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Abstract

We give an asymptotic formula for the number of sublattices A C Z4 of index at most X for which
74 /A has rank at most m, answering a question of Nguyen and Shparlinski. We compare this result to
work of Stanley and Wang on Smith normal forms of random integral matrices and discuss connections
to the Cohen—Lenstra heuristics. Our arguments are based on Petrogradsky’s formulas for the cotype
zeta function of Z¢, a multivariable generalization of the subgroup growth zeta function of 74,
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1. Introduction

A fundamental problem in the field of subgroup growth is understanding the number of
subgroups of finite index n in a fixed group G. In many cases, analytic properties of the
subgroup growth zeta function {s(s) provide useful information. This is the Dirichlet series

1
G(9) =) s (L)
HCG [G - H]
where H ranges over all finite index subgroups of G. If the number of subgroups in G of index
n grows at most polynomially, then the Dirichlet series defining ¢s(s) converges absolutely for
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Re(s) sufficiently large. An analytic continuation of the series and knowledge of the locations
and orders of its poles would provide information on asymptotics for the number of subgroups
of index less than X as X — oo.

One of the most basic examples is the subgroup growth zeta function of the integer lattice
Z4 which turns out to have a simple expression as a product of Riemann zeta functions:

Gza(5) = £ — D L(s — (d — ). (1.2)
See the book of Lubotzky and Segal for five proofs of this fact [21]. Since ¢(s) has a simple
pole at s = 1, standard Tauberian techniques immediately give the asymptotic
N4(X) := #{sublattices of Z¢ of index < X}
_ddd—-1---¢(2)
d

X4+ 0(X9 og(X)) (1.3)
as X — oo.

1.1. The proportion of lattices with given corank

A number of more refined questions about the distribution of sublattices of Z? can be
asked. Motivated by work of Nguyen and Shparlinski [23], we investigate the distribution of
sublattices of Z? whose cotype has a certain form. The cotype of a sublattice 4 C Z< is
defined as follows. By elementary divisor theory, there is a unique d-tuple of positive integers

(ar, ..., ag) = (@(A), ..., ay(A)) such that the finite abelian group Z¢ /A is isomorphic to the
sum of cyclic groups
(Z)oZ) ® (2] Z) & - - - B (Z)ayZ) 1.4)

where ;1 | o; for 1 <i <d — 1. We call the d-tuple a(A) := (a1(A), ..., ay(A)) the cotype
of A. The largest index i for which «;(A) # 1 is called the rank of Z¢/A and the corank of A.
By convention, Z¢ has corank 0. A sublattice A of corank 0 or 1 is called cocyclic, i.e., Z¢/ A
is cyclic, or equivalently, A has cotype ([Z%: A1, 1, ..., 1).

Nguyen and Shparlinski study the distribution of cocyclic sublattices of Z¢ and pose several
related questions. Let Nflm)(X ) be the number of sublattices A of Z¢ of index less than X such
that A has corank at most m. In particular, Nfil)(X ) is the number of cocyclic sublattices of Z¢
of index less than X. Throughout this paper we use [] , to denote a product over all primes.
Rediscovering a result of Petrogradsky [24] by more elementary means, they show that

M Od v Pt -1
N0 ~ =X, where 6 =[] (1+ P (1.5)
p

as X — oo. Comparing this to the asymptotic (1.3) for all sublattices, Nguyen—Shparlinski
and Petrogradsky both observe that the probability that a “random” sublattice of Z¢ is cocyclic
is about 85% for d large.

Nguyen and Shparlinski conclude their paper by stating that it would be of interest to obtain
similar asymptotic formulas for N p (X ) for m > 1 and to show that the sublattices of corank
m form a negligible proportion of all sublattices of Z¢ when m is sufficiently large.

In this paper we show the following theorem.

Theorem 1.1. Let 1 <m <d. As X — oo,

.y
Nc(lm)(X) H((l —P_I)Z[ ] lm) . (1.6)
P L

i=0
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We recall in Section 2 the definition of the g-binomial coefficient [‘f] _1-
Dividing by the number of all sublattices of index less than X as given in (1.3) gives the
proportion of sublattices with corank at most m.

