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Abstract 

 Ambient aerosol particles can undergo dynamic mixing processes as they coagulate with 

particles from other air masses and emission sources. Therefore, aerosols exist in a spectrum, from 

externally mixed to internally mixed. The mixing state of aerosols can affect their ability to uptake 

water (hygroscopicity) and their cloud condensation nuclei (CCN) activity, modifying their 

contribution to the planet’s total radiative budget. However, current water-uptake measurement 

methods may not be able to capture the complex mixing state. In this research, the dynamic mixing 

process was simulated by the particle-resolved aerosol model PartMC and also created by 

experiments in a laminar flow mixing tube. The mixing evolution of ammonium sulfate and 

sucrose binary mixtures were observed along with the changes in their water uptake properties 

expressed as the single hygroscopicity parameter, κ. The use of a mixing simulation in conjunction 

with experiments allow for better identification of the particle mixing state and the particle water 

uptake and show that no one kappa value can capture the complexity of mixing across the mixed 

particle size distribution. In other words, the PartMC simulations can be used as a guiding tool to 

interpret a system’s mixing state based on its experimental droplet activation spectra. This work 

demonstrates the importance of the integration and use of mixing models to aid in mixing state 

determination and hygroscopicity measurements of mixed systems. 

Introduction 

Organic and inorganic aerosol particles in the atmosphere come from natural sources such 

as volcanic eruptions, sea spray, and wildfires, as well as manmade sources like fossil fuel 

combustion and biomass burning. Aerosol particles often exist as a complex mixture and can 

undergo transport and aging processes in the atmosphere. The literature has defined the two 

extremes of aerosol mixing states as internally mixed and externally mixed, respectively (Winkler 
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1973). Internal mixing is present when all particles in the aerosol population have the same 

composition of chemical species. Each particle in an internally mixed aerosol can take on various 

morphologies which include homogenous, partially engulfed, and core-shell particles. In contrast, 

an externally mixed aerosol system consists of particles of pure chemical species with distinct 

compositions. An important concept, commonly assumed, is that for fully internal mixtures, all 

particles have the same hygroscopicity parameter κ. For fully external mixtures, several 

subpopulations exist that differ in their κ values, but within a subpopulation all particles have the 

same κ value. 

In the atmosphere and under supersaturated conditions, aerosol particles can indirectly 

affect the planet’s radiative forcing by acting as cloud condensation nuclei (CCN). In turn, clouds 

reflect solar radiation and may absorb longwave radiation emitted by the earth, which can lead to 

a cooling or heating impact on the atmosphere. It is known that particle composition, and therefore 

the mixing state of aerosols, play a key role in the system’s CCN activity. However, the magnitude 

of the CCN influence on climate is still a topic of significant interest, as the spatial, temporal, and 

compositional complexity of aerosol particles lead to uncertainties in quantification of aerosol-

cloud interactions and water uptake activity (Vu et al., 2019; Riemer et al., 2019). 

Field studies have observed the mixing state of aerosols in the atmosphere. Cubison et al. 

(2008) demonstrated that knowledge of mixing state is an important parameter in predicting the 

activation of atmospheric aerosol particles at supersaturated conditions in the urban areas of Los 

Angeles, California (Cubison et al. 2008). More recently, Bondy et al. (2018) estimated the extent 

of internal versus external mixing of aerosol particles in the southeastern United States and 

reported that generally, externally mixed aerosols were more prevalent in the atmosphere (Bondy 

et al. 2018). Additionally, in the accumulation mode, internal mixing was more prominent during 



4 
 

periods with high secondary organic aerosol (SOA) loadings, and external mixing dominated 

during high dust periods – further illustrating the complex nature of aerosol composition and 

mixing over time and space (Bondy et al. 2018). Observations of black carbon aerosols in the 

North China Plain by Wang et al. (2020) showed that the mixing state of aerosol particles is 

dynamic: freshly emitted black carbon aerosols are typically externally mixed and become more 

internally mixed over time (Wang et al. 2020). 

