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Abstract

We give an asymptotic formula for the number of sublattices Λ ⊆ Zd of index at most X for which
d/Λ has rank at most m, answering a question of Nguyen and Shparlinski. We compare this result to
ork of Stanley and Wang on Smith normal forms of random integral matrices and discuss connections

o the Cohen–Lenstra heuristics. Our arguments are based on Petrogradsky’s formulas for the cotype
eta function of Zd , a multivariable generalization of the subgroup growth zeta function of Zd .
2023 The Author(s). Published by Elsevier B.V. on behalf of Royal Dutch Mathematical Society (KWG).

his is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

A fundamental problem in the field of subgroup growth is understanding the number of
ubgroups of finite index n in a fixed group G. In many cases, analytic properties of the

subgroup growth zeta function ζG(s) provide useful information. This is the Dirichlet series

ζG(s) =
∑
H⊂G

1
[G : H ]s

(1.1)

here H ranges over all finite index subgroups of G. If the number of subgroups in G of index
grows at most polynomially, then the Dirichlet series defining ζG(s) converges absolutely for
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e(s) sufficiently large. An analytic continuation of the series and knowledge of the locations
nd orders of its poles would provide information on asymptotics for the number of subgroups
f index less than X as X → ∞.

One of the most basic examples is the subgroup growth zeta function of the integer lattice
d which turns out to have a simple expression as a product of Riemann zeta functions:

ζZd (s) = ζ (s)ζ (s − 1) · · · ζ (s − (d − 1)). (1.2)

ee the book of Lubotzky and Segal for five proofs of this fact [21]. Since ζ (s) has a simple
ole at s = 1, standard Tauberian techniques immediately give the asymptotic

Nd (X ) := #{sublattices of Zd of index < X}

=
ζ (d)ζ (d − 1) · · · ζ (2)

d
Xd

+ O(Xd−1 log(X )) (1.3)
as X → ∞.

1.1. The proportion of lattices with given corank

A number of more refined questions about the distribution of sublattices of Zd can be
asked. Motivated by work of Nguyen and Shparlinski [23], we investigate the distribution of
sublattices of Zd whose cotype has a certain form. The cotype of a sublattice Λ ⊂ Zd is
defined as follows. By elementary divisor theory, there is a unique d-tuple of positive integers
(α1, . . . , αd ) = (α1(Λ), . . . , αd (Λ)) such that the finite abelian group Zd/Λ is isomorphic to the
sum of cyclic groups

(Z/α1Z) ⊕ (Z/α2Z) ⊕ · · · ⊕ (Z/αdZ) (1.4)

where αi+1 | αi for 1 ≤ i ≤ d − 1. We call the d-tuple α(Λ) := (α1(Λ), . . . , αd (Λ)) the cotype
of Λ. The largest index i for which αi (Λ) ̸= 1 is called the rank of Zd/Λ and the corank of Λ.

y convention, Zd has corank 0. A sublattice Λ of corank 0 or 1 is called cocyclic, i.e., Zd/Λ
s cyclic, or equivalently, Λ has cotype ([Zd

: Λ], 1, . . . , 1).
Nguyen and Shparlinski study the distribution of cocyclic sublattices of Zd and pose several

elated questions. Let N (m)
d (X ) be the number of sublattices Λ of Zd of index less than X such

that Λ has corank at most m. In particular, N (1)
d (X ) is the number of cocyclic sublattices of Zd

of index less than X . Throughout this paper we use
∏

p to denote a product over all primes.
Rediscovering a result of Petrogradsky [24] by more elementary means, they show that

N (1)
d (X ) ∼

θd

d
Xd , where θd =

∏
p

(
1 +

pd−1
− 1

pd+1 − pd

)
(1.5)

s X → ∞. Comparing this to the asymptotic (1.3) for all sublattices, Nguyen–Shparlinski
nd Petrogradsky both observe that the probability that a “random” sublattice of Zd is cocyclic
s about 85% for d large.

Nguyen and Shparlinski conclude their paper by stating that it would be of interest to obtain
imilar asymptotic formulas for N (m)

d (X ) for m > 1 and to show that the sublattices of corank
form a negligible proportion of all sublattices of Zd when m is sufficiently large.
In this paper we show the following theorem.

heorem 1.1. Let 1 ≤ m ≤ d. As X → ∞,

N (m)
d (X ) ∼

Xd

d
·

∏(
(1 − p−1)

m∑[
d
i

]
−1

p−i2∏i (1 − p− j )

)
. (1.6)
p i=0 p j=1
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e recall in Section 2 the definition of the q-binomial coefficient
[d

i

]
p−1 .

Dividing by the number of all sublattices of index less than X as given in (1.3) gives the
proportion of sublattices with corank at most m.

Corollary 1.2. As X → ∞,

N (m)
d (X )

Nd (X )
∼

∏
p

⎛⎝ d∏
j=1

(1 − p− j )
m∑

i=0

[
d
i

]
p−1

p−i2∏i
j=1 (1 − p− j )

⎞⎠ . (1.7)

or example, the proportion of sublattices of Zd of corank at most 2 converges to approximately
9.4% as d → ∞, and the proportion of sublattices of Zd of corank at most 3 converges
o approximately 99.995%. Therefore, while sublattices of any fixed corank have positive
ensity among all sublattices of Zd , they become sparser as the corank grows. This confirms
n expectation of Nguyen–Shparlinski.

