based models have been greatly successful in accelerating

and scaling materials characterization and prediction tasks. In the realm of mechan-

ical properties, previous models have successfully predicted fracture,7–9 compliance

optimization,10 and buckling11 using a combination of neural networks, latent space

representations, and genetic algorithms.

Thus, here we propose using a combination of three AI methods—regression, adver-

sarial generation, and genetic algorithm optimization—to not only tackle the prob-

lem of hardness characterization, but also to gain a deeper understanding of the fac-

tors contributing to hardness and facilitate the design of structures with controlled

hardness. Specifically, we focus here on the material system of human enamel, the

hardest tissue in the human body and a classic subject of hardness characteriza-

tion,12 where recent polarization-dependent imaging contrast (PIC) mapping13 has

provided detailed surface structure information in various biominerals. We hypoth-

esize that this rich surface information may be suitable for hardness evaluation and

provide a unique opportunity for identifying structure-property relationships.
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RESULTS

Obtaining a hardness model

A primary challenge of utilizing machine learning models is the acquisition of suit-

able training data, ideally of both large volume and high accuracy. However, there

is often a practical trade-off between large volume and high accuracy experimenta-

tion. Thus, here we employ a strategy of combining datasets with different levels of

volume and accuracy to obtain a more complete view of enamel hardness.

We first utilize a hardness dataset with accurate labeling, shown in Figure 1A,

comprised of 94 hardness measurements across a 125 3 100 mm region of human

enamel. Nanoindentation details are provided in the experimental procedures sec-

tion. The second dataset we use is generated via estimated labeling from cross refer-

encing literature, shown in Figure 1B. Specifically, we use enamel images from the

literature of different regions of a human molar,14 subdivide each image into square

200 3 200 pixel segments, and estimate hardness labels for each square by

comparing the square location with human enamel hardness maps in the litera-

ture,15,16 for a total of 333 image-label pairs. It should be noted that this estimation

runs a risk of including error between hardness values and microstructures, due to

natural variation of biological samples from tooth age, oral environment, tooth po-

sition, etc. The third dataset is comprised of 17 large enamel maps from the litera-

ture17 with noisy labeling, shown in Figure 1C. Despite the large volume of image

area in this third dataset, only the average hardness values and standard deviations

for each image are known. There is low granularity in the hardness labels of any exact

location. To summarize, the first dataset has small volume but accurate and precise

labels; the second dataset is larger but has approximate labels with fewer significant

digits and the possibility for error; and the third dataset is the largest, but any local

image section is likely to have some unknown deviation from the average, resulting

in label errors.

We then combine these three datasets into one single dataset of 22,730 image-label

pairs, with a distribution of hardness values between 2 and 7 GPa as shown in Fig-

ure 1D. By uniting these three streams of data, we obtain a large volume dataset
2 Matter 6, 1–17, June 7, 2023
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Figure 1. Dataset curation

Performant ML models require training data of both high accuracy and large volume.

(A–C) To achieve this comprehensive representation of hardness, we combine three imperfect datasets together: (A) a small dataset of accurate locally

measured labels, (B) a mid-size dataset with estimated labels from known literature trends (Beniash et al.14 and Cuy et al.15), and (C) a large dataset of

structures where only the average and standard deviation of each image is known (adapted from Stifler et al.17), resulting in some noise associated with

any local label.

(D) We obtain the united dataset by weighting the representation of the more reliable image-label pairs accordingly, for a total of 22,730 image-label

pairs spanning hardness values from 2 to 7 GPa.
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that also incorporates a representation of high accuracy measurement. Details of

how these three datasets are combined are provided in the experimental proced-

ures section.

This united dataset is used to train an image regression model that maps enamel

structure images to hardness values. It should be noted that, along with the known

potential for label errors described above, the PIC maps are only a proxy for the
Matter 6, 1–17, June 7, 2023 3



Figure 2. Deep residual network regression

Our model achieves (A) mean squared error loss <0.1, with good agreement between training and

validation sets. (B) The error in predictions is centered and narrow, with m = �0.01 and s = 0.22, and

(C) the linear correlation between predicted and labeled hardness values has r2 >0.9. Furthermore,

the fit between predicted and labeled hardness values with 99% confidence interval visually

appears as a singular line, indicating highly accurate predictions. (D) The architecture of our model

incorporates shortcut connections in residual blocks to map structure images to hardness labels.

