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1. Introduction

A numerical semigroup S is an additive submonoid of Ny = {0,1,2,...} for which |Ny \ S| < oco. The set of
gaps of S is H(S) = Ng\ S. The Frobenius number of S, denoted by F(S), is the largest element of H(S). By
convention we define F'(Ng) = —1. The genus of S, denoted by ¢(S), is the number of elements of H(S). The
multiplicity of S, denoted m(S), is the smallest nonzero element of S. For a general reference on numerical
semigroups, see [6].

There has been extensive recent interest in counting numerical semigroups ordered by genus and in studying
invariants of ‘typical’ numerical semigroups of a given genus. Our goal is to prove several statistical results
about these numerical semigroups. Every numerical semigroup has a unique minimal generating set, which we
denote by A(S). This set consists of positive elements of S that are not the sum of two positive elements of S.
That is, A(S) = (S\{0})\ ((S\{0}) + (S\{0})). The size of the minimal generating set is called the embedding
dimension of S, and is denoted by e(S) = | A(S)|. The pseudo-Frobenius numbers of S are defined as follows:

PF(S)={P € H(S): for every s € S\ {0} we have P+ s € S}.
The number of pseudo-Frobenius numbers is the type of S, denoted by t(S) = |PF(S)|. The weight of S is

defined as ()(a(S) + 1)
g g +
w(S) = —— 7
©-( % o .
xzEH(S)
The motivation for studying the weight of a numerical semigroup comes from the theory of Weierstrass semi-
groups of algebraic curves. For a reference, see [1, Chapter 1, Appendix E].
There are infinitely many numerical semigroups, so in order to prove statistical statements about their
invariants we must order them in some way. Let S; denote the set of numerical semigroups of genus g. It is not
difficult to show that S, is finite. There is extensive literature about how the size of this set varies with g. Let

N(g) = |S4| be the number of numerical semigroups of genus g. Let ¢ = 1+2‘/5 be the golden ratio.
Theorem 1. [16, Theorem 1] There exists a constant ¢ > 3.78 such that

lim N{g) =c

g—oo Y

We denote the uniform probability distribution on S, by Py. If X is a random variable on Sy, we denote its
expectation by E,[X] and its variance by Vary[X].
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Question 1. How are the quantities m(S), F(S), e(S),t(S), and w(S) distributed as we vary through the semi-
groups in Sg?

Let v = 51‘)@ = %g@. Kaplan and Ye show that most numerical semigroups S € S, have multiplicity close

to vg and Frobenius number close to twice the multiplicity [9]. The main goal of this paper is to prove analogous
statements for e(5),¢(S), and w(S).

Theorem 2. [9, Proposition 16 and Theorem 4] For fixed ¢ > 0, we have
1.
lim Py[|jm(S) —vg| < eg] =1, and

g—0o0

lim Py[|F(S) —2m(S)| < eg] = 1.

g—0o0

Theorem 2 implies that for fixed € > 0,

Jim PglF(S) = 29g] < eg] = 1.

Singhal strengthens Theorem 2(2) in [13].
Proposition 3. [13, Theorem 8] Given € > 0, there is an M(€) > 0 such that for all g > 0 we have
P,|F(S) —2m(S)| > M(e)] < e.

Recently, Zhu has proven a stronger result of this kind but we will not need it for the applications in this paper
[18, Theorem 6.1]. We say that a typical numerical semigroup has property P if limg_, . P4[S has property P] =
1. For example, Theorem 2(2) says that for any € > 0, a typical numerical semigroup has |F(S) — 2m(S5)| < eg.

1.1 The Distribution of Invariants of Numerical Semigroups in S,

We show that most numerical semigroups of genus g have embedding dimension close to % g, type close to

(1 —~)g, and weight close to ﬁgQ.
Theorem 4. Fiz e > 0. We have

1.

|

e(S) — \}gg‘ < eg} =1, and

lim Py [|£(S) — (1 = 7)g| <eg] = 1.

g—00

As a direct consequence, we can compute the expected values of e(S) and t(S) taken over semigroups in S,.
Corollary 5. We have

1.

and

lim lIE‘,g[t(S)} =1-7.

g—0o0 g

In [9, Theorem 22], Kaplan and Ye use the Hardy-Ramanujan asymptotic formula for the number of partitions
of n to prove that with high probability, a random S € S, satisfies

0.03519¢° < w(S) < 0.08859>.

They state that it would be interesting to try to improve the constants in these inequalities. We achieve this
goal by proving a result for the distribution of w(S) taken over semigroups in S, analogous to Theorem 4. The
proof strategy for this result is different than the strategy for Theorem 4. We first compute the expected value
and variance of w(S), and then use these results to deduce our result about the distribution.
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Theorem 6. Fixz e > 0. We have

1.

1 1
glggo g—QIEg[w(S)] = Top’ and

1
lim P, ||w(S) — ——g°
S gHw( )~ 1057

< 692] =1.

Note that ﬁ ~ 0.0618.

The main tool to prove this theorem is a result about the independence of the probability that a set of
elements is contained in a semigroup in S;. We expect that this result is of independent interest. In joint work
with Bras-Amorés we have applied it to a different statistical problem about semigroups in Sy [3]. We return
to this result in Section 6.

Wilf asked in [15] whether every numerical semigroup S satisfies

1 _ F($)+1-g(8)
e(8) = F(S)+1

This question is now commonly known as Wilf’s conjecture and has been the subject of extensive work in the
numerical semigroups community. Sammartano proved that if S if a numerical semigroup with e(S) > m(S5)/2,
then S satisfies Wilf’s conjecture [12, Theorem 18]. This result was improved by Eliahou, who showed that
if S satisfies e(S) > m(S)/3 then S satisfies Wilf’s conjecture [5, Theorem 1]. Eliahou explains that Delgado
has observed that more than 99.999% of the numerical semigroups with genus at most 45 have e(S) > m(S)/3.
Delgado and Eliahou ask whether the proportion of such semigroups goes to 1 as g goes to infinity [4, Section
4]. A direct consequence of Theorem 4(1) is that not only do most semigroups satisfy the condition in Eliahou’s
result but most also satisfy the stronger condition in Sammartano’s result.

Corollary 7. We have

lim Pyle(S) > m(S)/2] = 1.

g—o0

Figure 1: Proportion of S € S, with |e(S) — %g| < €g. Plotted for e = 0.2, ¢ = 0.15 and € = 0.1.

In order to prove Theorem 4(1) we partition the minimal generating set A(S) into two parts. For every
numerical semigroup S we have

[m(S),2m(S) —1]N S C A(S).
Let e1(S) = # (Im(S),2m(S) — 1] N S) and e2(S) = e(S) — e1(S). We prove separate results about the typical
size of e1(S) and ey (S) for a semigroup in S,;. Combining these estimates proves Theorem 4(1).

Proposition 8. For fixed € > 0, we have

1.
e1(S) — \}gg‘ < eg] =1, and

i P |

lim Pg[es(S) < eg] = 1.

g—o0
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Figure 3: Proportion of S € §; with |w(S) — ﬁgQ < €g?. Plotted for € = 0.02, ¢ = 0.03 and € = 0.04.

Similarly, in order to prove Theorem 4(2) we partition PF(S) into two parts. For any numerical semigroup
S with Frobenius number F' and multiplicity m, we have

H(S)N[F —m+1,F] C PF(S).

Let t1(S) = #(H(S) N[F —m + 1, F]) and t2(S) = ¢(S) — t1(S). We separately estimate ¢1(S) and t2(S) for a
typical numerical semigroup in ;. Combining these estimates proves Theorem 4(2).

Proposition 9. For fized € > 0, we have
1.
lim B, [[t1(S) = (1= 7)g| < eg] = 1, and

g—0o0

lim P, [t2(S) < eg] = 1.

g—o0

1.2 Counting Numerical Semigroups with Large Invariants

Among numerical semigroups in Sy, we have seen that most have
e multiplicity close to g,

e Frobenius number close to 2vg,

embedding dimension close to % g,

type close to (1 —+)g, and

weight close to ﬁgz.

ECA 3:2 (2023) Article #S2R14 4
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Expected Values

Figure 4: Expected values of @, # and # taken over S € S,.

Expected Values

Figure 5: Expected values of %, t‘és) and # taken over S € S,.

One could also ask about the extreme values of these invariants, and try to count numerical semigroups in S,
with invariants close to these maximum or minimum values. Basic properties of numerical semigroups imply
that for S € S;, m(S) <g+1, F(S)<2g9—1, e(S) <g+1,and t(S) < g.

Numerical semigroups for which F(S) = 2¢g(S) — 1 are called symmetric. Backelin has studied the problem
of counting symmetric numerical semigroups [2].

