
Total Eclipse of the Enclave: Detecting Eclipse
Attacks From Inside TEEs

Haofan Zheng∗
UC Santa Cruz

hzheng6@ucsc.edu

Tuan Tran∗
UC Santa Cruz

atran18@ucsc.edu

Owen Arden
UC Santa Cruz

owen@soe.ucsc.edu

Abstract—Enclave applications that rely on blockchains for
integrity and availability are vulnerable to eclipse attacks. In this
paper, we present an approach for reliably detecting extended
eclipse attacks, even when the adversary controls all network
connectivity. By monitoring changes to the difficulty parameter
in Proof-of-Work (PoW) protocols, our algorithm detects sup-
pression of new blocks, as well as difficulty-lowering attacks that
attempt to force an enclave client onto a malicious fork mined
solely by an attacker. We present analysis that attackers have
negligible probability of evading our block monitoring algorithm,
and demonstrate its robustness to most historical fluctuations in
difficulty on the Ethereum blockchain, resulting in a very low
false-positive rate.

I. INTRODUCTION

One of the benefits permissionless blockchains offer is
censorship resistance: adversaries cannot suppress transactions
from clients to the blockchain, nor can they suppress the
publication of new transactions. In most Proof-of-Work (PoW)
blockchains, this guarantee holds as long as adversaries do not
control a majority of the computational power in the network.
An additional, but often overlooked, requirement is that clients
must be able to create reliable network connections with at
least some honest blockchain nodes.

Heilman et al. [1] discuss how an adversary can monopolize
these connections to perform eclipse attacks that suppress
communication between targeted clients and blockchain nodes.
Most defenses against eclipse attacks involve diversifying
connections to peers in the hopes that at least one connection
is not controlled by the attacker.

Enclave applications run in a special restricted mode where
even privileged code (such as the OS) cannot inspect or modify
the enclave’s code or memory, making it possible to run
confidential applications on untrusted hosts that produce high-
integrity outputs. The reliance on the OS for inputs and outputs
also means that enclave mechanisms alone cannot provide any
availability guarantees. Furthermore, since the enclave depends
exclusively on the (potentially malicious) host for all network
communication, mitigating eclipse attacks by creating more
connections is not possible.

Even though an attacker can only directly access coins
it possesses the keys for, eclipse attacks can have serious

∗ Authors contributed equally.

Connect to
1.1.1.1App OS

Connect to
1.1.1.1

Trusted Layers

MsgMsg

(a) Traditional Application

Connect to
1.1.1.1

Trusted Layers Untrusted Layers

OS

Connect to
1.0.0.1

Msg' Msg
App

Enclave

(b) Enclave Application

Fig. 1: Threat Model Comparison

consequences. For example, an attacker may try to sup-
press incoming blocks containing time-sensitive transactions
(e.g., revocation notifications, payment channel closures, etc.)
published to the blockchain. Alternatively, the attacker may
try to lower the difficulty to a level where it can generate
malicious blocks within the expected block time. Using double
spend attacks, the attacker can try to extract value from the
enclave without spending coins on the real chain. In both
cases, shutting down the enclave prevents it from operating
on incomplete or malicious information.

Figure 1 compares a threat model of a traditional application
with an enclave application, with both applications wanting to
communicate with the remote node on IP address 1.1.1.1.
The OS layer establishes the connection and forwards the
message; however, an untrustworthy OS could intercept the
message and manipulate or suppress it in the enclave applica-
tion threat model. Cryptographic protocols such as TLS can
protect the message content, but cannot guarantee delivery.

The main contribution of this paper is a novel algorithm that
can reliably detect eclipse attacks both inside and outside of
the enclave environment. Our algorithm continuously monitors
changes in block difficulty to detect an eclipse attack in the
enclave. We evaluate this algorithm by running it against all
historical blocks in Ethereum.

II. RELATED WORKS

A. Eclipse Attacks in General

Castro et al. [2] introduced eclipse attacks on structured
peer-to-peer overlay networks. Heilman et al. [1] then realized978-0-7381-1420-0/21/$31.00 ©2021 IEEE

hzheng6@ucsc.edu
atran18@ucsc.edu
owen@soe.ucsc.edu

this style of attack in Bitcoin, wherein an attacker can seize
control of a sufficient number of IP addresses of peers of the
victim node. Upon a successful eclipse attack, several other
attacks can then be performed, such as selfish mining and
double-spending transactions. The authors suggest diversifying
the peer connection to mitigate this attack, but this relies on
at least some of those connections to be outside the control
of the attacker. In an enclave application, all connections may
be intercepted by the host.