Corollary 1.2. As X — oo,

_,'2

N(X)
1—p7 — . L.
Vo 11 H( )ZH i 1(1— p) -7

p

For example, the proportion of sublattices of Z¢ of corank at most 2 converges to approximately
99.4% as d — oo, and the proportion of sublattices of Z? of corank at most 3 converges
to approximately 99.995%. Therefore, while sublattices of any fixed corank have positive
density among all sublattices of Z?, they become sparser as the corank grows. This confirms
an expectation of Nguyen—Shparlinski.

Also of interest in our work is the method of proof. Nguyen and Shparlinski prove their
results by counting solutions of linear congruence equations. Our proofs extend Petrogradsky’s
methods and make systematic use of the cotype zeta function of Z¢, which he introduced
in [24]. This is a multivariate generalization of the subgroup growth zeta function {za(s) from
(1.2). Petrogradsky computes it explicitly in terms of permutation descent polynomials.

Remark 1. We have not attempted to bound the error term in the asymptotic of Theorem 1.1.
The expression (1.2) for ¢z«(s) as a product of Riemann zeta functions implies that the
number of subgroups of Z¢ of index n can be expressed as a divisor sum. Restricting to
subgroups of index n of corank less than m imposes a local condition at each prime p.
We therefore see the problem of obtaining error terms in the asymptotic for N(f,m)(X ) as an
analogue of bounding the error in asymptotics for divisor sums in arithmetic progressions, see
e.g. Friedlander—Iwaniec [12] for early work on this problem and more recently, the paper of
Kowalski—Ricotta [19]. Such error bounds typically come from a Voronoi formula and Weil’s
estimate for Kloosterman sums. Lacking an automorphic interpretation in our setting, any
investigation of errors terms will probably require a deeper understanding of the combinatorial
properties of the polynomials arising in the Euler products (3.3).

Remark 2. We make use of Petrogradsky’s multivariate cotype zeta function to derive a formula
for a single variable zeta function counting subgroups of corank less than or equal to m. The
asymptotic of Theorem 1.1 comes from analytic properties of this single variable series. Using
recent results on Tauberian theorems for multivariate Dirichlet series [4,11,39], one could
also investigate asymptotics for the number of subgroups of Z¢ with cotype satisfying the
inequalities:

l<ar<caX, 1fam=<aX,...,1<a-a;1=<cg1X, 1 Say---0qg <X
for fixed constants 0 < ¢; < --- < c4—1 < 1 with X — oco. We have not attempted to pursue
such questions.

1.2. Coranks of lattices and cokernels of matrices in Hermite normal form

Throughout this paper, for a ring R we let M;(R) denote the d x d matrices with entries
in R. For a finite abelian group G, we write (G), for its Sylow p-subgroup. Consider the
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distribution on finite abelian p-groups of rank at most d that chooses a group G of rank r
where r < d with probability

d d
PJ(G) = | Aut(G)| ! (H(l - p—f>)( [T a- p‘f)). (1.8)
j=1 j=d—r+1
It follows from a result of Cohen and Lenstra [9, Theorem 6.1] that the right-hand side of (1.7)
is equal to the product over all primes p of the probability that a group chosen from P} has
rank at most m.

Motivated by famous conjectures of Cohen and Lenstra on distributions of Sylow p-
subgroups of class groups of number fields [9], Friedman and Washington prove that the
distribution of cokernels of d x d random matrices with entries in the p-adic integers Z,,
drawn from Haar measure on the space of all such matrices, is the distribution of (1.8) [13
Proposition 1]. Stanley and Wang show that this distribution arises in the study of Smith normal
forms of random d x d integer matrices with entries chosen uniformly from [—k, k], as k — oo.
The Smith normal form of an integer matrix carries the same information as its cokernel.
As k — o0, each entry is uniformly distributed modulo p” for each prime power, so this
distribution of cokernels matches the one studied by Friedman and Washington, and therefore
is equal to the one defined by (1.8). Going from a result for a single prime to a result involving
infinitely many primes is often challenging. Stanley and Wang prove that the probability that
the cokernel of a random integer matrix chosen from the model described above has rank at
most m 1is given by the right-hand side of (1.7) [34, Theorem 4.13]. The proof uses nontrivial
results from number theory of Ekedahl and Poonen on greatest common divisors of outputs of
multivariable polynomials [10,25].