Theorem 10. [2, Proposition 1] For i € {0,1,2}, the following limit exists and is positive:

 #{SES, | F(S)=29-1)
gligolo \3[5] ’
g=i (mod 3) 2

Kaplan has studied the problem of counting S € Sy with m(S) = g — k for fixed k [7].

Theorem 11. [7, Proposition 13] For each k > 0, there is a monic polynomial fi(x) € Q[z] of degree k + 1

such that for g > 3k we have
1

#{S€5g|m(5):g*k}:m

fr(9).

The following fact is not stated in [7], so we provide a proof here.
Corollary 12. The polynomials fi(x) have integer coefficients.

Proof. Define polynomials Fy(x) = mfk (x+3k+1). Therefore Fi(z) € Q[x] has degree k+1 and Fy(n) € Z
for all n € No. Fix k and recursively define a; for 0 < i < k + 1 as follows. Let ag = F(0) and a; =
Fy(i) — Z;;%) a;(Y). It is clear that each a; € Z. Now Fj(z) and Zf:ol a; (%) are two polynomials of degree

k + 1 whose Valuejs match at k + 2 points. It follows that

and hence (k + 1)!Fy,(z) € Z[x]. Therefore, fi(z) € Z[z]. O

ECA 3:2 (2023) Article #S2R14 5
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Singhal has studied the problem of counting S € S, with t(S) = g — k for fixed k [14].
Theorem 13. [14, Theorem 1.7] For each k > 0 there is a positive integer cj such that for g > 3k — 1,

#{5 €8y [1(S) =g —k} =
We prove an analogous result for numerical semigroups in S, with embedding dimension close to g.

Theorem 14. For each k > —1, there is a polynomial hi(t) € Q[t] of degree [g] such that for all g > ‘%2—+7 we
have

#{S €Sy |e(S)=g—k}=hilg).

Moreover, [E71hy(t) is a monic polynomial with integer coefficients.

1.3 Outline of the Paper

In Section 2, we review results of Zhao that characterize numerical semigroups in S, with F'(S) < 3m(S). In
Section 3 we prove several results about random variables on S; and show how to deduce Corollary 5 from
Theorem 4. In Section 4 we prove Proposition 8 and in Section 5 we prove Proposition 9. In Section 6 we prove
a result about the probability that a subset of elements is contained in a random element of S,. We use this
result in Section 7 to prove Theorem 6. In Section 8 we prove Theorem 14.

2. Numerical semigroups with F(S) < 3m(S)

A major step in Zhai’s proof of Theorem 1 is to prove a conjecture of Zhao [17, Conjecture 4.1], which states
that
lim P,[F(S) < 3m(S)] = 1.

g—0o0

We define the following two subsets of Sg:

Blg) = {5€8,[F(5)<2m(5)},

Clg) = {5€S8,]2m(S) < F(S) <3m(S)}.
We further divide up the elements of B(g) by multiplicity. Let

B(g,m) ={S € S4 | m(S) =m, F(S) < 2m}.

Throughout this paper when describing a numerical semigroup by listing its elements, we use the symbol — to
indicate that it contains all larger elements. For example, the numerical semigroup of genus g containing all
positive integers larger than g is S = {0,g + 1 —}.

Proposition 15. [17, Corollary 2.2] Numerical semigroups in B(g,m) are in bijection with subsets B C
{1,2,...,m — 1} of size 2m — g — 2. The bijection is as follows. Given such a subset B, let

Sm.g = (m+ B)U{0,m,2m —} € B(g,m).

Note that B(g,m) # 0 if and only if £ +1 <m < g+ 1. We further divide up the elements of C(g), first by
F(S) —2m(S) and then by multiplicity. For a fixed positive integer k, we define the following two sets:
C(k,g) = {9€C(g) | F(S)=2m(S)+k},
C(m,k,g) {S eC(k,g) | m(S)=m}.

Zhao counts numerical semigroups with 2m(S) < F(S) < 3m(S) by dividing them up by type [17, Section 3.1].
(Note that this use of type is unrelated to how we have used it earlier in the paper.) Let

A, ={AC0,k—1]|0€ A k¢ A+ A}
For A € Ay, we define the following two sets:

C(k,A,g) = {S€C(k,g)|m(S)+A=5n[m(S),m(S)+ kl},
Cim,k,A,g) = {SeC(k, A, g)]|m(S)=m}.

Proposition 16. [17, Proposition 3.3, Corollary 3.4] For g > 3k, numerical semigroups in C(m,k, A, g) are
in bijection with subsets B C [m+k+1,2m+k—1]\ (2m+ A+ A) of size2m—g—+k—|A| — |[(A+ A) N[0, k]|.
The bijection is as follows. Given such a subset B, let

Smoap={0tU(m+A)U(2m+ ((A+A)N[0,k))UBU{2m+k+1—} €C(m,k, A, g).

ECA 3:2 (2023) Article #S2R14 6
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3. Random Variables on §,

In this section, we prove several results about nonnegative random variables on S, and show how to deduce
Corollary 5 from Theorem 4.

Lemma 17. Suppose we are given n > 1 and a sequence of nonnegative random variables X, on Sy such that

Then for every e > 0
lim Py[X4(S) < eg"] =1.

g—0o0

Proof. Assume for the sake of contradiction that

liminf Py [X,(S) < eg"] < 1.

g—0o0

Pick 0 < § < 1 such that
liminf Py [X,(S) < eg"] <1—6.

g—o0

This implies that we have a sequence g; such that lim;_, ., g; = co and for all ¢ we have
]P)gi [ng: (S) 2 Egzn] 2 6
Therefore, we see that for all ¢, we have
E!]z‘ [XQJ Z 569?'

This contradicts the fact that 1
lim —E,[X,] =0. O

g—00 g"

Lemma 18. Let X, be a sequence of nonnegative random variables on Sy. Suppose that there is a positive
integer n and constant M such that for every g and every S € Sy, we have X,(S) < Mg™. Suppose further that
there is a 8 such that for every e > 0, we have

Tim P (1, () - Ag"| < eg"] = 1.

Then,

Proof. Fix €1,e5 > 0. We know that

lim Py[|X,(S) — Bg"| < e19™] = 1.

g—o0
This means there is M; > 0 such that for g > M; we have

Py [|X4(S) — Bg"| < €19™] > 1 — ea.
This implies that for g > M;, we have
1 1

1
T O 7 N(g)

g

For g > M, we also have

1 1 1 1 1 1 1
—E,[X,] = ——— g X (8) < ———=<N(g)(B+e)g"+ ———=e&N(g)Mg" = (8 +¢€)+ M.
gn 9[ g] gn N(g) = 9( ) gn (g) ( )( 1) gn N(g) 2 ( ) ( 1) 2
Since €; and e; were arbitrary we see that
. 1
lim —E,[X,] = 8. O

We now show how to apply this result to determine the expected value of certain invariants of numerical
semigroups.

ECA 3:2 (2023) Article #S2R14 7
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Proof that Theorem 4 implies Corollary 5. Since e(S) < ¢(S) + 1, we see that Theorem 4(1) and Lemma 18
imply Corollary 5(1). Similarly, since ¢(S) < ¢(S), we see that Theorem 4(2) and Lemma 18 imply Corollary
5(2). O

Proof that Theorem j implies Corollary 7. Pick € > 0 such that 2e < % — 3 (numerically check that v < %)

Note that if |e(S) — \}59\ < €eg and |@ — 29| < $g then # < e(5). Therefore, Theorem 2(1) and
Theorem 4(1) imply that lim, o Pgle(S) > m(S)/2] = 1. 0

We apply the following result in Section 7 about the distribution of weights of S € S,,.

Lemma 19. Suppose we have a sequence of random variables X, on Sy. Suppose further that there is a positive
integer n and constant 3 such that

L]Eg[Xz] = 52-

1
lim —E,[X,] =08, lim s

g—o0 g" g—o0 2"
Then for every € > 0, we have
Tim By[1X,(5) ~ 89" < eg"] = 1.
Proof. Fix e > 0. We have E¢[X ] = 89" 4 o(g") and E4[XZ] = 52¢®" + 0(¢*"). Therefore, Var,[X,] = o(g>").
This means given €; > 0, there is an M > 0 such that for all ¢ > M, we have
Var,[X,] < eg*", and

n € n
|Eq[Xq] — Bg"| < 59
By Chebychev’s inequality, we see that for g > M,

€ 4Var,| X 4
P [1X,(5) — 8" > eg"] < B, [[%,(5) - ELX, ()| > 5] < g < Sy

We conclude that
Tim P [1X,(S) - 9" < eg") = 1. O

4. Embedding dimension of a typical numerical semi-
group
The goal of this section is to prove Proposition 8. We first prove the part about the typical size of e1(S).
Proof of Proposition 8(1). For S € S; we have # (H(S) N [1,m(S) —1]) = m(S) — 1 and
# (H(S) N [2m(S) + 1, F(S)]) < max(0, F(S) —2m(S)) < [F(S) — 2m(5)|.