B. Eclipse Attack with Enclaves

Ekiden [3] addresses eclipse attacks in blockchain ap-
plications built with enclaves using a Proof-of-Publication
(PoP) protocol. This approach requires the host to publish an
enclave-generated nonce to the blockchain within a limited
time. A successful PoP shows that the block containing the
nonce is fresh and valid. However, relying solely on PoP for
ensuring timely block delivery is too expensive since each PoP
requires a blockchain transaction fee.

Tesseract [4] defines a time threshold by which the enclave
must receive a new block from the Bitcoin network; otherwise,
it waits for n more confirmation blocks to ensure the block was
not mined by the attacker during an eclipse attack. Tesseract
does not monitor the block difficulty, so an attacker could
take advantage of drops in the difficulty to continue mining
blocks in a malicious chain during the confirmation period.
Additionally, blockchains with faster block arrival rates (such
as Ethereum) typically have higher variance in arrival times, so
choosing a time threshold that minimizes both false positives
and negatives may be more difficult.

III. SYSTEM OVERVIEW

A. Threat Model

We assume the attacker physically and effectively controls
no more than some percentage q of the total network hash
power, Q. The biggest Ethereum mining pool at the time
of writing has around 26%Q [5]. To make our exposition
more concrete, we choose q = 30% as an upper bound,
but this percentage is configurable. A lower percentage may
be sufficient for many applications; a higher percentage may
be required for smaller Ethereum-based blockchains (e.g.,
Ethereum Classic). To simplify our model, we assume q is
the attacker’s effective hash rate during the eclipse attack.
Withholding their hash power could potentially lower the
difficulty of the network overall (rather than just the enclave),
making it easier for the attacker to mine blocks on a malicious
fork, but new miners joining to take advantage of the lower
difficulty could undermine the effectiveness of this technique.

The host executing the enclave may be malicious, and
controls all other software layers including the network stack.
Thus, a malicious OS could hijack the network connection or
suppress messages.

B. Difficulty Monitoring

Our primary mechanism for detecting eclipse attacks is
based on monitoring the current difficulty level, θ, set by the

PoW protocol. During normal operation, θ is typically around
13 ·Q, which targets an expected arrival time of 13 seconds.

One subtle point is that this arrival time accounts both for
the hash power spent on mining the next primary block as well
as uncle blocks, which are valid blocks that arrived later than
the previous primary block. Based on Ethereum’s Difficulty
Adjustment Algorithm (DAA) formula [6], [7], primary blocks
that have uncle blocks may arrive within 18 seconds, instead
of 9 seconds, to avoid lowering the difficulty value. However,
splitting the hash power in half between uncle blocks and
primary blocks to get twice the time does not result in
strategic advantage. Therefore, we assume the attacker spends
its hash power generating blocks on a single malicious fork
and produces no uncle blocks.

During an eclipse attack, the attacker must generate blocks
every 9 seconds to avoid a difficulty drop.1 Initially, this
is difficult for the attacker, but each time the attacker fails,
Ethereum’s DAA lowers the difficulty by a maximum of 5%.
For an attacker with 30% · Q hash power, θ will eventually
approach 2.7 ·Q. At this point, the attacker can expect to mine
blocks fast enough to maintain the difficulty level indefinitely.
We define the difficulty at which the attacker can maintain a
block arrival rate of 9 seconds as θmin = 9 · (q ·Q).

While θmin is the boundary at which the attacker has
complete control over the chain, applications may wish to set
a lower difficulty drop as a cutoff point. The lower the θmin,
the more confirmations are necessary to have high assurance
that the most recent blocks were not mined by the attacker.
Setting a more conservative bound on the drop will require
fewer confirmations, at the price of potential false positives:
blocks that trigger our algorithm while the system is not
under an eclipse attack. We evaluate this tradeoff in detail in
Section V. Once the difficulty nears θmin, however, no number
of confirmations can eliminate the possibility of an attack.

Ethereum’s DAA adjusts the difficulty value from block
to block,2 so we must monitor difficulty drops over time to
prevent attackers from incrementally dropping the difficulty
value. The difficulty level adjusts naturally as miners leave or
join the network, so we need to establish a stable difficulty
level for a given time span, and adjust this level over time.