Also of interest in our work is the method of proof. Nguyen and Shparlinski prove their
esults by counting solutions of linear congruence equations. Our proofs extend Petrogradsky’s
ethods and make systematic use of the cotype zeta function of Zd , which he introduced

n [24]. This is a multivariate generalization of the subgroup growth zeta function ζZd (s) from
1.2). Petrogradsky computes it explicitly in terms of permutation descent polynomials.

emark 1. We have not attempted to bound the error term in the asymptotic of Theorem 1.1.
he expression (1.2) for ζZd (s) as a product of Riemann zeta functions implies that the
umber of subgroups of Zd of index n can be expressed as a divisor sum. Restricting to
ubgroups of index n of corank less than m imposes a local condition at each prime p.
e therefore see the problem of obtaining error terms in the asymptotic for N (m)

d (X ) as an
nalogue of bounding the error in asymptotics for divisor sums in arithmetic progressions, see
.g. Friedlander–Iwaniec [12] for early work on this problem and more recently, the paper of
owalski–Ricotta [19]. Such error bounds typically come from a Voronoi formula and Weil’s
stimate for Kloosterman sums. Lacking an automorphic interpretation in our setting, any
nvestigation of errors terms will probably require a deeper understanding of the combinatorial
roperties of the polynomials arising in the Euler products (3.3).

emark 2. We make use of Petrogradsky’s multivariate cotype zeta function to derive a formula
or a single variable zeta function counting subgroups of corank less than or equal to m. The
symptotic of Theorem 1.1 comes from analytic properties of this single variable series. Using
ecent results on Tauberian theorems for multivariate Dirichlet series [4,11,39], one could
lso investigate asymptotics for the number of subgroups of Zd with cotype satisfying the
nequalities:

1 ≤ α1 ≤ c1 X, 1 ≤ α1α2 ≤ c2 X, . . . , 1 ≤ α1 · · ·αd−1 ≤ cd−1 X, 1 ≤ α1 · · ·αd ≤ X

or fixed constants 0 < c1 ≤ · · · ≤ cd−1 ≤ 1 with X → ∞. We have not attempted to pursue
uch questions.

.2. Coranks of lattices and cokernels of matrices in Hermite normal form

Throughout this paper, for a ring R we let Md (R) denote the d × d matrices with entries
n R. For a finite abelian group G, we write (G) for its Sylow p-subgroup. Consider the
p
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istribution on finite abelian p-groups of rank at most d that chooses a group G of rank r
here r ≤ d with probability

P p
d (G) = |Aut(G)|−1

( d∏
j=1

(1 − p− j )
)( d∏

j=d−r+1

(1 − p− j )
)

. (1.8)

t follows from a result of Cohen and Lenstra [9, Theorem 6.1] that the right-hand side of (1.7)
s equal to the product over all primes p of the probability that a group chosen from P p

d has
ank at most m.

Motivated by famous conjectures of Cohen and Lenstra on distributions of Sylow p-
ubgroups of class groups of number fields [9], Friedman and Washington prove that the
istribution of cokernels of d × d random matrices with entries in the p-adic integers Zp,
rawn from Haar measure on the space of all such matrices, is the distribution of (1.8) [13,
roposition 1]. Stanley and Wang show that this distribution arises in the study of Smith normal
orms of random d×d integer matrices with entries chosen uniformly from [−k, k], as k → ∞.
he Smith normal form of an integer matrix carries the same information as its cokernel.
s k → ∞, each entry is uniformly distributed modulo pr for each prime power, so this

distribution of cokernels matches the one studied by Friedman and Washington, and therefore
is equal to the one defined by (1.8). Going from a result for a single prime to a result involving
infinitely many primes is often challenging. Stanley and Wang prove that the probability that
the cokernel of a random integer matrix chosen from the model described above has rank at
most m is given by the right-hand side of (1.7) [34, Theorem 4.13]. The proof uses nontrivial
results from number theory of Ekedahl and Poonen on greatest common divisors of outputs of
multivariable polynomials [10,25].

We now interpret of Corollary 1.2 in terms of cokernels of special classes of random integer
atrices. A nonsingular M ∈ Md (Z) with entries ai j is in Hermite normal form if:

1. M is upper triangular, and
2. 0 ≤ ai j < a j j for 1 ≤ i < j ≤ d .

e recall a basic fact about lattices and matrices in Hermite normal form.

roposition 1.3. Every sublattice Λ ⊆ Zd is the row span of a unique matrix H (Λ) in Hermite
ormal form. Moreover, Zd/Λ ∼= cok(H (Λ)), which implies [Zd

:Λ] = det(H (Λ)).
This gives a bijection between the set of sublattices of Zd of index less than X and

onsingular d × d matrices in Hermite normal form with determinant less than X.