It follows that
0<g—(m(S) —1) = #(H(S) N [m(S),2m(S) —1]) < |[F(S) — 2m(5)].

-1
Note that #(H(S) N [m(S),2m(S) — 1]) = m(S) — e1(S). This implies that
2m(S) —g—1<ei(S) <2m(S) —g—1+|F(S) — 2m(9)|.

Therefore,

‘2m(5) —g- el(S)‘ <1+ |F(S) — 2m(S)].
We note that 2y — 1 = % and conclude that

1(5) = o] < [er(S) - (2m(8) ~ )] + | (2m(S) ~ )~ (21~ 1)

< 1+ [F(S) = 2m(S)] + 2/m(S) = vgl.

P | 7

The result now follows from Theorem 2. O

We see that for g > §, we have
1 . .
cr(8) -~ 20| 2 co] <2, [[F(5) — 2m($)] > S0] + B, [im(5) 20l = o]

ECA 3:2 (2023) Article #S2R14 8
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Next we bound es(S) for numerical semigroups with F(S) < 2m(S). Let F, denote the n'® Fibonacci
number, where Fy = F; = 1, and Fj, 42 = F,,11 + F, for all n > 1. Recall that

Fr=— ("= (1-9)").

Sl

Lemma 20. For any g > 0 we have

Z 62(5) S 2Fg+1.

SeB(g)

Proof. In this proof, we see the first instance of a style of argument that will appear several times later in this
paper, so we give an outline of the strategy. If F(x) is a polynomial we write [z™] (F(x)) for its 2™-coefficient.
We show that the following estimate holds.

Claim:

ST es) <220 ((1 o) —olBl @+ 230+ x)m*t%J) . (1)
SeB(g,m)

Assuming this for now, we complete the proof of the lemma. Since zl%J(x+2)L% ) (142)™ 2% ] has nonnegative

coeflicients, we see that
> ) <zl @ram =2(," ).
g—m
SeB(g,m)

For S € B(g), it is clear that m(S) € [[§] + 1, + 1]. Taking a sum over m(S) gives
g+1 g+1 m
PRACIEESY dooe(s)<2 Y ( _m> <2F,, ;.
SeB(g) m:|’%-\+1 SeB(g,m) m:[%‘\—i—l 9
We now prove the inequality (1). We have
A(Sm.) ={mtU{m+ilie ByU{2m+j|1<j<m—1,j¢ B,j¢ B+ B},

and so
e2(Sm,p) =#{2m+j|1<j<m-—1,j¢ B,j ¢ B+ B}.

For j € 1,m—1],2m+j € A(Sy, p) if and only if j ¢ BU (B + B). Let j; = L%J A necessary condition
for 2m + j € A(Sm,p) is that j ¢ B and none of {1,j — 1},{2,5 —2},...,{j1,7 — j1} is a subset of B. By
inclusion-exclusion, we see that

#{S € B(g,m) | 2m +j € A(S)} < i(fl)l <jl1> (2(mm__1)2__92l_ 21> = i(m <jl1> (mg_—2n_121>'

=0

Taking a sum over these terms gives

Now, notice that
Since

1+~””’HZ ( )Hx) = (1+2)"2 (1—1)2>j1:(1+x)m—2xj;($+2?'h

we see that

ECA 3:2 (2023) Article #S2R14 9
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Noting that

moo M (x+2)"  (1+2)" +$ _ m_ 1] EY m—2] 2|
2 () e = T2y (1) =47 —a @+ (1 42y
1=0 (1+2)2
completes the proof. O

We now give a similar, but more complicated, argument to bound es(S) for numerical semigroups with
2m(S) < F(S) < 3m(S).

Lemma 21. For any positive integers g and k, we have

> ea(S) < 2F .

SeC(k,g)

Proof. A major step in the proof is to prove the following inequality.
Claim:

m+k+1
2

S eals) <2l (1 am —l

SeC(m,k,g)

I B

+1 (m+2>Lm+zk+1J (1+$)m+k+1—2L%’“+1J

Assuming this for now, we complete the proof of the lemma. Since o™
has nonnegative coefficients, we see that

Z ea(S) <2-[297 (1 + x)m+k+1) = (

m+k— 1>
SeC(m,k,g)

g—m

Taking a sum over m shows that

> a@<2 (") <2m

SeC(k,g) m

completing the proof.

We now prove the inequality (2). Numerical semigroups S in C(m, k,g) are determined by a subset B =
SN [m+1,2m+k— 1] of size 2m — g+ k — 1. For j € [1,m + k|, let j1 = [£5]. A necessary condition for
2m+j € A(S) is that none of {m+1,m+j—1},...,{m+ji1,m+j—j1} is a subset of B. This means that we
can bound the number of S € C(m, k, g) with 2m + j € A(S) by the number of subsets B C [m + 1,2m+ k — 1]
of size 2m — g + k — 1 for which none of {m +1,m +j —1},...,{m+ j1,m 4+ j — j1} is a subset of B. By
inclusion-exclusion, we see that

wscemntansseson< Hon ) 155 5 ) B () (),

Taking a sum over these terms gives

Lm+k 1J

0 B B

SGC(m,k,g) Jj1=0 1=0

Now, notice that

e

Since,

we see that

Lmﬁ»kz lJ _]1 Lm+§7lj . .
Z Z ( ) <m + k 1 — 2l> _ [xg,m] Z (1 _|_ x)m+k71 .'17]1 (LE + 2)\71
_ 27
= = g—m = (z +1)2n

ECA 3:2 (2023) Article #S2R14 10
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Noting that

m+4k—1
Lm+k_lJ ) ) 1 . (‘L(],—"-Q))L 2 J+1
22: (14 x)mth=t alt(z+2) (14 a)mtE (1+2)7
, (z+1)%  (1+az)? (1 _ T(’[+2))
n=o (+0)?
= (L) (g ) PR (1 k2
completes the proof of (2). O

Lemma 22. We have 1
lim —E,[es] = 0.

g—0o0 g

Proposition 8(2) follows directly from this result together with Lemma 17. Therefore, proving this result
completes the proof of Theorem 4(1).

Proof. Choose € > 0 and consider the M (¢) given by Proposition 3. For any g, applying Lemma 20 and Lemma
21 gives

Z e2(S) = Z )+ Z Z Z es(S)

Ses, SeB(g) k=1 SeC(k,g) ses,
F(S)>2m(S)+M(e)

§2F+1+22 gtk + > (9+1).

SeS,
F(S)>2m(S)+M(e)

Noting that F,, < “":L/'gl and applying Proposition 3 to the last term in this expression gives

M (e)

<p9+1 +1 (pg+k +1
Y eaS) < 25—— 42 T——— +(g+1)eN(g)
5e8, V5 k=1 V5
2 oMo ) 2
= M (14—~ )+ = (M(e) + 1)+ (g + 1)eN(g).
et 2 (14 £ )+ 000 4 1) + g+ Do)
Therefore,
1 1
lim sup — e2(S) <e.
g—o0 gN( ) S;g
Since € was arbitrary, we see that
1 1
lim ——— e2(S) =0. O
9= g N(g) S;g

5. Type of a typical numerical semigroup

The goal of this section is to prove Proposition 9. We first prove the part about the typical size of t1(.S). The
arguments in this section are quite similar to the arguments in Section 4.
Proof of Proposition 9(1). Let S € S;. We know that
# (H(S) N [1,m(S) —1]) m(S) — 1,
# (H(S)N[F(S) —m(S) + LF(S)) = t(9),

and
# (H(S) N [m(S), F(S) = m(S)]]) < max(0, F(S) — 2m(S)) < [F(S) — 2m(5)].
Therefore,
lg — (m(5) = 1) = t2(S)| < [F(S) — 2m(5)],
and

[t1(S) = (L=7)gl < [t2(S) =g +m(S) = L[+ 1+ |m(S) —yg] < 1+ [F(S) = 2m(S)| + |m(S) — gl.
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Therefore, for g > %, we have

€ €
Py [|11(S) = (1 = 7)g] > eg] <P, [|F(S) = 2m($)| = £g| + B, [Im(S) 9] > Zg] -
The result now follows from Theorem 2. O

Next we bound #2(S) for numerical semigroups with F(S) < 2m(S).

Lemma 23. For any g > 0, we have

Z tQ(S) < Fg+4~

SeB(g)
Proof. Suppose S € B(g). Since F(S) —m(S) < m(S) — 1, we see that
ta(S) < # (PF(S)N[1,m(S) - 1)),

so it is enough to prove that

> #(PF(S)N[L,m(S) —1]) < Fypa.

