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1. Introduction

A numerical semigroup S is an additive submonoid of N0 = {0, 1, 2, . . .} for which |N0 \ S| < ∞. The set of
gaps of S is H(S) = N0 \ S. The Frobenius number of S, denoted by F (S), is the largest element of H(S). By
convention we define F (N0) = −1. The genus of S, denoted by g(S), is the number of elements of H(S). The
multiplicity of S, denoted m(S), is the smallest nonzero element of S. For a general reference on numerical
semigroups, see [6].

There has been extensive recent interest in counting numerical semigroups ordered by genus and in studying
invariants of ‘typical’ numerical semigroups of a given genus. Our goal is to prove several statistical results
about these numerical semigroups. Every numerical semigroup has a unique minimal generating set, which we
denote by A(S). This set consists of positive elements of S that are not the sum of two positive elements of S.
That is, A(S) = (S \{0})\ ((S \{0})+(S \{0})). The size of the minimal generating set is called the embedding
dimension of S, and is denoted by e(S) = |A(S)|. The pseudo-Frobenius numbers of S are defined as follows:

PF (S) = {P ∈ H(S) : for every s ∈ S \ {0} we have P + s ∈ S}.

The number of pseudo-Frobenius numbers is the type of S, denoted by t(S) = |PF (S)|. The weight of S is
defined as

w(S) =

( ∑
x∈H(S)

x

)
− g(S)(g(S) + 1)

2
.

The motivation for studying the weight of a numerical semigroup comes from the theory of Weierstrass semi-
groups of algebraic curves. For a reference, see [1, Chapter 1, Appendix E].

There are infinitely many numerical semigroups, so in order to prove statistical statements about their
invariants we must order them in some way. Let Sg denote the set of numerical semigroups of genus g. It is not
difficult to show that Sg is finite. There is extensive literature about how the size of this set varies with g. Let

N(g) = |Sg| be the number of numerical semigroups of genus g. Let ϕ = 1+
√
5

2 be the golden ratio.

Theorem 1. [16, Theorem 1] There exists a constant c > 3.78 such that

lim
g→∞

N(g)

ϕg
= c.

We denote the uniform probability distribution on Sg by Pg. If X is a random variable on Sg, we denote its
expectation by Eg[X] and its variance by Varg[X].
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Question 1. How are the quantities m(S), F (S), e(S), t(S), and w(S) distributed as we vary through the semi-
groups in Sg?

Let γ = 5+
√
5

10 = 1√
5
ϕ. Kaplan and Ye show that most numerical semigroups S ∈ Sg have multiplicity close

to γg and Frobenius number close to twice the multiplicity [9]. The main goal of this paper is to prove analogous
statements for e(S), t(S), and w(S).

Theorem 2. [9, Proposition 16 and Theorem 4] For fixed ε > 0, we have

1.
lim
g→∞

Pg[|m(S)− γg| < εg] = 1, and

2.
lim
g→∞

Pg[|F (S)− 2m(S)| < εg] = 1.

Theorem 2 implies that for fixed ε > 0,

lim
g→∞

Pg[|F (S)− 2γg| < εg] = 1.

Singhal strengthens Theorem 2(2) in [13].

Proposition 3. [13, Theorem 8] Given ε > 0, there is an M(ε) > 0 such that for all g > 0 we have

Pg[|F (S)− 2m(S)| > M(ε)] < ε.

Recently, Zhu has proven a stronger result of this kind but we will not need it for the applications in this paper
[18, Theorem 6.1]. We say that a typical numerical semigroup has property P if limg→∞ Pg[S has property P] =
1. For example, Theorem 2(2) says that for any ε > 0, a typical numerical semigroup has |F (S)− 2m(S)| < εg.

1.1 The Distribution of Invariants of Numerical Semigroups in Sg
We show that most numerical semigroups of genus g have embedding dimension close to 1√

5
g, type close to

(1− γ)g, and weight close to 1
10ϕg

2.

Theorem 4. Fix ε > 0. We have

1.

lim
g→∞

Pg
[∣∣∣∣e(S)− 1√

5
g

∣∣∣∣ < εg

]
= 1, and

2.
lim
g→∞

Pg [|t(S)− (1− γ)g| < εg] = 1.

As a direct consequence, we can compute the expected values of e(S) and t(S) taken over semigroups in Sg.

Corollary 5. We have

1.

lim
g→∞

1

g
Eg[e(S)] =

1√
5
, and

2.

lim
g→∞

1

g
Eg[t(S)] = 1− γ.

In [9, Theorem 22], Kaplan and Ye use the Hardy-Ramanujan asymptotic formula for the number of partitions
of n to prove that with high probability, a random S ∈ Sg satisfies

0.03519g2 < w(S) < 0.0885g2.

They state that it would be interesting to try to improve the constants in these inequalities. We achieve this
goal by proving a result for the distribution of w(S) taken over semigroups in Sg analogous to Theorem 4. The
proof strategy for this result is different than the strategy for Theorem 4. We first compute the expected value
and variance of w(S), and then use these results to deduce our result about the distribution.
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Theorem 6. Fix ε > 0. We have

1.

lim
g→∞

1

g2
Eg[w(S)] =

1

10ϕ
, and

2.

lim
g→∞

Pg
[∣∣∣∣w(S)− 1

10ϕ
g2
∣∣∣∣ < εg2

]
= 1.

Note that 1
10ϕ ≈ 0.0618.

The main tool to prove this theorem is a result about the independence of the probability that a set of
elements is contained in a semigroup in Sg. We expect that this result is of independent interest. In joint work
with Bras-Amorós we have applied it to a different statistical problem about semigroups in Sg [3]. We return
to this result in Section 6.

Wilf asked in [15] whether every numerical semigroup S satisfies

1

e(S)
≤ F (S) + 1− g(S)

F (S) + 1
.

This question is now commonly known as Wilf ’s conjecture and has been the subject of extensive work in the
numerical semigroups community. Sammartano proved that if S if a numerical semigroup with e(S) ≥ m(S)/2,
then S satisfies Wilf’s conjecture [12, Theorem 18]. This result was improved by Eliahou, who showed that
if S satisfies e(S) ≥ m(S)/3 then S satisfies Wilf’s conjecture [5, Theorem 1]. Eliahou explains that Delgado
has observed that more than 99.999% of the numerical semigroups with genus at most 45 have e(S) ≥ m(S)/3.
Delgado and Eliahou ask whether the proportion of such semigroups goes to 1 as g goes to infinity [4, Section
4]. A direct consequence of Theorem 4(1) is that not only do most semigroups satisfy the condition in Eliahou’s
result but most also satisfy the stronger condition in Sammartano’s result.

Corollary 7. We have
lim
g→∞

Pg[e(S) ≥ m(S)/2] = 1.

Figure 1: Proportion of S ∈ Sg with |e(S)− 1√
5
g| < εg. Plotted for ε = 0.2, ε = 0.15 and ε = 0.1.

In order to prove Theorem 4(1) we partition the minimal generating set A(S) into two parts. For every
numerical semigroup S we have

[m(S), 2m(S)− 1] ∩ S ⊆ A(S).

Let e1(S) = # ([m(S), 2m(S)− 1] ∩ S) and e2(S) = e(S)− e1(S). We prove separate results about the typical
size of e1(S) and e2(S) for a semigroup in Sg. Combining these estimates proves Theorem 4(1).

Proposition 8. For fixed ε > 0, we have

1.

lim
g→∞

Pg
[∣∣∣∣e1(S)− 1√

5
g

∣∣∣∣ < εg

]
= 1, and

2.
lim
g→∞

Pg [e2(S) < εg] = 1.

ECA 3:2 (2023) Article #S2R14 3
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Figure 2: Proportion of S ∈ Sg with |t(S)− (1− γ)g| < εg. Plotted for ε = 0.2, ε = 0.15 and ε = 0.1.

Figure 3: Proportion of S ∈ Sg with
∣∣∣w(S)− 1

10ϕg
2
∣∣∣ < εg2. Plotted for ε = 0.02, ε = 0.03 and ε = 0.04.

Similarly, in order to prove Theorem 4(2) we partition PF (S) into two parts. For any numerical semigroup
S with Frobenius number F and multiplicity m, we have

H(S) ∩ [F −m+ 1, F ] ⊆ PF (S).

Let t1(S) = #(H(S) ∩ [F −m+ 1, F ]) and t2(S) = t(S)− t1(S). We separately estimate t1(S) and t2(S) for a
typical numerical semigroup in Sg. Combining these estimates proves Theorem 4(2).

Proposition 9. For fixed ε > 0, we have

1.
lim
g→∞

Pg [|t1(S)− (1− γ)g| < εg] = 1, and

2.
lim
g→∞

Pg [t2(S) < εg] = 1.

1.2 Counting Numerical Semigroups with Large Invariants

Among numerical semigroups in Sg, we have seen that most have

• multiplicity close to γg,

• Frobenius number close to 2γg,

• embedding dimension close to 1√
5
g,

• type close to (1− γ)g, and

• weight close to 1
10ϕg

2.
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Figure 4: Expected values of e(S)
g , e1(S)

g and e2(S)
g taken over S ∈ Sg.

Figure 5: Expected values of t(S)
g , t1(S)

g and t2(S)
g taken over S ∈ Sg.

One could also ask about the extreme values of these invariants, and try to count numerical semigroups in Sg
with invariants close to these maximum or minimum values. Basic properties of numerical semigroups imply
that for S ∈ Sg, m(S) ≤ g + 1, F (S) ≤ 2g − 1, e(S) ≤ g + 1, and t(S) ≤ g.

Numerical semigroups for which F (S) = 2g(S)− 1 are called symmetric. Backelin has studied the problem
of counting symmetric numerical semigroups [2].

Theorem 10. [2, Proposition 1] For i ∈ {0, 1, 2}, the following limit exists and is positive:

lim
g→∞

g≡i (mod 3)

#{S ∈ Sg | F (S) = 2g − 1}
3
√

2
g .

Kaplan has studied the problem of counting S ∈ Sg with m(S) = g − k for fixed k [7].

Theorem 11. [7, Proposition 13] For each k ≥ 0, there is a monic polynomial fk(x) ∈ Q[x] of degree k + 1
such that for g > 3k we have

#{S ∈ Sg | m(S) = g − k} =
1

(k + 1)!
fk(g).

The following fact is not stated in [7], so we provide a proof here.

Corollary 12. The polynomials fk(x) have integer coefficients.

Proof. Define polynomials Fk(x) = 1
(k+1)!fk(x+3k+1). Therefore Fk(x) ∈ Q[x] has degree k+1 and Fk(n) ∈ Z

for all n ∈ N0. Fix k and recursively define ai for 0 ≤ i ≤ k + 1 as follows. Let a0 = Fk(0) and ai =

Fk(i) −
∑i−1
j=0 aj

(
i
j

)
. It is clear that each ai ∈ Z. Now Fk(x) and

∑k+1
i=0 ai

(
x
i

)
are two polynomials of degree

k + 1 whose values match at k + 2 points. It follows that

Fk(x) =

k+1∑
i=0

ai

(
x

i

)
,

and hence (k + 1)!Fk(x) ∈ Z[x]. Therefore, fk(x) ∈ Z[x].
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Singhal has studied the problem of counting S ∈ Sg with t(S) = g − k for fixed k [14].

