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Abstract—Infectious disease forecasting for ongoing epidemics
has been traditionally performed, communicated, and evaluated
as numerical targets – 1, 2, 3, and 4 week ahead cases, deaths,
and hospitalizations. While there is great value in predicting
these numerical targets to assess the burden of the disease, we
argue that there is also value in communicating the future trend
(description of the shape) of the epidemic – for instance, if the
cases will remain flat or a surge is expected. To ensure what is
being communicated is useful we need to be able to evaluate how
well the predicted shape matches with the ground truth shape.
Instead of treating this as a classification problem (one out of n
shapes), we define a transformation of the numerical forecasts
into a “shapelet”-space representation. In this representation,
each dimension corresponds to the similarity of the shape with
one of the shapes of interest (a shapelet). We prove that this
representation satisfies the property that two shapes that one
would consider similar are mapped close to each other, and
vice versa. We demonstrate that our representation is able to
reasonably capture the trends in COVID-19 cases and deaths
time-series. With this representation, we define an evaluation
measure and a measure of agreement among multiple models.
We also define the shapelet-space ensemble of multiple models
as the mean of their shapelet-space representations. We show
that this ensemble is able to accurately predict the shape of the
future trend for COVID-19 cases and trends. We also show that
the agreement between models can provide a good indicator of
the reliability of the forecast.

Index Terms—Time-series forecasting, infectious disease fore-
casting, ensemble, trend evaluation.

I. INTRODUCTION

Infectious disease forecasting and its communication is a
crucial aspect of epidemic management. There have been
various collaborative efforts for short-term forecasting during
epidemics including Influenza seasons [1], COVID-19 [2]–[4],
and Zika [5], where multiple research groups independently
generate forecasts that are combined to inform the public.
Traditionally, the forecasts are communicated as time-series
with prediction intervals. Evaluation and communication are
closely related – forecasts are rigorously evaluated to en-
sure that what is being communicated is meaningful. These
evaluations are often performed by treating the problem as
a regression problem – comparing predicted values (e.g.,
incident hospitalizations and deaths) over a horizon (e.g., 1,
2,3, and 4 week ahead) to the observed values.

While communicating time-series forecasts has value for
assessing the burden of the disease, we argue that there

Fig. 1: Value in Predicting Patterns: The purple forecast always
predicts a flatline. The red forecast is able to predict the
existence of a surge (grey line) but overpredicts the intensity.
The red forecast is considered worse even though it has more
useful information about the future.

is also value in communicating and evaluating a qualitative
description of the future trend. This is due to the following
reasons. First, the general public may be interested in knowing
the future trends, such as “is there going to be a surge”, and
“when will the cases turn around”. Second, evaluation metrics
for regression may not always convey the usefulness of a
model. For instance, consider a model M1 that is always able
to predict if a surge is going to happen, but overestimates its
severity (Figure 1). Consider another model M2 that always
predicts a flat forecast – each of the future weeks will have
the same incidence as the recent week. The popular metric
mean absolute error may assign a lower error to M2 even
though M1 conveys more useful information than M2. Third,
noise due to reporting delays affects the observed number of
incident values that may deviate from the true incident values.
This could penalizing forecasts that were even closer to the
true incidents but slightly different from the noisy reported978-1-6654-8045-1/22/$31.00 ©2018 IEEE



Fig. 2: Communication of numerical forecasts can be over-
whelming to the general public and may create distrust. While
there is disagreement among the models regarding the exact
numbers, there is agreement on the trend.

incidents. However, a qualitative description over a horizon
(say “increase” or “decrease”) is less sensitive to such noise.
Finally, there can be frequent disagreement between exact
numbers in the time series predictions and uncertainty across
models. Without an understanding of the model assumptions
and approaches, the results can be overwhelming and may
create an impression in the general public that the models are
unreliable (see Figure 2).

Fig. 3: An example of communication of qualitative descrip-
tion of epidemic forecasts .