Let Hd (Z) ⊂ Md (Z) denote the subset of nonsingular matrices in Hermite normal form
nd Hd (X ) ⊂ Hd (Z) denote the subset of these matrices with determinant less than X . By
roposition 1.3, Corollary 1.2 is equivalent to the following statement.

orollary 1.4. We have

lim
X→∞

#{M ∈ Hd (X ) : rank(cok(M)) ≤ m}

#Hd (X )

=

∏
p

⎛⎝ d∏
j=1

(1 − p− j )
m∑

i=0

[
d
i

]
p−1

p−i2∏i
j=1 (1 − p− j )

⎞⎠ .
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In Section 4 we consider the distribution of Sylow p-subgroups of cokernels of matrices in
ermite normal form, giving an explanation for this result.

heorem 1.5. Let G be a finite abelian p-group of rank r ≤ d. Then

lim
X→∞

#
{
Λ ⊆ Zd

: [Zd
:Λ] < X and (Zd/Λ)p ∼= G

}
#
{
Λ ⊆ Zd : [Zd :Λ] < X

} = P p
d (G).

quivalently,

lim
X→∞

#
{

M ∈ Hd (X ) : cok(M)p ∼= G
}

#Hd (X )
= P p

d (G).

e note that this result does not directly imply Corollary 1.4 because of subtleties involved in
oing from a single prime to a product over all primes.

The main point of Theorem 1.5 is that Sylow p-subgroups of cokernels of matrices in
ermite normal form follow the same distribution as cokernels of Haar random matrices in

Md (Zp). This fits in with universality results for cokernels of families of random integer and
p-adic matrices due to Wood [42]. However, Wood’s results do not directly imply Theorem 1.5
ecause, in the language of [42, Definition 1], matrices in Hermite normal form are not
-balanced, as many entries are fixed to be 0.

.3. Related work

More general functions of the type considered in this paper have their origin in Igusa’s
tudy of zeta functions of algebraic groups [16]. This work has become an essential tool in
he theory of zeta functions of groups and rings and has been extended in various directions.
ee for example the paper of du Sautoy and Lubotzky [28] and the further references listed

n Section 5.2. In this context, Petrogradsky’s local zeta function and generalizations thereof
arise naturally as multivariate p-adic integrals. This point of view is developed in Voll [40],
n both the context of counting subgroups of a finitely generated torsion-free nilpotent group
nd in the study of their representation zeta functions. Further generalizations of Igusa’s local
eta functions are introduced in Klopsch–Voll [17] and Schein–Voll [30], leading to numerous
pplications in subgroup, subring and representation growth; see e.g. [6,7,20,31,36,37].

In the theory of automorphic forms related functions appear in the computation of Fourier
oefficients of Eisenstein series on GL2n and the local singular series of an n-by-n square
atrix, as noted in the papers of F. Sato [27] and Beineke–Bump [1]. Sato raises the interesting

pen question of finding a corresponding relation between local singular series and the
numeration of subgroups of an abelian group in the symplectic case.

utline of the paper

We review Petrogradsky’s work in Section 2. In Section 3 we prove our main results on the
istribution of the corank. In Section 4 we prove Theorem 1.5. The utility of the cotype zeta
unction in the resolution of these corank problems suggests that it may be fruitful to introduce
ultivariate Dirichlet series to address analogous subgroup and subring growth problems in a

roader context. We elaborate on this and present some further concluding remarks in Section 5.
647
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. The cotype zeta function of Zd

We recall Petrogradsky’s definition of the cotype zeta function of Zd , which he calls the
ultiple zeta function of Zd .

efinition 2.1 ([24]). Let d be a positive integer and let aα(Zd ) be the number of subgroups
⊆ Zd of cotype α. We define the cotype zeta function of Zd :

ζZd (s1, . . . , sd ) =
∑

H⊆Zd

α1(H )−s1 · · ·αd (H )−sd =

∑
α=(α1,...,αd )

aα(Zd ) · α−s1
1 · · ·α

−sd
d .

ote that ζZd (s, . . . , s) = ζZd (s), so this multivariable function generalizes the subgroup growth
eta function of Zd .

The subgroup growth zeta function of Zd has an Euler product, and Petrogradsky shows
hat this multivariable generalization has one as well.

emma 2.2 ([24, Lemma 1.1]). For each d ≥ 1 we have

ζZd (s1, . . . , sd ) =
∏

p

ζZd ,p(s1, . . . , sd ),

here the local factor for each prime p is defined as

ζZd ,p(s1, . . . , sd ) =
∞∑

m=0

∑
H⊆Zd

[Zd :H]=pm

α1(H )−s1 · · ·αd (H )−sd .

One of the main results of [24] is the computation of the local factors of the cotype zeta
unction of Zd in terms of permutation descents and q-binomial coefficients. We fix some
otation and recall basic properties of these combinatorial objects following [24, Section 3]:

[n]q =
1 − qn

1 − q
= 1 + q + · · · + qn−1

;

[n]q ! = [n]q [n − 1]q · · · [2]q ;[
n
j

]
q
=

[n]q !