Theorem 13. [14, Theorem 1.7] For each k ≥ 0 there is a positive integer ck such that for g ≥ 3k − 1,

#{S ∈ Sg | t(S) = g − k} = ck.

We prove an analogous result for numerical semigroups in Sg with embedding dimension close to g.

Theorem 14. For each k ≥ −1, there is a polynomial hk(t) ∈ Q[t] of degree dk2 e such that for all g ≥ 9k+7
2 we

have
#{S ∈ Sg | e(S) = g − k} = hk(g).

Moreover, dk2 e!hk(t) is a monic polynomial with integer coefficients.

1.3 Outline of the Paper

In Section 2, we review results of Zhao that characterize numerical semigroups in Sg with F (S) < 3m(S). In
Section 3 we prove several results about random variables on Sg and show how to deduce Corollary 5 from
Theorem 4. In Section 4 we prove Proposition 8 and in Section 5 we prove Proposition 9. In Section 6 we prove
a result about the probability that a subset of elements is contained in a random element of Sg. We use this
result in Section 7 to prove Theorem 6. In Section 8 we prove Theorem 14.

2. Numerical semigroups with F (S) < 3m(S)

A major step in Zhai’s proof of Theorem 1 is to prove a conjecture of Zhao [17, Conjecture 4.1], which states
that

lim
g→∞

Pg[F (S) < 3m(S)] = 1.

We define the following two subsets of Sg:

B(g) = {S ∈ Sg | F (S) < 2m(S)},
C(g) = {S ∈ Sg | 2m(S) < F (S) < 3m(S)}.

We further divide up the elements of B(g) by multiplicity. Let

B(g,m) = {S ∈ Sg | m(S) = m,F (S) < 2m}.

Throughout this paper when describing a numerical semigroup by listing its elements, we use the symbol → to
indicate that it contains all larger elements. For example, the numerical semigroup of genus g containing all
positive integers larger than g is S = {0, g + 1→}.

Proposition 15. [17, Corollary 2.2] Numerical semigroups in B(g,m) are in bijection with subsets B ⊆
{1, 2, . . . ,m− 1} of size 2m− g − 2. The bijection is as follows. Given such a subset B, let

Sm,B = (m+B) ∪ {0,m, 2m→} ∈ B(g,m).

Note that B(g,m) 6= ∅ if and only if g
2 + 1 ≤ m ≤ g + 1. We further divide up the elements of C(g), first by

F (S)− 2m(S) and then by multiplicity. For a fixed positive integer k, we define the following two sets:

C(k, g) = {S ∈ C(g) | F (S) = 2m(S) + k},
C(m, k, g) = {S ∈ C(k, g) | m(S) = m}.

Zhao counts numerical semigroups with 2m(S) < F (S) < 3m(S) by dividing them up by type [17, Section 3.1].
(Note that this use of type is unrelated to how we have used it earlier in the paper.) Let

Ak = {A ⊆ [0, k − 1] | 0 ∈ A, k /∈ A+A}.

For A ∈ Ak, we define the following two sets:

C(k,A, g) = {S ∈ C(k, g) | m(S) +A = S ∩ [m(S),m(S) + k]},
C(m, k,A, g) = {S ∈ C(k,A, g) | m(S) = m}.

Proposition 16. [17, Proposition 3.3, Corollary 3.4] For g ≥ 3k, numerical semigroups in C(m, k,A, g) are
in bijection with subsets B ⊆ [m+ k+ 1, 2m+ k− 1] \ (2m+A+A) of size 2m− g+ k− |A| − |(A+A)∩ [0, k]|.
The bijection is as follows. Given such a subset B, let

Sm,A,B = {0} ∪ (m+A) ∪
(
2m+ ((A+A) ∩ [0, k])

)
∪B ∪ {2m+ k + 1→} ∈ C(m, k,A, g).

ECA 3:2 (2023) Article #S2R14 6
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3. Random Variables on Sg
In this section, we prove several results about nonnegative random variables on Sg and show how to deduce
Corollary 5 from Theorem 4.

Lemma 17. Suppose we are given n ≥ 1 and a sequence of nonnegative random variables Xg on Sg such that

lim
g→∞

1

gn
Eg[Xg] = 0.

Then for every ε > 0
lim
g→∞

Pg[Xg(S) < εgn] = 1.

Proof. Assume for the sake of contradiction that

lim inf
g→∞

Pg[Xg(S) < εgn] < 1.

Pick 0 < δ < 1 such that
lim inf
g→∞

Pg[Xg(S) < εgn] < 1− δ.

This implies that we have a sequence gi such that limi→∞ gi =∞ and for all i we have

Pgi [Xgi(S) ≥ εgni ] ≥ δ.

Therefore, we see that for all i, we have
Egi [Xgi ] ≥ δεgni .

This contradicts the fact that

lim
g→∞

1

gn
Eg[Xg] = 0.

Lemma 18. Let Xg be a sequence of nonnegative random variables on Sg. Suppose that there is a positive
integer n and constant M such that for every g and every S ∈ Sg, we have Xg(S) ≤Mgn. Suppose further that
there is a β such that for every ε > 0, we have

lim
g→∞

Pg[|Xg(S)− βgn| < εgn] = 1.

Then,

lim
g→∞

1

gn
Eg[Xg] = β.

Proof. Fix ε1, ε2 > 0. We know that

lim
g→∞

Pg[|Xg(S)− βgn| < ε1g
n] = 1.

This means there is M1 > 0 such that for g > M1 we have

Pg[|Xg(S)− βgn| < ε1g
n] > 1− ε2.

This implies that for g > M1, we have

1

gn
Eg[Xg] =

1

gn
1

N(g)

∑
S∈Sg

Xg(S) ≥ 1

gn
1

N(g)
(1− ε2)N(g) (β − ε1) gn = (1− ε2) (β − ε1) .

For g > M1, we also have

1

gn
Eg[Xg] =

1

gn
1

N(g)

∑
S∈Sg

Xg(S) ≤ 1

gn
1

N(g)
N(g) (β + ε1) gn +

1

gn
1

N(g)
ε2N(g)Mgn = (β + ε1) + ε2M.

Since ε1 and ε2 were arbitrary we see that

lim
g→∞

1

gn
Eg[Xg] = β.

We now show how to apply this result to determine the expected value of certain invariants of numerical
semigroups.

ECA 3:2 (2023) Article #S2R14 7
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Proof that Theorem 4 implies Corollary 5. Since e(S) ≤ g(S) + 1, we see that Theorem 4(1) and Lemma 18
imply Corollary 5(1). Similarly, since t(S) ≤ g(S), we see that Theorem 4(2) and Lemma 18 imply Corollary
5(2).

Proof that Theorem 4 implies Corollary 7. Pick ε > 0 such that 3
2ε <

1√
5
− γ

2 (numerically check that γ < 2√
5
).

Note that if |e(S) − 1√
5
g| < εg and |m(S)

2 − γ
2 g| <

ε
2g then m(S)

2 < e(S). Therefore, Theorem 2(1) and

Theorem 4(1) imply that limg→∞ Pg[e(S) ≥ m(S)/2] = 1.

We apply the following result in Section 7 about the distribution of weights of S ∈ Sg.

Lemma 19. Suppose we have a sequence of random variables Xg on Sg. Suppose further that there is a positive
integer n and constant β such that

lim
g→∞

1

gn
Eg[Xg] = β, lim

g→∞

1

g2n
Eg[X2

g ] = β2.

Then for every ε > 0, we have
lim
g→∞

Pg[|Xg(S)− βgn| < εgn] = 1.

Proof. Fix ε > 0. We have Eg[Xg] = βgn + o(gn) and Eg[X2
g ] = β2g2n + o(g2n). Therefore, Varg[Xg] = o(g2n).

This means given ε1 > 0, there is an M > 0 such that for all g > M , we have

Varg[Xg] < ε1g
2n, and

|Eg[Xg]− βgn| <
ε

2
gn.

By Chebychev’s inequality, we see that for g > M ,

Pg[|Xg(S)− βgn| > εgn] ≤ Pg
[
|Xg(S)− E[Xg(S)]| > ε

2
gn
]
≤ 4Varg[Xg]

ε2g2n
≤ 4

ε2
ε1.

We conclude that
lim
g→∞

Pg[|Xg(S)− βgn| < εgn] = 1.

4. Embedding dimension of a typical numerical semi-
group

The goal of this section is to prove Proposition 8. We first prove the part about the typical size of e1(S).

Proof of Proposition 8(1). For S ∈ Sg we have # (H(S) ∩ [1,m(S)− 1]) = m(S)− 1 and

# (H(S) ∩ [2m(S) + 1, F (S)]) ≤ max(0, F (S)− 2m(S)) ≤ |F (S)− 2m(S)|.

It follows that
0 ≤ g − (m(S)− 1)−#(H(S) ∩ [m(S), 2m(S)− 1]) ≤ |F (S)− 2m(S)|.

Note that #(H(S) ∩ [m(S), 2m(S)− 1]) = m(S)− e1(S). This implies that

2m(S)− g − 1 ≤ e1(S) ≤ 2m(S)− g − 1 + |F (S)− 2m(S)|.

Therefore, ∣∣∣2m(S)− g − e1(S)
∣∣∣ ≤ 1 + |F (S)− 2m(S)|.

We note that 2γ − 1 = 1√
5

and conclude that∣∣∣∣e1(S)− 1√
5
g

∣∣∣∣ ≤ ∣∣∣e1(S)− (2m(S)− g)
∣∣∣+
∣∣∣(2m(S)− g)− (2γ − 1)g

∣∣∣
≤ 1 + |F (S)− 2m(S)|+ 2|m(S)− γg|.

We see that for g > 3
ε , we have

Pg
[∣∣∣∣e1(S)− 1√

5
g

∣∣∣∣ ≥ εg] ≤ Pg
[
|F (S)− 2m(S)| ≥ ε

3
g
]

+ Pg
[
|m(S)− γg| ≥ ε

6
g
]
.

The result now follows from Theorem 2.

ECA 3:2 (2023) Article #S2R14 8
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Next we bound e2(S) for numerical semigroups with F (S) < 2m(S). Let Fn denote the nth Fibonacci
number, where F1 = F2 = 1, and Fn+2 = Fn+1 + Fn for all n ≥ 1. Recall that

Fn =
1√
5

(ϕn − (1− ϕ)n) .

Lemma 20. For any g ≥ 0 we have ∑
S∈B(g)

e2(S) ≤ 2Fg+1.

Proof. In this proof, we see the first instance of a style of argument that will appear several times later in this
paper, so we give an outline of the strategy. If F (x) is a polynomial we write [xm] (F (x)) for its xm-coefficient.
We show that the following estimate holds.
Claim: ∑

S∈B(g,m)

e2(S) ≤ 2 · [xg−m]
(

(1 + x)m − xbm2 c(x+ 2)b
m
2 c(1 + x)m−2b

m
2 c
)
. (1)

Assuming this for now, we complete the proof of the lemma. Since xb
m
2 c(x+2)b

m
2 c(1+x)m−2b

m
2 c has nonnegative

coefficients, we see that ∑
S∈B(g,m)

e2(S) ≤ 2 · [xg−m] ((1 + x)m) = 2

(
m

g −m

)
.