To address the evaluation of forecasts based on a qualitative
description, we propose a novel shapelet-based appraoch.
In this approach, we define a set of d shapes of interest
called shapelets. The given time-series is then transformed
into a d-dimensional space where each dimension encodes
the similarity of the time-series to a shapelet. This shapelet-
space representation allows us to compare two time series,

which we can use to define evaluation measures as well as
agreement across models. Since each dimension corresponds
to a particular shapelet, the representation is interpretable
and can be directly used for communication. As an example,
Figure 3 shows a potential way to communicate the results to
the public, where a “heatmap” represents the value associated
with each dimension (shapelet) in the predicted shapelet-space.
Specifically, our contributions are as follows. (1) We propose a
novel interpretable time-series representation to evaluate short-
term forecasts using the predicted shape and the ground truth
shape. (2) We prove that our representation satisfies desirable
properties that would map similar shapes to near points. (3) We
demonstrate that the ensemble of shapes generated by trans-
forming individual model predictions into our representation
is able to predict the future shape more accurately than the
shape obtained directly from the COVIDhub ensemble [6].
Specifically, we demonstrate that our ensemble of shapes can
predict a shift in trend significantly better than the COVIDhub
ensemble. (4) We also demonstrate that agreement among the
models is a good indicator of reliability of the predictions. Our
code to reproduce our results is available on Github1.

II. RELATED WORK

Various measures of errors have been used in infectious dis-
ease forecasting depending on the specific tasks as described
below.

Point forecasts refer to the forecasting of one number for
each ground truth of the future, such as the predicted number
of new cases on a future date and declaring a future date
when the peak is expected to happen. For such forecasts,
mean absolute error (MAE) is defined for each prediction ŷi
corresponding to the ground truth yi, i ∈ {1, . . . , n},and a
variation of mean percentage absolute error called symmetric
MAPE or SMAPE [7] is defined as:

MAE =
∑
i

|yi − ŷi|
n

. (1)

SPAME =
1

n

∑
i

|yi − ŷi|
0.5|yi + ŷi|

. (2)

Variations of both MAE and MAPE are widely used in
time-series forecasting [8]. Particularly, MAE is the evaluation
preferred by the CDC for point forecasts [5].

Probabilistic event forecasts refer to the forecasting of a
probability distribution for a ground truth event of the future,
i.e., assigning a probability to each discrete possibility. For
such forecasts, a log score [9] has been used by the CDC to
evaluate real-time submissions of Flu forecasts [5].

LS =
1

n

∑
i

max{lnP (Ei),−10} , (3)

where P (Ei) is the probability assigned to the event Ei that is
observed in the ground truth. If the assigned probability is so
low that lnP (Ei) is less than −10 or undefined, it is replaced

1https://github.com/Satwant-Singh-ADS/Shapelet Methods



by −10. This ensures that one significantly poor score does
not affect the average. A higher score is preferred.

Interval forecasts refer to the reporting of a range with
a confidence interval that suggests the likelihood of the true
value falling in the range. One way to evaluate prediction
intervals is “coverage” [10], which measures the percentage of
time the observed value falls within the provided interval for
the given confidence (such as 95% confidence interval). Other
ways of evaluating interval forecasts and, more generally,
quantile forecasts while penalizing long ranges also exist in
the literature [9]. Currently, weighted interval score (WIS) is
being widely used for the evaluation of COVID-19 forecasts
and Influenza forecasts [11].

For 1,2,3 and 4 week ahead forecasts MAE and WIS are the
measures currently in use for FluSight and COVID-19 fore-
casting. Both measures are designed to numerically match the
predictions and ground truth and are not designed to compare
shapes. To the best of our knowledge, no evaluation approach
exists for infectious disease forecasting for comparing shapes
of the predicted trends. In time-series literature, “shapelets”
have been used to capture various motifs that occur in time-
series [12]. Here, we define a shapelet as a fundamental shape
of interest and define a representation of any shape given by
w-week ahead forecasts based on its similarity to our chosen
shapelets.

III. METHODOLOGY

We define a shapelet as a vector that represents one of the
shapes of interest in the trend of an epidemic.