[ j]q ! [n − j]q !
;[

m1 + m2 + · · · + mk

m1, m2, . . . , mk

]
q
=

[m1 + m2 + · · · + mk]q !

[m1]q ! [m2]q ! · · · [mk]q !

=

[
m1 + m2 + · · · + mk

m1

]
q

[
m2 + · · · + mk

m2

]
q
· · ·

[
mk−1 + mk

mk−1

]
q
.

et Nd = {1, 2, . . . , d} and suppose λ ⊆ Nd . If λ = ∅ then we set
[d
λ

]
q = 1. Otherwise, if

= {λ1, . . . , λk}, where d ≥ λ1 > λ2 > · · · > λk ≥ 1, let |λ| = k and mi = λi − λi+1 for
≤ i ≤ k, where we set λk+1 = 0 and λ0 = d. Note that d = m0 + m1 + · · · + mk . We define

he following polynomials in q:[
d
λ

]
q
=

[
d

m0, m1, . . . , mk

]
q
, λ ⊆ Nd; (2.1)

wd,λ(q) =
∑

(−1)|λ|−|µ|

[
d
µ

]
, λ ⊆ Nd . (2.2)
µ⊆λ q
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heorem 2.3 ([24, Theorem 3.1]). Consider the cotype zeta function of Zd . For each j
atisfying 1 ≤ j ≤ d, we introduce the new variable z j = s1 + · · · + s j − j(d − j). Then

1.

ζZd (s1, . . . , sd ) = ζ (z1)ζ (z2) · · · ζ (zd ) · f (s1, . . . , sd−1), where (2.3)

f (s1, . . . , sd−1) =
∏

p

⎛⎝1 +

∑
∅̸=λ⊆Nd−1

wd,λ

(
p−1)∏

j∈λ

p−z j

⎞⎠ , (2.4)

with the sum taken over all nonempty subsets λ ⊆ Nd−1.
2. The region of absolute convergence of the cotype zeta function is Re(z j ) > 1,

j = 1, . . . , d.
3. The region of absolute convergence of the product over primes is Re(z j ) > 0,

j = 1, . . . , d − 1; and (2.3) is the analytic continuation to this region.
4. The local factors are rational functions in the variables ti = p−zi , i = 1, . . . , d:

ζZd ,p(s1, . . . , sd ) =

∑
λ⊆Nd−1

wd,λ(p−1)
∏

j∈λ t j

(1 − t1)(1 − t2) · · · (1 − td )
. (2.5)

The polynomials wd,λ(q) that arise have been studied extensively in the combinatorial
iterature. The first part of Theorem 2.5 is stated in [24, Theorem 3.1 (2)], while the other
wo parts are due to Stanley [32, Corollary 3.2] and [33, Section 2.2.5].

efinition 2.4. Let π ∈ Sd be a permutation. We call i ∈ {1, 2 . . . , d − 1} a descent of π ,
rovided that π (i) > π(i + 1). For π ∈ Sd , let D′(π ) denote its set of descents.

A pair (i, j) is called an inversion of π if and only if i < j and π (i) > π( j). Let inv(π )
enote the number of inversions of π .

Note that d cannot be a descent of a permutation in Sd .

heorem 2.5. Let λ ⊆ Nd−1 be fixed.

1. There exists a number N ≥ |λ| such that wd,λ(q) is a polynomial in q with nonnegative
integer coefficients of the form

wd,λ (q) = q N
+

∑
i>N

τi q i .

2. We have that

wd,λ(q) =
∑
π∈Sd

D′(π )=λ

q inv(π ).

3. We have that

wd,λ(q) = det

([
d − λi+1

λ j − λi+1

]
q

| 0 ≤ i, j ≤ k

)
.

To conclude this section, we compare the results of Petrogradsky described here to the work
f du Sautoy and Lubotzky [28], which builds on earlier work of Igusa [16]. Theorem 5.9
f [28], specialized to G = GLd and ρ the standard representation gives (2.5). (The result of
28] is specialized to a single variable, but the multivariate extension is obvious.) Petrogradsky’s
649
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roof uses a cotype-preserving bijective correspondence between finite index subgroups Λ of
d and subgroups of the finite group Zd/NZd , where N = α1(Λ). The number of the latter
an be expressed in terms of q-binomial coefficients [5]. On the other hand, du Sautoy and
ubotzky interpret the p-part of the zeta function as a p-adic integral over GLd (Zp), which they
ompute using the Iwahori decomposition. This leads to a sum over the (affine) Weyl group
quivalent to (2.5). These ideas have been further developed to prove local functional equations
or zeta functions of nilpotent groups and other Igusa-type zeta functions; see, e.g., [17,40].