Beginning at the genesis block, the chain is split into fixed
checkpoint ranges of Nc blocks. We set the current difficulty
level as the median of the blocks in the previous (complete)
checkpoint range. Nc should be large enough to make it
impossible for an attacker to maintain a θ higher than θmin

after Nc blocks but small enough to avoid false positives.
Current enclave platforms do not provide a trusted world

clock time, but some (e.g., Intel SGX [8], [9]) provide trusted
elapsed time, which is sufficient for our purposes. We only
require that the block time, calculated based on the block
timestamps, is reasonably close to the elapsed time. Even
if the timestamp is malicious, Ethereum bounds the drift of
timestamps, so the influence on difficulty values is small.

1Given Ethereum’s DAA [7], if the current block arrived within 9 seconds
of its parent, then the next block’s difficulty will not decrease

2In contrast, Bitcoin adjusts the difficulty every 2016 blocks.

Sync
Block(s)

...

Bootstrap-I Bootstrap-II Sync

Genesis
Block

Current
Chk pt

Candidate
Chk pt

New
Blocks

...

RuntimeInitialization

Re-sync if failed

Fig. 2: Difficulty Monitor initialization

C. Accepting transactions in the enclave

When clients and enclaves communicate, they compare the
hash of the most recent checkpoint to ensure both parties are
following the same fork of the blockchain. Applications may
also use Nc as an upper bound on the number of confirmations
needed to consider a block finalized. This upper bound is
conservative since our monitor prevents sustainable forks of
the blockchain during an eclipse attack.

Within Nc blocks, attackers may have a non-negligible
chance of mining a sequence of malicious blocks, but the
chance of sustaining that sequence for Nc blocks without
detection is negligible. It is possible that a smaller number of
confirmations would be sufficient to guard against temporary
forks, but we leave this question for future work.

IV. DIFFICULTY MONITOR

A. Initialization

Our difficulty monitor has three initialization phases, shown
in Figure 2, which ensure the legitimacy of the existing blocks.

a) Bootstrap-I Phase: The monitor loads and processes
all blocks starting from the genesis block to the latest check-
point block. Blocks associated with well-known false positives
(such as hard forks), are classified as confirmed benign blocks
and included when determining the difficulty of the checkpoint
range they appear in.

b) Bootstrap-II Phase: Next, the monitor loads all blocks
published after the checkpoint block. Difficulty changes will
be checked with the same process used at runtime, but without
restrictions on the elapsed time.

c) Sync Phase: Finally, the monitor synchronizes with
the blockchain by publishing a sync message, similar to the
PoP used by Ekiden. Unlike Ekiden, we only require a sync
message at initialization. This prevents attackers from feeding
a pre-mined malicious fork to the monitor. Thus, it ensures
the freshness of both the Sync block and following blocks.
Sync messages contain a nonce generated by the monitor, and
a block containing the sync message with the matching nonce
must be received by the enclave within the expected block
time, which is around 13 seconds in Ethereum. If the sync
message fails to be published within the restricted time limit,
the host will need to perform a re-sync by publishing a new
nonce until a sync block is accepted.

B. Runtime Difficulty Monitoring

New blocks received by the monitor are first validated as
normal. Then the monitor determines the nominal block time
based on the block timestamps. If the difference between the

Latest
Blocks

...Previous
Chk pt

Block W

Candidate
Chk pt
Block Y

Latest
Blocks

...Old
Chk pt

Block W

Previous
Chk pt
Block X

Current
Chk pt
Block Y

Candidate
Chk pt
Block Z

...

NC Blocks NC Blocks < NC Blocks

NC Blocks NC Blocks NC Blocks < NC Blocks

Current
Chk pt
Block X

Fig. 3: Checkpoint Update

trusted elapsed time and the nominal block time is greater
than 15 seconds, the enclave rejects the block to prevent the
attacker from either lowering the difficulty in primary chain by
manipulating timestamps, or maintaining the difficulty in ma-
licious chain with pre-dated timestamps. Temporary forks in
the chain require each branch to be monitored simultaneously.
Our documentation discusses further details [10].

Once the new block has passed the initial validation, the
monitor compares θnew presented in the new block with the
θmin calculated based on the formulas shown below.