Definition 1 (Shapelet). A shapelet s = [s1, . . . , sw] ∈ Rw is
a vector that represents a shape of interest.

Figure 4 shows an example of a set of shapelets. One can
treat the evaluation of forecasts as a classification problem.
This would entail assigning the ground truth and the model
prediction to one of the shapelets. However, treating this
as a “one out of n” classification can incorrectly penalize
forecasts. For example, classifying a “surge” as a “stable
increase” should be penalized less than classifying it as a
“stable decrease”, as a “surge” is closer to the former but
very different than the latter. Instead of classification, we
assume that every shape has a representation determined by
its similarity with each of the shapelets. Then two shapes
are considered similar if their representations are close to
each other. Prediction performance is measured based on the
similarity of the predicted shape with the ground-truth shape
based on these representations.

Definition 2 (Shapelet-space Representation). Given d
shapelets {s1, . . . sd}, we define a shapelet-space as a d-
dimensional space where each point Px = (p1, p2, . . . , pd)
denotes a shape given by vector x and co-ordinate pi =
sim(x, pi) for some measure of similarity.

A. Desired Properties

Let us consider the following property which may be
desirable. Later, we will show that an additional property is

needed for a sensible representation.

Property 1. Two vectors have similar representation, i.e.,
|f(x)− f(y)| ≤ δ, for some small δ > 0, if and only if x can
be approximated by scaling and translating y. A weaker form
of the property is that f(x) = f(y) if and only if x can be
obtained by scaling and translating y.

We will show that choosing Pearson Correlation as the
similarity measure sim satisfies this property. Consider five of
the six shapelets shown in Figure 4, described by the following
for a 4-week ahead forecasting task:

• Surge: [1, 2, 4, 8]
• Stable Increase: [1, 2, 3, 4]
• Near Peak: [−1,−0.5,−0.25,−0.125]
• Past Peak: [−1,−2,−4,−8]
• Stable Decrease: [4, 3, 2, 1]

Consider a matrix B such that each row corresponds to
a shapelet above after a scaled standard normalization s′ =
s−µs√
wσs

, where w is the length of each shapelet (here, w = 4).
Here, µs is the mean of the entries in s and σs is the standard
deviation. Consider a vector z ∈ Rw and its scaled standard
normal form z′ as defined before. Then, for shapelet s, the
Person Correlation between z and s is given by the dot product
of z′ and s′. Further, Bz′ provides the representation of z in
the shapelet-space determined by the shapelets above.

Theorem 1. Given the shapelet-space as described above,
Pearson Correlation satisfies the weaker form of Property 1.
More precisely, two vectors are mapped to the same point if
and only if one is obtained by translation and scaling of the
other.

Proof. We will first show that two vectors are mapped to the
same point if and only if their standard normal forms are
identical. Then, we will show that an identical standard normal
form implies that one is obtained by translation and scaling
of the other.

Consider vectors x,y ∈ Rw, such that their standard normal
forms x′ = y′. Then Bx′ = By′, and so they are mapped to
the same point in the shapelet-space.

Now assume that for some x′ and y′, Bx′ = By′. Then,
B(x′ − y′) = 0. Therefore, x′ − y′ belongs to the null space
of B. It can be shown that the null space of B is the span of
the vector v = [0.5, 0.5, 0.5, 0.5]. So, for some λ ∈ R,

x′ − y′ = λv . (4)

Recall that x′ and y′ have zero mean. Taking average of each
vector in Equation 4, we get:

0− 0 = 0.5λ =⇒ λ = 0 . (5)

Using the value of λ in Equation 4, we get

x′ − y′ = 0 =⇒ x′ = y′ , (6)



Fig. 4: Shapelets of Interest

Two vectors x and y will be mapped to the same point
in shapelet-space, if and only if they have the same standard
normal form, i.e.,

x− µx√
wσx

=
y − µy√
wσy

=⇒ x = σx
y′ − µy

σy
+ µx . (7)

Therefore, given a shape, one can construct a new shape that
will map to the same point by choosing µx ∈ R and σx ∈
R+ corresponding to a translation and a scaling operation,
respectively.