SeB(g)

We divide the set PF(S)N[1,m(S) — 1] into two pieces and bound the size of each. Note that [2]—1 = | Z-L].

Claim:
> #(PrE)n([3]m-1])

SeB(g,m) (3)
= [x?m—9~ 3]( ((1+x) (1+z+x2)m4%1(1+z)2(%1*m>>

> #rren [ ]))

SeB(g,m)
< ) (2 (L )t (0 2T (L)),

and
(4)

Assuming these results for now, we complete the proof of the lemma. Since both (14z422)"~ %1 (14-2)2[F1-m

and (1+ x4 22)l"7 (1 4 z)(m-D 2175
hold:

J have nonnegative coefficients, we see that the following inequalities

> #(Pron[|F]m-1]) < [wzm‘g‘z]((um)m):<2m_mg_2>

SeB(g,m)
Bl lz ) = o= (50

Taking a sum over m shows that

> #(PF(S)N[1,m

SeB(g)

\ A

Z(2771 g—2>+z<2m g 3)
—1
Z(!J m+2)+z(gmm+2>:Fg+3+Fg+2=Fg+4,

completing the proof.
Now we only need to prove (3) and (4). We recall the definition of S,, p from Proposition 15 and note that

PF(Spmp)={m+jlje[l,m—-1\B}u{jeB|Viec[l,m—1—j]NB:i+jc B}

We see that
PF(Sme)Nlm—-1={jeB|Vie[llm—-1—-jlNB:i+jec B}.

For j € [[§],m—1], we have [1,m—1—j]N(j+[1,m—1—j]) = 0. For j € [[%], m— 1], by inclusion-exclusion
we have

m—1—j .
#{S €Blg.m) |j€ PF(S)} = Y (1) (m _11 ) j) (2(<m W _917—12l7 l)

— m—1)—
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= [2*™m7977 (mzlj(_l)l <m _ll - j) 21+ x)m—2—21>

=0

= [22m93 ((1 + )2 <1 - (H‘”x)Q) mlj)

2 m—1—j
—_ 2m—g—3 1 m—2 (7T +l‘+1
g ](( apnr (T -
Therefore,

> #(rronflgln-1) = 5 S0 (") (e, 5

SeB(g,m) Jj=l%1 =0
m—1 2 m—1—j
i +x+1
_ [x2m—g—3] (1 +$)m_2 ( )
1 2
=TT (1+2)
Noting that
m—1 2 m—1—j m—1-[Z] 5 k
e +x+1 e +x+1
1 m—2 _ 1 m—2
RN (7o) arat S ()
=[=z =

1 (24t m=[%]
(I+z)™ o ( (1+=)? )
2
T (- ()
(1 + x)m _ (1 +r+ x?)m—(%] (1 + l‘)Q(%]_m
X

completes the proof of (3).

Consider j € [1,[251]], so 2j < m — 1. A necessary condition for j € PF(S,, p) is that j,2j € B and for

every i € [1,j — 1], if i € B then j 4+ i € B. For j € [1,[51]], by inclusion-exclusion we have

' o (i1 (m—1)—2—2
#{S € B(g,m) | j € PF(S)} < :0( 1)( )(2(m1)g2l>

(1+2)?
Therefore,
R b O
L5 2, i1
= [a?m79Y ;(Hx)m—?’ ((;;521)

Noting that

2 L=
(22 L (a? 11 (14 2)m1 <1 - (z(liﬁ)t}) )
Yo (o) = e ()

Jj=1 (T+2)2

m

el

(1+2)m = (1+z+ 2" (1 + 2)m-D-2L
X

completes the proof of (4). O
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Next we bound ¢3(.S) for numerical semigroups with 2m(S) < F(S) < 3m(S).

Lemma 24. For any positive integers g and k, we have

> ta(S) < Fyrrgs

SeC(k.g)

Proof. First recall from Section 2 that for positive integers k and m with k < m, we have
C(m,k,g) ={S €S, | m(S) =m, F(S)=2m(S)+k}.

An S € C(m,k,g) is determined by B = SN[m+1,2m+k—1] where |B| =2m—g+k—1. Let j € [I,m+k—1].
If j € PF(S) then:
e j+mE B,

o foreveryie[l,m+k—1—j],if m+i€ Bthenm+i+j€ B.

We bound #{S € C(m,k,q) | j € PF(S)} by counting subsets B satisfying these conditions. Our argument is
similar to the proof of Lemma 23.

For S € C(m,k,g) we have t2(S) = # (PF(S)N[l,m+k —1]). Note that ["#E] — 1 = |mtE=1| We
divide the elements of PF(S) N [1,m + k — 1] into two sets and consider each separately.

Claim:
k
Yoo# (PF( )N Hm+ W ,m+k—1D
SeC(m,k,qg) (5)
< [m2m79+k72] ((ti ((1 + $)m+k _ (1 +r+ x2)m+k7[’”§r"](1 + m)2(""2—+'ﬂfmfk>>
and
kE—1
> Fleren s [=5=))
SEC(m,k,g) (6)
< [xszgjtkfg] (xil ((1 i x)m+k71 A4+ IZ)LM+§_1J(1 . x)(m+k71)72LwJ)> .
Assuming these results for now, we complete the proof of the lemma. Since (1 + = + x2)m+k4m2+kw(1 +

m+k

)25 ==k and (14 2 + 22)L
following inequalities hold:

=5 (1 4 ) (MR =D=21"5=] have nonnegative coefficients, we see that the

mtk m+k

# (PF( )n H —‘ m+k— 1}) < [x2m—g+k—1] ((1+m)m+k) _ ( >’

560(;’%) 2 2m—g+k—1

(o b [22]) < - (20 )
sec(m,k,g)
Therefore,
+k m+k—1

t2(9) = #(PF(S)N[1,m+k—1]) < ( " )+< )

Sec(zm:’k’g) SEC(Zm,:,k,g) 2m—g+k—1 2m—g—+k—2

Taking a sum over m shows that

>, hl9)< %: <2m _ng;kk - 1) + ; <2mm—ijli_kl— 2)

sec(k,g)
m+k m+k—1
Z <9 m+ 1) + zm: (g —m+ 1> gt+k+2 + Lgtht1 g+k+3

This completes the proof.
We now need only prove (5) and (6). For j € [[™4*],m + k — 1], we have

N,m+k—1—4nG+[1,m+k—1—7])=0.

For j € [[F*],m + k — 1], by inclusion-exclusion we have that #{S € C(m,k,g) | j € PF(S)} is at most

m+zkz=_;_j(—1)l (m o l_ B j) ((27(:: +gk+_k1)_1)1_12l l)
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m+k—1—j

= [g2moth—? ( Z (_1)l(m+ kl— 1 _j)xl(l +x>m+k—2—21>

=0

m+k—1—j
_ x2m79+k:72 T m+k—2 o z
(o))

—  [p2m—gtk-2 pymk—2 M m4k—1—j
o ]<(1+ ! ((1+x)2) :

Therefore,

mi_l me_j(_l)l (m " k; B j) ((257:1 —+gk+k1)—1)1—12l— l)

=[] 1=0
m+k—1 2 m+k—1—j
z-+x+1
—_ [I2mfg+k72] § : (1+x)m+k2( )
Plits (14 )2
2

Noting that

mi_l (14 gymie (T mrk
(14 )2

J=1mFE]

m+k

mtk—1—[ 7tk ) s bk <1 - (9:(11;24;21> +k—[ 1>

(14+a)mt2 3 +ar+1\ _ (1+x) '
. A+22 ) (Qta2? | (22teel
(T+o)?

s=0
(1 + x)m-q—k _ (1 +r+ x2)m+k—["‘T+k](1 + x)2(#}—m—k

)

T

completes the proof of (5).

Consider j € [1, | ™E=1]] 50 2j < m+k—1. A necessary condition for j € PF(S) is that j+m,2j+m € B
and for every i € [1,j —1],if m+i € B thenm + j+i € B. For j € [1,|™=1]], by inclusion-exclusion we
have

) . j—1\( (m+k—1)—2-2
#{S € C(m,k,g) | j € PF(S)} < z; ( )((2m9+k1)21>

= [2PmTIthd (S (j _1>xl(1+x)m+k_3_2l>

Therefore,
mtk—1 .
Z 2 (pPrsyn|i m+k—1 < Li“‘l j—1 (m+k—1)—2-—21
’ 2 - — 2m—-g+k—-1)—2-1
SeC(m,k,qg) j=1 1=0

==

2 Jj—1
_ 2m—g+k—3 m+k—3 ¥+ T+ 1)
= |T 1+z _—
[ | X e ( ooy

Noting that

Lm,+k—lJ . 1— z24z+1 Lm+’v 1J
~ oy gymtkes (T Tl = (14 z)mtht (4a)®
2 (1+2) ( (1+2)? ) (14 x)? (1 _ <z2+m+1))
j= (T+x)?
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m+k—1

(1+2)m k=1 _ (1 4 g 4 22) ™7 (1 4 ) (mrk-D-2125=
xr

completes the proof of (6). O

Lemma 25. We have

Proposition 9(2) follows directly from this result together with Lemma 17. Therefore, proving this result
completes the proof of Theorem 4(2).