The mixing state of aerosol particles, along with their sizes and compositions, has been 

shown to modify particle water uptake (Cubison et al. 2008; Hudson 2007; Dusek et al. 2006; 

Feingold 2003; Roberts et al. 2002). For example, Xu et al. (2020) measured the subsaturated water 

uptake of wintertime aerosol particles at Mace Head, Ireland, as a single hygroscopicity parameter 

(𝜅𝜅) using a humidified tandem differential mobility analyzer (HTDMA) and reported 

hygroscopicities between 0.3 and 0.5 for particles from 35 nm to 165 nm in diameter (Xu et al. 

2020; Petters and Kreidenweis 2007). It was also emphasized that wintertime aerosol was observed 

to be largely externally mixed for both continental and marine air masses (Xu et al. 2020). In 

contrast, Kim et al. (2020) measured the hygroscopicity of urban aerosols in Seoul, Korea to have 

𝜅𝜅 values between 0.15 to 0.3, lower than those reported by Xu et al. (2020) and Andreae and 

Rosenfeld (2008) (Kim et al. 2020; Xu et al. 2020; Andreae and Rosenfeld 2008). It was also 

reported that during their measurement period, externally mixed aerosols dominated the population 

(over 70 %) in 100 nm and 150 nm particles. For small particles between 30 nm to 50 nm, internally 

mixed aerosols with a growth factor (GF) less than 1.1 constituted over 50% of the population 

(Kim et al., 2020). A separate study estimated that internally mixed aerosols in the central North 

China Plain to have 𝜅𝜅 =  0.31 and that this can change with time and age of the particles (Wang 

et al. 2020). 
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From the studies above, it can be inferred that the assumption of fully external or internal 

mixing can be a source of uncertainty in particle hygroscopicity predictions over time and space. 

Moreover, an externally mixed aerosol implies that subpopulations with different kappa values 

potentially exist. As such, there is a need for research into the effect of particle composition and 

mixing state on water-uptake under controlled conditions. Laboratory studies have demonstrated 

that the water uptake of inorganic salts such as ammonium sulfate may change in the presence of 

soluble organics, pointing towards the effect and importance of composition in overall particle 

hygroscopicity (Razafindrambinina et al. 2022; Lei et al. 2014). Lei et al. (2014) found that for 

internal mixtures of levoglucosan and ammonium sulfate, water uptake was continuous between 5 

% to 90 % RH, suggesting that highly oxidized organics like levoglucosan may hold a key role in 

controlling the subsaturated water uptake properties of atmospheric particles (Lei et al. 2014). Cruz 

and Pandis (1998) measured the CCN activity for organic (glutaric acid) coated ammonium sulfate 

aerosol particles and found that the hygroscopic organic coating increased the CCN activation of 

ammonium sulfate particles and observations could be well predicted via Köhler theory.(Cruz and 

Pandis 1998). Work by Svenningsson et al. (2006) measured the subsaturated and supersaturated 

water uptake of several mixtures of ammonium sulfate, levoglucosan, succinic acid, and fulvic 

acid using a HTDMA and a cloud condensation nuclei spectrometer (Svenningsson et al., 2006). 

Mixed particle hygroscopicity for mixtures were accurately predicted by using the Zdanovskii-

Stokes-Robinson (ZSR) model, assuming volume additivity and taking into account the limited 

solubility of succinic acid (Svenningsson et al. 2006). 

Fewer studies have observed and quantified the dynamically evolving mixing state of 

aerosol particles under controlled laboratory conditions. In this manuscript, we refer to this 

evolution in aerosol composition as transitional mixing where the aerosol population is neither 
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fully externally nor fully internally mixed. Vu et al. (2019) measured the cloud condensation nuclei 

activation of two-component organic and inorganic systems under internal, external, and 

transitional mixing conditions with the use of a laminar flow mixing tube. Separate aerosols 

streams of ammonium sulfate and succinic acid were generated and allowed to mix, and it was 

shown that mixing dry, non-hygroscopic particles with hygroscopic aerosol particles in a laminar 

flow mixing tube allowed for the observation of the dynamic mixing state transition from external 

to internally mixed (Vu et al. 2019). 