Theorem 2. Given the shapelet-space described by the five
shapelets above, two vectors are mapped close to each other
if only if one vector is approximately obtained by translating
and scaling the other.

Proof. Suppose one vector is approximately obtained by trans-
lating and scaling the other. Then, in our notation: x′−y′ = ϵ
for some small ∥ϵ∥. Then, the vectors are mapped to nearby
points as shown by

∥Bx′ −By′∥ = ∥Bϵ∥ ≤ ∥ϵ∥ .

Here the last inequality follows from applying Cauchy-
Schwarz inequality to the dot product of each row of B with
the vector ϵ.

Now, suppose x′ and y′ are mapped to nearby points, i.e.,
B(x′ − y′) = δ, such that ∥δ∥ is small. Given δ, we will
attempt to find z = x′ − y′. The sum of elements of z must
be 0 as the sum of elements of both x′ and y′ are 0. We note
that the rank of our matrix B is 3. We construct a matrix C
by picking 3 independent rows r1, r2 and r3 from B (these
correspond to “surge”, “stable increase”, and “near peak”). We
append an additional row [1, 1, 1, 1]. Similarly, we construct
another vector δ′ by picking the elements r1, r2, and r3 from
δ. Observe that z must satisfy

Cz = δ′ .

We find that the matrix C is invertible. Therefore given δ, after
constructing δ, there exists a unique z given by:

z = C−1δ′

=⇒ ∥x′ − y′∥ ≤ ∥C−1∥F ∥δ′∥ ≤ ∥C−1∥F ∥δ∥ .

The last inequality follows from the fact that δ′ is constructed
by selecting elements from δ. We find that ∥C−1∥F = 28.71.
Therefore, when ∥δ∥ is small, the distance between the stan-
dard normal forms of the vectors is also small.

Consequence of choosing non-orthogonal shapelets. Note
that the vectors in the row of matrix B are non-orthogonal.
How does this affect a sense of distance? To understand this,
note that ∥Bx′ − By′∥2 = |(Bx′)T (Bx′) + (By′)T (By′) −
2(Bx′)T (By′)|. Consider the singular value decomposi-
tion [13] of B = UΓV T , where U, V are unitary matrics
(i.e., their columns are orthogonal unit vectors), and Γ is a
rectangular diagonal matrix. Then,

(Bx′)T (By′) = (UΓV Tx′)T (UΓV Ty′)

= x′TV ΓT (UTU)ΓV Ty′ = x′TV ΓTΓV Ty′

= (ΓV Tx′)T (ΓV Tx′)

Therefore, ∥Bx′ − By′∥2 = ∥Γ(V Tx′ − V Ty′)∥2, i.e., the
distance in our transformation is equivalent to a weighted
distance in a transformation obtained by projections on a set
of orthogonal unit vectors.
Consideration of the “flat” shapelet. Note that we have not
considered the “flat” shapelet in the above analysis (si =
[0, 0, 0, 0]. This is an important shapelet to consider as it
indicates a lack of significant change in dynamics. However,
unlike other shapelets, “flat” is scale dependent – a line with
a negligible non-zero slope that should be considered flat
can have an arbitrarily high slope depending on the scaling.
Intuitively, the a shape is to be considered similar to a non-
flat shapelet only if there is a “significant” change within the
w-element vector x. Therefore, we modify Property 1.

Property 2. Two vectors have similar representation, if and
only if (i) none of the vectors are “almost flat” and one can be
approximately obtained by scaling and translating the other,
or (ii) both vectors are “almost flat”.

To find the shapelet-space representation, we first identify
how similar it is to what we could consider “flat”, and
then update the similarities of the shape with respect to



other shapelets. Mathematically, in the given scale, for some
constants m0, β ≥ 0, we define “flatness” as

ϕ =

{
1, if m ≤ m0,

exp(−β(m−m0)), if m ≥ m0.