θref,i = Median([θ(i−1)×Nc
, · · · θi×Nc

]) (1)
θmin,i = θref,i × (1− p) (2)

The monitor first gets the median of difficulty values among
the blocks in the previous checkpoint window, which have
been checked and are finalized.3 By using the median as
a reference value, we minimize false positives and false
negatives caused by outliers. Next, the monitor uses θref to
calculate the θmin, where p is the percentage drop allowed (set
by the application). The new block is accepted if θnew is higher
than θmin.

The attacker may choose to provide no blocks at all, pre-
venting the monitor from determining how much the difficulty
value has dropped. To address this issue, the monitor will
periodically estimate the current difficulty value, θest, by using
the trusted elapsed time, and compares θest with θmin. Addi-
tionally, the maximum allowable block time in Ethereum’s
DAA (around 900 seconds) prevents the difficulty value from
dropping more than 5% in each block. This value also serves
as the maximum wait time (T∆Max), and blocks arriving later
than this time will trigger a shutdown.

C. Checkpoint Update

The monitor will automatically update the checkpoint every
Nc blocks. As shown in Figure 3, the candidate checkpoint is
the block that has less than Nc blocks ahead and is too new
to be considered finalized. Once there are Nc blocks found
ahead of the candidate checkpoint, the candidate will become
the new checkpoint, and the Ncth block ahead of the new
checkpoint will become the next candidate checkpoint.

3Finalized blocks are blocks having large number of successors and
negligible probability of being reorganized.

Test Case
Index θmin Nc

Num of False
Detections

False
Negative Rate

1 50% · θ 1270 2 < 2−128

2 60% · θ 880 2 < 2−128

3 70% · θ 620 3 < 2−128

4 80% · θ 430 5 < 2−128

5 80% · θ 610 7 < 2−256

6 90% · θ 275 17 < 2−128

7 90% · θ 420 23 < 2−256

TABLE I: Evaluating the difficulty detection algorithm under
various checkpoints sizes against the entire Ethereum database.

Genesis
Block

H-1 @
200K

H-2 @
1,150K H-3 @

1,920K

H-4 @
2,463K

H-5 @
2,675K

H-6 @
4,370K

H-7 @
7,280K

H-8 @
9,069K

H-9 @
9,200KB-1 B-2 A-1 U-1 B-3

False
Pos. By

Test Case:
1 to 7 7 3 to 7 6, 7 6, 7 7 1 to 7 5, 6, 7 7

H: Hard Fork | B: Bugfix | A: Attack | U: Update
Table Legends:

Fig. 4: Timeline of major events that cause false detections.
The hardforks are [13], [14], [15], [16], [17], [18], [19], [20],
and [21], respectively. The bugs are [22], [23], and [24],
respectively. The attack is [25]. The major API update is [26].

V. EVALUATION AGAINST HISTORICAL BLOCKS

We implemented our methodology on top of Geth [11], the
official Go implementation of the Ethereum client, since it is
the most mature and widely used client. To evaluate the false
positive rate under different parameters, we ran the monitor’s
algorithm against 10,900,373 historical blocks in Ethereum.
We released our custom Geth database connector, experiment
code and more technical details at [12], [10].

A. False Negative Rate

The false negative rate, as shown in Table I, represents the
possibility of an attacker maintaining the difficulty value at the
level higher than θmin within Nc blocks. It is calculated based
on the exponential distribution [4] established with attacker’s
hash power and network difficulty [10].

All combinations of Nc and θmin that we have examined
result in extremely low false negative rates: equivalent to brute-
forcing a 128 or 256 bit key.

B. Difficulty Monitoring and Checkpoint Sizes

Table I also shows false positives that triggered our diffi-
culty monitoring algorithm under various θmin and Nc. For
all configurations, the algorithm resulted in multiple false
detections. We have investigated all of these false positives
and found that, as shown in Figure 4, Most of these events
correspond to hard forks. During hard forks, network hash
power fluctuates significantly due to miners upgrading their
nodes. There are also instances where the detections were

caused by DoS attacks [25] addressed with software upgrades.
In both cases, enclave components would need to be shutdown
and replaced by one built with the latest protocol anyway, so
the monitor’s behavior is not as concerning.