Proof. Choose € > 0 and consider the M(e) given by Proposition 3. For any g, applying Lemma 23 and
Lemma 24 gives

M (€)
Z ta2(S) = Z t2(S) + Z Z t2(S) + Z t2(S)
Ses, SeB(g) k=1 SeC(k.g) Ses,
F(S)>2m(S)+M(e)
M (e)
< 2,0+ Y 2P, kst > (9+1).
k=1 Ses,
F(S)>2m(S)+M(e€)

Noting that F,, < ”:}gl and applying Proposition 3 shows that this is less than

M (e)

(Pg+4 +1 g+k+3 +1 9 L,OJW(E) -1 9
ot 2y —x (g+1)eN(g) = ‘pgﬂﬁ 1+ V1)t %(M(e) +1) + (g+ 1)eN(g).
k=1

Therefore,

2

limsuplﬁ Z ta(S) <e.
g

Ut Ses,

Since € was arbitrary, we see that
1 1

lim —
ggrolo g N(g)

D ta(8) =0. O

Ses,

6. The probability that a subset is contained in a semi-
group of genus g

In this section, we consider a set of positive integers and study the proportion of semigroups in Sy that contain
some of them but not others. Intuitively, integers that are large relative to g should be contained in most, or
all, semigroups in Sy, and integers that are small relative to g should be contained in very few semigroups in
Sy. It is the integers in ‘the middle’ where the statistical behavior is not so obvious. Our goal is to make this
kind of reasoning precise.

Define a step function fy : [0,2]\ {v,2v} — [0,1] by

0 if0<z<~y
fAle) =49 Bl ify <z <2y
1 if 2y <z < 2.

We show that fi () is a good approximation for the probability that n is contained in a random element of
g

Sy, and also that these probabilities for various n are independent.

Theorem 26. Fiz l1,lo > 0 and €1,e5 > 0. There exists an M(e1,e2) > 0 such that for all g > M (€1, €2) and
all pairs of subsets

C.C"C [L(y—e)g) U((v+e)g, 2y —e1)g) U (27 + e1)g, 29]
with |C| =11, |C'| =13 and C N C’ =0, we have

Py(CCSandC'nS=0-[] h (Z) 11 (1_f1 (Z))

neC neC’

< €39.
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In the next section, we apply two special cases of this result.
Corollary 27. Fiz e€1,e2 > 0.
1. There exists an M (e1,€2) > 0 such that for all g > M (€1, €2) and
n€ [L(v—e)g) U ((v+er)g, (27 —e)g) U (27 + 1)y, 29]

we have

]P’g[n S S} — f1 (Z)‘ < €9.
2. There exists an M (e1,e2) > 0 such that for all g > M(e1,¢€3) and

i,j€[L(v—e)g) U((v+e)g, (27 —e)g) U (27 + €1)g, 2]

stns=s-(-n()) - ()] <=

The second statement may be surprising because in general whether two positive integers ¢, j are contained
in a numerical semigroup S are not independent events. For example, if 7 | j then ¢ € S implies j € S. The
point here is that if ¢ is ‘too small’, P,[i € S] is very small, and if neither of ¢, j is small, then either they are in
S with very high probability, or they are too close together for the condition ¢ € S to influence P,y[j € S] in a
meaningful way.

We start the proof of Theorem 26 by recalling a result of Zhai that was conjectured by Zhao [17, Conjecture
2]. Recall that the set Ay is defined in Section 2.

with i # j, we have

Theorem 28. [16, Theorem 3.11] The sum

oo

p 1 | A~ (A+A)[0,k] | —k—1
o= L 25T S s
v VE i,

converges. Moreover,
N(g) = cp? + o(¥7).

We next need a technical result about sums of binomial coefficients. The proof is similar to the proof
of [9, Proposition 7], so we do not include it here.

Lemma 29. Fizly,ly € Z>o and € > 0. As g — 00, we have

Lv+e)g] ( m—1-1 1
_ —li—lx+1 g
> = —=¢7 + o(p?).
- 1-1 )
mefomgg "ML=k VB

A main step in the proof of Theorem 26 is to study elements between the expected size of the multiplicity
and the expected size of the Frobenius number of a random S € S,,.

Lemma 30. Fizl >0 and e1,e2 > 0. There is an M(e1,€e2) > 0 such that for all g > M (e, e2) and all subsets
CC((v+e1)g (27 —e1)g) with |C| =1, we have

|]P’g[C - S] — ()071| < €32.

Proof. We separately prove that for sufficiently large g, we have Py[C' C S] < ¢! +€3 and Py[C C S] > ¢! —es.

We first phrase this in terms of the sets B(g, m) and Ay from Section 2.
Fix m e (v = 9)g, (v + $)g), so m < min(C) < max(C) < 2m. Proposition 15 implies that

—1-1 —1-1
#{S € B(g,m) | C C S} = (2mm_g_2_l> = (;”_mﬂ).

Next, for k¥ < min(%, 9 g) and A € Ay we have m 4k < min(C) < max(C) < 2m and

#{SGC(m,k,A,g)mgs}:( m—1—|(A+A)N[0,k]|—1 ): (m—1—|(A+A)m[o,k]|—Z)_

9m —g+k—|Al - |(A+A) N[0, k]| I g—m+|Al—k—1
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We start with the lower bound for Py[C' C S]. By Theorem 28, we can choose M sufficiently large so that

M
L § E' |A|=[(A+A)N[0,k]|—k—1 ( €2 _l)
+ >cll——= .
NARY 4 5 7

k=1 A€Ay
For g > max(3M, 2 M), we have
L(y+F)g) M L(v+F)g)
| m—1-1 m—1—|(A+A) N[0,k -1
P CCS > — .
sl <5] = (9) Z (g—m+1> ZZ Z < g—m+[A[—k—1
m=[(v—3)g] =1 A€AL m=[(v—F)g]

Applying Lemma 29 with [; = and lo = 0 shows that

L(v+5)9] 11 1
D ) B

-m+1
m=1(r— g

Applying Lemma 29 with I; = |[(A+ A) N[0,k]| + ! and I3 = k + 2 — | A| shows that
Lr+3)g]

M1 — A+ AOOK -1 1 e -
3 ( I( ) N[0, &]| )(pg LAl A+ AN0MI k=1 o(p9),
) g-m+|A k-1 V5

m=[(r—F)g]

We now have

M
N 1
P,jCcCcsS) > gp_lj\;o(g) (\5/05 + 7 Z Z (pAI—l(AJrA)ﬂ[O,k]I—k—l) +o(1)

k=1AcAy

> o (i n 0(1)> c (1 - %290—1) to(l) = - %2 +o(1).

Therefore, for sufficiently large g, all subsets C' C ((v+e€1)g, (27—e€1)g) with |C| = I satisfy Py[C C 5] > ¢! —e,.
We now turn to the upper bound for P4[C C S]. For g > max(3M, %M), we have

L(v+F)g] M L(v+F)g]
1 m—1-1 1 m—1—|(A+A)ﬁ[O,k]|—l>
PCCS] < —0 L (
0S8 < gy 2 (gm+1> PSP g-mt|Al— k-1
m=[(y—3)g] g
€
P, [[m($) — 9] > S| + By [1F(S) — 2m($)| > M].

As we analyzed above, the sum of the first two terms is

cpfl]\;p(g) (f \[ Z Z |Al=I(A+A)N[0,k]|—k— 1) +o(1) < <1 Jro(l)) c+o(1) =9t +0(1).

k=1AcAy

Applying Theorem 2 and Proposition 3 shows that for all sufficiently large g, we have

€1 €2
B, [m(S) =gl > S| + By [F(S) —2m($)] > M) < 2.
We conclude that for sufficiently large g, all subsets C' C ((y + €1)g, (27 — €1)g) with |C| = [ satisfy P,[C' C
S] < <p_l + €3. O
We now prove a result about the probability that a set is contained in a random S € §,.