Here m is the average absolute slope of the vector x
whose shapelet-space representation is desired, i.e., if x =
(x1, x2, x3, x4), then m = (|x2−x1|+|x3−x2|+|x4−x3|)/3.
The constant m0 represents the threshold of the average slope
below which the shape needs to be considered perfectly “flat”,
i.e., it is not to be considered as even partially similar to other
shapelets. The constant β represents how quickly above the
threshold m0, the “flatness” should reduce. As an example,
suppose we have scaled the time-series so that a slope of 1
should have a small flatness ε. Also, suppose we have set
m0 = 0. Then β = − ln ε. Now, the co-ordinates of shapelet-
space representation are defined as

sim(x, si) =

{
2ϕ− 1, if si is “flat”,

(1− ϕ)corr(x, si), otherwise.

The above formulation ensures that the representation is not
significantly impacted by scaling when the shape is not close
to “flat”.

Theorem 3. The shapelet-space representation described
above satisfies Property 2

Proof. If both vectors x and y are “almost” flat, then, by
definition, ϕx and ϕy are close to 1. Then, for both vectors,
the similarity with flat is close to 1, while with others the
similarity is close to zero, due to the (1−ϕ) term. Therefore,
both vectors have similar representations in shapelet-space.

Next, we will show that if none of the vectors x and y are
“almost flat” (i.e., ϕ is small) and both have an approximately
similar standard normal form, then they are mapped close to
each other. Consider two vectors x and y with corresponding
average slopes mx and my . Suppose, mx > my > 1. Then,
by our choice of β, ϕx < ϕy < ε. Therefore, ϕy − ϕx < ε.
Therefore, when shapelet si “flat”

|sim(y, si)− sim(x, si)| = 2(ϕy − ϕx) ≤ 2ε,

Also, since they have approximately similar standard normal
form, i.e., x′−y′ = ϵ with small ∥ϵ∥, for non flat shapelet si,
corr(x, si)− corr(y, si) = s′i

T
(y′ + ϵ)− s′i

T
y′ . Recall that

s′i is the ith row of matrix B. So, for non-flat shapelets,

|sim(y, si)− sim(x, si)|
= |(1− ϕy)corr(y, si)− (1− ϕx)corr(x, si)|
= |(1− ϕy)s

′
i
T
y′ − (1− ϕx)s

′
i
T
(y′ + ϵ)|

= |(1− ϕy − 1 + ϕx)s
′
i
T
yi + (1− ϕx)s

′
i
T
ϵ|

≤ ε|s′i
T
yi|+ (1− ϕx)∥ϵ∥ ≤ ε+ ∥ϵ∥ . (8)

Therefore,

|f(x)− f(y)| ≤
√

(2ε)2 + (d− 1)(ε+ ∥ϵ∥)2 .

Now we will show the converse. Consider vectors x and
y such that f(x − y) = δ, where ∥δ∥ is small. Since each
dimension of δ is small, the dimension corresponding to the
flat shapelet is also small, i.e., for some ϵ

|2(ϕx)− 1− 2(ϕy) + 1| = ϵ =⇒ |ϕx − ϕy| = ϵ/2 . (9)

Without loss of generality, we assume ϕy = ϕx + ϵ/2. For
non-flat shapelets, we have

|δi| = |sim(y, si)− sim(x, si)|
= |(1− ϕy)corr(y, si)− (1− ϕx)corr(x, si)|
= |(1− ϕx − ϵ/2)corr(y, si)− (1− ϕx)corr(x, si)|

= |(1− ϕx)(corr(y, si)− corr(x, si))−
ϵ

2
corr(y, si)|

≤ (1− ϕx)|s′i
T
(y − x)|+ ϵ

2

The above holds, if ϕx is close to 1. Since ϕy = ϕx+ϵ/2, this
means ϕy is also close to 1, i.e., both x and y are almost flat.
If ϕx is not close to 1, then |s′i

T
(y−x)| must be small for all i.

From Theorem 2, this leads to x′ and y′ being approximately
equal.