When θmin is set to a high value, such as 90%θ, the monitor
becomes more sensitive to smaller events, such as bugfixes and
API updates. In the 7th test case, there is one false positive
caused by a 10% difficulty drop that we could not tie protocol-
related events but could be due to miners leaving for Ethereum
Classic, which was increasing in value at the time.

When θmin is set to a higher value, the monitor needs a
smaller checkpoint size (i.e., Nc) to confirm that the recent Nc

blocks have a negligible chance to be mined by the attacker. As
Nc increases, so does the number of false positives since the
checkpoint captures a larger time interval surrounding hard
forks. Thus there is a tradeoff between Nc and θmin. The
application may set a larger θmin or Nc to make malicious
forks more difficult, but may incur more false detections since
difficulty drops accumulate over a longer period.

Therefore, setting a reasonable θmin is a key to avoid false
positives, and then configuring a reasonable Nc to reach the
desired false negative rate level. For instance, with θmin set to
80%θ, all those false positives can be avoided if the enclave
operator times the upgrade correctly; a lower Nc with a 70%θ
or lower will also have the same sensitivity to difficulty drops.

C. Block times

Currently, the average block time in Ethereum is around 13
seconds. To find a proper value for the T∆Max, which is used
to prevent attackers from remaining silent forever, we record
the top 100 block times from historical blocks in Ethereum.
Our results show that while the majority of the blocks do
arrive within the expected time, all of the top 100 blocks
took over 200s to arrive, with 91 blocks taking less than
300 seconds, 7 blocks less than 400 seconds, 1 block less
than 500 seconds, and one outlier that took 13013 seconds.
Upon closer inspection, almost all of these blocks were mined
very close to the Byzantium hardfork [18]. The reason that
outlier block took almost four days to be mined is because of
a consensus issue (which is B-1 in Figure 4) in Geth that
caused miners to have to switch to alternative clients[22].
Given these results, choosing the maximum time given in
Ethereum’s DAA (around 900s) should give no false positives
during normal operation; for applications that are very time-
sensitive, a reasonable T∆Max would be 400 seconds.

VI. CONCLUSION

Blockchain applications built with an enclave are vulner-
able to eclipse attacks. In this paper, we present a novel
solution to this problem using a PoW difficulty monitor that
is inexpensive, immune to long-range attacks, and provides
the maximum reaction time. Based on the evaluation against
historical blocks, choices for θmin and Nc with negligible false
negative rates are unlikely to trigger false positives.

REFERENCES

[1] E. Heilman, A. Kendler, A. Zohar, and S. Goldberg, “Eclipse
attacks on bitcoin’s peer-to-peer network,” in 24th USENIX Security
Symposium (USENIX Security 15). USENIX Association, Aug. 2015,
pp. 129–144. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity15/technical-sessions/presentation/heilman

[2] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. S. Wallach,
“Secure routing for structured peer-to-peer overlay networks,” SIGOPS
Oper. Syst. Rev., vol. 36, no. SI, p. 299–314, Dec. 2003. [Online].
Available: https://doi.org/10.1145/844128.844156

[3] R. Cheng, F. Zhang, J. Kos, W. He, N. Hynes, N. Johnson,
A. Juels, A. Miller, and D. Song, “Ekiden: A platform for
confidentiality-preserving, trustworthy, and performant smart contracts,”
in 2019 IEEE European Symposium on Security and Privacy
(EuroS&P). IEEE, 2019, pp. 185–200. [Online]. Available: https:
//doi.org/10.1109/EuroSP.2019.00023

[4] I. Bentov, Y. Ji, F. Zhang, L. Breidenbach, P. Daian, and A. Juels,
“Tesseract: Real-time cryptocurrency exchange using trusted hardware,”
in Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 1521–1538. [Online].
Available: https://doi.org/10.1145/3319535.3363221

[5] PoolWatch.io, “Best ethereum mining pools for 2020,” 2020. [Online].
Available: https://www.poolwatch.io/coin/ethereum

[6] V. Buterin, “A next generation smart contract & decentralized application
platform,” Ethereum Foundation, Tech. Rep., 2013, ethereum White
Paper.