. Density results for the corank

We begin by introducing the Dirichlet series counting sublattices of Zd of corank less than
r equal to m. This is given by

ζ
(m)
Zd (s) =

∑
Λ⊂Zd

corank(Λ)≤m

1
[Zd : Λ]s

. (3.1)

Recall that a sublattice of corank at most m will have cotype (α1, α2, . . . , αd ) with αm+1 =

· · = αd = 1. Therefore, in terms of Petrogradsky’s expression for the cotype zeta function
iven in Theorem 2.3, we have

ζ
(m)
Zd (s) = lim

sm+1→∞
· · · lim

sd→∞
ζZd (s, . . . , s, sm+1, . . . , sd )

= ζ (s − (d − 1))ζ (2s − 2(d − 2)) · · · ζ (ms − m(d − m)) f (m)
d (s), (3.2)

here

f (m)
d (s) =

∏
p

f (m)
d,p (s) =

∏
p

⎛⎝ ∑
λ⊂{1,...,m}

ωd,λ(p−1)
∏
j∈λ

p− js+ j(d− j)

⎞⎠ . (3.3)

he analytic properties of ζ
(m)
Zd (s) will lead to our desired density results.

roposition 3.1. The corank at most m zeta function ζ
(m)
Zd (s) has a simple pole at s = d with

esidue∏
p

(
(1 − p−1)

m∑
i=0

[
d
i

]
q

p−i2∏i
j=1 (1 − p− j )

)
. (3.4)

The simple pole comes from the simple pole of the Riemann zeta function ζ (s − (d − 1))
t s = d . The other zeta factors in (3.2) are holomorphic at s = d and collectively contribute

a factor of
∏

2≤ j≤m ζ ( j2) at s = d to the residue. Thus

Ress=d ζ
(m)
Zd (s) =

⎛⎝ ∏
2≤ j≤m

ζ ( j2)

⎞⎠ f (m)
d (d). (3.5)

To complete the proof of Proposition 3.1, it remains to evaluate

f (m)
d,p (d) =

∑
ωd,λ(p−1)

∏
p− j2

(3.6)

λ⊂{1,...,m} j∈λ

650
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L
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t

nd take the product over all primes p. Setting q = p−1, we compute

∑
λ⊂{1,...,m}

ωd,λ(q)
∏
j∈λ

q j2
=

∑
λ⊂{1,...,m}

⎛⎝∑
µ⊂λ

(−1)|λ|−|µ|

[
d
µ

]
q

⎞⎠∏
j∈λ

q j2

=

∑
µ⊂{1,...,m}

[
d
µ

]
q

⎛⎝∑
λ⊃µ

(−1)|λ|−|µ|
∏
j∈λ

q j2

⎞⎠
=

∑
µ⊂{1,...,m}

[
d
µ

]
q

∏
j∈µ

q j2 ∏
j ̸∈µ

(1 − q j2
). (3.7)

In order to go further we need the intermediate result of Lemma 3.3.

.1. A q-multinomial identity

The lemma below follows from the q-binomial theorem.

emma 3.2. Let e, n be nonnegative integers. We have
n∑

k=0

[
n
k

]
q
qk2

+ek
n+e∏

j=k+1+e

(1 − q j ) = 1. (3.8)

This lemma will be used in the proof of Lemma 3.3. We note in passing that setting e = 0
nd letting n → ∞ yields the generating series for partitions in terms of the Durfee number
enerating series.

emma 3.3. Let 1 ≤ i ≤ d be integers. We have∑
µ⊂{1,...,i−1}

[
d

µ ∪ {i}

]
q

∏
j∈µ

q j2 ∏
j∈{1,...,i−1}\µ

(1 − q j2
) =

[
d
i

]
q

i∏
j=1

1 − q j2

1 − q j
. (3.9)

The argument below is similar to that given in Section 4.1 of Stasinski–Voll [35]. We give
a proof for completeness.

Proof of Lemma 3.3. We argue by induction on i . The base case i = 1 is immediate. Assume
he identity is true for all i0 satisfying 1 ≤ i0 < i . We remove the contribution of µ = ∅ from
he left-hand side of (3.9) and write it as∑

µ⊂{1,...,i−1}

[
d

µ ∪ {i}

]
q

∏
j∈µ

q j2 ∏
j∈{1,...,i−1}\µ

(1 − q j2
) −

[
d
i

]
q

i−1∏
j=1

(1 − q j2
)

=

i−1∑
i0=1

∑
µ⊂{1,...,i0−1}

[
d

µ ∪ {i0, i}

]
q

∏
j∈µ∪{i0}

q j2 ∏
j∈{1,...,i−1}\µ∪{i0}

(1 − q j2
)

=

i−1∑
i0=1

[
d − i0

i − i0

]
q
q i2

0

i−1∏
j=i0+1

(1 − q j2
)