For S ∈ B(g), it is clear that m(S) ∈ [d g2e+ 1, g + 1]. Taking a sum over m(S) gives

∑
S∈B(g)

e2(S) =

g+1∑
m=d g2 e+1

∑
S∈B(g,m)

e2(S) ≤ 2

g+1∑
m=d g2 e+1

(
m

g −m

)
≤ 2Fg+1.

We now prove the inequality (1). We have

A(Sm,B) = {m} ∪ {m+ i | i ∈ B} ∪ {2m+ j | 1 ≤ j ≤ m− 1, j /∈ B, j /∈ B +B},

and so
e2(Sm,B) = #{2m+ j | 1 ≤ j ≤ m− 1, j /∈ B, j /∈ B +B}.

For j ∈ [1,m − 1], 2m + j ∈ A(Sm,B) if and only if j 6∈ B ∪ (B + B). Let j1 = b j−12 c. A necessary condition
for 2m + j ∈ A(Sm,B) is that j /∈ B and none of {1, j − 1}, {2, j − 2}, . . . , {j1, j − j1} is a subset of B. By
inclusion-exclusion, we see that

#{S ∈ B(g,m) | 2m+ j ∈ A(S)} ≤
j1∑
l=0

(−1)l
(
j1
l

)(
m− 2− 2l

2(m− 1)− g − 2l

)
=

j1∑
l=0

(−1)l
(
j1
l

)(
m− 2− 2l

g −m

)
.

Taking a sum over these terms gives

∑
S∈B(g,m)

e2(S) ≤ 2

bm2 c−1∑
j1=0

j1∑
l=0

(−1)l
(
j1
l

)(
m− 2− 2l

g −m

)
.

Now, notice that

j1∑
l=0

(−1)l
(
j1
l

)(
m− 2− 2l

g −m

)
= [xg−m]

(
(1 + x)m−2

j1∑
l=0

(−1)l
(
j1
l

)
(1 + x)−2l

)
.

Since

(1 + x)m−2
j1∑
l=0

(−1)l
(
j1
l

)
(1 + x)−2l = (1 + x)m−2

(
1− 1

(1 + x)2

)j1
= (1 + x)m−2

xj1(x+ 2)j1

(x+ 1)2j1
,

we see that

bm2 c−1∑
j1=0

j1∑
l=0

(−1)l
(
j1
l

)(
m− 2− 2l

g −m

)
= [xg−m]

bm2 c−1∑
j1=0

(1 + x)m−2
xj1(x+ 2)j1

(x+ 1)2j1

 .
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Noting that

bm2 c−1∑
j1=0

(1 + x)m−2
xj1(x+ 2)j1

(x+ 1)2j1
=

(1 + x)m

(1 + x)2

(
1−

(
x(x+2)
(1+x)2

)bm2 c)
(

1− x(x+2)
(1+x)2

) = (1 + x)m − xbm2 c(x+ 2)b
m
2 c(1 + x)m−2b

m
2 c

completes the proof.

We now give a similar, but more complicated, argument to bound e2(S) for numerical semigroups with
2m(S) < F (S) < 3m(S).

Lemma 21. For any positive integers g and k, we have∑
S∈C(k,g)

e2(S) ≤ 2Fg+k.

Proof. A major step in the proof is to prove the following inequality.
Claim: ∑

S∈C(m,k,g)

e2(S) ≤ 2 · [xg−m]
(

(1 + x)m+k+1 − xb
m+k+1

2 c(x+ 2)b
m+k+1

2 c(1 + x)m+k+1−2bm+k+1
2 c

)
. (2)

Assuming this for now, we complete the proof of the lemma. Since xb
m+k+1

2 c(x+2)b
m+k+1

2 c(1+x)m+k+1−2bm+k+1
2 c

has nonnegative coefficients, we see that∑
S∈C(m,k,g)

e2(S) ≤ 2 · [xg−m]
(
(1 + x)m+k+1

)
=

(
m+ k − 1

g −m

)
.

Taking a sum over m shows that ∑
S∈C(k,g)

e2(S) ≤ 2
∑
m

(
m+ k − 1

g −m

)
= 2Fg+k,

completing the proof.
We now prove the inequality (2). Numerical semigroups S in C(m, k, g) are determined by a subset B =

S ∩ [m + 1, 2m + k − 1] of size 2m − g + k − 1. For j ∈ [1,m + k], let j1 = b j−12 c. A necessary condition for
2m+ j ∈ A(S) is that none of {m+ 1,m+ j− 1}, . . . , {m+ j1,m+ j− j1} is a subset of B. This means that we
can bound the number of S ∈ C(m, k, g) with 2m+ j ∈ A(S) by the number of subsets B ⊆ [m+ 1, 2m+ k− 1]
of size 2m − g + k − 1 for which none of {m + 1,m + j − 1}, . . . , {m + j1,m + j − j1} is a subset of B. By
inclusion-exclusion, we see that

#{S ∈ C(m, k, g) | 2m+ j ∈ A(S)} ≤
j1∑
l=0

(−1)l
(
j1
l

)(
m+ k − 1− 2l

2m− g + k − 1− 2l

)
=

j1∑
l=0

(−1)l
(
j1
l

)(
m+ k − 1− 2l

g −m

)
.

Taking a sum over these terms gives

∑
S∈C(m,k,g)

e2(S) ≤ 2

bm+k−1
2 c∑

j1=0

j1∑
l=0

(−1)l
(
j1
l

)(
m+ k − 1− 2l

g −m

)
.

Now, notice that

j1∑
l=0

(−1)l
(
j1
l

)(
m+ k − 1− 2l

g −m

)
= [xg−m]

(
(1 + x)m+k−1

j1∑
l=0

(−1)l
(
j1
l

)
(1 + x)−2l

)
.

Since,

(1 + x)m+k−1
j1∑
l=0

(−1)l
(
j1
l

)
(1 + x)−2l = (1 + x)m+k−1

(
1− 1

(1 + x)2

)j1
= (1 + x)m+k−1x

j1(x+ 2)j1

(x+ 1)2j1
,

we see that

bm+k−1
2 c∑

j1=0

j1∑
l=0

(−1)l
(
j1
l

)(
m+ k − 1− 2l

g −m

)
= [xg−m]

bm+k−1
2 c∑

j1=0

(1 + x)m+k−1x
j1(x+ 2)j1

(x+ 1)2j1

 .
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Noting that

bm+k−1
2 c∑

j1=0

(1 + x)m+k−1x
j1(x+ 2)j1

(x+ 1)2j1
=

(1 + x)m+k+1

(1 + x)2

(
1−

(
x(x+2)
(1+x)2

)bm+k−1
2 c+1

)
(

1− x(x+2)
(1+x)2

)
= (1 + x)m+k+1 − xb

m+k+1
2 c(x+ 2)b

m+k+1
2 c(1 + x)m+k+1−2bm+k+1

2 c

completes the proof of (2).

Lemma 22. We have

lim
g→∞

1

g
Eg[e2] = 0.

Proposition 8(2) follows directly from this result together with Lemma 17. Therefore, proving this result
completes the proof of Theorem 4(1).

Proof. Choose ε > 0 and consider the M(ε) given by Proposition 3. For any g, applying Lemma 20 and Lemma
21 gives

∑
S∈Sg

e2(S) =
∑

S∈B(g)

e2(S) +

M(ε)∑
k=1

∑
S∈C(k,g)

e2(S) +
∑
S∈Sg

F (S)>2m(S)+M(ε)

e2(S)

≤ 2Fg+1 +

M(ε)∑
k=1

2Fg+k +
∑
S∈Sg

F (S)>2m(S)+M(ε)

(g + 1).

Noting that Fn <
ϕn+1√

5
and applying Proposition 3 to the last term in this expression gives

∑
S∈Sg

e2(S) < 2
ϕg+1 + 1√

5
+ 2

M(ε)∑
k=1

ϕg+k + 1√
5

+ (g + 1)εN(g)

= ϕg+1 2√
5

(
1 +

ϕM(ε) − 1

ϕ− 1

)
+

2√
5

(M(ε) + 1) + (g + 1)εN(g).

Therefore,

lim sup
g→∞

1

g

1

N(g)

∑
S∈Sg

e2(S) ≤ ε.

Since ε was arbitrary, we see that

lim
g→∞

1

g

1

N(g)

∑
S∈Sg

e2(S) = 0.

5. Type of a typical numerical semigroup

The goal of this section is to prove Proposition 9. We first prove the part about the typical size of t1(S). The
arguments in this section are quite similar to the arguments in Section 4.

Proof of Proposition 9(1). Let S ∈ Sg. We know that

# (H(S) ∩ [1,m(S)− 1]) = m(S)− 1,

# (H(S) ∩ [F (S)−m(S) + 1, F (S)]) = t1(S),

and
# (H(S) ∩ [m(S), F (S)−m(S)]|) ≤ max(0, F (S)− 2m(S)) ≤ |F (S)− 2m(S)|.

Therefore,
|g − (m(S)− 1)− t1(S)| ≤ |F (S)− 2m(S)|,

and

|t1(S)− (1− γ)g| ≤ |t1(S)− g +m(S)− 1|+ 1 + |m(S)− γg| ≤ 1 + |F (S)− 2m(S)|+ |m(S)− γg|.
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Therefore, for g > 3
ε , we have

Pg [|t1(S)− (1− γ)g| ≥ εg] ≤ Pg
[
|F (S)− 2m(S)| ≥ ε

3
g
]

+ Pg
[
|m(S)− γg| ≥ ε

3
g
]
.

The result now follows from Theorem 2.

Next we bound t2(S) for numerical semigroups with F (S) < 2m(S).

Lemma 23. For any g ≥ 0, we have ∑
S∈B(g)

t2(S) ≤ Fg+4.

Proof. Suppose S ∈ B(g). Since F (S)−m(S) ≤ m(S)− 1, we see that

t2(S) ≤ # (PF (S) ∩ [1,m(S)− 1]) ,

so it is enough to prove that ∑
S∈B(g)

# (PF (S) ∩ [1,m(S)− 1]) ≤ Fg+4.

We divide the set PF (S)∩ [1,m(S)− 1] into two pieces and bound the size of each. Note that dm2 e−1 = bm−12 c.
Claim: ∑

S∈B(g,m)

#
(
PF (S) ∩

[⌈m
2

⌉
,m− 1

])
= [x2m−g−3]

(
x−1

(
(1 + x)m − (1 + x+ x2)m−d

m
2 e(1 + x)2d

m
2 e−m

)) (3)

and ∑
S∈B(g,m)

#

(
PF (S) ∩

[
1,

⌊
m− 1

2

⌋])
≤ [x2m−g−4]

(
x−1

(
(1 + x)m−1 − (1 + x+ x2)b

m−1
2 c(1 + x)(m−1)−2b

m−1
2 c
))

.

(4)

Assuming these results for now, we complete the proof of the lemma. Since both (1+x+x2)m−d
m
2 e(1+x)2d

m
2 e−m

and (1 + x+ x2)b
m−1

2 c(1 + x)(m−1)−2b
m−1

2 c have nonnegative coefficients, we see that the following inequalities
hold: ∑

S∈B(g,m)

#
(
PF (S) ∩

[⌈m
2

⌉
,m− 1

])
≤ [x2m−g−2] ((1 + x)m) =

(
m

2m− g − 2

)
∑

S∈B(g,m)

#

(
PF (S) ∩

[
1,

⌊
m− 1

2

⌋])
≤ [x2m−g−3]

(
(1 + x)m−1

)
=

(
m− 1

2m− g − 3

)
.