Using filter activation maximization reveals (E) that initial layers of the model learn crystal

orientation in the form of image colors, while deeper layers focus on orientation agnostic structure

in the form of patterns and textures.
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structural details probed by indentation, as PIC mapping only penetrates approxi-

mately 3 nm into the sample, while nanoindentation will probe approximately

150 nm of material. Despite this difference in scale, tracking the mean squared error

of predicted hardness values shows good agreement between training and valida-

tion sets over 100 epochs of training, shown in Figure 2A. This indicates that the

3 nm surface probed by PIC maps encapsulates sufficient crucial structural features

for determining hardness of this material system. There is very low error compared

with the average mean squared error baseline (calculated by simply predicting

each image as having the mean hardness value of the entire input dataset), demon-

strating that the model has learned far beyond trivial performance. Specifically, the

error in hardness predictions is narrow (s = 0.22 GPa) with a balanced distribution

only slightly underpredicting values (m = �0.01 GPa), as shown in Figure 2B. Pre-

dicted hardness values map linearly to hardness labels with an r2 value of 0.94,

shown in Figure 2C, demonstrating that the model has successfully learned to quan-

titatively map enamel structure images to hardness values. The architecture of our

deep residual neural network incorporating skip connections18 is shown in Figure 2D.
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Details of model architecture and training are provided in the experimental proced-

ures section.

Understanding structure-property relationship: Misorientation hardness

Beyond simply generating a black-box model able to rapidly and non-destructively

predict hardness values directly from nanoscale structure, it is important to under-

stand what the model does. Identifying what factors contribute to hardness predic-

tions may help us understand deeper mechanisms of hardness as a material property

and increase our confidence that such a machine learning (ML)-driven approach is

not simply a fluke.19 Thus, we employ filter activation maximization to visualize

what our model ‘‘sees.’’ To do this, we feed in an initial randomized image of gray

static and repeatedly apply gradient ascent to maximize the activation of a specific

filter in a target layer.20,21 We visualize 16 maximized filters after each section of re-

sidual blocks in Figure 2E to extract the sequential process of how the model comes

to a hardness prediction. We observe a progression from bright single-color images

at earlier layers to monochrome textures at deeper layers. Physically, this indicates

that the model first pays attention to crystal orientations, which are encoded by pixel

color in PICmaps, with different orientations handled by different filters. Conversely,

at the deep end of the model, filters are attuned to pick up different structural pat-

terns and crystal sizes regardless of crystal orientation.

After visualizing the general approach of how the model processes hardness predic-

tion, we subsequently delve further into how specific values are determined. To do

this, we use a saliency map visualization across a selection of enamel structures

shown in Figure 3A. Saliencymaps compute the spatial support of a prediction, iden-

tifying local regions in an image most important to the determination of the

output.22 We then convert the hue and brightness values of each image (which

represent c-axis orientations with respect to the polarization plane) to orientations

f and q with respect to the image plane (since the polarization plane is 60� from

the sample surface23). Subsequently, in Figure 3B, we plot saliency as a function of

the in-image plane orientation f and the out-of-image plane orientation q, where

f = 0� corresponds to the vertical in-image direction and q = 0� corresponds to

the perpendicular direction coming straight out of the image. We find that the sa-

liency distribution roughly corresponds to histograms of the frequency of orienta-

tions in Figure 3C, as one might expect: when certain crystal orientations are more

plentiful than others, there is a higher chance that highly salient regions would be

comprised of these orientations. Additionally, it may also indicate that the model

has attributed higher importance to the orientations that occur more frequently.

There is an important deviation to this correlation, however, when one scales sa-

liency values by orientation frequency in Figure 3D. Specifically, we note that the

least common orientations have larger relative saliencies. In other words, there ap-

pears to be an additional factor maintaining a level of importance to rare orienta-

tions—the model does not simply ignore them. To interpret this physically, we

note that rare orientations are less likely to be similar to other surrounding orienta-

tions. In other words, there are likely to be local misorientations in their vicinity. From

the literature, it has been reported that misorientations in tooth enamels, measured

as the angular distance in 3D space of c-axis unit vectors via dot product, are known

to be positively correlated with hardness.17 The model’s relative fixation on rare ori-

entations may indicate an understanding of this misorientation hardness effect.