We now interpret of Corollary 1.2 in terms of cokernels of special classes of random integer
matrices. A nonsingular M € M;(Z) with entries a;; is in Hermite normal form if:

1. M is upper triangular, and
2.0<aj <ajjforl <i<j<d.

We recall a basic fact about lattices and matrices in Hermite normal form.

Proposition 1.3. Every sublattice A C 7% is the row span of a unique matrix H(A) in Hermite
normal form. Moreover, Z¢ ] A = cok(H (A)), which implies [Z¢: A] = det(H(A)).

This gives a bijection between the set of sublattices of Z of index less than X and
nonsingular d x d matrices in Hermite normal form with determinant less than X.

Let Hy(Z) C My(Z) denote the subset of nonsingular matrices in Hermite normal form
and Hy(X) C Hy(Z) denote the subset of these matrices with determinant less than X. By
Proposition 1.3, Corollary 1.2 is equivalent to the following statement.

Corollary 1.4. We have
5 #{M € H,(X): rank(cok(M)) < m}
im
X—00 #Hd(X)

-T{Mo- 2],

7i2

ST 1(1— i)
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In Section 4 we consider the distribution of Sylow p-subgroups of cokernels of matrices in
Hermite normal form, giving an explanation for this result.

Theorem 1.5. Let G be a finite abelian p-group of rank r < d. Then
#{AC 727 A] < X and (Z°/N), = G}

li = PI(G).
X #{AgZd:[Zd:A]<X} (@
Equivalently,
#I1M € Hy(X): cok(M), =G
fim T € HaCO: cok(M), }:Pdp(G).
Xovoo #H(X)

We note that this result does not directly imply Corollary 1.4 because of subtleties involved in
going from a single prime to a product over all primes.

The main point of Theorem 1.5 is that Sylow p-subgroups of cokernels of matrices in
Hermite normal form follow the same distribution as cokernels of Haar random matrices in
My(Z,). This fits in with universality results for cokernels of families of random integer and
p-adic matrices due to Wood [42]. However, Wood’s results do not directly imply Theorem 1.5
because, in the language of [42, Definition 1], matrices in Hermite normal form are not
e-balanced, as many entries are fixed to be 0.

1.3. Related work

More general functions of the type considered in this paper have their origin in Igusa’s
study of zeta functions of algebraic groups [16]. This work has become an essential tool in
the theory of zeta functions of groups and rings and has been extended in various directions.
See for example the paper of du Sautoy and Lubotzky [28] and the further references listed
in Section 5.2. In this context, Petrogradsky’s local zeta function and generalizations thereof
arise naturally as multivariate p-adic integrals. This point of view is developed in Voll [40],
in both the context of counting subgroups of a finitely generated torsion-free nilpotent group
and in the study of their representation zeta functions. Further generalizations of Igusa’s local
zeta functions are introduced in Klopsch—Voll [17] and Schein—Voll [30], leading to numerous
applications in subgroup, subring and representation growth; see e.g. [6,7,20,31,36,37].

In the theory of automorphic forms related functions appear in the computation of Fourier
coefficients of Eisenstein series on GL,, and the local singular series of an n-by-n square
matrix, as noted in the papers of F. Sato [27] and Beineke—Bump [1]. Sato raises the interesting
open question of finding a corresponding relation between local singular series and the
enumeration of subgroups of an abelian group in the symplectic case.

Outline of the paper

We review Petrogradsky’s work in Section 2. In Section 3 we prove our main results on the
distribution of the corank. In Section 4 we prove Theorem 1.5. The utility of the cotype zeta
function in the resolution of these corank problems suggests that it may be fruitful to introduce
multivariate Dirichlet series to address analogous subgroup and subring growth problems in a
broader context. We elaborate on this and present some further concluding remarks in Section 5.
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2. The cotype zeta function of Z¢

We recall Petrogradsky’s definition of the cotype zeta function of Z<, which he calls the
multiple zeta function of Z¢.

Definition 2.1 (/24]). Let d be a positive integer and let a,(Z¢) be the number of subgroups
A C 74 of cotype a. We define the cotype zeta function of 74:

Gga(si, sy =y ai(H) e aq(H) = Y ag(Z) oo™
Hczd a=(ay,....eq)

Note that {7a(s, ..., s) = {z4(s), so this multivariable function generalizes the subgroup growth
zeta function of Z<.