It is challenging to discern the effects of mixing state from atmospheric aerosol of unknown 

sources. The work presented here minimizes the influences of unknown parameters and focuses 

on two individually well-described inorganic and organic aerosol systems. We utilized a binary 

system of ammonium sulfate and sucrose to demonstrate the evolution of hygroscopicity of the 

population as the two particle types interact due to coagulation in the flow tube. Ammonium sulfate 

is a prevalent inorganic aerosol species formed in the atmosphere from precursors sulfuric acid 

and ammonia (Behera et al., 2013; Aneja et al., 2008). Sucrose is an organic compound that exists 

in the ambient aerosol and is used as a tracer aerosol particle for biomass burning (Marynowski 

and Simoneit 2022). 

The stochastic particle-resolved aerosol model PartMC (Riemer et al., 2009) predicted the 

evolution of the system and was used to help interpret the experimental findings of particle water 

uptake considering the evolving mixing states. PartMC has been used in prior studies to simulate 

fresh soot aerosol as it ages and mixes with other types of aerosols such as mineral dust and 

inorganic particles (Tian et al. 2014; Zaveri et al. 2010; Riemer et al. 2009). The model has also 

been applied to simulate aerosol evolution in laboratory settings (Shou et al. 2019; Tian et al. 

2017).  
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Materials and Methods 

Experimental Setup 

Dilute solutions (0.3 g/L) of ammonium sulfate (98%, Millipore) and sucrose (99% 

Fisher Chemical) were each prepared by dissolving the solids in ultrapure water (Milli-Q 7003) 

and each solution was atomized into a polydisperse aerosol stream by a constant output atomizer 

(TSI 3076) according to the setup in Figure 1.  

      

     

 

Figure 1. Schematic of the experimental setup for CCN measurement. 

Polydisperse aerosol was generated at a flow rate of 1.1 ± 0.1 L min-1 and directed into a 0.1 m3 

laminar flow mixing tube. Vents downstream of each atomizer were incorporated into the setup 

to prevent a build-up of pressure in the system. Details on the mixing tube design is presented in 

published literature (Vu et al., 2019). In this experiment, valves were added upstream of the 

mixing tube to control the introduction of aerosol particles into the tube. Initial conditions for the 

experiments are presented in Table 1. It should be noted that the RH is not constant within the 
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tube over the course of the experiment in this study. It is possible that the relative humidity in the 

mixing tube may facilitate or accelerate the dynamic mixing state towards a fully internally 

mixed system. A previous paper has shown this to be the case for AS + succinic acid (Vu et al., 

2019) and Ye et al., 2016 have shown that the presence of water may promote mixing aerosol.  

Additional simulations were conducted to explore the effect of varying initial input sizes (see 

supplemental material, Figure S1). No visible condensation was observed in the mixing flow 

tube.  Furthermore, particles are subsequently dried before particle size and CCN activity 

measurement. 

Table 1. Initial experimental conditions in the mixing tube. 

 
aRumble, J. R.; Lide, D. R.; Bruno, T. J. CRC handbook of chemistry and physics: a ready-
reference book of chemical and physical data, 2017. 
bHaynes, W.M. (ed.). CRC Handbook of Chemistry and Physics. 95th Edition. CRC Press LLC, 
Boca Raton: FL 2014-2015, p. 4-48  

 In this work, two mixing directions were studied. The forward mixing experiment is 

when ammonium sulfate was introduced into a system of pure sucrose, and the reverse mixing 

experiment is when sucrose was added into a system of pure ammonium sulfate in the mixing 

tube. Mixing state experiments consisted of three distinct phases. For Phase 1 of the forward 

mixing experiment, only the organic aerosol was present in the mixing tube. At the beginning of 