By applying domain knowledge to visualization tools, we are able to better under-

stand both what the model is predicting and the important factors behind hardness

as a property. The identification of intelligible factors behind the model indicate that
Matter 6, 1–17, June 7, 2023 5



Figure 3. Understanding model predictions

To better understand how the model assigns hardness values to structures, we subject enamel

images to (A) saliency mapping, which highlights regions of each image according to how much it

contributes to hardness predictions. We (B) plot the saliency for each pixel of each image in our

total dataset as a function of its f and q, the in-image plane and out-of-image plane orientation of

the crystalline c-axis, respectively. These saliency distributions roughly correspond with
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Figure 3. Continued

(C) orientation frequency histograms. A notable exception to this correspondence, however, is

highlighted by (D) scaling saliency values by orientation frequency. Specifically, we find that the

least-common orientations have larger relative saliencies.
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it may encapsulate a degree of physical understanding of hardness, as opposed to

simply being a black box that memorizes random distributions of pixels that happen

to give low-loss predictions without grasping real-world structure-property relation-

ships. Beyond the post-hoc explainability techniques employed here, however,

transparently understanding exactly what functions or algorithms an ML model im-

plements in its predictions remains a non-trivial problem and a field of increasingly

active research24 for future work.

Applications of AI-based hardness modeling

Immediately, our hardness regression model has powerful consequences in the

realm of materials characterization. Themodel can be utilized as a virtual indentation

tool to rapidly and non-destructively probe the hardness value of another human

enamel structure. This residual net (res-net) virtual indenter has the added benefit

of outputting consistent results independent of which the operator runs the algo-

rithm. Furthermore, the rapidity of res-net virtual indenter predictions allows one

to map out the hardness of regions much larger than are experimentally feasible.

Specifically, we can extract a sample window from an image, predict a hardness

value at that location, and raster the sample window across the full image for

repeated hardness predictions, as shown in Figure 4A. This model allows us to

obtain high-fidelity hardness maps as in Figure 4B, where hardness values can be as-

signed with pixel-level resolution. This aspect of hardness mapping again surpasses

experiment, as the destructive nature of experimental indentations that deform ma-

terial and change local stress conditions puts a physical limit on the smallest spacing

between adjacent indentations.2

Furthermore, rapid hardness mapping provides accelerated structure feedback that

opens the door for non-traditional avenues of design. One can imagine manually

applying knowledge of enamel structures and hardness to design bioinspired mate-

rials through a traditionally arduous process of trial and error. We take this paradigm

a step further, taking inspiration from natural evolution and fueling the automation of

the process with AI-based models. As a result, we are able to employ an iterative ge-

netic algorithm25,26 inverse design process,9,27 shown in Figure 5A, to rapidly attain

structures with specific hardness values.

First, we train a secondary generative model with our dataset of enamel images.

Specifically, we apply the StyleGAN2 model28,29 on the enamel image dataset

with image augmentations, which learns a 512D latent design space of enamel-

inspired structures from the original images. Details of the training are provided in

the experimental procedures section. By inputting an arbitrary 512D code to the

trained generative model, a ‘‘fake’’ enamel-inspired structure is generated as

output. Using this generative model, we generate a randomized population of 10

enamel-inspired structures as our starting point for design.

In addressing tasks such as engineering design, there are two broad categories of

search techniques: local and global optimizers.30 Local techniques, such as conju-

gate gradient, are highly dependent on the initial guess and tightly coupled to

the solution space, often relying on smooth differentiability and continuity to effi-

ciently reach optima.31 However, the 512D design space we explore here in this
Matter 6, 1–17, June 7, 2023 7