Taking a sum over m shows that∑
S∈B(g)

# (PF (S) ∩ [1,m(S)− 1]) ≤
∑
m

(
m

2m− g − 2

)
+
∑
m

(
m− 1

2m− g − 3

)

=
∑
m

(
m

g −m+ 2

)
+
∑
m

(
m− 1

g −m+ 2

)
= Fg+3 + Fg+2 = Fg+4,

completing the proof.
Now we only need to prove (3) and (4). We recall the definition of Sm,B from Proposition 15 and note that

PF (Sm,B) = {m+ j | j ∈ [1,m− 1] \B} ∪ {j ∈ B | ∀i ∈ [1,m− 1− j] ∩B : i+ j ∈ B}.

We see that
PF (Sm,B) ∩ [1,m− 1] = {j ∈ B | ∀i ∈ [1,m− 1− j] ∩B : i+ j ∈ B}.

For j ∈ [dm2 e,m−1], we have [1,m−1− j]∩ (j+[1,m−1− j]) = ∅. For j ∈ [dm2 e,m−1], by inclusion-exclusion
we have

#{S ∈ B(g,m) | j ∈ PF (S)} =

m−1−j∑
l=0

(−1)l
(
m− 1− j

l

)(
(m− 1)− 1− 2l

2(m− 1)− g − 1− l

)
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= [x2m−g−3]

(
m−1−j∑
l=0

(−1)l
(
m− 1− j

l

)
xl(1 + x)m−2−2l

)

= [x2m−g−3]

(
(1 + x)m−2

(
1− x

(1 + x)2

)m−1−j)

= [x2m−g−3]

(
(1 + x)m−2

(
x2 + x+ 1

(1 + x)2

)m−1−j)
.

Therefore,∑
S∈B(g,m)

#
(
PF (S) ∩

[⌈m
2

⌉
,m− 1

])
=

m−1∑
j=dm2 e

m−1−j∑
l=0

(−1)l
(
m− 1− j

l

)(
(m− 1)− 1− 2l

2(m− 1)− g − 1− l

)

= [x2m−g−3]

 m−1∑
j=dm2 e

(1 + x)m−2
(
x2 + x+ 1

(1 + x)2

)m−1−j .

Noting that

m−1∑
j=dm2 e

(1 + x)m−2
(
x2 + x+ 1

(1 + x)2

)m−1−j
= (1 + x)m−2

m−1−dm2 e∑
k=0

(
x2 + x+ 1

(1 + x)2

)k

=
(1 + x)m

(1 + x)2

(
1−

(
x2+x+1
(1+x)2

)m−dm2 e)
(

1−
(
x2+x+1
(1+x)2

))
=

(1 + x)m − (1 + x+ x2)m−d
m
2 e(1 + x)2d

m
2 e−m

x

completes the proof of (3).
Consider j ∈ [1, bm−12 c], so 2j ≤ m − 1. A necessary condition for j ∈ PF (Sm,B) is that j, 2j ∈ B and for

every i ∈ [1, j − 1], if i ∈ B then j + i ∈ B. For j ∈ [1, bm−12 c], by inclusion-exclusion we have

#{S ∈ B(g,m) | j ∈ PF (S)} ≤
j−1∑
l=0

(−1)l
(
j − 1

l

)(
(m− 1)− 2− 2l

2(m− 1)− g − 2− l

)

= [x2m−g−4]

(
j−1∑
l=0

(−1)l
(
j − 1

l

)
xl(1 + x)m−3−2l

)

= [x2m−g−4]

(
(1 + x)m−3

(
1− x

(1 + x)2

)j−1)

= [x2m−g−4]

(
(1 + x)m−3

(
x2 + x+ 1

(1 + x)2

)j−1)
.

Therefore,

∑
S∈B(g,m)

#

(
PF (S) ∩

[
1,

⌊
m− 1

2

⌋])
≤

bm−1
2 c∑
j=1

j−1∑
l=0

(−1)l
(
j − 1

l

)(
(m− 1)− 2− 2l

2(m− 1)− g − 2− l

)

= [x2m−g−4]

bm−1
2 c∑
j=1

(1 + x)m−3
(
x2 + x+ 1

(1 + x)2

)j−1 .

Noting that

bm−1
2 c∑
j=1

(1 + x)m−3
(
x2 + x+ 1

(1 + x)2

)j−1
=

(1 + x)m−1

(1 + x)2

(
1−

(
x2+x+1
(1+x)2

)bm−1
2 c
)

(
1−

(
x2+x+1
(1+x)2

))
=

(1 + x)m−1 − (1 + x+ x2)b
m−1

2 c(1 + x)(m−1)−2b
m−1

2 c

x

completes the proof of (4).
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Next we bound t2(S) for numerical semigroups with 2m(S) < F (S) < 3m(S).

Lemma 24. For any positive integers g and k, we have∑
S∈C(k,g)

t2(S) ≤ Fg+k+3

Proof. First recall from Section 2 that for positive integers k and m with k < m, we have

C(m, k, g) = {S ∈ Sg | m(S) = m, F (S) = 2m(S) + k}.

An S ∈ C(m, k, g) is determined by B = S∩ [m+1, 2m+k−1] where |B| = 2m−g+k−1. Let j ∈ [1,m+k−1].
If j ∈ PF (S) then:
• j +m ∈ B,

• for every i ∈ [1,m+ k − 1− j], if m+ i ∈ B then m+ i+ j ∈ B.

We bound #{S ∈ C(m, k, g) | j ∈ PF (S)} by counting subsets B satisfying these conditions. Our argument is
similar to the proof of Lemma 23.

For S ∈ C(m, k, g) we have t2(S) = # (PF (S) ∩ [1,m+ k − 1]). Note that dm+k
2 e − 1 = bm+k−1

2 c. We
divide the elements of PF (S) ∩ [1,m+ k − 1] into two sets and consider each separately.
Claim: ∑

S∈C(m,k,g)

#

(
PF (S) ∩

[⌈
m+ k

2

⌉
,m+ k − 1

])
≤ [x2m−g+k−2]

(
x−1

(
(1 + x)m+k − (1 + x+ x2)m+k−dm+k

2 e(1 + x)2d
m+k

2 e−m−k
)) (5)

and ∑
S∈C(m,k,g)

#

(
PF (S) ∩

[
1,

⌊
m+ k − 1

2

⌋])
≤ [x2m−g+k−3]

(
x−1

(
(1 + x)m+k−1 − (1 + x+ x2)b

m+k−1
2 c(1 + x)(m+k−1)−2bm+k−1

2 c
))

.

(6)

Assuming these results for now, we complete the proof of the lemma. Since (1 + x + x2)m+k−dm+k
2 e(1 +

x)2d
m+k

2 e−m−k and (1 + x+ x2)b
m+k−1

2 c(1 + x)(m+k−1)−2bm+k−1
2 c have nonnegative coefficients, we see that the

following inequalities hold:∑
S∈C(m,k,g)

#

(
PF (S) ∩

[⌈
m+ k

2

⌉
,m+ k − 1

])
≤ [x2m−g+k−1]

(
(1 + x)m+k

)
=

(
m+ k

2m− g + k − 1

)
,

∑
S∈C(m,k,g)

#

(
PF (S) ∩

[
1,

⌊
m+ k − 1

2

⌋])
≤ [x2m−g+k−2]

(
(1 + x)m+k−1) =

(
m+ k − 1

2m− g + k − 2

)
.

Therefore,∑
S∈C(m,k,g)

t2(S) =
∑

S∈C(m,k,g)

# (PF (S) ∩ [1,m+ k − 1]) ≤
(

m+ k

2m− g + k − 1

)
+

(
m+ k − 1

2m− g + k − 2

)
.

Taking a sum over m shows that∑
S∈C(k,g)

t2(S) ≤
∑
m

(
m+ k

2m− g + k − 1

)
+
∑
m

(
m+ k − 1

2m− g + k − 2

)

=
∑
m

(
m+ k

g −m+ 1

)
+
∑
m

(
m+ k − 1

g −m+ 1

)
= Fg+k+2 + Fg+k+1 = Fg+k+3.

This completes the proof.
We now need only prove (5) and (6). For j ∈ [dm+k

2 e,m+ k − 1], we have

[1,m+ k − 1− j] ∩ (j + [1,m+ k − 1− j]) = ∅.

For j ∈ [dm+k
2 e,m+ k − 1], by inclusion-exclusion we have that #{S ∈ C(m, k, g) | j ∈ PF (S)} is at most

m+k−1−j∑
l=0

(−1)l
(
m+ k − 1− j

l

)(
(m+ k − 1)− 1− 2l

(2m− g + k − 1)− 1− l

)
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= [x2m−g+k−2]

(
m+k−1−j∑

l=0

(−1)l
(
m+ k − 1− j

l

)
xl(1 + x)m+k−2−2l

)

= [x2m−g+k−2]

(
(1 + x)m+k−2

(
1− x

(1 + x)2

)m+k−1−j
)

= [x2m−g+k−2]

(
(1 + x)m+k−2

(
x2 + x+ 1

(1 + x)2

)m+k−1−j)
.

Therefore,

m+k−1∑
j=dm+k

2 e

m+k−1−j∑
l=0

(−1)l
(
m+ k − 1− j

l

)(
(m+ k − 1)− 1− 2l

(2m− g + k − 1)− 1− l

)

= [x2m−g+k−2]

 m+k−1∑
j=dm+k

2 e

(1 + x)m+k−2
(
x2 + x+ 1

(1 + x)2

)m+k−1−j
 .

Noting that

m+k−1∑
j=dm+k

2 e

(1 + x)m+k−2
(
x2 + x+ 1

(1 + x)2

)m+k−1−j

= (1 + x)m+k−2
m+k−1−dm+k

2 e∑
s=0

(
x2 + x+ 1

(1 + x)2

)s
=

(1 + x)m+k

(1 + x)2

(
1−

(
x2+x+1
(1+x)2

)m+k−dm+k
2 e
)

(
1−

(
x2+x+1
(1+x)2

))
=

(1 + x)m+k − (1 + x+ x2)m+k−dm+k
2 e(1 + x)2d

m+k
2 e−m−k

x
,

completes the proof of (5).
Consider j ∈ [1, bm+k−1

2 c], so 2j ≤ m+k−1. A necessary condition for j ∈ PF (S) is that j+m, 2j+m ∈ B
and for every i ∈ [1, j − 1], if m + i ∈ B then m + j + i ∈ B. For j ∈ [1, bm+k−1

2 c], by inclusion-exclusion we
have

#{S ∈ C(m, k, g) | j ∈ PF (S)} ≤
j−1∑
l=0

(−1)l
(
j − 1

l

)(
(m+ k − 1)− 2− 2l

(2m− g + k − 1)− 2− l

)

= [x2m−g+k−3]

(
j−1∑
l=0

(−1)l
(
j − 1

l

)
xl(1 + x)m+k−3−2l

)

= [x2m−g+k−3]

(
(1 + x)m+k−3

(
1− x

(1 + x)2

)j−1)

= [x2m−g+k−3]

(
(1 + x)m+k−3

(
x2 + x+ 1

(1 + x)2

)j−1)
.