×

∑ [
d

µ ∪ {i0}

] ∏
q j2 ∏

(1 − q j2
), (3.10)
µ⊂{1,...,i0−1} q j∈µ j∈{1,...,i0−1}\µ
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B

here we have used the identity[
d

µ ∪ {i0, i}

]
q
=

[
d

µ ∪ {i0}

]
q

[
d − i0

i − i0

]
q

n the final step. We continue by using the inductive hypothesis on the inner sum, i.e., the
xpression in (3.10), and see that the left-hand side of (3.9) is equal to:[

d
i

]
q

i−1∏
j=1

(1 − q j2
) +

i−1∑
i0=1

[
d − i0

i − i0

]
q
q i2

0

i−1∏
j=i0+1

(1 − q j2
)
[

d
i0

]
q

i0∏
j=1

1 − q j2

1 − q j

=

i−1∏
j=1

(1 − q j2
)

i−1∑
i0=0

[
d
i

]
q

[
i
i0

]
q
q i2

0

i0∏
j=1

(1 − q j )−1

here we have used the subset-of-a-subset identity. Comparing with the right-hand side of
3.9), we are reduced to proving

i−1∑
i0=0

[
i
i0

]
q
q i2

0

i0∏
j=1

(1 − q j )−1
=

1 − q i2∏i
j=1(1 − q j )

r equivalently,
i−1∑
i0=0

[
i
i0

]
q
q i2

0

i∏
j=i0+1

(1 − q j ) = 1 − q i2
.

e can write this a little more nicely:
i∑

i0=0

[
i
i0

]
q
q i2

0

i∏
j=i0+1

(1 − q j ) = 1.

his is the case e = 0 of Lemma 3.2. □

.2. Conclusion of the proof of Proposition 3.1

We return to the evaluation of f (m)
d,p (d) using the expression of (3.7):

f (m)
d,p (d) =

∑
µ⊂{1,...,m}

[
d
µ

]
q

∏
j∈µ

q j2 ∏
j ̸∈µ

(1 − q j2
).

y Lemma 3.3, the above sum restricted to subsets with largest element i yields⎡⎣q i2
m∏

j=i+1

(1 − q j2
)

⎤⎦ ∑
µ⊂{1,...,i−1}

[
d

µ ∪ {i}

]
q

∏
j∈µ

q j2 ∏
j∈{1,...,i−1}\µ

(1 − q j2
)

=

[
d
i

]
q

q i2 ∏m
j=1(1 − q j2

)∏i
j=1 1 − q j

.

Noting that i = 0 corresponds to the contribution of µ = ∅, we sum over all i to obtain

f (m)
d,p (d) =

⎡⎣ m∏
(1 − q j2

)

⎤⎦ m∑[
d
i

]
q

q i2∏i (1 − q j )
.

j=1 i=0 j=1
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ow taking the product over p cancels the zeta factors in (3.5) and we are left with

Ress=d ζ
(m)
Zd (s) =

∏
p

(
(1 − p−1)

m∑
i=0

[
d
i

]
p−1

p−i2∏i
j=1 (1 − p− j )

)
.

his concludes the proof of Proposition 3.1.

.3. The density of sublattices of corank at most m

Theorem 1.1, the asymptotic expression for the number of sublattices with corank at most
, follows immediately from Proposition 3.1 and the analytic continuation statements from

Theorem 2.3.
We note that the constant term in the expression (1.3) is

ζ (d)ζ (d − 1) · · · ζ (2)
d

=
1
d

∏
p

d−2∏
j=0

(
1 − p−d+ j)−1

.

aking the quotient of this term with the constant term in Theorem 1.1 completes the proof of
orollary 1.2.

. Sylow p-subgroups of cokernels of matrices in Hermite normal form

The goal of this section is to prove the second of the equivalent statements in Theorem 1.5.
ur strategy for determining the distribution of Sylow p-subgroups of cokernels of matrices

n Hermite normal form is to relate this distribution to the distribution of cokernels of Haar
andom p-adic matrices. Haar measure on the p-adic integers Zp gives rise to Haar measure
n Md (Zp), normalized so that the total volume is 1. More concretely, each matrix entry can be
hosen independently with respect to Haar measure on Zp. Throughout the rest of this section,
e use ProbM∈Md (Zp)(·) to denote the probability that a Haar random matrix M ∈ Md (Zp) has

ome property. This is equal to the volume of the subset of Md (Zp) consisting of matrices with
his property. We give an example from the introduction. Recall the distribution P p

d on finite
belian p-groups of rank at most d defined in (1.8).

roposition 4.1 ([13, Proposition 1]). Let G be a finite abelian p-group of rank at most d.
et M ∈ Md (Zp) be a random matrix. Then

ProbM∈Md (Zp)(cok(M) ∼= G) = P p
d (G).

We use the following fact, which follows from Proposition 4.1 and [9, Corollary 3.8].

roposition 4.2. Let e ≥ 0 be an integer and M ∈ Md (Zp) be a random matrix. Then

ProbM∈Md (Zp)(|cok(M)| = pe) =

∏d
j=1(1 − p− j )

pe

[
d + e − 1

e

]
p−1

.

ny α ∈ Zp can be written uniquely as α = peu where e ∈ Z≥0 and u ∈ Zp is a unit. In this
ase, we write vp(α) = e. Note that |cok(M)| = pe if and only if vp(det(M)) = e.

We will use the following analogue of Proposition 1.3 for matrices with entries in Zp.

roposition 4.3 ([8, Theorem 3.1.7]). Any invertible M ∈ Md (Zp) can be written uniquely as
product M = U H where U ∈ GL (Z ) and H is an upper triangular matrix with entries
d p
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i j such that a j j = pn j where n j ≥ 0 and each ai j with i < j is an integer satisfying
≤ ai j < pn j .