[7] go-ethereum, “consensus.go,” https://github.com/ethereum/go-ethereum/
blob/4b2ff1457ac28fb2894485194e0e344e84c2bcd7/consensus/ethash/
consensus.go, 2020. [Online]. Available: https://github.com/ethereum/
go-ethereum/blob/4b2ff1457ac28fb2894485194e0e344e84c2bcd7/
consensus/ethash/consensus.go

[8] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi,
V. Shanbhogue, and U. R. Savagaonkar, “Innovative instructions and
software model for isolated execution,” in Proceedings of the 2Nd
International Workshop on Hardware and Architectural Support for
Security and Privacy, ser. HASP ’13. ACM, 2013, pp. 10:1–10:1.
[Online]. Available: http://doi.acm.org/10.1145/2487726.2488368

[9] I. Anati, S. Gueron, S. Johnson, and V. Scarlata, “Innovative technology
for CPU based attestation and sealing,” in Proceedings of the 2Nd
International Workshop on Hardware and Architectural Support for
Security and Privacy, ser. HASP ’13. ACM, 2013, pp. 10:1–10:1.
[Online]. Available: http://doi.acm.org/10.1145/2487726.2488368

[10] H. Zheng and T. Tran, “Decentdiffmonitorexpr,” 2020. [Online].
Available: https://github.com/zhenghaven/DecentDiffMonitorExpr

[11] Ethereum Team, “Go ethereum: Official go implementation of the
ethereum protocol,” https://geth.ethereum.org/. [Online]. Available:
https://geth.ethereum.org/

[12] H. Zheng and T. Tran, “Gethdbreader,” 2020. [Online]. Available:
https://github.com/zhenghaven/GethDBReader

[13] S. Tual, “Ethereum protocol update 1,” https://blog.ethereum.org/
2015/08/04/ethereum-protocol-update-1/, 2015. [Online]. Available:
https://blog.ethereum.org/2015/08/04/ethereum-protocol-update-1/

[14] J. Wilcke, “Homestead release,” https://blog.ethereum.org/2016/02/29/
homestead-release/, 2016. [Online]. Available: https://blog.ethereum.
org/2016/02/29/homestead-release/

[15] V. Buterin, “Hard fork completed,” https://blog.ethereum.org/2016/
07/20/hard-fork-completed/, 2016. [Online]. Available: https://blog.
ethereum.org/2016/07/20/hard-fork-completed/

[16] H. Jameson, “Faq: Upcoming ethereum hard fork,” https://blog.
ethereum.org/2016/10/18/faq-upcoming-ethereum-hard-fork/, 2016.
[Online]. Available: https://blog.ethereum.org/2016/10/18/faq-
upcoming-ethereum-hard-fork/

[17] ——, “Hard fork no. 4: Spurious dragon,” https://blog.ethereum.org/
2016/11/18/hard-fork-no-4-spurious-dragon/, 2016. [Online]. Available:
https://blog.ethereum.org/2016/11/18/hard-fork-no-4-spurious-dragon/

[18] Ethereum Team, “Byzantium hf announcement,” https://blog.
ethereum.org/2017/10/12/byzantium-hf-announcement/, 2017. [On-
line]. Available: https://blog.ethereum.org/2017/10/12/byzantium-hf-
announcement/

[19] H. Jameson, “Ethereum constantinople/st. petersburg upgrade announce-
ment,” https://blog.ethereum.org/2019/02/22/ethereum-constantinople-
st-petersburg-upgrade-announcement/, 2019. [Online]. Avail-

able: https://blog.ethereum.org/2019/02/22/ethereum-constantinople-st-
petersburg-upgrade-announcement/

[20] ——, “Ethereum istanbul upgrade announcement,”
https://blog.ethereum.org/2019/11/20/ethereum-istanbul-upgrade-
announcement/, 2019. [Online]. Available: https://blog.ethereum.org/
2019/11/20/ethereum-istanbul-upgrade-announcement/

[21] ——, “Ethereum muir glacier upgrade an-
nouncement,” https://blog.ethereum.org/2019/12/23/ethereum-muir-
glacier-upgrade-announcement/, 2019. [Online]. Avail-
able: https://blog.ethereum.org/2019/12/23/ethereum-muir-glacier-
upgrade-announcement/

[22] J. Steiner, “Security alert [consensus issue],” https://blog.ethereum.org/
2015/08/20/security-alert-consensus-issue/, 2015. [Online]. Available:
https://blog.ethereum.org/2015/08/20/security-alert-consensus-issue/