Therefore,

∑
S∈C(m,k,g)

#

(
PF (S) ∩

[
1,

⌊
m+ k − 1

2

⌋])
≤

bm+k−1
2 c∑
j=1

j−1∑
l=0

(−1)l
(
j − 1

l

)(
(m+ k − 1)− 2− 2l

(2m− g + k − 1)− 2− l

)

= [x2m−g+k−3]

bm+k−1
2 c∑
j=1

(1 + x)m+k−3
(
x2 + x+ 1

(1 + x)2

)j−1 .

Noting that

bm+k−1
2 c∑
j=1

(1 + x)m+k−3
(
x2 + x+ 1

(1 + x)2

)j−1
=

(1 + x)m+k−1

(1 + x)2

(
1−

(
x2+x+1
(1+x)2

)bm+k−1
2 c

)
(

1−
(
x2+x+1
(1+x)2

))
ECA 3:2 (2023) Article #S2R14 15



Nathan Kaplan and Deepesh Singhal

=
(1 + x)m+k−1 − (1 + x+ x2)b

m+k−1
2 c(1 + x)(m+k−1)−2bm+k−1

2 c

x

completes the proof of (6).

Lemma 25. We have

lim
g→∞

1

g
Eg[t2] = 0.

Proposition 9(2) follows directly from this result together with Lemma 17. Therefore, proving this result
completes the proof of Theorem 4(2).

Proof. Choose ε > 0 and consider the M(ε) given by Proposition 3. For any g, applying Lemma 23 and
Lemma 24 gives

∑
S∈Sg

t2(S) =
∑

S∈B(g)

t2(S) +

M(ε)∑
k=1

∑
S∈C(k,g)

t2(S) +
∑
S∈Sg

F (S)>2m(S)+M(ε)

t2(S)

≤ 2Fg+4 +

M(ε)∑
k=1

2Fg+k+3 +
∑
S∈Sg

F (S)>2m(S)+M(ε)

(g + 1).

Noting that Fn <
ϕn+1√

5
and applying Proposition 3 shows that this is less than

2
ϕg+4 + 1√

5
+ 2

M(ε)∑
k=1

ϕg+k+3 + 1√
5

+ (g + 1)εN(g) = ϕg+4 2√
5

(
1 +

ϕM(ε) − 1

ϕ− 1

)
+

2√
5

(M(ε) + 1) + (g + 1)εN(g).

Therefore,

lim sup
g→∞

1

g

1

N(g)

∑
S∈Sg

t2(S) ≤ ε.

Since ε was arbitrary, we see that

lim
g→∞

1

g

1

N(g)

∑
S∈Sg

t2(S) = 0.

6. The probability that a subset is contained in a semi-
group of genus g

In this section, we consider a set of positive integers and study the proportion of semigroups in Sg that contain
some of them but not others. Intuitively, integers that are large relative to g should be contained in most, or
all, semigroups in Sg, and integers that are small relative to g should be contained in very few semigroups in
Sg. It is the integers in ‘the middle’ where the statistical behavior is not so obvious. Our goal is to make this
kind of reasoning precise.

Define a step function f1 : [0, 2] \ {γ, 2γ} → [0, 1] by

f1(x) =


0 if 0 ≤ x < γ√

5−1
2 if γ < x < 2γ

1 if 2γ < x ≤ 2.

We show that f1

(
n
g

)
is a good approximation for the probability that n is contained in a random element of

Sg, and also that these probabilities for various n are independent.

Theorem 26. Fix l1, l2 ≥ 0 and ε1, ε2 > 0. There exists an M(ε1, ε2) > 0 such that for all g > M(ε1, ε2) and
all pairs of subsets

C,C ′ ⊆
[
1, (γ − ε1)g

)
∪
(
(γ + ε1)g, (2γ − ε1)g

)
∪
(
(2γ + ε1)g, 2g

]
with |C| = l1, |C ′| = l2 and C ∩ C ′ = ∅, we have∣∣∣∣∣Pg[C ⊆ S and C ′ ∩ S = ∅]−

∏
n∈C

f1

(
n

g

) ∏
n∈C′

(
1− f1

(
n

g

))∣∣∣∣∣ < ε2.
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In the next section, we apply two special cases of this result.

Corollary 27. Fix ε1, ε2 > 0.

1. There exists an M(ε1, ε2) > 0 such that for all g > M(ε1, ε2) and

n ∈
[
1, (γ − ε1)g

)
∪
(
(γ + ε1)g, (2γ − ε1)g

)
∪
(
(2γ + ε1)g, 2g

]
we have ∣∣∣∣Pg[n ∈ S]− f1

(
n

g

)∣∣∣∣ < ε2.

2. There exists an M(ε1, ε2) > 0 such that for all g > M(ε1, ε2) and

i, j ∈
[
1, (γ − ε1)g

)
∪
(
(γ + ε1)g, (2γ − ε1)g

)
∪
(
(2γ + ε1)g, 2g

]
with i 6= j, we have ∣∣∣∣Pg[{i, j} ∩ S = ∅]−

(
1− f1

(
i

g

))(
1− f1

(
j

g

))∣∣∣∣ < ε2.

The second statement may be surprising because in general whether two positive integers i, j are contained
in a numerical semigroup S are not independent events. For example, if i | j then i ∈ S implies j ∈ S. The
point here is that if i is ‘too small’, Pg[i ∈ S] is very small, and if neither of i, j is small, then either they are in
S with very high probability, or they are too close together for the condition i ∈ S to influence Pg[j ∈ S] in a
meaningful way.

We start the proof of Theorem 26 by recalling a result of Zhai that was conjectured by Zhao [17, Conjecture
2]. Recall that the set Ak is defined in Section 2.

Theorem 28. [16, Theorem 3.11] The sum

c =
ϕ√
5

+
1√
5

∞∑
k=1

∑
A∈Ak

ϕ|A|−|(A+A)∩[0,k]|−k−1

converges. Moreover,
N(g) = cϕg + o(ϕg).

We next need a technical result about sums of binomial coefficients. The proof is similar to the proof
of [9, Proposition 7], so we do not include it here.

Lemma 29. Fix l1, l2 ∈ Z≥0 and ε > 0. As g →∞, we have

b(γ+ε)gc∑
m=d(γ−ε)ge

(
m− 1− l1

g −m+ 1− l2

)
=

1√
5
ϕg−l1−l2+1 + o(ϕg).

A main step in the proof of Theorem 26 is to study elements between the expected size of the multiplicity
and the expected size of the Frobenius number of a random S ∈ Sg.

Lemma 30. Fix l ≥ 0 and ε1, ε2 > 0. There is an M(ε1, ε2) > 0 such that for all g > M(ε1, ε2) and all subsets
C ⊆

(
(γ + ε1)g, (2γ − ε1)g

)
with |C| = l, we have∣∣Pg[C ⊆ S]− ϕ−l

∣∣ < ε2.

Proof. We separately prove that for sufficiently large g, we have Pg[C ⊆ S] < ϕ−l+ε2 and Pg[C ⊆ S] > ϕ−l−ε2.
We first phrase this in terms of the sets B(g,m) and Ak from Section 2.

Fix m ∈
(
(γ − ε1

2 )g, (γ + ε1
2 )g

)
, so m < min(C) ≤ max(C) < 2m. Proposition 15 implies that

#{S ∈ B(g,m) | C ⊆ S} =

(
m− 1− l

2m− g − 2− l

)
=

(
m− 1− l
g −m+ 1

)
.

Next, for k ≤ min( g3 ,
ε1
2 g) and A ∈ Ak we have m+ k < min(C) ≤ max(C) < 2m and

#{S ∈ C(m, k,A, g) | C ⊆ S} =

(
m− 1− |(A+A) ∩ [0, k]| − l

2m− g + k − |A| − |(A+A) ∩ [0, k]| − l

)
=

(
m− 1− |(A+A) ∩ [0, k]| − l

g −m+ |A| − k − 1

)
.
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We start with the lower bound for Pg[C ⊆ S]. By Theorem 28, we can choose M sufficiently large so that

ϕ√
5

+
1√
5

M∑
k=1

∑
A∈Ak

ϕ|A|−|(A+A)∩[0,k]|−k−1 > c
(

1− ε2
2
ϕ−l

)
.

For g > max(3M, 2
ε1
M), we have

Pg[C ⊆ S] ≥ 1

N(g)

b(γ+ ε1
2 )gc∑

m=d(γ− ε12 )ge

(
m− 1− l
g −m+ 1

)
+

1

N(g)

M∑
k=1

∑
A∈Ak

b(γ+ ε1
2 )gc∑

m=d(γ− ε12 )ge

(
m− 1− |(A+A) ∩ [0, k]| − l

g −m+ |A| − k − 1

)
.

Applying Lemma 29 with l1 = l and l2 = 0 shows that

b(γ+ ε1
2 )gc∑

m=d(γ− ε12 )ge

(
m− 1− l
g −m+ 1

)
=

1√
5
ϕg+1−l + o(ϕg).

Applying Lemma 29 with l1 = |(A+A) ∩ [0, k]|+ l and l2 = k + 2− |A| shows that

b(γ+ ε1
2 )gc∑

m=d(γ− ε12 )ge

(
m− 1− |(A+A) ∩ [0, k]| − l

g −m+ |A| − k − 1

)
=

1√
5
ϕg−l+|A|−|(A+A)∩[0,k]|−k−1 + o(ϕg).

We now have

Pg[C ⊆ S] ≥ ϕ−l
ϕg

N(g)

(
ϕ√
5

+
1√
5

M∑
k=1

∑
A∈Ak

ϕ|A|−|(A+A)∩[0,k]|−k−1

)
+ o(1)

> ϕ−l
(

1

c
+ o(1)

)
c
(

1− ε2
2
ϕ−l

)
+ o(1) = ϕ−l − ε2

2
+ o(1).

Therefore, for sufficiently large g, all subsets C ⊆
(
(γ+ε1)g, (2γ−ε1)g

)
with |C| = l satisfy Pg[C ⊆ S] > ϕ−l−ε2.

We now turn to the upper bound for Pg[C ⊆ S]. For g > max(3M, 2
ε1
M), we have

Pg[C ⊆ S] ≤ 1

N(g)

b(γ+ ε1
2 )gc∑

m=d(γ− ε12 )ge

(
m− 1− l
g −m+ 1

)
+

1

N(g)

M∑
k=1

∑
A∈Ak

b(γ+ ε1
2 )gc∑

m=d(γ− ε12 )ge

(
m− 1− |(A+A) ∩ [0, k]| − l

g −m+ |A| − k − 1

)
+Pg

[
|m(S)− γg| > ε1

2
g
]

+ Pg [|F (S)− 2m(S)| > M ] .

As we analyzed above, the sum of the first two terms is

ϕ−l
ϕg

N(g)

(
ϕ√
5

+
1√
5

M∑
k=1

∑
A∈Ak

ϕ|A|−|(A+A)∩[0,k]|−k−1

)
+ o(1) < ϕ−l

(
1

c
+ o(1)

)
c+ o(1) = ϕ−l + o(1).

Applying Theorem 2 and Proposition 3 shows that for all sufficiently large g, we have

Pg
[
|m(S)− γg| > ε1

2
g
]

+ Pg [|F (S)− 2m(S)| > M ] ≤ ε2
2
.