Choosing the set of shapelets. We have performed the
analysis with five specific shapelets, along with the flat
shapelet. However, based on the above analysis, we can
identify how to select a set of shapelets so that Property 2
is satisfied. For the task of 1, 2, ..., w ahead forecast, the
proof of Theorem 3 relies on Theorem 2 that requires the
matrix C to be invertible. Recall that C is constructed by
picking w − 1 rows from B corresponding to its rank, and
then appending a row [1, 1, . . . , 1] (i.e., a row of w 1s). Note
that if the rank of matrix B were to be w, then we would
construct C simply by picking w independent rows from B.
The appending of a row of 1s is no longer required as C
would already be invertible. The appending of the row only
serves as a constraint that is known to be satisfied. Therefore,
other than “flat”, one should first select at least w−1 shapelets
that are linearly independent vectors. Other shapelets may be
linear combinations of these vectors. While the inclusion of
other shapelets seems redundant, we allow them so that the
interpretations can be generalized for any shapelet – a high
positive value at dimension i means the predicted shape is
close to shapelet i.

B. Performance Evaluation

To evaluate the performance of 1, 2, . . . , w week ahead
predictions by a model xi, we obtain its shapelet-space
representation f(xi) and compare it to the shapelet-space
representation f(g) ground truth vector g. The comparison
is done through cosine similarity. Specifically, we define
shapelet-space score as

SS(xi,g) =
f(xi)f(g)

∥f(xi)∥∥f(g)∥
. (10)

We favor cosine similarity over Euclidean distance for per-
formance measure as cosine similarity results in a bounded



measure in [−1, 1]. To assess the agreement between predic-
tions from n available models, we take the average pairwise
similarity across the representations of all the available mod-
els. Specifically, we define inter-model agreement as

IMA =
2

n(n− 1)

∑
i>j

f(xi)f(xj)

∥f(xi)∥∥f(xj)∥
. (11)

Being as the average of cosine similarities, the agreement
also lies in the interval [−1, 1]. It should be noted that,
with multiple models, while achieving an agreement of 1 is
possible, achieving an agreement of −1 may not be possible.
This is due to the fact that it is impossible to have more than
two vectors such that all pairs point to the opposite direction
in space.

C. Shapelet-space Ensemble

The traditional ensemble technique for short-term numer-
ical epidemic forecasting is to take the mean or median
of all the submitted forecasts. Instead, we want to capture
the ensemble of shapes. Therefore, we define the shapelet-
space based ensemble (in short, Shapelet Ensemble) as the
centroid of the points given by the shapes of individual model
forecasts. Mathematically, Shapelet Ensemble of n models
with numerical forecasts vector xi is given by (

∑
i f(xi))/n.

IV. EXPERIMENTS

The objective of the experiments is to demonstrate the
following. (i) the proposed methods generate meaningful
shapelet-space representations; (ii) Shapelet Ensemble pro-
duces good predictions of future shapes; and (iii) the inter-
model agreement is a good indicator of the reliability of the
forecasted shape.

A. Data

We conducted experiments on the short-term cases and
deaths forecast submissions to the COVID-19 forecast hub [4].
Each week, the models submitted 1, 2, 3, and 4 week-
ahead forecasts at the state-level as well as the national
level. The point forecasts form vectors of size w = 4. They
also submitted quantiles for these targets. Evaluation of the
probabilistic forecasts is left to future work. The ground truth
was obtained from John’s Hopkins COVID-19 dataset [14]. We
used a moving average smoothing on the incident ground truth
with window size 3. This was performed to induce smooth
shapes in the ground truth, which will then be compared with
the model forecasts.

B. Shapelet Representation Analysis

To compute the shapelet-space representation, we defined
the flatness by setting m0 = 0 and β = − log(0.1)/θ. Here,
for the given time-series of cases or deaths, θ is the maximum
average of the absolute value of the slope over 4-week vectors
observed until Jun 28, 2020, for the given time-series of cases
or deaths. This results in flatness of a shape with average
absolute slope m to be (0.1)m/θ. The motivation behind this
choice was that by June 28, 2020, the US states had already

seen an uptick in cases and deaths. We used the highest rate
of change up to this day as a base slope θ that should get
a low flatness value. Due to this choice, for any future slope
m = θ, the flatness will be evaluated as 0.1. One may select a
different set of m0 and β to fit their definition of what should
be considered “flat”. Other reasonable choices of m0 and β
did not affect the conclusions of the experiments.