The subgroup growth zeta function of Z¢ has an Euler product, and Petrogradsky shows
that this multivariable generalization has one as well.

Lemma 2.2 (/24, Lemma 1.1]). For each d > 1 we have

Sza(st, ..., 8a) = Hfzd,p(sl, e Sd)s
P
where the local factor for each prime p is defined as

Cga st osa) =y > ar(H) e ag(H) ™,

m=0 Hczd
[z4:H]=pm

One of the main results of [24] is the computation of the local factors of the cotype zeta
function of Z¢ in terms of permutation descents and g-binomial coefficients. We fix some
notation and recall basic properties of these combinatorial objects following [24, Section 3]:

1—g"
T g+ +q"
l—gq

[n]y! = [nlgln —1lg - -~ [214;

nl [n],! .

[j]q Ll — 1Y
mp+my+-o+m] mi+my -4+ mly!
[ L T Imilg! Imaly! - Ty

[m1+mz+~~+mk] [mz+-~-+mk] .._[mk—1+mk] .
i q q q

[n]q =

mp,ma,...,nmg

my Mi—1

Let Ny, = {1,2,...,d} and suppose . € Ny. If A = (J then we set [i]q = 1. Otherwise, if
A=A{A1, ..., &}, whered > &) > Ay > -+ > A > 1, let |A] = k and m; = A; — A4 for
0 <i <k, where we set Ay+; = 0 and Ay = d. Note that d = mo+ m; + - - - + my. We define
the following polynomials in g:

L=l
= . ASNg @1
)‘q mo,ml,...,mkq
wa(q) = Z(—l)'*"'ﬂ'[d} . ACSNg 22)
HCA Klq
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Theorem 2.3 (/24, Theorem 3.1]). Consider the cotype zeta function of Z¢. For each j
satisfying 1 < j < d, we introduce the new variable z; = s1 +---+5s; — j(d — j). Then

1.

$ga(st, ooy 8a) = £(21)¢(z2) -+ $(za) - f(S15 .., 8q4-1), Where (2.3)
fouosaen =11+ X2 waalp)[Tr ], 24)
p P#ELCENy_ JEA

with the sum taken over all nonempty subsets .. C Ny_;.

2. The region of absolute convergence of the cotype zeta function is Re(z;) > 1,
j=1,...,d.

3. The region of absolute convergence of the product over primes is Re(z;) > 0,
j=1,...,d —1; and (2.3) is the analytic continuation to this region.

4. The local factors are rational functions in the variables t; = p~%, i =1,...,d:

ZAgNZH wd,A(P_l)njeA Ij
(1= =1)---(1—12)
The polynomials w, ;(g) that arise have been studied extensively in the combinatorial

literature. The first part of Theorem 2.5 is stated in [24, Theorem 3.1 (2)], while the other
two parts are due to Stanley [32, Corollary 3.2] and [33, Section 2.2.5].

Cpd p(S1y -y 8a) = 2.5)

Definition 2.4. Let 7 € S; be a permutation. We call i € {1,2...,d — 1} a descent of n,
provided that 7w (i) > 7 (i + 1). For m € Sy, let D’(;r) denote its set of descents.

A pair (i, j) is called an inversion of  if and only if i < j and 7w (i) > 7(j). Let inv(r)
denote the number of inversions of 7.

Note that d cannot be a descent of a permutation in S.

Theorem 2.5. Let A € N,_ be fixed.

1. There exists a number N > |\| such that wy ,(q) is a polynomial in q with nonnegative
integer coefficients of the form

wa, (@) =q" + ) nq'.
i>N
2. We have that
wd,k(q) — Z qinv(n).

TESY
D' (m)=x

3. We have that

d—\;
wm@)=®t[ “] | 0<i,j<k].
Aj = rivid,

To conclude this section, we compare the results of Petrogradsky described here to the work
of du Sautoy and Lubotzky [28], which builds on earlier work of Igusa [16]. Theorem 5.9
of [28], specialized to G = GL; and p the standard representation gives (2.5). (The result of
[28] is specialized to a single variable, but the multivariate extension is obvious.) Petrogradsky’s
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proof uses a cotype-preserving bijective correspondence between finite index subgroups A of
Z“ and subgroups of the finite group Z¢/NZ?, where N = «;(A). The number of the latter
can be expressed in terms of g-binomial coefficients [5]. On the other hand, du Sautoy and
Lubotzky interpret the p-part of the zeta function as a p-adic integral over GL4(Z,), which they
compute using the Iwahori decomposition. This leads to a sum over the (affine) Weyl group
equivalent to (2.5). These ideas have been further developed to prove local functional equations
for zeta functions of nilpotent groups and other Igusa-type zeta functions; see, e.g., [17,40].