We conclude that for sufficiently large g, all subsets C ⊆
(
(γ + ε1)g, (2γ − ε1)g

)
with |C| = l satisfy Pg[C ⊆

S] < ϕ−l + ε2.

We now prove a result about the probability that a set is contained in a random S ∈ Sg.

Theorem 31. Fix l ≥ 0 and ε1, ε2 > 0. There exists an M(ε1, ε2) > 0 such that for all g > M(ε1, ε2) and all
subsets

C ⊆
[
1, (γ − ε1)g

)
∪
(
(γ + ε1)g, (2γ − ε1)g

)
∪
(
(2γ + ε1)g, 2g

]
of size |C| = l, we have ∣∣∣∣∣Pg[C ⊆ S]−

∏
n∈C

f1

(
n

g

)∣∣∣∣∣ < ε2.
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Proof. By Theorem 2, there is M1(ε1, ε2) such that g > M1(ε1, ε2) implies that

Pg[m(S) ≤ (γ − ε1)g] < ε2,

Pg[F (S) ≥ (2γ + ε1)g] <
ε2
2
.

Lemma 30 implies that there is M2(ε1, ε2) > 0 such that for all g > M2(ε1, ε2) and all subsets

C ′ ⊆
(
(γ + ε1)g, (2γ − ε1)g

)
,

of size |C ′| ≤ l, we have ∣∣∣Pg[C ′ ⊆ S]− ϕ−|C
′|
∣∣∣ < ε2

2
.

Let M = max(M1(ε1, ε2),M2(ε1, ε2)). Pick g > M and a subset

C ⊆
[
1, (γ − ε1)g

)
∪
(
(γ + ε1)g, (2γ − ε1)g

)
∪
(
(2γ + ε1)g, 2g

]
of size |C| = l. We split C into three parts:

C1 = C ∩
[
1, (γ − ε1)g

)
,

C2 = C ∩
(
(γ + ε1)g, (2γ − ε1)g

)
,

C3 = C ∩
(
(2γ + ε1)g, 2g

]
.

We consider two cases.

• Case 1: C1 6= ∅. Then
∏
n∈C f1

(
n
g

)
= 0. Moreover,

Pg[C ⊆ S] ≤ Pg[m(S) < (γ − ε1)g] < ε2.

• Case 2: C1 = ∅. Suppose |C2| = l1 ≤ l, so
∏
n∈C f1

(
n
g

)
= ϕ−l1 . Now

Pg[C ⊆ S] ≤ Pg[C2 ⊆ S] < ϕ−l1 +
ε2
2
.

We have
Pg[C ⊆ S] ≥ Pg[C2 ⊆ S]− Pg[C3 6⊂ S].

Now if C3 = ∅, then Pg[C3 6⊂ S] = 0 and if C3 6= ∅, then

Pg[C3 6⊂ S] ≤ Pg
[
F (S) ≥ (2γ + ε1)g

]
<
ε2
2
.

Therefore, we have

Pg[C ⊆ S] > ϕ−l1 − ε2
2
− ε2

2
.

We conclude that ∣∣Pg[C ⊆ S]− ϕ−l1
∣∣ < ε2.

We now have all the tools to prove the main result of this section.

Proof of Theorem 26. By Theorem 31, there exists an M(ε1, ε2) > 0 such that for all g > M(ε1, ε2) and all
subsets

D ⊆
[
1, (γ − ε1)g

)
∪
(
(γ + ε1)g, (2γ − ε1)g

)
∪
(
(2γ + ε1)g, 2g

]
of size |D| ≤ l1 + l2, we have ∣∣∣∣∣Pg[D ⊆ S]−

∏
n∈D

f1

(
n

g

)∣∣∣∣∣ < ε2
2l2

.

Consider g > M(ε1, ε2) and a pair of subsets

C,C ′ ⊆
[
1, (γ − ε1)g

)
∪
(
(γ + ε1)g, (2γ − ε1)g

)
∪
(
(2γ + ε1)g, 2g

]
with |C| = l1, |C ′| = l2, and C ∩ C ′ = ∅. By inclusion-exclusion, we know that

Pg[C ⊆ S and C ′ ∩ S = ∅] =
∑
B⊆C′

(−1)|B|Pg[(C ∪B) ⊆ S].
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We see that ∣∣∣∣∣Pg[C ⊆ S and C ′ ∩ S = ∅]−
∏
n∈C

f1

(
n

g

) ∏
n∈C′

(
1− f1

(
n

g

))∣∣∣∣∣
=

∣∣∣∣∣∣
∑
B⊆C′

(−1)|B|Pg[(C ∪B) ⊆ S]−
∑
B⊆C′

(−1)|B|
∏

n∈C∪B
f1

(
n

g

)∣∣∣∣∣∣
≤

∑
B⊆C′

∣∣∣∣∣Pg[(C ∪B) ⊆ S]−
∏

n∈C∪B
f1

(
n

g

)∣∣∣∣∣
<

∑
B⊆C′

ε2
2l2

= ε2,

where in the last step we applied Theorem 31 with D = C ∪B.

7. The weight of a typical numerical semigroup

We first determine the expected value of the weight of a numerical semigroup of genus g.

Proof of Theorem 6(1). Let α(S) =
∑
x∈H(S) x. So for S ∈ Sg we have w(S) = α(S) − g(g+1)

2 . We will prove
that

lim
g→∞

1

g2
Eg[α(S)] =

9 +
√

5

20
. (7)

Assuming this for now, noting that 1
10ϕ = 9+

√
5

20 − 1
2 completes the proof.

Our goal is now to prove (7). Every numerical semigroup S satisfies F (S) ≤ 2g(S) − 1. By linearity of
expectation, we know that

Eg[α(S)] =

2g−1∑
n=1

nPg[n /∈ S] =

2g−1∑
n=1

n

(
1− f1

(
n

g

))
+

2g−1∑
n=1

n

(
f1

(
n

g

)
− Pg[n ∈ S]

)
.

We have
2g−1∑
n=1

n

(
1− f1

(
n

g

))
=

(γg)2

2
+ (1− ϕ−1)

(
(2γg)2

2
− (γg)2

2

)
+O(g).

Applying Corollary 27(1) gives an M(ε1, ε2) such that for all g > M(ε1, ε2), we have∣∣∣∣∣
2g−1∑
n=1

n

(
f1

(
n

g

)
− Pg[n ∈ S]

)∣∣∣∣∣ ≤ 2g

2g−1∑
n=1

∣∣∣∣f1(ng
)
− Pg[n ∈ S]

∣∣∣∣ ≤ (2g)(4ε1g + (2− 4ε1)gε2).

Note that γ2

2 + (1− ϕ−1) 3γ2

2 = 9+
√
5

20 . Since ε1, ε2 were arbitrary, we conclude that

Eg[α(S)] =
9 +
√

5

20
g2 + o(g2),

completing the proof of (7).

Theorem 32. We have

lim
g→∞

1

g4
Eg[w(S)2] =

(
1

10ϕ

)2

.

Before giving the proof we use this result to complete the proof of Theorem 6(2).

Proof of Theorem 6(2). Apply Lemma 19 together with Theorem 6(1) and Theorem 32.

Proof of Theorem 32. We will show that

lim
g→∞

1

g4
Eg[α(S)2] =

(
9 +
√

5

20

)2

. (8)
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Assuming this, for now, we complete the proof. Since w(S) = α(S)− g(g+1)
2 , we see that

lim
g→∞

1

g4
Eg[w(S)2] = lim

g→∞

1

g4
Eg[α(S)2]− lim

g→∞

g(g + 1)

g4
Eg[α(S)] + lim

g→∞

1

g4
g2(g + 1)2

4

=

(
9 +
√

5

20

)2

− 9 +
√

5

20
+

1

4
=

(
1

10ϕ

)2

,

where we used the expressions in (7) and (8). Therefore, we only need to prove (8).
For 1 ≤ i ≤ 2g − 1, consider the following random variables on Sg:

ψi(S) =

{
1 if i /∈ S
0 if i ∈ S

.

Therefore, α(S) =
∑2g−1
i=1 iψi(S). By linearity of expectation we have

Eg[α(S)2] =

2g−1∑
i=1

2g−1∑
j=1

ijEg[ψiψj ] =

2g−1∑
i=1

2g−1∑
j=1

ijPg[{i, j} ∩ S = ∅]

=

2g−1∑
i=1

2g−1∑
j=1

ij

(
1− f1

(
i

g

))(
1− f1

(
j

g

))

−
2g−1∑
i=1

2g−1∑
j=1

ij

((
1− f1

(
i

g

))(
1− f1

(
j

g

))
− Pg[{i, j} ∩ S = ∅]

)
.

We estimate the size of each term separately, starting with the first. We have

2g−1∑
i=1

2g−1∑
j=1

ij

(
1− f1

(
i

g

))(
1− f1

(
j

g

))
=

(
2g−1∑
i=1

i

(
1− f1

(
i

g

)))2

.

Note that,
2g−1∑
i=1

i

(
1− f1

(
i

g

))
=
γ2

2
g2 + (1− ϕ−1)

(
4γ2

2
− γ2

2

)
g2 +O(g).

Therefore,
2g−1∑
i=1

2g−1∑
j=1

ij

(
1− f1

(
i

g

))(
1− f1

(
j

g

))
=

(
9 +
√

5

20

)2

g4 +O(g3).

Now we estimate the second term. It is clear that∣∣∣∣∣∣
2g−1∑
i=1

2g−1∑
j=1

ij

((
1− f1

(
i

g

))(
1− f1

(
j

g

))
− Pg[{i, j} ∩ S = ∅]

)∣∣∣∣∣∣
≤

2g−1∑
i=1

2g−1∑
j=1

ij

∣∣∣∣(1− f1
(
i

g

))(
1− f1

(
j

g

))
− Pg[{i, j} ∩ S = ∅]

∣∣∣∣ .
We first consider the terms with i = j, and see that

2g−1∑
i=1

i2

∣∣∣∣∣
(

1− f1
(
i

g

))2

− Pg[{i} ∩ S = ∅]

∣∣∣∣∣ ≤
2g−1∑
i=1

i2 = O(g3).

Next, we consider the terms with i 6= j. Fix ε1, ε2 > 0. Corollary 27(2) gives an M2(ε1, ε2) such that for all
g > M2(ε1, ε2) and all i 6= j with

{i, j} ⊆
[
1, (γ − ε1)g

)
∪
(
(γ + ε1)g, (2γ − ε1)g

)
∪
(
(2γ + ε1)g, 2g

]
we have ∣∣∣∣Pg[{i, j} ∩ S = ∅]−

(
1− f1

(
i

g

))(
1− f1

(
j

g

))∣∣∣∣ < ε2.
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Therefore,

2g−1∑
i=1

2g−1∑
j=1
j 6=i

ij

∣∣∣∣(1− f1
(
i

g

))(
1− f1

(
j

g

))
− Pg[{i, j} ∩ S = ∅]

∣∣∣∣
≤

2g−1∑
i=1

2g−1∑
j=1

ijε2 +
∑

i∈
(
(γ−ε1)g,(γ+ε1)g

)
2g−1∑
j=1

ij +
∑

i∈
(
(2γ−ε1)g,(2γ+ε1)g

)
2g−1∑
j=1

ij

+

2g−1∑
i=1

∑
j∈
(
(γ−ε1)g,(γ+ε1)g

) ij +

2g−1∑
i=1

∑
j∈
(
(2γ−ε1)g,(2γ+ε1)g

) ij
≤ ε2

(2g)2

2

(2g)2

2
+ 4(2ε1g)(2g)

(2g)2

2
= ε24g4 + ε132g4.