Figure 4. ML-driven hardness characterization

We can utilize the deep residual network regression model as a high-throughput and high-resolution virtual indenter by (A) rastering an observation

window across a sample image and repeatedly predicting hardness values for each window. In doing so, we can identify regions of high vs. low hardness

and provide (B) a non-destructive method for rapid, high-resolution hardness mapping at the nanoscale.
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work has no guarantee on differentiability, with many potential local optima to fall

into. Hence, we turn toward global optimization techniques that excel in situations

where the topology of the solution space is unknown. Specifically, genetic algo-

rithms are suited to constrained optimization problems with complex geometries

and offer more efficient convergence than other global optimizers like random-

walk searches.32

Thus, the 512D latent codes of each structure are used as the chromosomes for a ge-

netic algorithm. Here, a pair of structures are selected to act as parents for the sub-

sequent generation; a process of genetic crossover is employed in order to generate

two child structures; a round of specialization, migration, and mutation is employed

to maintain genetic diversity in the population for combating premature conver-

gence; and a desired hardness value is used in concert with our virtual indenter

model to evaluate each structure’s fitness in competition. The remaining structures

after competition are fed back into the loop as the starting population for a subse-

quent generation. Details of implementation and each step of the genetic algorithm

are provided in the experimental procedures section.

Over tens of generations, the structure population gradually drifts to have hardness

values closer to the desired target. Approximately, it takes about 2 h of computation

time on a workstation with a 10th Generation Intel Core i7 Processor and an NVIDIA

GeForce RTX 2060 GPU to run the genetic algorithm for 250 generations. One is

compelled to recall that traditional experimental hardness measurements typically

occur at a rate of tens per hour5 compared with our res-net virtual indenter’s capa-

bility to make tens of measurements every few seconds. If we assume 30 experi-

mental hardness measurements an hour, the evaluation process for 250 generations

each with 15 structures would take over 5 days of constant work. Instead, our res-net

virtual indenter can accomplish these measurements (as well as automated structure

generation with directed design) in less than 2% of the time.

Here, in Figure 5B, we provide an example selection of 7 enamel-inspired structures

generated from our genetic algorithm process with target hardness values from 3 to

6 GPa. Below each structure, we plot the average and standard deviation of popu-

lation hardness over generations as the black line and gray envelope, respectively.

These hardness traces are overlaid with the target hardness, plotted as the dashed

red lines. Due to initial randomization of the starting population, the hardness

average and standard deviation at generation 0 varies across each run. Neverthe-

less, in all trials, the population hardness successfully hones in on the target.
8 Matter 6, 1–17, June 7, 2023



Figure 5. Targeted evolutionary design

Inspiration from the genetic processes of nature allows us to design structures with desired properties. Specifically, we (A) generate an initial population

via StyleGAN2 and feed this ensemble of structures through an iterative process of selection, crossover, specialization/migration/mutation, and

competition. Our regression-based virtual indenter can rapidly screen structure hardness and (B) provide the necessary feedback to drift structure

populations toward desired hardness values. We run the process multiple times to obtain an example series of bioinspired ‘‘fake’’ enamel-like structures

with predicted hardness values from 3 to 6 GPa, in increments of 0.5 GPa.
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The 7 generated enamel-inspired structures vary widely in their average crystal orienta-

tion. To demonstrate that the design approach is indeed controlling the generation of

specific microstructures to meet desired hardness values, and not simply assuming a

simpler relationship between the distribution or average of crystal orientations with

hardness,17we set upacomparison study inFigure6. Specifically,we take thegenerated

enamel-inspired structures, shown in Figure 6A, andmake a separate series of structures

that are homogeneously comprised of each sample’s average crystal orientation in Fig-

ure 6B. Similarly, we make a second series of altered structures that maintain the exact

same distribution of crystal orientations per sample, but with the rows and columns of

each image randomly scrambled to remove ordered spatial arrangement of enamel mi-

crostructures in Figure 6C. When evaluated by the res-net virtual indenter in Figure 6D,

we find that these averaged and scrambled structures no longer have hardness values

tightly corresponding to thedesired target values. This indicates that our designprocess

indeedacts on themicrostructure and arrangement of crystals, and not simply theorien-

tation of the c-axis, to produce desired properties.
DISCUSSION

AI can be a tool for enhancing the value of information and uncovering hidden in-

sights from historical datasets. One might have expected that previously impossible
Matter 6, 1–17, June 7, 2023 9