The matrix H in Proposition 4.3 is the p-adic version of an integer matrix in Hermite
ormal form. We call H the Hermite normal form of M and write HNF(M) = H . We say that

H ∈ Md (Zp) of this type is in Hermite normal form.
The left multiplication by the matrix U corresponds to operations on the rows of M that

re operations on the standard basis vectors ei . The invertibility of U over Zp ensures that the
ows of M and the rows of H generate the same sublattice of Zn

p. Therefore, if M = U H are
s in Proposition 4.3, then cok(M) ∼= cok(H ).

Proposition 4.4. Suppose H ∈ Md (Zp) is in Hermite normal form and det(H ) = pe. Then,

ProbM∈Md (Zp)(HNF(M) = H ) =
ProbM∈Md (Zp)

(
vp(det(M)) = vp(det(H ))

)
#
{
Λ ⊆ Zd : [Zd :Λ] = det(H )

}
=

∏d
j=1(1 − p− j )

ped
.

roof. Since M = U HNF(M) for some U ∈ GLd (Zp), and det(U ) is a unit in Zp, we see that
p(det(M)) = vp(det(HNF(M))). The set of M ∈ Md (Zp) with vp(det(M)) = pe is a disjoint
nion of orbits GLd (Zp)H1, . . . , GLd (Zp)Hk , where H1, . . . , Hk are the finitely many distinct
atrices in Hermite normal form of determinant pe. These matrices are in bijection with the

ublattices of Zd
p of index pe, which are in bijection with the sublattices of Zd of index pe.

The volume of the orbit GLd (Zp)Hi is equal to the probability that d randomly chosen
ectors of Zd

p each lie in the lattice spanned by the rows of Hi and are linearly independent.
his probability depends on det(Hi ), but not on the particular choice of Hi . This completes the
roof of the first equality in Proposition 4.4.

Proposition 4.2 gives ProbM∈Md (Zp)
(
vp(det(M)) = vp(det(H ))

)
. We know that

#
{
Λ ⊆ Zd

: [Zd
:Λ] = det(H )

}
s the p−es coefficient of the power series expansion of ζZd (s) = ζ (s)ζ (s−1) · · · ζ (s− (d −1)),
hich is

[d+e−1
e

]
p.

For the final equality in Proposition 4.4, recall that[
d + e − 1

e

]
p
=

[
d + e − 1

e

]
p−1

pe(d−1),

nd therefore,∏d
j=1(1−p− j )

pe

[d+e−1
e

]
p−1[d+e−1

e

]
p

=

∏d
j=1(1 − p− j )

ped
. □

By Proposition 1.3, a sublattice Λ ⊆ Zd gives rise to a d×d integer matrix in Hermite normal
orm H (Λ) with [Zd

:Λ] = det(H (Λ)). An application of the Chinese remainder theorem shows
hat for each prime p, H (Λ) determines a matrix in Hermite normal form with determinant
qual to a power of p.

efinition 4.5. Suppose H ∈ Hd (Z) has entries ai j and det(H ) = pe1
1 · · · per

r where p1, . . . , pr

re distinct primes and each e is a positive integer. For each prime p , define H ∈ H (Z)
i i pi d
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ith det(Hpi ) = pei
i as follows. Write each a j j = p

b j
i u j where pi ∤ u j . Let Hpi be the

pper-triangular matrix with entries b jk defined so that:

• b j j = p
b j
i , and

• for 1 ≤ j < k ≤ d, b jk is the unique integer 0 ≤ b jk < pbk
i with b jk ≡

a jk
u j

(mod pbk
i ).

If p is a prime for which p ∤ det(H ), define Hp = Id .

With this definition, it is clear that if H ∈ Hd (Z), then each Hp ∈ Hd (Z) as well. The
following proposition follows from an application of the Chinese remainder theorem.

Proposition 4.6. Definition 4.5 gives a bijection between matrices H ∈ Hd (Z) and collections{
Hp
}

consisting of one Hp ∈ Hd (Z) for each prime p and where all but finitely many Hp = Id .
oreover, det(H ) =

∏
p det(Hp).

Note that for any H ∈ Hd (Z), cok(H )p = cok(Hp). That is, the Sylow p-subgroup of
the cokernel of H depends only on Hp. Suppose Q ∈ Hd (Z) has det(Q) = pe. Theorem 1.5
follows from showing that the probability that a random H ∈ Hd (Z) has Hp = Q is equal to
the probability that a random M ∈ Md (Zp) has HNF(M) = Q.

Proposition 4.7. Suppose Q ∈ Hd (Z) satisfies det(Q) = pe for some prime p and positive
integer e. Then

lim
X→∞

#
{

H ∈ Hd (X ) : Hp = Q
}

#Hd (X )
=

∏d
j=1(1 − p− j )

ped
.

roof. There is a bijection between
{

H ∈ Hd (X ) : Hp = Q
}

and
{

H ∈ Hd
( X

pe

)
: Hp = Id

}
.