We computed the shapelet-space representation of the
ground truth and identified the dimension with the highest
value. This is annotated in Figure 5. For instance, a label D
indicates that the shape of the next four weeks has the highest
value in the dimension corresponding to “Decreasing” in the
shapelet-space representation. Observe that the annotations
seem reasonable. There are certain parts where the annotations
switch quickly, e.g., a sequence of “N”(Near peak) and “I”
(Increase) at the beginning of the time-series. However, the
overall representations at these points are very similar to each
other with small differences at “N” and “I” dimensions. To
demonstrate this we define trend continuity (TC) – a measure
of how similar one shape is to the previous shape in the time-
series. Mathematically, we find the cosine similarity between
consecutive shapes:

TC(t) =
f(g(t− 1))T f(g(t))

∥f(g(t− 1))∥∥f(g(t))∥
. (12)

Here, g(t) is the ground truth shape determined by the vector
of four elements (cases or deaths) at time t + 1, . . . , t + 4.
Observe that at the early part of the time-series, while the
annotations change, the trend continuity remains close to 1.
We also observe that the trend continuity falls as the time-
series goes through changes in trends.

We also observe that the inter-model agreement often re-
mains high (Figure 6). Even though the forecasts may disagree
in terms of numerical targets, they often agree on the future
shape. Comparing with the trend continuity in Figure 5, the
agreement seems to fall during the times of shift in trends.

C. Performance Evaluation

We computed the performance of all models based on
shapelet-space scores across the US states for both weekly
deaths and cases. We focus our evaluations on the two
ensembles: (i) COVIDhub Ensemble - the shapelet-space
representation of the COVID19hub ensemble which combines
the numerical forecasts from all the submitted forecasts using
mean or median; and (ii) Shapelet Ensemble - the mean
of shapelet-space representation of all the submitted models.
Figure 7 shows the scores over time for national level case
forecasts. Note that both models perform well for the majority
of the time period, particularly for phases where the trend does
not change. When there is a shift in trend, the performance of
both models drop. However, the Shapelet Ensemble seems to
catch the change earlier than COVIDhub Ensemble. A similar
pattern is observed for other states and at the national level
(Figure 9). This suggests that the information on shifting
trends is often present in the individual models but perhaps
is lost when the mean/median of the numerical forecasts is



Fig. 5: Shapelet-space dimension with highest value over time along with trend continuity (green curve) for COVID-19 weekly
deaths in California.

Fig. 6: Measure of agreement between different models over time for death forecasting in California

Fig. 7: Performance of COVIDhub ensemble and Shapelet ensemble for forecasting shapes of cases in California.

taken. Figures 8 and 10 show the scores for the two models for
prediction of deaths. The earlier prediction of shifting trends
by Shapelet Ensemble is not clear for deaths. This may be
due to the fact that shifting trends in deaths follow observed
shifting trends in cases (as cases cause deaths). Therefore,
many models can predict the shape correctly, and so the
COVIDhub Ensemble is able to capture the change.

Table I shows the average performance of the models over
all the weeks and all states. For both cases and deaths, Shapelet

Ensemble performs significantly better, with the difference
being higher for cases. To study how these models perform at
different phases of the pandemic, we considered two types of
trends: (i) Continued Trend - when trend continuity TC(t) ≥
0, and (ii) Changing Trend - when TC(t) < 0. Shapelet En-
semble has a much higher performance at times of Changing
Trends compared to COVIDhub Ensemble. Particularly for
cases, COVIDhub Ensemble has a poor performance close to
0 (recall that the range is [−1, 1]).



Fig. 8: Performance of COVIDhub ensemble and Shapelet ensemble for forecasting shapes of deaths in California.