Figure 6. Design operates on a spatial microstructural level

The (A) candidate enamel-inspired structures vary in (B) average crystal orientations. To demonstrate that the approach controls the generation of

specific microstructures to meet desired hardness values, we compare the predicted hardness values of the original enamel-inspired structures with

structures homogeneously comprised of only the average orientation. Furthermore, we also compare the hardness values of (C) scrambled images,

which contain the exact same distribution of crystal orientations as the original structures in (A) but with random spatial ordering of the rows and

columns of each structure image. We find that (D) the altered structures from (B) and (C) do not achieve the tightly controlled target hardness values of

(A), indicating that our inverse design approach indeed acts on spatial microstructure rather than on a simpler mapping of either crystal orientation

averages or distributions.
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large-scale hardness mapping and inverse design tasks would necessitate some rev-

olution in experimental indentation methods. However, we demonstrate here that

simply looking at the data we already have through alternate perspectives (i.e., via

ML-driven processing workflows) is sufficient to make these tasks possible. While

initial experimentation to obtain hardness measures and PIC maps may be destruc-

tive and time consuming, our approach of leveraging information from the literature

to train a residual neural network for regression expands capabilities for hardness

evaluation without commensurate addition of destructive characterization. After

the one-time cost of training the virtual indenter model, it can be applied for rapid,

non-destructive characterization without limit. In other words, to address the initial

drawbacks stated about hardness testing, we have demonstrated a hardness charac-

terization pathway that is non-destructive, high-fidelity, repeatedly consistent

regardless of operator, and rapidly scalable to high-throughput testing.

We demonstrate our work focusing on a particular structure and material property of

interest—human enamel and hardness. Of course, every stage of our method from

data curation to image regression and from image generation to genetic algorithm

optimization is portable to other datasets. There is nothing theoretically preventing

our approach from treating, for example, the grain structures of some metal alloy

labeled with electronic conductivities. One simply needs access to an appropriate

dataset, at which point one can retrain the model with that dataset. For specifically

expanding the capabilities of hardness evaluation to other similar systems, future

work may be interested in mapping scanning electron microscopy (SEM) micro-

graphs to final properties, as they are much more ubiquitous than specialized PIC

mapping.

Thoughmore sophisticated search techniques for inverse design were not necessary

for this work, future work may additionally be interested in exploring variants such as

adaptive genetic algorithms, in which the fitness function itself updates upon certain

criteria, in order to tackle multi-objective optimization.30 Such an optimizer may be

useful for a design dataset incorporating multiple material properties of interest,

such as both hardness and stiffness. Furthermore, other complex directed evolution
10 Matter 6, 1–17, June 7, 2023
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schemes33 can incorporate the benefits of local optimization with global optimiza-

tion, by iteratively cycling through periods of global structure diversification and

local structure screening, to achieve rapid convergence while avoiding local minima.

Algorithms such as these may be of further interest as more complex design land-

scapes and parameters of interest continue to be explored in the future.

With respect to the particular structures obtained here by inverse design, average

rod sizes in the final enamel-inspired structures appear smaller than those in typical

human enamel. This may be due to the relationship between grain boundaries and

hardness—the generative model may have found it easier to tune for specific hard-

ness by incorporating more grain boundaries in the structure that it can perturb.

However, determining exactly what the model may or may not be doing points

to deeper questions of model interpretability that remain an active field of

research.

Currently, the success of our inverse design is heavily dependent on the genetic al-

gorithm parameters and characteristics of the generative latent space. Namely, the

genetic algorithm drives the population toward an optimized solution, but a lack of

genetic diversity in structure population may still lead to premature convergence to

an off-target suboptimal structure. A balance must be tuned between genetic diver-

sity and selective pressure34 in how structures are selected for crossover, mutation

rates are defined, etc.—the exact nature of which may vary widely across handling

different datasets. Furthermore, if the generative latent space is trained on too nar-

row a set of structures, a desired target may be impossible to reach no matter how

tuned the genetic algorithm parameters are. Future work may also be interested in

(1) devising an automated, scalable solution to parameter optimization for treating

larger libraries of material structures and properties and (2) ensuring the extrapol-

ability of generative latent space.