Phase 2, ammonium sulfate was introduced into the mixing tube. Both ammonium sulfate and 

sucrose aerosol particles were continuously injected into the mixing tube during this phase. In 

Phase 3, the sucrose supply was terminated, which allowed ammonium sulfate to become the 

only species present in the tube. For the reverse reaction, Phase 1 started with pure ammonium 
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sulfate, and Phase 3 ended with pure sucrose. Each phase was considered complete when the 

residence time of the mixing tube (2 hours) had elapsed.  

Water-Uptake Measurements under supersaturated conditions 

Prior to water uptake measurements, particles were sampled from the mixing tube at 0.8 L 

min-1 through a diffusion dryer to create a dry, polydisperse aerosol stream. Dry polydisperse 

aerosol particles were subsequently size selected by an electrostatic classifier with a differential 

mobility analyzer (DMA; TSI 3081) which scanned electrical mobility diameters between 14 nm 

to 600 nm. Downstream of the DMA, aerosols were split between the condensation particle counter 

(CPC; TSI 3776) with a sample flow of 0.3 L min-1 and the cloud condensation nuclei counter 

(CCNC; DMT CCN-100) with a sample flow of 0.5 L min-1. The CCNC provided the number of 

activated particles at a given supersaturation (CCN), and the CPC provided the size distribution 

and total number of all particles (CN). The Python-based CCN analysis tool (PyCAT) software 

was used to align the timeseries from the CPC and CCNC and estimate the fraction of activated 

particles. This software is based on the scanning mobility CCN analysis program by Moore et al. 

(2010), with additional features that allow the fitting of more than one activation curve per scan 

(Gohil and Asa-Awuku 2022; Moore et al. 2010). A sigmoid curve was then fit to the data to 

retrieve the mixed particles’ activation diameter (Dp50), which is the dry particle diameter at which 

half of the total population activates into droplets at a given supersaturation, from the size resolved 

particle count from the SMPS and droplet count from the CCNC. (Moore et al., 2010). In this CCN 

analysis, it is assumed that the composition of the activation diameter can be applied across the 

entire size distribution. The Scanning Mobility CCN Analysis setup has been shown to produce 

approximately 120 data points during a single 135 s scan. Notably, previous studies have done 

similar analyses by keeping aerosol diameter constant and then modifying the supersaturation. 



10 
 

However, the resolution of data from the CCN activation spectrum at a constant diameter produces 

fewer data points unless one uses a Scanning Flow CCN Analysis set-up (Moore and Nenes 2009). 

Hygroscopicity Analysis 

Water uptake of a single-component system (or a fully internally-mixed system) can be 

represented by the single hygroscopicity parameter (𝜅𝜅) (e.g., Petters and Kreidenweis (2007), 

Lambe et al. (2011), Kreidenweis and Asa-Awuku (2014), Zhao et al. (2015), Fofie et al. (2018), 

Dawson et al. (2020), Peng et al. (2021)).(Peng et al. 2021; Dawson et al. 2020; Fofie et al. 2018; 

Zhao et al. 2015; Kreidenweis and Asa-Awuku 2014; Lambe et al. 2011; Petters and 

Kreidenweis 2007). The parameter 𝜅𝜅 is composition-dependent, which allows for hygroscopicity 

comparisons across instruments and relative humidities (Petters and Kreidenweis 2007, 2008, 

2013). For supersaturated water uptake measurements, 𝜅𝜅 can be calculated from the estimated 

Dp50 using Eq. 1, based on 𝜅𝜅-Köhler theory (Petters and Kreidenweis, 2007; Lambe et al., 2011; 

Zhao et al., 2015; Peng et al., 2021; Fofie et al., 2018; Kreidenweis and Asa-Awuku, 2014; 

Dawson et al., 2020). 