3. Density results for the corank

We begin by introducing the Dirichlet series counting sublattices of Z¢ of corank less than
or equal to m. This is given by

1
SHOEEEDY T 3.1

Aczd
corank(A)<m

Recall that a sublattice of corank at most m will have cotype (o1, a2, ..., og) With o4 =
- = ag = 1. Therefore, in terms of Petrogradsky’s expression for the cotype zeta function
given in Theorem 2.3, we have

gy = lim -+ Hm Lua(s, ... 8, Suets .0 Sa)
Sm+41—>00 Sq—> 00
= (s —(d — 1)¢@2s —2(d —2)) - ¢ (ms — m(d — m)) f£{"(s), (3.2)
where
() = ]_[f('")(s) [Tl X eateH[[p V7], (3.3)
p \ac(l....m) jea

The analytic properties of {W)(s) will lead to our desired density results.

Proposition 3.1. The corank at most m zeta function {gg)(s) has a simple pole at s = d with
residue

H((l— ‘52[ ]qm) o

The simple pole comes from the simple pole of the Riemann zeta function ¢(s — (d — 1))
at s = d. The other zeta factors in (3.2) are holomorphic at s = d and collectively contribute
a factor of nzsis:n £(j*) at s = d to the residue. Thus

Res,—g g ()= | [] ¢G™ | £"@). (3.5)

2<j<m
To complete the proof of Proposition 3.1, it remains to evaluate
_ _ 2
fdy= Y wap H[[r (3.6)

Ac{L,....m} jen
650
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and take the product over all primes p. Setting ¢ = p~!

3 ww@]]d”

, We compute

Z(_])IAI—Iu[d} Hq

Il
N

rC{l,...,m} Jjer rC{l,...,.m} \nCx Jjer
= ¥ o] (Zewe
nc{l,...m} = ADp JEA

= > ]Hq [Ta-4. 3.7

9 jen JEn
In order to go further we need the intermediate result of Lemma 3.3.

3.1. A gq-multinomial identity
The lemma below follows from the g-binomial theorem.

Lemma 3.2. Let e, n be nonnegative integers. We have

n n+e
Z[Z] g ] a-ah=1 (3.8)
q

k=0 j=k+14e

This lemma will be used in the proof of Lemma 3.3. We note in passing that setting e = 0
and letting n — oo yields the generating series for partitions in terms of the Durfee number
generating series.

Lemma 3.3. Let 1 <i <d be integers. We have

i i2

2 d 1—g’
> [MU{,}] [T« 11 (l—ql)z[i] H1_qf' 3.9)

ucil,....i— 4 jeu Jellni=1]\p 4 j=1

The argument below is similar to that given in Section 4.1 of Stasinski—Voll [35]. We give
a proof for completeness.

Proof of Lemma 3.3. We argue by induction on i. The base case i = 1 is immediate. Assume

the identity is true for all iy satisfying 1 < iy < i. We remove the contribution of © = ¢} from
the left-hand side of (3.9) and write it as

s LA T o[

ncfl,....i— 4 jeu Je{l,. . i—1\un q j=1
i—1 d 5
X 2 Ll Lot M1 00
io=1  pcil,ig—1y LM 00 g jeuUlip)  jell,..im1)\uUlig)
i d—i 2 . 2
—i] . A
= [ }q []a-4¢"
: L —1 L
ip=1 q Jj=ip+1
2
x [ ] [T T[] a-45. G0
A w U {io}], A e
nc{l,....ip—1} jen Jell,.igp—1\n
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where we have used the identity

oo, = el i),
w U {io, i} w U {io} o

in the final step. We continue by using the inductive hypothesis on the inner sum, i.e., the
expression in (3.10), and see that the left-hand side of (3.9) is equal to:

[ oo S o] i

q j=1 Jj=ip+1 9 j=1 q]
. i
1 i2 L
—H(l—q )Z[ ] [ } go [Ja—q)"
ip=0 odg 55

where we have used the subset—of—a-subset identity. Comparing with the right-hand side of
(3.9), we are reduced to proving
i—1 .+ ip i2
i 2 _ 1—-4g'
Yol [Ja-ah ==

o

=0 ="-4  j=1 l_[_,-:l(l —q’)
or equivalently,
i—1 .