Additionally, as more advancements in language models come to pass, more acces-

sible and natural design interfaces can be made. Language models such as GPT-335

have been applied to generate images from text descriptions36 and to translate

multi-clause sentences into intelligible images. One could imagine a situation in

which one could query ‘‘Computer, I need a replacement part for this instrument,

but with 20% higher hardness,’’ and a language model maps those words to struc-

tures, whereupon a genetic algorithm coordinates a dance between regressive

and generative models to automatically design the desired part for immediate 3D

printing. A chain of events like this may have been fiction not long ago, but now it

is a plausible future that may yet be actualized.

Indeed, recent successful demonstrations of translating words to matter37 have es-

tablished the proof of concept. The technical challenges remaining are many, how-

ever, and include gathering the large datasets required to expand generality of the

approach. A model that knows how to automatically design for one property in one

environmental condition may be insufficient in only slightly varied conditions, and

the amount of training data to account for each possible design context may be

insurmountably large. Furthermore, completeness and consistency across large-vol-

ume data are difficult to achieve but important for a large-scale general model to

achieve valid results. Additionally, the requests a human operator may input could

be informationally incomplete. If someone requests high strength, for example,

would the model optimize for yield strength, ultimate tensile strength, or some com-

bination? Additionally, terminology across fields and domains may not be consis-

tent, so some form of common language may be necessary to ensure that no
Matter 6, 1–17, June 7, 2023 11
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information is lost in translation or misinterpreted. The future may require a more

interdisciplinary perspective and corpus of research before a truly general model

can be constructed.
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources and reagents should be directed to

and will be fulfilled by the lead contact, Markus J. Buehler (mbuehler@mit.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

The data that support the findings of this study are available from the lead contact

upon reasonable request. All original code and data has been deposited at

https://github.com/lamm-mit/HardnessMapDesign.
Human enamel images

We use PIC maps of human enamel that provide detailed crystal c-axis orientation

information13 labeled with hardness values obtained by nanoindentation. The color

of each pixel in a PIC map displays the in-plane and out-of-plane angles of the crys-

talline c-axis direction, with the hue representing the in-plane orientation angle from

�90� to 90� and the brightness representing the out-of-plane orientation angle from

0� to 90�. (In-plane cyan = 0�. Out-of-plane angle = 0� is full brightness of each hue,

and 90� out of plane is black. All angles aremeasured with respect to the polarization

plane, which is rotated by 60� from the image plane.) Figure 1A enamel PIC maps

and nanoindentation data are debuted here, while Figures 1B and 1C enamel PIC

maps were previously published in Beniash et al.14 The PIC map presented was ac-

quired before nanoindentation. All PIC maps were acquired at the Advanced Light

Source, Berkeley, CA, USA, at the Ca L-edge. We acquired images at 352.8 and

352.4 eV at each linear polarization of the illuminating X-rays, repeated the

acquisitions after rotating the linear polarization in 5� increments from 0�–90�. We

then did image ratios of 352.8 and 352.4 eV images and stacked the ratio images

for PIC mapping analysis.

The human tooth in Figure 1A, a third molar from a young adult patient, was

analyzed with PIC mapping and nanoindentation to generate the accurately labeled

dataset. We acquired PIC maps before and after nanoindentation to assign a precise

position to each indent in the pre-indentation PICmaps. The visible light microscopy

(VLM) image of indents in Figure 1A was obtained using a Zeiss AxioImager.A1m,

which was used in reflected light and bright field.
Nanoindentation of human enamel

Nanoindentation tests were performed with a Triboindenter TI-950 (Bruker, Billerica,

MA, USA) on the polished sample using a Berkovich diamond probe calibrated on

standard fused quartz. Indentation was done on the same locations characterized

by PIC mapping by exploiting specific anatomical features visible in the optical mi-

croscope of the nanoindenter. A displacement-controlled trapezoidal load function

(10 s loading, 4 s holding, and 10 s unloading) with a maximum depth of 100 nm (cor-

responding to a peak load of approximately 1,200 mN) was used. Areas of the same

dimensions as those studied with PIC mapping were probed, with a later spacing
12 Matter 6, 1–17, June 7, 2023
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between indents of 2 mm. Indentation force-displacement curves were analyzed with

the Oliver-Pharr method38 to extract hardness H.