𝜅𝜅 =
4�

4𝜎𝜎𝑠𝑠/𝑎𝑎𝑀𝑀𝑤𝑤
𝑅𝑅𝑅𝑅𝜌𝜌𝑤𝑤

�
3

27𝐷𝐷𝑝𝑝50
3 𝑆𝑆 

   (1) 

The variables 𝜎𝜎𝑠𝑠/𝑎𝑎, Mw, 𝜌𝜌𝑤𝑤 are the surface tension, molecular weight, and density of water, R and 

T are the universal gas constant and temperature, respectively. Dp50 is the critical activation 

diameter and S is the instrument supersaturation.  

 For internally mixed aerosols, 𝜅𝜅 can be estimated based on the Zdanovskii-Stokes-

Robinson (ZSR) model (Stokes and Robinson, 1966; Petters and Kreidenweis, 2007). The ZSR 

model estimates the 𝜅𝜅-value of a system based on the volume fraction (𝜖𝜖) of each solute, i, 
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assuming that the solutes take up water independently, and do not interact with each other 

(Equation 2) 

𝜅𝜅 =  ∑ 𝜖𝜖𝑖𝑖𝜅𝜅𝑖𝑖𝑖𝑖    (2)  

Equation 2 assumes that all particles are fully soluble, and the assumption has been demonstrated 

to hold for mixed ammonium sulfate-sucrose systems as both are fully soluble under 

experimental conditions. (Razafindrambinina et al. in prep) 

In contrast, for fully externally mixed aerosols, each solute retains the κ of the pure 

compound. In other words, a fully external mixture of N aerosol species will have N Dp50 and κ-

values (Vu et al., 2019). Figure 2 illustrates how external mixtures can be distinguished from 

internal mixtures through the particle activation curves, and this concept has been well described 

in the literature (Vu et al., 2019; Lance et al., 2013). 

 

Figure 2. Pure ammonium sulfate (a) and externally (b) mixed ammonium sulfate-sucrose 
aerosol activation curves. Measured data is presented as blue circles, sigmoid fits used to 
estimate Dp50 is shown as black lines. Note that in (b), two sigmoid fits are present. 

PartMC Simulations 
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PartMC is a stochastic, particle-resolved aerosol box model that resolves the composition 

of many individual aerosol particles within a well-mixed volume of air. The numerical methods 

used in PartMC have been described in detail in previous literature (Riemer et al., 2009; DeVille 

et al., 2011; Curtis et al., 2016; DeVille et al., 2019). To summarize, the particle-resolved approach 

uses a large number of discrete computational particles (104 to 106) to represent the particle 

population of interest. Each particle is represented by a “composition vector”, which stores the 

mass of each constituent species within each particle and evolves over the course of a simulation 

according to various chemical or physical processes. For our study, the relevant process is 

Brownian coagulation, which is simulated with a stochastic Monte Carlo approach by generating 

a realization of a Poisson process. The “weighted flow algorithm” improves the model efficiency 

and reduces ensemble variance (Deville et al. 2019; DeVille et al. 2011). The code is open-source 

under the GNU General Public License (GPL) version 2 and can be downloaded at 

http://github.com/compdyn/partmc/. We used version 2.6.0 for this work.  

To illustrate the formation of mixed particles in the mixing tube, we set up a PartMC box 

model simulation using size distribution parameters informed by the experiment. We simulated 

the two cases described above (“forward” and “reverse” experiment). We assumed that the 

mixing tube experiments can be approximated by a plug-flow-reactor set up, starting with one 

size distribution of ammonium sulfate or sucrose (Phase 1 and Phase 3), or two externally mixed 

size distributions of ammonium sulfate and sucrose (Phase 2). This assumes that turbulent 

mixing along the flow direction can be neglected. The initial particle size distributions, informed 

by the experiments, are listed in Table 2. It should be noted that a dry aerosol system is assumed 

in the model and thus simulations are likely a lower estimate of coagulations rates. Additional 

simulations were conducted at varying initial input sizes; coagulation rates did vary however the 
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overall conclusions regarding mixing state are similar (see Supplemental Information, Figure 

S1). 