Note that

lim
X→∞

#
{

H ∈ Hd
( X

pe

)
: Hp = Id

}
#Hd (X )

= lim
X→∞

#
{

H ∈ Hd
( X

pe

)
: Hp = Id

}
#Hd

(
X
pe

) #Hd

(
X
pe

)
#Hd (X )

.

y (1.3), we have that

lim
X→∞

#Hd
( X

pe

)
#Hd (X )

=
1

(pe)d
. (4.1)

et gd (k) be the number of sublattices Λ ⊆ Zd of index k for which H (Λ)p = Id . We have
∞∑

k=1

gd (k)k−s
=
(
(1 − p−s)(1 − p−s+1) · · · (1 − p−s+d−1)

)
ζZd (s). (4.2)

his expression equals ζZd (s) except that the local factor at p in its Euler product is replaced
ith 1. It is still clear that the right-most pole of this function is a simple pole at s = d, so

pplying a Tauberian theorem as we did to derive expression (1.3) shows that

lim
X→∞

#
{

H ∈ Hd ( X
pe ) : Hp = Id

}
#Hd

(
X
pe

) = (1 − p−d )(1 − p−d+1) · · · (1 − p−1). (4.3)

Combining Eqs. (4.1) and (4.3) completes the proof. □
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Combining Propositions 4.1, 4.4, and 4.7 completes the proof of Theorem 1.5.

. Conclusion

The results and methods of this paper suggest several natural directions for further study.

.1. Subgroup and subring growth zeta functions

We may also try to construct multivariate Dirichlet series to study subgroup growth for other
roups. A first case of potential interest is the discrete Heisenberg group

H3 = ⟨a, b, c | c = [a, b], [a, c] = [b, c] = 1⟩.

he normal subgroup zeta function of H3 is

ζH3 (s) =
∑

N⊴ f H3

[H3 : N ]−s (5.1)

here the sum is over all finite index normal subgroups of H3. It has been shown [14] that

ζH3 (s) = ζ (s)ζ (s − 1)ζ (3s − 2). (5.2)

multivariate generalization of this series might give more refined information on the
istribution of the finite groups which arise as quotients of H3.

Similar questions can be asked for subring growth. For example, we expect that the cotype
ubring zeta function of Z3 can be used to show that in contrast to the case studied here, most
f the subrings of Z3 (ordered by index) are not cocyclic. In a nonabelian setting, the Lie ring
l2(Z) has an explicitly computed zeta function

ζsl2(Z)(s) =
∑

L

[sl2(Z) : L]−s
= P(2−s)

ζ (s)ζ (s − 1)ζ (2s − 2)ζ (2s − 1)
ζ (3s − 1)

, (5.3)

where the sum is over all finite index Lie subrings of sl2(Z) and P(x) = (1+ 6x2
− 8x3)/(1−

x3) [29]. It would be interesting to compute the cotype subring zeta function of sl2(Z) and use
t to find the density of Lie subrings with cyclic quotient.

Klopsch and Voll compute the subring zeta functions of all 3-dimensional Lie algebras over
p in a uniform manner [18]. Their techniques, in particular, should allow one to compute the

otype zeta function for both H3 and sl2(Z).

.2. Zeta functions of classical groups

The subgroup growth zeta function ζZd (s) of Zd also arises in the more general context of
he zeta functions associated to algebraic groups studied by Hey, Weil, Tamagawa, Satake,

acdonald and Igusa [15,16,22,26,38,41]. For G a linear algebraic group over Qp and a
ational representation ρ : G → GLn they define

ZG,ρ(s) =
∫

G+

| det ρ(g)|s dg (5.4)

here G+
= ρ−1(ρ(G(k)∩ Mn(Zp))), where Zp is the ring of integers of Qp. When G = GLn

nd ρ is the natural representation, ZG,ρ(s) is just the p-part of the subgroup growth zeta
unction ζ (s). In more recent work, du Sautoy and Lubotzky [28] show that Z (s) for
Zd G,ρ
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ore general G and ρ continues to have an interpretation as a generating series counting
ubstructures of algebras.

We take an explicit example from Bhowmik–Grunewald [3], see also [2, Theorem 12]. Let
be the alternating bilinear form on a 2n dimensional space associated to the matrix(

0 −In

In 0

)
.

sublattice Λ of Z2n is β-polarized if Λ̂ = cΛ for some constant c ∈ Q×, where

Λ̂ = {v ∈ Z2n
: β(u, v) ∈ Z for all u ∈ Z2n

}.

efine the group GSp2n(Q) of symplectic similitudes by

GSp2n(Q)
= {g ∈ GL2n(Q) : β(gx, gy) = µgβ(x, y) for some µg ∈ Q× and all x, y ∈ Qn

}.

ollowing computations of Satake [26] and Macdonald [22], the zeta function of the group
Sp6(Q) is written down explicitly in [28]. Bhowmik and Grunewald use this to show that the
umber of β-polarized sublattices of Z6 of index less than X is asymptotic to cX7/3 for an
xplicit constant c. The results of [28] indicate a way to extend these computations, both to
igher rank and to include the distribution of cotype.
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