Combining everything, since ε1, ε2 were arbitrary, we get

Eg[α(S)2] =

(
9 +
√

5

20

)2

g4 + o(g4).

8. Counting Numerical Semigroups with Large Embed-
ding Dimension

A main idea of this section is to construct a bijection between numerical semigroups with fixed multiplicity,
genus, and embedding dimension and certain finite sequences of positive integers. These sequences are the
initial segments of Kunz coordinate vectors of numerical semigroups. We recall some notation and basic facts
about these objects.

Definition. Let S be a numerical semigroup. The Apéry set of S with respect to an element m ∈ S is

Ap(S;m) = {s ∈ S : s−m 6∈ S}.

It is easy to see that there is one element of Ap(S;m) in each residue class modulo m. We can write
Ap(S;m) = {0, a1, a2, . . . , am−1} where each ai ≡ i (mod m). For each i ∈ {1, 2, . . . ,m − 1}, we define the
nonnegative integer ki by ai = kim+ i. Note that if m = m(S), then each ki ≥ 1.

Definition. The Kunz coordinate vector of S with respect to m is (k1, . . . , km−1). Let KVm denote the function
that takes a numerical semigroup containing m to its Kunz coordinate vector with respect to m.

We collect some results about Kunz coordinate vectors of numerical semigroups.

Theorem 33. [10, 11] The map KVm gives a bijection between S ∈ Sg with m(S) = m and (x1, . . . , xm−1) ∈
Zm−1≥1 satisfying:

xi + xj ≥ xi+j , for all 1 ≤ i ≤ j ≤ m− 1 with i+ j < m,

xi + xj + 1 ≥ xi+j−m, for all 1 ≤ i ≤ j ≤ m− 1 with i+ j > m,
m−1∑
i=1

xi = g.

Proposition 34. If S is a numerical semigroup with m = m(S), then A(S)\{m} ⊆ Ap(S;m). More precisely,
if KVm(S) = (k1, . . . , km−1) we have

A(S) = {m} ∪ {mki + i |6 ∃j1, j2 ∈ [1,m− 1] : j1 + j2 = i, kj1 + kj2 = ki,

and 6 ∃j1, j2 ∈ [1,m− 1] : j1 + j2 = m+ i, kj1 + kj2 + 1 = ki}.

For a more detailed discussion of this material, see [8, Section 4].
In order to state the first main result of this section, we introduce some notation. Suppose x = (x1, . . . , xt) ∈

{1, 2, 3}t. We define
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1. a(x) = #{i ∈ [1, t] | xi = 2},

2. b(x) = #{i ∈ [1, t] | xi = 3},

3. c(x) = #{i ∈ [1, t] | ∃j1, j2 ∈ [1, t] : j1 + j2 = i, (xj1 , xj2 , xi) = (1, 1, 2)}.

Theorem 33 gives a bijection between numerical semigroups S with m(S) = m and g(S) = g and a certain
set of integer tuples of length m− 1. We consider a refined version of this result that applies in the case where
g(S) and e(S) are not too far away from m(S).

Theorem 35. Fix integers k1 and k2 satisfying −1 ≤ k1 ≤ k2 and m ≥ 2k1 + 2. For (x1, . . . , xm−1) ∈ Zm−1≥0 ,
let x = (x1, . . . , x2k1+1).

There is a bijection between the set of numerical semigroups S satisfying m(S) = m, g(S) = m + k1, and
e(S) = g(S)− k2, and sequences (x1, . . . , xm−1) satisfying:

1. x1, . . . , xm−1 ∈ {1, 2, 3}.

2. If i ≥ 2k1, then xi ∈ {1, 2}.

3. Whenever i1, i2, i3 ∈ [1, 2k1 + 1] satisfy i1 + i2 = i3, we have (xi1 , xi2 , xi3) 6= (1, 1, 3).

4. #{i ∈ [2k1 + 2,m− 1] | xi = 2} = k1 + 1− a(x)− 2b(x).

5. a(x) + b(x)− c(x) = 2k1 + 1− k2.

Note that conditions (4) and (5) imply that if such an S exists, then

• a(x) + 2b(x) ≤ k1 + 1.

• k2 ≤ 2k1 + 1.

In the course of proving Theorem 35, we will express e(S) in terms of (x1, . . . , xm−1). We highlight this result
because we will apply it in the discussion that follows.

Proposition 36. Suppose (x1, . . . , xm−1) = KVm(S) where S is a numerical semigroup satisfying m(S) = m,
g(S) = m+ k1, and m ≥ 2k1 + 2. Let x = (x1, . . . , x2k1+1). Then

e(S) = g − 2k1 − 1 + a(x) + b(x)− c(x).

Before proving Theorem 35, we show how to use it to prove Theorem 14.

Proposition 37. Fix integers k1, k2 satisfying −1 ≤ k1 ≤ k2 and g ≥ 4k1 + 3. Suppose x = (x1, . . . , x2k1+1) ∈
{1, 2, 3}2k1+1 satisfies the following conditions:

1. Whenever i1, i2, i3 ∈ [1, 2k1 + 1] satisfy i1 + i2 = i3, we have (xi1 , xi2 , xi3) 6= (1, 1, 3).

2. a(x) + b(x)− c(x) = 2k1 + 1− k2.

3. a(x) + 2b(x) ≤ k1 + 1.

The number of numerical semigroups S for which g(S) = g, m(S) = g−k1, e(S) = g−k2, and the first 2k1 + 1
coordinates of KVm(S) are given by x is

(
g−3k1−2

k1+1−a(x)−2b(x)
)
.

Proof. Suppose S satisfies g(S) = g, m(S) = m = g−k1, e(S) = g−k2, and KVm(S) = (x1, . . . , x2k1+1, k2k1+2,
. . . , km−1). Since g(S) = g, Theorem 35 implies that the number of k2k1+2, . . . , km−1 equal to 2 must be
k1+1−a(x)−2b(x), and the rest of the elements must be equal to 1. Note that (m−1)−(2k1+1) = g−3k1−2.
Therefore, we have

(
g−3k1−2

k1+1−a(x)−2b(x)
)

choices for k2k1+2, . . . , km−1. Theorem 35 says that each choice gives a

semigroup satisfying the properties we are looking for and that these are all such semigroups. Condition (3)
ensures that k + 1− a(x)− 2b(x) ≥ 0 and g ≥ 4k1 + 3 ensures that k1 + 1− a(x)− 2b(x) ≤ g − 3k1 − 2.

Consider the collection of all sequences x satisfying the conditions of Theorem 35, but now where we allow
k2 to vary. This leads to the following definition.

Definition. Fix k ∈ Z≥0. Let Y(k) be the collection of all tuples x = (x1, . . . , x2k+1) ∈ {1, 2, 3}2k+1 satisfying
the following conditions:

1. Whenever i1, i2, i3 ∈ [1, 2k + 1] satisfy i1 + i2 = i3, we have (xi1 , xi2 , xi3) 6= (1, 1, 3).

2. a(x) + 2b(x) ≤ k + 1.
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Theorem 38. Fix an integer k ≥ −1. For g ≥ 4k + 3 we have

#{S ∈ Sg | m(S) = g − k} =
∑

x∈Y(k)

(
g − 3k − 2

k + 1− a(x)− 2b(x)

)
.

Proof. For x ∈ Y(k), let k2 = 2k + 1− a(x)− b(x) + c(x). We have

k2 = k − a(x)− b(x) + c(x) + k + 1 ≥ k + b(x) + c(x) ≥ k.

We apply Proposition 37 for each x ∈ Y(k) with the corresponding k2 and add the results.

In the notation of Theorem 11, this means that for each k ≥ −1 and g ≥ 4k + 3, we have

1

(k + 1)!
fk(x) =

∑
x∈Y(k)

(
x− 3k − 2

k + 1− a(x)− 2b(x)

)
.

At the end of this paper, we list the sets Y(k) for −1 ≤ k ≤ 2. A simple computation gives f−1(x), . . . , f2(x).
We see that they match the formulas in [7, Corollary 14].

We return to the problem of counting semigroups S ∈ Sg with a large embedding dimension.

Theorem 39. Fix an integer l ≥ −1. For g ≥ 4l + 3 we have

#{S ∈ Sg | e(S) = g − l} =
l∑

k=−1

∑
x∈Y(k)

a(x)+b(x)−c(x)=2k+1−l

(
g − 3k − 2

k + 1− a(x)− 2b(x)

)
.

Proof. We divide up the semigroups in Sg with e(S) = g − l by multiplicity and see that

{S ∈ Sg | e(S) = g − l} =

l⋃
k=−1

{S ∈ Sg | e(S) = g − l,m(S) = g − k}.

By Theorem 35, if S ∈ Sg satisfies e(S) = g−l and m(S) = g−k, then x ∈ Y(k) and a(x)+b(x)−c(x) = 2k+1−l.
By Proposition 37, the number of numerical semigroups corresponding to a given x is

(
g−3k−2

k+1−a(x)−2b(x)
)
. The

result follows.

The only remaining thing needed to complete the proof of Theorem 14 is to establish some basic properties
of the polynomials on the right-hand side of Theorem 39. Define

Hl(x) =
l∑

k=−1

∑
x∈Y(k)

a(x)+b(x)−c(x)=2k+1−l

(
x− 3k − 2

k + 1− a(x)− 2b(x)

)
.

Proposition 40. Fix an integer l ≥ −1. Let l1 = b l+1
2 c. Then Hl(x) is a polynomial of degree l1 and l1!Hl(x)

is a monic polynomial with integer coefficients.

Proving this statement completes the proof of Theorem 14.

Proof. The degree of Hl(x) is

max{k + 1− a(x)− 2b(x) | −1 ≤ k ≤ l, x ∈ Y(k), 2k + 1 + c(x)− a(x)− b(x) = l}.

Suppose that −1 ≤ k ≤ l and x ∈ Y(k) satisfies 2k + 1 + c(x)− a(x)− b(x) = l. We have

2k + 1 = l + (a(x)− c(x)) + b(x) ≥ l.

This means that k ≥ l−1
2 . Next,

k + 1− a(x)− 2b(x) = l − k − c(x)− b(x) ≤ l − k ≤ l + 1

2
.

This implies deg(Hl(x)) ≤ l+1
2 . Since deg(Hl(x)) is an integer, we see that deg(Hl(x)) ≤ l1. Note that

k + 1− a(x)− 2b(x) = l1 if and only if b(x) = c(x) = 0 and k = l − l1.
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• If l is odd, then l = 2l1 − 1. Take k = l − l1 = l1 − 1. If x ∈ Y(k) satisfies b(x) = c(x) = 0, then

l = 2k + 1− a(x) = 2l1 − 1 + a(x) = l − a(x).

This implies a(x) = 0. There is a unique such x, which is x = (1, 1, . . . , 1) ∈ Y(k).

• If l is even, then l = 2l1. Take k = l − l1 = l1. If x ∈ Y(k) satisfies b(x) = c(x) = 0, then

l = 2k + 1− a(x) = 2l1 + 1 + a(x) = l + 1− a(x).