Table 2. Initial particle size distribution for PartMC simulations. AS stands for ammonium 

sulfate 

 

 

The PartMC simulations predicted the evolution of the aerosol populations during the 

residence time in the mixing tube, given by the volume of the tube divided by the flow rate 

(about 70 to 80 minutes for the experimental conditions in this paper), from the time of injection 

into the mixing tube to the time of sampling. During this time, the particles coagulated with each 

other, decreasing the total number concentration and, in the case of the Phase-2 simulations, 
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forming a subpopulation of mixed particles. The number of computational particles for these 

simulations was 100,000. For simplicity we neglected wall losses. 

Results and Discussion 

 The particle growth measured by the CCNC results in activation curves as shown in 

Figure 3a. For Phase 1 of the forward mixing experiment, only sucrose is present in the mixing 

tube, and a sample activation curve (sampled 30 minutes after sucrose injection) is presented in 

Figure 3a. The measured activation curve of sucrose was fit to a single sigmoid function using 

the PyCat algorithm (𝜅𝜅 = 0.08). Figure 3b shows the two-dimensional number distribution 

n(Ddry,𝜅𝜅) distribution of the system as predicted by PartMC after 80 minutes of simulation. Since 

only sucrose is present, all particles had the same 𝜅𝜅 value, equal to 𝜅𝜅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. The orange, black 

and green lines in Figure 3b indicate lines of constant critical supersaturation. The particles to the 

right of these lines have critical supersaturation lower than the respective threshold value, and 

the particles to the left of the lines have critical supersaturations higher than the threshold value. 

Activation curves can also be constructed using PartMC output, and for 0.86% supersaturation, 

the predicted activation curve agreed well with the experimental data obtained at the same 

supersaturation. During Phase 1, since only a single component was present in the tube (sucrose), 

the activation curve predicted by PartMC was a step function, as expected. In comparison, the 

experimental activation curve was more of a smooth sigmoid function due to uncertainties in 

particle number counting.  
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Figure 3. Experimental and simulated data for Phase 1 of the forward mixing (sucrose to 

ammonium sulfate) experiment: (a) Activation curve of experimental data points (solid symbols), 

and the single sigmoid fit generated by PyCat (solid orange line), (b) PartMC simulated n(Ddry,𝜅𝜅) 

distribution, and (c) PartMC-generated activation curves. 

 Figure 4a shows a sample activation curve (sampled 75 minutes after ammonium sulfate 

injection) from Phase 2 of the same forward mixing experiment. The activation curve displays 

two distinct plateaus at CCN/CN ≈ 0.5 and at CCN/CN = ~1.0, indicating the presence of a 

system with more than one aerosol type, similar to what was shown in Figure 2b. The PyCat 

algorithm fits a sigmoid curve over each distinct plateau over the experimental activation curves 

and retrieved two distinct 𝜅𝜅-values: 0.2 and 0.6. The interpretation of this result is that at the 

supersaturation of 0.86%, the aerosol population appears externally mixed, consisting of two 
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components, with κ of 0.2 and 0.6, respectively. 𝜅𝜅 = 0.6 is indicative of ammonium sulfate, and 

𝜅𝜅 = 0.2, which is higher than the 𝜅𝜅-value of sucrose (𝜅𝜅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 0.08), may be indicative of a 

partial internal mixture that has begun to form. The corresponding simulated activation curve is 

depicted as orange line in Figure 4c. The simulated activation curve for the supersaturation of 