Pre- and post-indentation indexing of PIC maps and hardness data

Nanoindentation data were arranged in table form, including indent number, spatial

coordinates, and measured H. PIC maps acquired before and after indentation, and

the VLM images were imported into a single file using Adobe Photoshop 2023, with

one image per layer. First, the post-indentation PIC and VLM images were aligned so

the indents coincided in position. Then, the pre-indentation PIC map was aligned to

the post-indentation one until all enamel rods in the image coincided with the post-

indentation ones. Each indent was evaluated carefully such that it could be unambig-

uously located on the PICmap and therefore assigned the proper measured H value.

Due to image distortions present in PIC maps, as in all microscopy methods, out of

many hundreds of total indents in the area utilized, here it was only possible to iden-

tify 94 measurements with certainty.

Hardness dataset curation

To obtain one dataset that incorporates both large volume and high accuracy, we begin

by treating the largest dataset with ‘‘noisy’’ labeling. Specifically, we use the known

hardness averages and standard deviations to assign randomly sampled hardness

values to 2003 200 pixel image regions. Any particular image is thus assigned a value

within a ballpark of its real hardness value, with some unknown error or ‘‘noise.’’ To treat

this uncertainty, we loop through each image in this set 5 times and assign a different

randomly sampled hardness value each time, drawn from a Gaussian distribution

defined by the known mean and standard deviation values of each image. In doing

so, while we do not know the accurate hardness value of any particular image in this

set, we can provide a set of likely values for each structure while neither over represent-

ing nor completely ignoring the possibility for lower probability tail cases. As a result, we

obtain a set of 10,000 image-label pairs from the original noisy data.

We then treat the medium-size dataset with ‘‘estimated’’ labels. Specifically, we

leverage the fact that that these labels are more reliable than those from the noisy

dataset. In other words, when training on an image from this set compared with

an image from the previously described set, we want the model to consider esti-

mated hardness values with greater weight than noisy hardness values. Thus, we

resample each image-label pair in this dataset by a factor of 10 to increase their pro-

portional representation in the total dataset. As a result, we obtain a set of 3,330 im-

age-label pairs from the original estimated data.

Finally, we treat the small-size dataset with ‘‘accurate’’ labels. Similar to the logic of the

previous dataset, we use the fact that these measurements are more reliable than both

the noisy and estimated labels and resample each image-label pair by a factor of 102. As

a result, we obtain a set of 9,400 image-label pairs from the original accurate data.

The united dataset of 22,730 image-label pairs is thus obtained by simply appending

these three treated datasets together into one data frame. By processing the orig-

inal data with sampling and resampling, we obtain a dataset that is both large vol-

ume and incorporates a representation of high accuracy.

Hardness prediction via regression model

We use a residual neural network to learn the regression task of mapping enamel

structure images to a numerical hardness value. The architecture of the model is

as Figure 2D, with the residual blocks incorporating a skip connection. Specifically,
Matter 6, 1–17, June 7, 2023 13
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an input x is passed through a transformation F(x) comprised of a 2D convolutional

layer, a rectified linear unit (ReLU) batch normalization, and a second 2D convolu-

tional layer. Then, the two F(x) and x are added together with another ReLU batch

normalization. In this way, the model has the ability to simply pass the identity map-

ping for these layers by setting F(x) to zero and to combat the degradation problem

of falling accuracy with excess layers.18

Training is done with a learning rate of 0.001 and batch size of 32 using the Ranger

optimizer,39 which combines the Rectified Adam optimizer40 with the LookAhead

optimizer41 to benefit from both a dynamic rectifier that provides a solid start to

training and a secondary copy of weights that stabilizes exploration during the en-

tirety of training. Image augmentations include a zoom range of 0.5–1, horizontal

flips, and vertical flips. 70% of the images are used immediately for training, 20%

used for validation, and 10% reserved for testing. Implementation is in Python

with the TensorFlow42 2.3.0 package.