Theorem 31. Fiz !l > 0 and €1,e3 > 0. There exists an M(e1,e2) > 0 such that for all g > M (e, €2) and all
subsets

CC[L(y—e)g)U((v+e)g (2y—e)g) U ((2y+e)g, 29]
of size |C| =1, we have

,lC C 8] — Hf1(>

neC

< €3.
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Proof. By Theorem 2, there is Mj (€1, €2) such that g > M; (e, €2) implies that

Py[m(S) < (v —e)g] < e,
€
By [F(S) = 2y +e)g] < 3.
Lemma 30 implies that there is Mz (e, €2) > 0 such that for all g > Ms(e1, €2) and all subsets

C'C ((v+ ey, 2y —e)g),

of size |C'| < I, we have
€

‘]P’Q[C'QS}—@ 3

Let M = max(M; (€1, €2), Ma(€1,€2)). Pick g > M and a subset

CCl,(y—e)g)U((v+e)g (2y—e)g) U ((2y +e1)g,29]

of size |C| = 1. We split C into three parts:

C, = 00[1,( —e1)9),
Cy = Cn((v+e)g, (2y—e)g),
Cy = N (27 + €1)g, 29].

We consider two cases.

e Case 1: C1 # 0. Then [],.c f1 (%) = 0. Moreover,

Py[C C 5] < Py[m(S) < (v —e1)g] < ea.
e Case 2: (1 = (). Suppose [Cy| =11 < 1,50 [[,cc L1 (3) = ¢~ Now
P,[C C S| <P,[C,C S| <o+ %2
We have
P,[C C 5] > By[C, C S|~ P,[Cy ¢ 5]
Now if C5 = 0, then Py[Cs ¢ S] = 0 and if C3 # (), then

P,[Cs ¢ S] < P,|F(S) > (2’y+61)g] < %2

Therefore, we have

We conclude that
|Pg[C CS]- <p7l1| < €3. O

We now have all the tools to prove the main result of this section.

Proof of Theorem 26. By Theorem 31, there exists an M (e1,€e2) > 0 such that for all ¢ > M(eq,€2) and all
subsets
DC[1,(y—e)g) U((y+e)g, (27— e1)g) U (27 +e1)g, 2]

of size |D| < Iy + Iy, we have

,[DC S]— Hf1<>| 272.

nebD

Consider g > M (€1, €2) and a pair of subsets

C,C"C L, (v —e)g) U((v+ €1)g: (27 — e1)g) U (27 + 1), 29]

with |C| =13, |C'] =3, and C N C’ = . By inclusion-exclusion, we know that

Py[C CSand C'NS=0]= > (-1)PIB,[(CUB)C 5]
BCC!
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We see that
, n n
PjCCSandC'nS=0—-[[A(=) ] (1-£(=
neC 9 neC’ 9
— | Z coereumes- ¥ o IT 5 (%)
BCC’ BCC’ neCUB g
n
< Ejpﬂcumgsw-I1f4iﬂ
BCC’ neCUB g
€2
< Z 2T2 2,
BCC’
where in the last step we applied Theorem 31 with D = C' U B. O

7. The weight of a typical numerical semigroup

We first determine the expected value of the weight of a numerical semigroup of genus g.

Proof of Theorem 6(1). Let a(S) = 32,35y 2- So for S € Sy we have w(S) = a(S) — %. We will prove

that Y
. 1 945
Jim B fa(8) = < (7)
1 _94vE 1

Assuming this for now, noting that

Top = 50— 3 completes the proof.

Our goal is now to prove (7). Every numerical semigroup S satisfies F'(S) < 2¢(S) — 1. By linearity of
expectation, we know that

E,[a(S)] = ig;lnﬂj’g[n ¢ S| = 29;171 <1 —f <Z)> +Qj§n <f1 (Z) —Pyln € 5]> .
e Zgzln (1 4 <Z>) _ (73)2 e <(2729)2 (73)2) L0l

Applying Corollary 27(1) gives an M (€1, €2) such that for all g > M(e1, €2), we have

5o (s (5)-rmes)

n=1

2g—1

<29 )
n=1

fi (Z) —Pylne 5]‘ < (29)(4€19 + (2 — 4e1)ge2).

2 2 = . .
Note that %4 + (1 — cp‘l)% = 9255. Since €1, €2 were arbitrary, we conclude that

9++5
Ey[a(9)] = =559 +0(g”),
completing the proof of (7). O
Theorem 32. We have )
1 1
lim —E N=(—) .
el g g[w(S)7] <10g0)

Before giving the proof we use this result to complete the proof of Theorem 6(2).
Proof of Theorem 6(2). Apply Lemma 19 together with Theorem 6(1) and Theorem 32. O
Proof of Theorem 32. We will show that
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Assuming this, for now, we complete the proof. Since w(S) = «(S) — %, we see that
1 g*(g+1)?

. 1 9 ) 1 5 glg+1) .
Jm B = tim By fa(s)?) - lim 2R a(s) + im0

2
_ o (9tVBY 94VE 1 (1Y
B 20 20 4 \10p /)’

where we used the expressions in (7) and (8). Therefore, we only need to prove (8).
For 1 <i <2g— 1, consider the following random variables on Sg:

1 iti¢s
wi(s){o ifies
Therefore, a(S) = 223 Yip;(S). By linearity of expectation we have
2g—12g—1 29—12g—
Eglo(S)?] = > ) B[] = Z Z o {i, 5} NS = 0]
i=1 j=1 i=1 j=1
29—12Jg—1 i ’
- 226 (-0()0-20)

i=1 j=1 g
2g—12g—1 i .

EE ()64 mes).
i=1 j=1 g g

We estimate the size of each term separately, starting with the first. We have

S () () - (B0 (2)
Note that, o1
; i (1 - f (;)) = %292 +(1—9h (4;2 - f) 9%+ O(g).
Therefore,
ER (s ()05 ()- (157 eow

Now we estimate the second term. It is clear that

55>(CI0) [ (0 R
665 (2) s

We first consider the terms with ¢ = j, and see that

Z (1 h (g)> ~B NS =0]) < Z = (")

Next, we consider the terms with i # j. Fix €1,€e5 > 0. Corollary 27(2) gives an Ma(e1, €2) such that for all
g > M2(61762) and all 7 #] with
{i,5} € [1, (v —e1)9)

e e Pyl{i,j} NS = 0] - (1 —h (;)) (1 - (2))‘ -

U ((v+e1)g, (27— e1)g) U (27 + €1)g, 29]
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Therefore,

() 6a () -sienns

Jj=1
J#i
2g—12g—1 2g—1 2g—1
< X Yuer X Yur Y X
=t o=t iE((7—61)9,(7+61)9> =1 ie((zW—51)97(27+61)9> =1
2g—1 2g—1

LPDEEED VA DD DN
=t je((w—61)97(7+61)9) 4 je((27—61)97(27+61)g)

(20 (29)?
>~ 2 2 2

2
+4(2e19)(20) 221 = e349* + €132¢".

Combining everything, since €1, e; were arbitrary, we get

Ey[a(S)?) = (9 - \/g> g* +olg").

20

O

8. Counting Numerical Semigroups with Large Embed-
ding Dimension

A main idea of this section is to construct a bijection between numerical semigroups with fixed multiplicity,

genus, and embedding dimension and certain finite sequences of positive integers. These sequences are the

initial segments of Kunz coordinate vectors of numerical semigroups. We recall some notation and basic facts
about these objects.

Definition. Let S be a numerical semigroup. The Apéry set of S with respect to an element m € S is
Ap(S;m)={se S:s—m¢ S}

It is easy to see that there is one element of Ap(S;m) in each residue class modulo m. We can write
Ap(S;m) = {0,a1,a3,...,am—_1} where each a; = i (mod m). For each i € {1,2,...,m — 1}, we define the
nonnegative integer k; by a; = k;m + i. Note that if m = m(S), then each k; > 1.

Definition. The Kunz coordinate vector of S with respect to m is (k1,...,km—1). Let KV, denote the function
that takes a numerical semigroup containing m to its Kunz coordinate vector with respect to m.

We collect some results about Kunz coordinate vectors of numerical semigroups.