0.86% also shows the two distinct plateaus. However, the two experimentally retrieved 𝜅𝜅-values 

at one particular supersaturation do not capture the complexity of the full hygroscopicity 

distribution in a system of coagulating particles which forms particles that cover a continuous 

range of κ. This is illustrated in Figure 4b where we see the simulated n(Ddry,κ)  distribution after 

75 min of simulation. Due to the process of coagulating sucrose and ammonium sulfate particles, 

the space between κ=0.65 and κ=0.08 filled out, resulting in a fairly continuous n(Ddry,κ)  

distribution. An exception is the diameter range below 50 nm, which coincides with the size 

range that the line sc=0.86% intersects. Although some particles in this size range consist of 

sucrose/ammonium sulfate mixtures, most of the particles are still either ammonium sulfate or 

pure sucrose. The reason for this is the coagulation dynamics. Coagulation events between large 

and small particles are more likely and therefore producing mixed particles of diameters smaller 

than 50 nm is not favored given the initial size distributions used here. As a result, the activation 

curve at this supersaturation resembles that of an external mixture as we have seen in Figure 4a 

and 4c, even though the population at larger sizes is not externally mixed. For comparison, 

Figure 4c also includes the activation curves for 0.3% and 0.1% supersaturation based on the 

PartMC simulation results. In contrast to the activation curve for 0.86%, they do not display a 

secondary plateau but increase indeed smoothly across the diameter range. This behavior can be 

understood by comparing to Figure 4b. The lines of constant critical supersaturation for 0.3% 
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and 0.1% intersect the n(Ddry,κ)  distribution at diameter ranges where a continuum of κ values 

exist. Therefore, as the diameter increases, the CCN/CN fraction smoothly increases. 

Although PyCat sigmoid fits and retrieved 𝜅𝜅-values for 0.86% are sound, the current 

experimental setup is unable to probe the complete n(Ddry,κ)  distribution as simulated by 

PartMC. To do this, activation curves at lower supersaturations would need to be measured, or 

smaller particles should be used.  

 

Figure 4. Experimental and simulated data for phase two of the forward mixing experiment 

which includes: (a) Activation curve of experimental data points (solid symbols), and the double-

sigmoid fit generated by PyCat (solid orange line), (b) PartMC simulated n(Ddry,𝜅𝜅) distribution, 

and (c) PartMC-generated activation curves. Solid orange, black, and green lines represent 0.86 

%, 0.3 %, and 0.1 % supersaturation. 
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 Phase 3 began when the injection of the aerosol species that was introduced first during 

Phase 1 was ceased. In the case of the forward mixing experiments, only ammonium sulfate was 

being injected into the mixing tube. Particle activation at two hours into phase 3 of the forward 

mixing experiment is shown as the activation curve in Figure 5a. The double activation curve 

seen in Phase 2 (Figure 4a) evolved into a single activation as sucrose in the mixing tube had 

been removed, and ammonium sulfate became the sole species in the system. This experimental 

result matched the simulated activation curves by PartMC (Figure 5b, 5c) 

 

Figure 5. Experimental and simulated data for phase three of the forward mixing experiment 

which includes: (a) Activation curve of experimental data points (solid symbols), and the single 

sigmoid fit generated by PyCat (solid orange line), (b) PartMC simulated n(Ddry,𝜅𝜅) distribution 
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of the system, and (c) PartMC-generated activation curves. Solid orange, black, and green lines 

represent 0.86 %, 0.3 %, and 0.1 % supersaturation conditions. 

 Results show that PyCat analysis and PartMC simulations are comparable for single 

component systems, as only a single 𝜅𝜅-value is retrieved. However, the stochastic process of 

coagulation leads to a population of particles with a continuous distribution of hygroscopicities 

between the minimum κ value of pure sucrose particles and the maximum κ value of pure 

ammonium sulfate particles. Although the various hygroscopicity subpopulation is shown in the 

PartMC simulations, not all discrete 𝜅𝜅-values were able to be identified in the experimental data. 