Structure generation via StyleGAN2 model

The original curated dataset used to train the virtual indenter contained 22,730 im-

age-label pairs, in which resampling and repetition were used to combat imperfect

labeling. Now, for a model learning to generate enamel-inspired structures, only

unique structures matter—not property labels. Thus, we do not include the 35 re-

sampling of noisy labels, the 310 resampling of estimated labels, or the 3100 re-

sampling of accurate labels. As a result, there are 2,427 unique enamel images we

use as a base. From this image set, we incorporate image augmentations including

brightness range of 0.5–2, zoom range of 0.5–1, horizontal flips, and vertical flips.

We then resized the images to 256 3 256 pixels for compatibility with the

StyleGAN2 model29 and trained for 2,000 kimg. Implementation is done in Python

with the TensorFlow42 1.14 package.

Directed design via genetic algorithm optimization

We begin by randomly selecting two members of the structure population to serve as

parents for the next generation.We can average the values of the parent chromosomes

together in order to form a child structure with intermediary qualities. However, if we

simply average together every structure, we quickly converge on the average hardness

of the starting population. Thus, we introduce some stochasticity by using a weighted

average with a randomly sampled weight. Furthermore, we generate not just one child

interpolated between the parents but also a second child extrapolated beyond one of

the parents. Specifically, we use two randomly sampledweights fromGaussian distribu-

tions with m1 = 0.5, s1 = 0.2 and m2 = 1.5, s2 = 0.2, respectively.

Furthermore, we implement three additional ways of introducing genetic diversity

into our population. The first is specialization, in which we magnify the properties

of a random chromosome in the population by multiplying its code by some special-

ization factor (SF). In this case, we use a randomly sampled SF from a Gaussian dis-

tribution with mSF = 1.5, sSF = 0.2. The second method we use to introduce genetic

diversity is migration, in which we introduce an entirely separate, randomly gener-

ated chromosome to the population. In this case, we pull 512 values from a uniform

distribution with range �5 to 5 to create an immigrant chromosome code. The third

method is mutation, in which we alter the properties of a random chromosome in the

population by selecting random entries in its code Ri and replacing them with

random values, MFi, which are sampled from Gaussian distributions with mi = Ri

and variable si. In this case, we tune the chance of an entry being chosen as well

as the magnitude of s as inverse functions of the population convergence, which
14 Matter 6, 1–17, June 7, 2023
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we take as the fitness difference between themost and least fit structures. In this way,

greater genetic diversity is introduced as the optimization progress, combating the

tendency to become stuck in premature local optima.

From the initial population size of 10 structures, 5 more have been generated: interpo-

lated child, extrapolated child, specialized structure, immigrant structure, andmutated

structure. Now, we subject the entire set of 15 structures to a round of competition, in

which we define a target hardness as our fitness metric and discard 5 structures to

maintain a constant population size for the next generation. The trivial implementation

would be to use the hardness regression model to predict the hardness of each struc-

ture and discard the 5 farthest from the target hardness value. However, this strategy

risks falling into local optima, as it disincentivizes intermediary structures that may be

on the right track toward a better solution. Instead, we discard only 3 unfit individuals

with hardness values farthest away from the target. Then, 2 random individuals from

the population that are not the current best individual are discarded. Thus, even if a

proposed structure is temporarily unfit, we allow opportunities to incorporate diverse

information into later generations and achieve results closer to our target.

Importantly, the hardness regression model was crafted using TensorFlow 2.3.0,

whereas the StyleGAN2 model runs on the older TensorFlow 1.14. These

TensorFlow versions ‘‘follow fundamentally different programming paradigm[s]’’43

and thus cannot trivially be run together. Furthermore, the hardness regression

model also runs a more recent version of NumPy (1.19.2 vs. 1.14.3) and Python

(3.8.12 vs. 3.6). While one may convert one or two of the package dependencies

into one unified environment, the simpler solution we implemented was to create

two separate virtual environments for the two models, respectively. Then, the ge-

netic algorithm starts up in the Python 3.6 StyleGAN2 environment, and the hard-

ness regression model is repeatedly called as a subprocess with its own Python

3.8.12 environment for the competition step at the end of every generation. This or-

der was chosen because it was computationally quicker to reload the hardness

regression model than the StyleGAN2 model. In this way, the hardness regression

model can work together with StyleGAN2 while retaining compatibility with more

recent software packages.
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