[23] ——, “Security alert – [implementation bug in go clients causing
increase in difficulty – fixed – miners check and update go clients],”
https://blog.ethereum.org/2015/09/03/security-alert-implementation-
bug-in-go-clients-causing-increase-in-difficulty-fixed-miners-check-
and-update-go-clients-if-necessary/, 2015. [Online]. Available:
https://blog.ethereum.org/2015/09/03/security-alert-implementation-
bug-in-go-clients-causing-increase-in-difficulty-fixed-miners-check-
and-update-go-clients-if-necessary/

[24] Ethereum Team, “Release version 0.4.14 ethereum/solidity,” https:
//github.com/ethereum/solidity/releases/tag/v0.4.14, 2017. [Online].
Available: https://github.com/ethereum/solidity/releases/tag/v0.4.14

[25] J. Wilcke, “The ethereum network is currently undergo-
ing a dos attack,” https://blog.ethereum.org/2016/09/22/ethereum-
network-currently-undergoing-dos-attack/, 2016. [Online]. Avail-
able: https://blog.ethereum.org/2016/09/22/ethereum-network-currently-
undergoing-dos-attack/

[26] Ethereum Team, “Release let there be light (v1.5.0) ethereum/go-
ethereum,” https://github.com/ethereum/go-ethereum/releases/tag/v1.5.0,
2016. [Online]. Available: https://github.com/ethereum/go-ethereum/
releases/tag/v1.5.0