Fig. 9: Performance of COVIDhub ensemble and Shapelet ensemble for forecasting shapes of cases at the national level.

Fig. 10: Performance of COVIDhub ensemble and Shapelet ensemble for forecasting shapes of deaths at the national level.

D. Agreement vs Performance

In real-time forecasting, it is advantageous to know when
the forecasts are reliable. We hypothesize that the inter-
model agreement is a good indicator of forecast reliability. To
assess the relationship between model performance based on
shapelet-space score and inter-model agreement, we plot them
for each state and each week as shown in Figure 11. We notice
that the points corresponding to the Shapelet Ensemble are
more tightly concentrated around the diagonal. This implies
that when we see a high agreement, we are more likely to see

a high performance. Similarly, a low agreement is likely to
produce a low performance. The same pattern is observed in
cases as well as deaths.

To further demonstrate our claim, we studied how the level
of agreement affects performance in the worst cases. We fix
a threshold for inter-model agreement. Among all the perfor-
mance scores, we picked those obtained when the agreement
was greater than the threshold. This gives us the worst-case
performance observed for the given threshold of agreement.
Figure 12 shows the results. We note that as agreement



(a) Cases (b) Deaths

Fig. 11: Shapelet-space Score vs Inter-model Agreement for the two models.

(a) Cases (b) Deaths

Fig. 12: Worst-case performance observed for a given threshold of Inter-model Agreement.

TABLE I: Comparison of performance of Shapelet Ensemble
vs COVIDhub Ensemble over all states (i) during all time
points, (ii) during phases of changing trends, and (iii) during
phases of continued trend

Method Shapelet-space Score

All Changing
Trend

Continued
Trend

cases Shapelet Ensemble 0.57 0.42 0.58
COVIDhub Ensemble 0.40 -0.025 0.45

deaths Shapelet Ensemble 0.67 0.77 0.66
COVIDhub Ensemble 0.60 0.55 0.60

increases, the performance of both models improves. However,
the worst-case performance of Shapelet Ensemble improves
more rapidly. For instance, consider the inter-model agreement
threshold of 0.25 for cases (Figure 12a). The fraction of
times and states at which the agreement was above 0.25 is
approximately 0.6, as indicated by the coverage curve. The

worst performance at this threshold of agreement is close to
0.25 for Shapelet Ensemble and -1 for COVIDhub Ensemble.

V. CONCLUSIONS AND FUTURE WORK

Infectious disease forecasting evaluation is traditionally
done using measures that compare numerical predictions with
ground truth. We proposed an evaluation based on shapes. To
enable this evaluation, we define a set of shapes of interest
called shapelets. We proposed a representation of a given
shape in “shapelet-space” where each dimension represents
the similarity of the given shape with one of the shapelets.
We proved that two points are mapped close to each other in
this representation if and only if the two shapes are similar.
We demonstrated that the shapelet-space representation is
able to capture the shapes of the trend well. Based on the
representation we defined the shapelet-space score as the
cosine similarity between the shapelet-space representation of
the prediction and ground truth.



We transform the predictions of all the models submitted
for COVID-19 cases and death forecasts on a given week
into the shapelet-space representation. We took the average of
the representation to obtain the shapelet-space ensemble. We
demonstrated that this ensemble is able to capture the shape
of future trends better than the COVIDhub ensemble model
obtained by combining numerical forecasts of all the models.
Particularly, for case forecasting during the time of changing
trends, the shapelet ensemble is able to perform significantly
better than COVIDhub ensemble. We also demonstrated that
as the agreement among the models increases, the worst-case
performance of the shapelet ensemble also increases. Thus,
in prospective forecasting, agreement among the models can
provide an early indicator of how reliable the forecasts are.

We have only evaluated the shapes of the point forecasts.
The real-time forecasting efforts also have probabilistic fore-
casts given in the form of quantiles. In future work, we will
extend our methods to capture the expected shape generated
by the probabilistic forecasts. We will also extend our analysis
and evaluation to influenza forecasting.
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