K 1'[(1—f>—1—

l
ig=0 " 0lq Jj=ip+1

We can write this a little more nicely:

l o "

l
il o :
Sl ldo [l a-gh=1
io=o L0dg 50

This is the case ¢ = 0 of Lemma 3.2. O

3.2. Conclusion of the proof of Proposition 3.1

We return to the evaluation of fjf';)(d) using the expression of (3.7):

Mma= 3 [d_ [Ta” [Ja - 4.
o L]

9 jen Jgn
By Lemma 3.3, the above sum restricted to subsets with largest element i yields

]_[(1—61’) > [MU{I}] [14" ]_[ (1—¢7)

j=i+l | nclli- 9 jen JEll.i=1\p
_ |: i| 6] Hj:l(l_qj )
L q Hi’:ll_qj .
Noting that i = 0 corresponds to the contribution of © = @, we sum over all i to obtain
m g - | — i —[d q"
fild) = ]1:[1< a’) ;[i}qﬂjﬂ(l—qh'
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Now taking the product over p cancels the zeta factors in (3.5) and we are left with

m

.y
Res;—4 EZ’])(S) 1_[ ((1 - P_I)Z |: :| lﬁ> .

(1=

This concludes the proof of Pl‘OpOSlthH 3.1.
3.3. The density of sublattices of corank at most m

Theorem 1.1, the asymptotic expression for the number of sublattices with corank at most
m, follows immediately from Proposition 3.1 and the analytic continuation statements from
Theorem 2.3.

We note that the constant term in the expression (1.3) is

fd)id—-1n---¢2 _1 _
y 1_[1_[ d+j

r j=0

Taking the quotient of this term with the constant term in Theorem 1.1 completes the proof of
Corollary 1.2.

4. Sylow p-subgroups of cokernels of matrices in Hermite normal form

The goal of this section is to prove the second of the equivalent statements in Theorem 1.5.
Our strategy for determining the distribution of Sylow p-subgroups of cokernels of matrices
in Hermite normal form is to relate this distribution to the distribution of cokernels of Haar
random p-adic matrices. Haar measure on the p-adic integers Z, gives rise to Haar measure
on My(Z,), normalized so that the total volume is 1. More concretely, each matrix entry can be
chosen independently with respect to Haar measure on Z,. Throughout the rest of this section,
we use Probyscays d(Zp)(') to denote the probability that a Haar random matrix M € M4(Z,) has
some property. This is equal to the volume of the subset of My(Z,) consisting of matrices with
this property. We give an example from the introduction. Recall the distribution P; on finite
abelian p-groups of rank at most d defined in (1.8).

Proposition 4.1 ([/3, Proposition 1]). Let G be a finite abelian p-group of rank at most d.
Let M € My(Z,) be a random matrix. Then
Probyeu,z,)(cok(M) = G) = PJ(G).

We use the following fact, which follows from Proposition 4.1 and [9, Corollary 3.8].

Proposition 4.2. Let e > 0 be an integer and M € My(Z,) be a random matrix. Then

[ A= pD[d+e—1
Probysen,z,)(Icok(M)| = p) = “—[ ] :
p—l

p¢ e

Any o € Z, can be written uniquely as « = p°u where e € Z>o and u € Z, is a unit. In this
case, we write v,(a) = e. Note that [cok(M)| = p¢ if and only if v,(det(M)) = e.
We will use the following analogue of Proposition 1.3 for matrices with entries in Z,.

Proposition 4.3 ([8, Theorem 3.1.7]). Any invertible M € M4(Z,) can be written uniquely as
a product M = UH where U € GLy(Z),) and H is an upper triangular matrix with entries
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a;j such that aj; = p"i where n; > 0 and each a;; with i < j is an integer satisfying
0< ajj < pnj.

The matrix H in Proposition 4.3 is the p-adic version of an integer matrix in Hermite
normal form. We call H the Hermite normal form of M and write HNF(M) = H. We say that
H € My(Z,) of this type is in Hermite normal form.