https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/heilman
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/heilman
https://doi.org/10.1145/844128.844156
https://doi.org/10.1109/EuroSP.2019.00023
https://doi.org/10.1109/EuroSP.2019.00023
https://doi.org/10.1145/3319535.3363221
https://www.poolwatch.io/coin/ethereum
https://github.com/ethereum/go-ethereum/blob/4b2ff1457ac28fb2894485194e0e344e84c2bcd7/consensus/ethash/consensus.go
https://github.com/ethereum/go-ethereum/blob/4b2ff1457ac28fb2894485194e0e344e84c2bcd7/consensus/ethash/consensus.go
https://github.com/ethereum/go-ethereum/blob/4b2ff1457ac28fb2894485194e0e344e84c2bcd7/consensus/ethash/consensus.go
https://github.com/ethereum/go-ethereum/blob/4b2ff1457ac28fb2894485194e0e344e84c2bcd7/consensus/ethash/consensus.go
https://github.com/ethereum/go-ethereum/blob/4b2ff1457ac28fb2894485194e0e344e84c2bcd7/consensus/ethash/consensus.go
https://github.com/ethereum/go-ethereum/blob/4b2ff1457ac28fb2894485194e0e344e84c2bcd7/consensus/ethash/consensus.go
http://doi.acm.org/10.1145/2487726.2488368
http://doi.acm.org/10.1145/2487726.2488368
https://github.com/zhenghaven/DecentDiffMonitorExpr
https://geth.ethereum.org/
https://geth.ethereum.org/
https://github.com/zhenghaven/GethDBReader
https://blog.ethereum.org/2015/08/04/ethereum-protocol-update-1/
https://blog.ethereum.org/2015/08/04/ethereum-protocol-update-1/
https://blog.ethereum.org/2015/08/04/ethereum-protocol-update-1/
https://blog.ethereum.org/2016/02/29/homestead-release/
https://blog.ethereum.org/2016/02/29/homestead-release/
https://blog.ethereum.org/2016/02/29/homestead-release/
https://blog.ethereum.org/2016/02/29/homestead-release/
https://blog.ethereum.org/2016/07/20/hard-fork-completed/
https://blog.ethereum.org/2016/07/20/hard-fork-completed/
https://blog.ethereum.org/2016/07/20/hard-fork-completed/
https://blog.ethereum.org/2016/07/20/hard-fork-completed/
https://blog.ethereum.org/2016/10/18/faq-upcoming-ethereum-hard-fork/
https://blog.ethereum.org/2016/10/18/faq-upcoming-ethereum-hard-fork/
https://blog.ethereum.org/2016/10/18/faq-upcoming-ethereum-hard-fork/
https://blog.ethereum.org/2016/10/18/faq-upcoming-ethereum-hard-fork/
https://blog.ethereum.org/2016/11/18/hard-fork-no-4-spurious-dragon/
https://blog.ethereum.org/2016/11/18/hard-fork-no-4-spurious-dragon/
https://blog.ethereum.org/2016/11/18/hard-fork-no-4-spurious-dragon/
https://blog.ethereum.org/2017/10/12/byzantium-hf-announcement/
https://blog.ethereum.org/2017/10/12/byzantium-hf-announcement/
https://blog.ethereum.org/2017/10/12/byzantium-hf-announcement/
https://blog.ethereum.org/2017/10/12/byzantium-hf-announcement/
https://blog.ethereum.org/2019/02/22/ethereum-constantinople-st-petersburg-upgrade-announcement/
https://blog.ethereum.org/2019/02/22/ethereum-constantinople-st-petersburg-upgrade-announcement/
https://blog.ethereum.org/2019/02/22/ethereum-constantinople-st-petersburg-upgrade-announcement/
https://blog.ethereum.org/2019/02/22/ethereum-constantinople-st-petersburg-upgrade-announcement/
https://blog.ethereum.org/2019/11/20/ethereum-istanbul-upgrade-announcement/
https://blog.ethereum.org/2019/11/20/ethereum-istanbul-upgrade-announcement/
https://blog.ethereum.org/2019/11/20/ethereum-istanbul-upgrade-announcement/
https://blog.ethereum.org/2019/11/20/ethereum-istanbul-upgrade-announcement/
https://blog.ethereum.org/2019/12/23/ethereum-muir-glacier-upgrade-announcement/
https://blog.ethereum.org/2019/12/23/ethereum-muir-glacier-upgrade-announcement/
https://blog.ethereum.org/2019/12/23/ethereum-muir-glacier-upgrade-announcement/
https://blog.ethereum.org/2019/12/23/ethereum-muir-glacier-upgrade-announcement/
https://blog.ethereum.org/2015/08/20/security-alert-consensus-issue/
https://blog.ethereum.org/2015/08/20/security-alert-consensus-issue/
https://blog.ethereum.org/2015/08/20/security-alert-consensus-issue/
https://blog.ethereum.org/2015/09/03/security-alert-implementation-bug-in-go-clients-causing-increase-in-difficulty-fixed-miners-check-and-update-go-clients-if-necessary/
https://blog.ethereum.org/2015/09/03/security-alert-implementation-bug-in-go-clients-causing-increase-in-difficulty-fixed-miners-check-and-update-go-clients-if-necessary/
https://blog.ethereum.org/2015/09/03/security-alert-implementation-bug-in-go-clients-causing-increase-in-difficulty-fixed-miners-check-and-update-go-clients-if-necessary/
https://blog.ethereum.org/2015/09/03/security-alert-implementation-bug-in-go-clients-causing-increase-in-difficulty-fixed-miners-check-and-update-go-clients-if-necessary/
https://blog.ethereum.org/2015/09/03/security-alert-implementation-bug-in-go-clients-causing-increase-in-difficulty-fixed-miners-check-and-update-go-clients-if-necessary/
https://blog.ethereum.org/2015/09/03/security-alert-implementation-bug-in-go-clients-causing-increase-in-difficulty-fixed-miners-check-and-update-go-clients-if-necessary/
https://github.com/ethereum/solidity/releases/tag/v0.4.14
https://github.com/ethereum/solidity/releases/tag/v0.4.14
https://github.com/ethereum/solidity/releases/tag/v0.4.14
https://blog.ethereum.org/2016/09/22/ethereum-network-currently-undergoing-dos-attack/
https://blog.ethereum.org/2016/09/22/ethereum-network-currently-undergoing-dos-attack/
https://blog.ethereum.org/2016/09/22/ethereum-network-currently-undergoing-dos-attack/
https://blog.ethereum.org/2016/09/22/ethereum-network-currently-undergoing-dos-attack/
https://github.com/ethereum/go-ethereum/releases/tag/v1.5.0
https://github.com/ethereum/go-ethereum/releases/tag/v1.5.0
https://github.com/ethereum/go-ethereum/releases/tag/v1.5.0

	Introduction
	Related Works
	Eclipse Attacks in General
	Eclipse Attack with Enclaves

	System Overview
	Threat Model
	Difficulty Monitoring
	Accepting transactions in the enclave

	Difficulty Monitor
	Initialization
	Runtime Difficulty Monitoring
	Checkpoint Update

	Evaluation Against Historical Blocks
	False Negative Rate
	Difficulty Monitoring and Checkpoint Sizes
	Block times

	Conclusion
	References