Theorem 33. [10,11] The map KV, gives a bijection between S € S; with m(S) =m and (z1,...,Tm-1) €
777t satisfying:

m—1 with i+ j < m,

m—1 with i+ j > m,

Ti+ x5 > Tigy, forall 1
Ti+2;+1>Tipjom, forall 1

m—1
i=1

Proposition 34. If S is a numerical semigroup with m = m(S), then A(S)\{m} C Ap(S;m). More precisely,
if KV (S) = (k1, ..., km—1) we have

<i<j<
<i<j<

J
J

A(S):{m}U{mki—‘ri‘ﬂjl,ng [1,m—1]:j1 + jo =1, kj1+/€j2 = k;,
and ﬁjl,jge[1,m—1]:j1+j2:m—|—i, k31+k]2+1:k2}

For a more detailed discussion of this material, see [8, Section 4].
In order to state the first main result of this section, we introduce some notation. Suppose T = (x1,...,2:) €
{1,2,3}". We define
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1. a(@) = #{i € [1LL#] | 2 = 2},
2. b(T) = #{i € [1,4] | ; = 3},
3. C(E) = #{Z € [lat] | 3j1>j2 € [17t] D1t =1, (levxiji) = (1a172)}'

Theorem 33 gives a bijection between numerical semigroups S with m(S) = m and g(S) = g and a certain
set of integer tuples of length m — 1. We consider a refined version of this result that applies in the case where
g(S) and e(S) are not too far away from m(S).

Theorem 35. Fix integers ki and ko satisfying —1 < k; < ko and m > 2ky + 2. For (x1,...,Zm-1) € Zg&l,

letT = (xl, e ,.’L‘2k1+1).
There is a bijection between the set of numerical semigroups S satisfying m(S) = m, g(S) = m + k1, and
e(S) = g(S) — ka, and sequences (x1,...,Tm—_1) satisfying:

1. z1,...,zm- € {1,2,3}.
2. Ifi > 2k1, then z; € {1,2}.
3. Whenever iy,i2,13 € [1,2ky + 1] satisfy i1 + iz = i3, we have (zi,, T4y, Tig) # (1,1,3).
4. #lie2ki +2,m—1] |z, =2} =k + 1 — a(Z) — 20(T).
5. a(T) + b(T) — ¢(T) = 2k1 + 1 — ko.
Note that conditions (4) and (5) imply that if such an S exists, then
o a(T)+20(7) < k1 + 1.
o ko <2k +1.

In the course of proving Theorem 35, we will express e(S) in terms of (z1,...,2Z;,—1). We highlight this result
because we will apply it in the discussion that follows.

Proposition 36. Suppose (x1,...,2Tm—_1) = KV,,(S) where S is a numerical semigroup satisfying m(S) = m,
g(S) =m+ k1, and m > 2ky + 2. Let T = (x1,...,%2k,4+1). Then

e(S) =g —2ki — 1+ a(T) + b(T) — c(T).
Before proving Theorem 35, we show how to use it to prove Theorem 14.

Proposition 37. Fix integers kq, ko satisfying —1 < k1 < ko and g > 4k1 + 3. Suppose T = (x1,...,%ok,+1) €
{1,2,3}21+1 satisfies the following conditions:

1. Whenever iy,i2,13 € [1,2k1 + 1] satisfy i1 + i2 = i3, we have (zi,, Ty, Ti5) # (1,1,3).
2. a(T) + b(T) — c(T) = 2k1 + 1 — ko.
3. a(Z) +26(T) < kg + 1.

The number of numerical semigroups S for which g(S) = g, m(S) = g—ki, e(S) = g— ka2, and the first 2k + 1
coordinates of KV,,,(S) are given by T is (kl+f:j(}%:22b@) .

Proof. Suppose S satisfies g(S) = g, m(S) =m = g—ki, e(S) = g—ka, and KV,,,(S) = (21, ..., Tag, +1, K2k, +2,
.oy km—1). Since ¢g(S) = g, Theorem 35 implies that the number of kog,+2,...,kn—1 equal to 2 must be
k1+1—a(T)—2b(T), and the rest of the elements must be equal to 1. Note that (m—1)—(2k;+1) = g—3k; —2.
Therefore, we have (k1 Hg:j’(’%iz%@) choices for kog,42,...,km—1. Theorem 35 says that each choice gives a
semigroup satisfying the properties we are looking for and that these are all such semigroups. Condition (3)
ensures that k + 1 — a(Z) — 2b(T) > 0 and g > 4k; + 3 ensures that k1 + 1 — a(ZT) — 2b(T) < g — 3k; — 2. O

Consider the collection of all sequences T satisfying the conditions of Theorem 35, but now where we allow
ko to vary. This leads to the following definition.

Definition. Fizr k € Zxq. Let Y(k) be the collection of all tuples T = (x1,...,xax11) € {1,2,3}25FL satisfying
the following conditions:

1. Whenever i1, 12,13 € [1,2k + 1] satisfy i1 + ix = i3, we have (x;,, iy, xiy) # (1,1,3).

2. a(T)+26(%) < k+1.
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Theorem 38. Fix an integer k > —1. For g > 4k 4+ 3 we have

o g—3k—2
S €S, Iml(s) =g H) g(k)@m—a()—%( )

Proof. For T € Y(k), let ka =2k + 1 — a(T) — b(T) + ¢(T). We have
ko=k—a(@) —bZ)+c@)+k+1>k+bZ)+c(T) > k.
We apply Proposition 37 for each T € Y(k) with the corresponding ke and add the results. O
In the notation of Theorem 11, this means that for each £k > —1 and g > 4k + 3, we have
r—3k—2
——fru(@) = ) < >
(k+1) St Wkt 1—a(@) —26(a)

At the end of this paper, we list the sets Y(k) for —1 < k < 2. A simple computation gives f_i(x),..., fao(x).
We see that they match the formulas in [7, Corollary 14].
We return to the problem of counting semigroups S € S; with a large embedding dimension.

Theorem 39. Fix an integer | > —1. For g > 41 4+ 3 we have

l 3k —2
#{SeSg\e(S)Zg—l}ZZ Z <k+1ga()2b( )>

k=-1 zeY(k)
a(Z)+b(T)—c(T)=2k+1-1
Proof. We divide up the semigroups in S, with e(S) = g — [ by multiplicity and see that

l
{(SeSyle(S)=g—1}= |J {5 €S, e(S)=g—1,m(S)=g—Fk}.

k=-1

By Theorem 35, if S € S, satisfies e(S) = g—l and m(S) = g—k, then T € Y(k) and a(Z)+b(T)—c(T) = 2k+1—1.

By Proposition 37, the number of numerical semigroups corresponding to a given T is (k +1_;(%7_22b(5)). The

result follows.

The only remaining thing needed to complete the proof of Theorem 14 is to establish some basic properties
of the polynomials on the right-hand side of Theorem 39. Define

H ({E) i Z < x—3k—2 )
l =
= 5 k+1—a(T) - 2b()
a(T)+b(x)—c(T)=2k+1-1

Proposition 40. Fiz an integer | > —1. Let Iy = |51 |. Then Hy(x) is a polynomial of degree Iy and l1!H,(z)
18 a monic polynomial with integer coefficients.

Proving this statement completes the proof of Theorem 14.
Proof. The degree of H;(x) is
max{k+1—a(Z) —2b0(T) | -1 <k <Il, T€Yk),2k+1+¢c(T) —a(@) —b(xT) =1}.
Suppose that —1 < k <[ and T € Y (k) satisfies 2k + 1 + ¢(Z) — a(T) — b(T) = I. We have
2k+1=104(a(@) —c(x)) +b(T) > L.
This means that k& > Z’Tl Next,

k41— a(@) — 2b(@) = | — k — o(@) — b(F )<zf;<;<”T1

This implies deg(H;(z)) < L. Since deg(H,(z)) is an integer, we see that deg(H;(z)) < l;. Note that

k+1—a(@)—2b(Z) =1 if and only if b(T) = ¢(Z) =0 and k =1 — ;.
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o If [ is odd, then I =2]; — 1. Take k =1 —1; =1; — 1. If T € Y(k) satisfies b(ZT) = ¢(T) = 0, then
1=2k+1-0a@) =21 —1+4a(@) =1-a@).
This implies a(Z) = 0. There is a unique such T, which is 7 = (1,1,...,1) € Y(k).
o If [ is even, then | =2;. Take k =1—1; =1;. If T € Y(k) satisfies b(T) = ¢(T) = 0, then
1=2k+1—0a(@) =21 +1+a@) =1+1-a(@).
This implies a(Z) = 1. There is a unique such T, which is 7 = (2,1,...,1) € Y(k).

This completes the proof. O

8.1 The proof of Theorem 35.

The goal of the rest of this section is to prove Theorem 35.
We need several facts about the Kunz coordinate vector of a numerical semigroup with multiplicity m and
genus g.

Lemma 41. [7, Lemma 11] Suppose S is a numerical semigroup with g(S) = g, m(S) = m, and KV,,,(S) =
(1., Tm—1). If 29 < 3m + 2, then {x1,...,zm-1} C {1,2,3}.