This implies a(x) = 1. There is a unique such x, which is x = (2, 1, . . . , 1) ∈ Y(k).

This completes the proof.

8.1 The proof of Theorem 35.

The goal of the rest of this section is to prove Theorem 35.
We need several facts about the Kunz coordinate vector of a numerical semigroup with multiplicity m and

genus g.

Lemma 41. [7, Lemma 11] Suppose S is a numerical semigroup with g(S) = g, m(S) = m, and KVm(S) =
(x1, . . . , xm−1). If 2g < 3m+ 2, then {x1, . . . , xm−1} ⊆ {1, 2, 3}.

Lemma 42. Suppose S is a numerical semigroup with g(S) = g and m(S) = m. Let KVm(S) = (x1, . . . , xm−1).
If i ∈ [1,m− 1] satisfies xi = 3, then

g ≥ m+ 1 +

⌈
i− 1

2

⌉
.

Proof. The set [1, i− 1] can be partitioned as a union of d i−12 e subsets of the form {j1, j2} with j1 + j2 = i. For
each such {j1, j2}, at least one of xj1 , xj2 must be at least 2. Therefore,

g − (m− 1) =
m−1∑
j=1

(xj − 1) ≥ 2 +

⌈
i− 1

2

⌉
.

Lemma 43. Suppose S is a numerical semigroup with g(S) = g and m(S) = m. Let KVm(S) = (x1, . . . , xm−1).
If i ∈ [1,m− 1] satisfies xi = 2 and mxi + i ∈ A(S), then

g ≥ m+

⌈
i− 1

2

⌉
.

Proof. The set [1, i− 1] can be partitioned as a union of d i−12 e subsets of the form {j1, j2} with j1 + j2 = i. For
each such {j1, j2}, at least one of xj1 , xj2 must be at least 2. Therefore,

g − (m− 1) =
m−1∑
j=1

(xj − 1) ≥ 1 +

⌈
i− 1

2

⌉
.

Lemma 44. Suppose S is a numerical semigroup with g(S) = g and m(S) = m. Let KVm(S) = (x1, . . . , xm−1).
If 3m+ i ∈ A(S) for some i ∈ [1,m− 1], then g ≥ 3m

2 .

Proof. The set [1,m − 1] \ {i} can be partitioned as a union of subsets of the form {j1, j2} with j1 + j2 ≡ i
(mod m). Since 3m + i ∈ A(S) we know that for each subset {j1, j2} in the partition xj1 + xj2 + 1 > xi = 3.
Hence at least one of xj1 , xj2 is at least 2. The number of subsets {j1, j2} in the partition is at least dm−22 e.
Therefore,

g − (m− 1) =
m−1∑
j=1

(xj − 1) ≥ 2 +

⌈
m− 2

2

⌉
≥ 2 +

m− 2

2
.

We are now ready to prove Theorem 35. We prove it in two parts.

Proposition 45. Fix integers k2 ≥ k1 ≥ −1. Suppose g ≥ 3k1 + 2, and S ∈ Sg satisfies m(S) = g − k1 and
e(S) = g − k2. Let m = m(S). Suppose KVm(S) = (x1, . . . , xm−1) and let x = (x1, . . . , x2k1+1). Then the
following hold:

1. {x1, . . . , xm−1} ⊆ {1, 2, 3}.

2. If i ≥ 2k1, then xi ∈ {1, 2}.
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3. Whenever i1, i2, i3 ∈ [1, 2k1 + 1] satisfy i1 + i2 = i3, we have (xi1 , xi2 , xi3) 6= (1, 1, 3).

4. #{i ∈ [2k1 + 2,m− 1] | xi = 2} = k1 + 1− a(x)− 2b(x).

5. a(x) + b(x)− c(x) = 2k1 + 1− k2.

6. e(S) = g − 2k1 − 1 + a(x) + b(x)− c(x).

7. k2 ≤ 2k1 + 1.

We note that verifying property (6) proves Proposition 36.

Proof. We know that m = g − k1 ≥ 2k1 + 2. Next,

3m+ 2− 2g = 3(g − k1) + 2− 2g = g − (3k1 + 2) + 4 ≥ 4.

This means that 2g < 3m+ 2. Lemma 41 implies {x1, . . . , xm−1} ⊆ {1, 2, 3}.
Suppose i satisfies 2k1 ≤ i ≤ m − 1. Assume for the sake of contradiction that xi = 3. By Lemma 42 we

have g ≥ m+ 1 +
⌈
i−1
2

⌉
. However,

g ≥ m+ 1 +

⌈
i− 1

2

⌉
≥ m+ 1 +

⌈
2k1 − 1

2

⌉
= m+ 1 + k1 = g + 1.

This is a contradiction and we conclude that xi ∈ {1, 2}.
Suppose i1, i2, i3 ∈ [1, 2k1 + 1] satisfy i1 + i2 = i3. Suppose xi1 = xi2 = 1. Since (x1, . . . , xm−1) is the Kunz

coordinate vector of a numerical semigroup, we know that xi3 ≤ xi1 + xi2 = 2.
Next, note that

k1 + 1 = g − (m− 1) =
m−1∑
i=1

(xi − 1) = a(x) + 2b(x) + #{i ∈ [2k1 + 2,m− 1] | xi = 2}.

Next, we claim that A(S) is given by m together with the elements mxi + i satisfying either

1. xi = 1, or

2. xi = 2 where i ∈ [1, 2k1 + 1] and there does not exist a j satisfying 1 ≤ j < i with xj = xi−j = 1.

It is clear that all these elements are elements of A(S). Suppose a = mxi+ i is some other element of Ap(S;m).
Then one of the following must hold:

• Case 1: xi = 2 where i ∈ [1, 2k1 + 1] and there does exist a j satisfying 1 ≤ j < i with xj = xi−j = 1. Then
xi = xj + xi−j , so a 6∈ A(S).

• Case 2: xi = 2 where i ∈ [2k1 + 2,m − 1]. Assume for the sake of contradiction that a ∈ A(S). Lemma 43
implies that g ≥ m+

⌈
i−1
2

⌉
. This implies that

g ≥ m+

⌈
2k1 + 1

2

⌉
= m+ k1 + 1 = g + 1.

This is a contradiction. Therefore a /∈ A(S).

• Case 3: xi = 3. Assume for the sake of contradiction that a ∈ A(S). By Lemma 44, g ≥ 3m
2 . This implies

that

k1 = g −m ≥ m

2
=
g − k1

2
≥ 2k1 + 2

2
= k1 + 1,

which is a contradiction. Therefore a /∈ A(S).

This characterization of A(S) implies that

g − k2 = e(S)

= 1 +
(
2k1 + 1− a(x)− b(x)

)
+ #{i ∈ [2k1 + 2,m− 1] | xi = 1}+

(
a(x)− c(x)

)
= 2k1 + 2− b(x)− c(x) +

(
m− 1− (2k1 + 1)−#{i ∈ [2k1 + 2,m− 1] | xi = 2}

)
= −b(x)− c(x) + (g − k1)−

(
k1 + 1− a(x)− 2b(x)

)
= g − 2k1 − 1 + a(x) + b(x)− c(x).

We conclude that a(x) + b(x)− c(x) = 2k1 + 1− k2.
Finally since c(x) ≤ a(x), we see that a(x) + b(x)− c(x) ≥ 0 so k2 ≤ 2k1 + 1.
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We now prove the other direction in Theorem 35.

Proposition 46. Fix integers −1 ≤ k1 ≤ k2 ≤ 2k1 + 1. Also fix m ≥ 2k1 + 2 and a tuple of positive integers
(x1, x2, . . . , xm−1). Let x = (x1, . . . , x2k1+1). Suppose we have the following:

1. {x1, . . . , xm−1} ⊆ {1, 2, 3}.

2. If i ≥ 2k1 + 2 then xi ∈ {1, 2}.

3. Whenever i1, i2, i3 ∈ [1, 2k1 + 1] satisfy i1 + i2 = i3, we have (xi1 , xi2 , xi3) 6= (1, 1, 3).

4. #{i ∈ [2k1 + 2,m− 1] | xi = 2} = k1 + 1− a(x)− 2b(x).

5. a(x) + b(x)− c(x) = 2k1 + 1− k2.

Let

S = mN0 ∪
m−1⋃
i=1

(i+mxi +mN0).

Then S is a numerical semigroup satisfying m(S) = m, g(S) = m+ k1, and e(S) = g(S)− k2.

Proof. Theorem 33 implies that if (x1, . . . , xm−1) satisfies the first three conditions, then it is the Kunz coordi-
nate vector of numerical semigroups of multiplicity m. Notice that

g(S)− (m− 1) =
m−1∑
i=1

(xi − 1) = #{i ∈ [1,m− 1] | xi = 2}+ 2#{i ∈ [1,m− 1] | xi = 3}

= a(x) + #{i ∈ [2k1 + 2,m− 1] | xi = 2}+ 2b(x)

= a(x) + 2b(x) +
(
k1 + 1− a(x)− 2b(x)

)
= k1 + 1.

This means that g(S) = m+k1. Suppose e(S) = g(S)−k. It is clear that k1 ≤ k, and also that g(S) ≥ 3k1 + 2.
Therefore, by Proposition 45(5) we see that a(x) + b(x)− c(x) = 2k1 + 1− k. This implies k = k1.

We end this paper by including some data related to the sets Y(k) and the polynomials Hl(x) and fk(x) of
this section. The initial Y(k) are as follows:

Y(−1) = {∅}, Y(0) = {(1), (2)}, Y(1) = {(1, 1, 1), (1, 1, 2), (1, 2, 1), (2, 1, 1), (2, 2, 1), (2, 1, 2), (1, 2, 2), (3, 1, 1)},

Y(2) = {(1, 1, 1, 1, 1), (2, 1, 1, 1, 1), (1, 2, 1, 1, 1), (1, 1, 2, 1, 1), (1, 1, 1, 2, 1), (1, 1, 1, 1, 2), (2, 2, 1, 1, 1), (2, 1, 2, 1, 1),

(2, 1, 1, 2, 1), (2, 1, 1, 1, 2), (1, 2, 2, 1, 1), (1, 2, 1, 2, 1), (1, 2, 1, 1, 2), (1, 1, 2, 2, 1), (1, 1, 2, 1, 2), (1, 1, 1, 2, 2),

(2, 2, 2, 1, 1), (2, 2, 1, 2, 1), (2, 2, 1, 1, 2), (2, 1, 2, 2, 1), (2, 1, 2, 1, 2), (2, 1, 1, 2, 2), (1, 2, 2, 2, 1), (1, 2, 2, 1, 2),

(1, 2, 1, 2, 2), (1, 1, 2, 2, 2), (3, 1, 1, 1, 1), (3, 2, 1, 1, 1), (3, 1, 2, 1, 1), (3, 1, 1, 2, 1), (3, 1, 1, 1, 2), (2, 3, 1, 1, 1),

(2, 1, 3, 1, 1), (1, 2, 3, 1, 1)}.

The first few polynomials are as follows:

H−1(t) = 1, H0(t) = 1, H1(t) = t, H2(t) = t+ 1, H3(t) =
t2

2
− 3t

2
+ 2, H4(t) =

t2

2
− t

2
− 2.
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