The left multiplication by the matrix U corresponds to operations on the rows of M that
are operations on the standard basis vectors e;. The invertibility of U over Z, ensures that the
rows of M and the rows of H generate the same sublattice of Z7. Therefore, if M = UH are
as in Proposition 4.3, then cok(M) = cok(H).

Proposition 4.4. Suppose H € My(Z,) is in Hermite normal form and det(H) = p¢. Then,
Probyseyz,) (vp(det(M)) = vp(det(H)))
#{A C7Z4:[Z7: A] = det(H)}
I =p)
ped :

PI'ObMeMd(ZP)(HNF(M) = H) =

Proof. Since M = U HNF(M) for some U € GLy4(Z),), and det(U) is a unit in Z,, we see that
v, (det(M)) = v,(det(HNF(M))). The set of M € My(Z,) with v,(det(M)) = p¢ is a disjoint
union of orbits GL4(Z),)H\, ..., GL4(Z,)Hy, where Hy, ..., Hy are the finitely many distinct
matrices in Hermite normal form of determinant p¢. These matrices are in bijection with the
sublattices of Zf) of index p¢, which are in bijection with the sublattices of Z¢ of index p°.

The volume of the orbit GL4(Z,)H; is equal to the probability that d randomly chosen
vectors of Z‘; each lie in the lattice spanned by the rows of H; and are linearly independent.
This probability depends on det(H;), but not on the particular choice of H;. This completes the
proof of the first equality in Proposition 4.4.

Proposition 4.2 gives ProbMeMd(Zp) (vp(det(M)) = v,,(det(H))). We know that

#{A 7 (2% A] = det(H))}

is the p~* coefficient of the power series expansion of {zi(s) = ¢(s)¢(s—1)---¢(s —(d —1)),
which is [*7¢7] .

For the final equality in Proposition 4.4, recall that

|:d+e—1:| _|:d+e—1i| d—1)
= p ,
e p e p!

and therefore,

M- a-p) [d+e—1]
g e 1771

_ 1—[;1:1(1 —p)

[d+jfl]p - ped

O

By Proposition 1.3, a sublattice A C Z¢ gives rise to a d xd integer matrix in Hermite normal
form H(A) with [Z9 : A] = det(H (A)). An application of the Chinese remainder theorem shows
that for each prime p, H(A) determines a matrix in Hermite normal form with determinant
equal to a power of p.

Definition 4.5. Suppose H € H4(Z) has entries a;; and det(H) = p{' --- p¢ where py, ..., p,
are distinct primes and each ¢; is a positive integer. For each prime p;, define H,, € Hq(Z)
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. ; . b;
with det(H,,) = p;" as follows. Write each a;; = p;’u; where p; { u;. Let H, be the
upper-triangular matrix with entries bj; defined so that:

bj
° bjj =P and
e for 1 < j <k <d, bj is the unique integer 0 < bj; < pib" with by = 2£ (mod pf”‘).
’ J

If p is a prime for which p { det(H), define H, = I,.

With this definition, it is clear that if H € H4(Z), then each H, € H,(Z) as well. The
following proposition follows from an application of the Chinese remainder theorem.

Proposition 4.6. Definition 4.5 gives a bijection between matrices H € Hq(Z) and collections
{Hp} consisting of one H, € H;(Z) for each prime p and where all but finitely many H, = I,.
Moreover, det(H) = ]_[p det(H)).

Note that for any H € H4(Z), cok(H), = cok(H,). That is, the Sylow p-subgroup of
the cokernel of H depends only on H,. Suppose Q € H4(Z) has det(Q) = p¢. Theorem 1.5
follows from showing that the probability that a random H € H,4(Z) has H, = Q is equal to
the probability that a random M € My(Z,) has HNF(M) = Q.