Lemma 42. Suppose S is a numerical semigroup with g(S) = g and m(S) = m. Let KV,,(S) = (z1,...,Tm-1)-
If i € [1,m — 1] satisfies x; = 3, then

1—1
92m+1+[ 5 —‘

Proof. The set [1,i— 1] can be partitioned as a union of [“51] subsets of the form {ji,j2} with ji + j, = i. For

each such {j1,j2}, at least one of z;,, x;, must be at least 2. Therefore,

g—(m—l)Zle(xj—l)ZPrPgﬂ- O

Jj=1

Lemma 43. Suppose S is a numerical semigroup with g(S) = g and m(S) = m. Let KV,,,(S) = (1,...,Tm—1).
Ifi € [1,m — 1] satisfies x; = 2 and mx; +1i € A(S), then

> m+ i—1
g>m 5 .

Proof. The set [1,i — 1] can be partitioned as a union of PEW subsets of the form {j1, jo} with j; + jo = i. For

each such {j1,j2}, at least one of z;,, x;, must be at least 2. Therefore,

g—(m—l)Zle(mj—l)ZlJrPgl-‘- o

Jj=1

Lemma 44. Suppose S is a numerical semigroup with g(S) = g and m(S) = m. Let KV,,,(S) = (1,...,Tm—1).
If 3m +i € A(S) for some i € [1,m — 1], then g > 22

Proof. The set [1,m — 1] \ {i} can be partitioned as a union of subsets of the form {ji,jo} with j; + jo =i
(mod m). Since 3m + i € A(S) we know that for each subset {j1,j2} in the partition z;, +z;, +1 > z; = 3.
Hence at least one of x;,,xj, is at least 2. The number of subsets {ji,j2} in the partition is at least [Z52].
Therefore,

m—1
m—2 m—2
g—(m—l):Z(xj—1)22+{2—‘22+2. O
Jj=1
We are now ready to prove Theorem 35. We prove it in two parts.

Proposition 45. Fiz integers ko > ki > —1. Suppose g > 3k1 + 2, and S € S, satisfies m(S) = g — k1 and
e(S) = g — ka. Let m = m(S). Suppose KV,,,(S) = (z1,...,%m—1) and let T = (z1,...,%2k,4+1). Then the
following hold:

1. {xl,...,xm,l} g {1,2,3}
2. If i > 2ky, then z; € {1,2}.
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3. Whenever iy,i2,13 € [1,2k1 + 1] satisfy i1 + i2 = i3, we have (zi,, iy, Tiy) # (1,1,3).

4. #i€2k1+2,m —1] | z; =2} = k1 + 1 — a(T) — 2b(T).

5. a(T) + b(T) — c¢(T) = 2k1 + 1 — ko.

6. e(S)=9g—2k1 —1+a(@) + (@) — c(T).

7. ko < 2k + 1.

We note that verifying property (6) proves Proposition 36.

Proof. We know that m = g — k1 > 2k; + 2. Next,
3m+2-29=3(g— ki) +2—29=g— (3k1 +2)+4> 4.

This means that 2g < 3m + 2. Lemma 41 implies {z1,...,2zm-1} C {1,2,3}.
Suppose i satisfies 2k; < ¢ < m — 1. Assume for the sake of contradiction that z; = 3. By Lemma 42 we
have g >m+1+ WEW. However,

,— 1 2k —1
9>m+1+{22-‘ >m+1+{ 12 -‘:m+1+k1:g+l.

This is a contradiction and we conclude that z; € {1,2}.

Suppose i1, 12,13 € [1,2k; + 1] satisfy 41 + ia = i3. Suppose z;, = x;, = 1. Since (z1,...,Zm—1) is the Kunz
coordinate vector of a numerical semigroup, we know that z;, < x;, + x;, = 2.

Next, note that

m—1

=1

Next, we claim that A(S) is given by m together with the elements ma; + ¢ satisfying either
1. z; =1, or
2. z; = 2 where i € [1,2k; + 1] and there does not exist a j satisfying 1 < j < i with z; = x;_; = 1.

It is clear that all these elements are elements of A(S). Suppose a = ma; +1 is some other element of Ap(S;m).
Then one of the following must hold:

o Case 1: x; = 2 where ¢ € [1,2k; + 1] and there does exist a j satisfying 1 < j < ¢ with «; = 2;,_; = 1. Then
T =z +z;_j, so a ¢ A(S).

e Case 2: z; = 2 where i € [2k; +2,m — 1]. Assume for the sake of contradiction that a € A(S). Lemma 43
implies that g > m + PEW. This implies that

2k1 +1

gszr{ —‘m+k1+1g+1.

This is a contradiction. Therefore a ¢ A(S).

e Case 3: x; = 3. Assume for the sake of contradiction that a € A(S). By Lemma 44, g > —3’2” This implies
that f ok 5
m g— k1 1+
hi=g-mz3 2 = 2
which is a contradiction. Therefore a ¢ A(S).

=k +1,

This characterization of A(S) implies that
g—ky = e(9)
= 1+ (2k1 +1—a@) - b(@)) + #{i € 2k1 +2,m — 1] | z; = 1} + (a(T) — (7))
= 2k +2-0b(T)—c@) + (m—1— 2k +1) — #{i € 2k1 +2,m — 1] | z; = 2})
= —b(@) — c(T) + (9 — k1) — (k1 +1 - a(@) - 2b(7))
= g—2ki —1+a(T)+b(T) — (7).

We conclude that a(Z) + b(Z) — ¢(T) = 2k + 1 — ka.
Finally since ¢(T) < a(T), we see that a(T) + b(T) — ¢(T) > 0 s0 ky < 2ky + 1. O
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We now prove the other direction in Theorem 35.
Proposition 46. Fiz integers —1 < k1 < ko < 2k1 + 1. Also fir m > 2k1 + 2 and a tuple of positive integers
(1,22, .-, Tm—1). Let T = (z1,...,Top,+1). Suppose we have the following:

1. {z1,...,em_1}r €4{1,2,3}.

2. If i > 2k1 + 2 then z; € {1,2}.

3. Whenever i1, 12,13 € [1,2k1 + 1] satisfy i1 + i2 = i3, we have (x4, iy, Tiy) 7# (1,1,3).

4. #ie2k1+2,m —1] | z; =2} = k1 + 1 — a(T) — 2b(T).

5. a(T) +b(T) — c¢(T) = 2k1 + 1 — ks.
Let

m—1

S = mNo U U (’L + mx; + mNo).
i=1

Then S is a numerical semigroup satisfying m(S) =m, g(S) =m + k1, and e(S) = g(S) — k».

Proof. Theorem 33 implies that if (x1,...,x,—1) satisfies the first three conditions, then it is the Kunz coordi-
nate vector of numerical semigroups of multiplicity m. Notice that

m—1

g9(8) = (m—1) = Z(a?i—l):#{ie[l’m—l]|$i=2}+2#{i€[1’m—1]|l‘i=3}

a(zf) +#{i €2k +2,m—1] | z; = 2} + 2b(T)
a(T) +2b(z) + (k1 + 1 — a(zT) — 2b(T))
=k +1.

This means that g(S) = m+ k1. Suppose e(S) = g(S) — k. It is clear that k; < k, and also that g(S) > 3k; + 2.
Therefore, by Proposition 45(5) we see that a(Z) + b(T) — ¢(T) = 2k; + 1 — k. This implies k = k;. O

We end this paper by including some data related to the sets Y(k) and the polynomials H;(z) and f(z) of
this section. The initial (k) are as follows:

y(_l) = {(Z)}v 3}(0) = {(1)7 (2)}3 y(l) = {(1’ 1, 1)7 (17 1, 2)7 (1a 2, 1)7 (2a 1, 1)7 (2a 2, 1)7 (27 1, 2)’ (17 2, 2)7 (37 L, 1)}a

V(@) ={(1,1,1,1,1),(2,1,1,1,1),(1,2,1,1,1),(1,1,2,1,1),(1,1,1,2,1),(1,1,1,1,2), (2,2, 1,1,1), (2, 1,2,1,1),
(2,1,1,2,1),(2,1,1,1,2),(1,2,2,1,1),(1,2,1,2,1), (1,2,1,1,2),(1,1,2,2,1),(1,1,2,1,2), (1,1, 1,2,2),
(2,2,2,1,1),(2,2,1,2,1),(2,2,1,1,2),(2,1,2,2,1), (2,1,2,1,2),(2,1,1,2,2), (1,2,2,2,1), (1,2,2,1,2),
(1,2,1,2,2),(1,1,2,2,2),(3,1,1,1,1),(3,2,1,1,1), (3,1,2,1,1), (3,1,1,2,1),(3,1,1,1,2),(2,3,1,1, 1),
(2,1,3,1,1),(1,2,3,1,1)}.

The first few polynomials are as follows:

2 3t 2t
H—l(t):L HO(t):la Hl(t):ta HQ(t):t+1a HS(t):§_§+2a H4(t):§_7_2
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