Although the size-resolved measurement method used in the experiment currently provides over 

one data point per second, only two sigmoids were able to be distinguished per scan. 

Additionally, the inflection points and plateau of each sigmoid must be distinct enough from 

each other (approximately 0.4 difference in 𝜅𝜅) to be effectively identified as distinct sigmoid 

curves.   The      finding in      regard to the particle-to-particle heterogeneity of mixtures has 

recently been supported by the work of Yuan and Zhao, 2023; who used HTDMA data sets.      

While their work focuses on field observations, they also stress the importance of capturing the 

kappa-distribution of an aerosol and the fact that the mean kappa value of a population can be 

very misleading in characterizing its hygroscopicity. 
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Figure 6. Experimental 𝜅𝜅-values as retrieved by PyCat as a function of time for the forward (a) 

and reverse (b) mixing directions.  

The evolution of 𝜅𝜅-values over time is shown in Figure 6. In both the forward and reverse 

mixing directions, experimental results confirm that, during phase one and phase three, only one 

species with a single 𝜅𝜅-value of either 𝜅𝜅𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 or 𝜅𝜅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is present in the system, 

which agreed with the simulations. During phase 2, 𝜅𝜅-values retrieved by PyCat for the forward 

mixing experiment showed a single 𝜅𝜅-value that gradually increases with time and ammonium 

sulfate content in the mixing tube. This occurs because not enough time has elapsed for aerosol 

particles to traverse the tube. It is also indicative of a complex transient state where experimental 

results are difficult to interpret. At the end of phase 2, PyCat was able to identify two distinct 𝜅𝜅-

values. In comparison, PyCat consistently identified two distinct 𝜅𝜅-values in the reverse 

direction. In both cases, experimental data and subsequent analysis were unable to capture the 𝜅𝜅 

distribution simulated by PartMC. As such, information on the effects of aerosol mixing states on 

measured particle water-uptake from the experimentally derived 𝜅𝜅 may be incomplete and not 

representative of the system. 
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 Summary and Implications 

  The current size-resolved CCN analysis software (PyCAT) can rapidly provide activation 

curves of populations that are either internally mixed or fully externally mixed (subpopulations 

exist that can differ in their κ values, but within each subpopulation all particles have the same κ). 

CCN analysis using PyCAT results in the highest resolution data, with over tenfold more data 

points over each two-minute scan compared to experiments operated at a constant diameter for a 

range of supersaturations. However, for complex mixtures that are neither fully internal nor 

externally mixed, the experimentalist is still responsible for determining how many sigmoid curves 

would be sufficient to capture the mixing state of a system during one activation scan. In this work, 

we used a model system of ammonium sulfate and sucrose to demonstrate the usage and integration 

of a particle mixing model to assist in activation determination of size resolved CCN analysis. 

 For single component systems, PartMC simulated the experimental observations with very 

good agreement. In comparison, for more complex binary mixtures, PartMC predicted that the 

presence of particles consisting of two pure compounds dominated the system at diameters that 

activate at 0.86 % supersaturation, and that some mixed particles were also present at much lower 

number concentrations. Knowledge of the relative abundance of the mixed particles and their 

predicted activation curves is valuable information for fitting sigmoid curves onto experimental 

data. In this case, although mixed particles are predicted to be present, their low number 

concentrations suggest that their contribution to the hygroscopicity of the system is minimal. As 

such, experimental data can be sufficiently fit with two sigmoid curves, one for each pure 

compound. The model predicts that given the initial size distributions, mixed particles are more 

prevalent at larger diameters (corresponding to activation at lower supersaturations) and recreating 

the mixing evolution at such conditions is a suggested future direction. This work confirms that 
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the integration of a particle mixing model to further improve the size resolved CCN analysis 

method leads to more insight into the mixing evolution of aerosol particles. This improvement in 

analysis is valuable, especially when working with complex or unknown systems such as ambient 

aerosols.  
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