Proposition 4.7. Suppose Q € Hq(Z) satisfies det(Q) = p° for some prime p and positive
integer e. Then

o #H e HaX): Hy = 0} [T = p )

X—00 #H4(X) - ped :

Proof. There is a bijection between {H € Hq(X): H, = Q} and {H c Hd(%):Hp = Id}.
Note that
#lend )y =1 #{H e H(E)Hy = 1o #ra (£)

lim = lim .
X—o00 #Hd(X) X—00 #Hd LL) #Hd(X)
p

By (1.3), we have that
_ #Ha() 1
lim = .
X—oo #Ha(X)  (p°)?
Let g (k) be the number of sublattices A C Z¢ of index k for which H(A) » = 1;. We have

“4.1)

D gk = (1= p™)(A = p~* e (1= p= ) gpu(s). (4.2)
k=1

This expression equals {7« (s) except that the local factor at p in its Euler product is replaced
with 1. It is still clear that the right-most pole of this function is a simple pole at s = d, so
applying a Tauberian theorem as we did to derive expression (1.3) shows that

#1H € Hy(2):H, =1
lim { T r d} =1-pHA—-pH...a1—pH. 4.3)
X—00 #1, (%)

Combining Egs. (4.1) and (4.3) completes the proof. [
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Combining Propositions 4.1, 4.4, and 4.7 completes the proof of Theorem 1.5.

5. Conclusion

The results and methods of this paper suggest several natural directions for further study.
5.1. Subgroup and subring growth zeta functions

We may also try to construct multivariate Dirichlet series to study subgroup growth for other
groups. A first case of potential interest is the discrete Heisenberg group

Hy ={(a,b,c|c=la, bl [a,cl=[bc]=1).
The normal subgroup zeta function of Hj is

Cuy(s)= Y [Hs:NI™ (5.1)

NdrH;

where the sum is over all finite index normal subgroups of Hj. It has been shown [14] that

Ty (8) = £(9)E(s — DEBs —2). (5.2

A multivariate generalization of this series might give more refined information on the
distribution of the finite groups which arise as quotients of Hj.

Similar questions can be asked for subring growth. For example, we expect that the cotype
subring zeta function of Z* can be used to show that in contrast to the case studied here, most
of the subrings of Z3 (ordered by index) are not cocyclic. In a nonabelian setting, the Lie ring
sl5(Z) has an explicitly computed zeta function

{(s)8(s = D2@2s —2)¢(2s = 1)
¢@Bs—1

where the sum is over all finite index Lie subrings of s[,(Z) and P(x) = (1 + 6x?> —8x%)/(1 —
x3) [29]. It would be interesting to compute the cotype subring zeta function of sl,(Z) and use
it to find the density of Lie subrings with cyclic quotient.

Klopsch and Voll compute the subring zeta functions of all 3-dimensional Lie algebras over
Z, in a uniform manner [18]. Their techniques, in particular, should allow one to compute the
cotype zeta function for both Hz and s(,(Z).

Lsiyz)(s) = Z[ﬁ[z(Z) DL = P27 , (5.3)
L

5.2. Zeta functions of classical groups

The subgroup growth zeta function ¢4 (s) of Z? also arises in the more general context of
the zeta functions associated to algebraic groups studied by Hey, Weil, Tamagawa, Satake,
Macdonald and Igusa [15,16,22,26,38,41]. For G a linear algebraic group over @, and a
rational representation p : G — GL, they define

Z6,p(s) = f |det p(g)I" dg (5.4)
G+

where GT = p~(p(G(k)N M, (Zp))), where Z,, is the ring of integers of Q,. When G = GL,
and p is the natural representation, Zg ,(s) is just the p-part of the subgroup growth zeta
function ¢z (s). In more recent work, du Sautoy and Lubotzky [28] show that Zg ,(s) for
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more general G and p continues to have an interpretation as a generating series counting
substructures of algebras.

We take an explicit example from Bhowmik—Grunewald [3], see also [2, Theorem 12]. Let
B be the alternating bilinear form on a 2n dimensional space associated to the matrix

0 -1,
1, o/
A sublattice A of Z*" is B-polarized if A = ¢/ for some constant ¢ € Q*, where
A={veZ”: Bu,v)eZforall u e 72}.

Define the group GSp,,(Q) of symplectic similitudes by

GSp,,(Q)
= {g € GL,(Q) : B(gx, gy) = ngP(x, y) for some u, € Q* and all x,y € Q"}.

Following computations of Satake [26] and Macdonald [22], the zeta function of the group
GSpg(Q) is written down explicitly in [28]. Bhowmik and Grunewald use this to show that the
number of B-polarized sublattices of Z° of index less than X is asymptotic to ¢X’/? for an
explicit constant ¢. The results of [28] indicate a way to extend these computations, both to
higher rank and to include the distribution of cotype.
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