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Abstract

Ambient aerosol particles can undergo dynamic mixing processes as they coagulate with
particles from other air masses and emission sources. Therefore, aerosols exist in a spectrum, from
externally mixed to internally mixed. The mixing state of aerosols can affect their ability to uptake
water (hygroscopicity) and their cloud condensation nuclei (CCN) activity, modifying their
contribution to the planet’s total radiative budget. However, current water-uptake measurement
methods may not be able to capture the complex mixing state. In this research, the dynamic mixing
process was simulated by the particle-resolved aerosol model PartMC and also created by
experiments in a laminar flow mixing tube. The mixing evolution of ammonium sulfate and
sucrose binary mixtures were observed along with the changes in their water uptake properties
expressed as the single hygroscopicity parameter, k. The use of a mixing simulation in conjunction
with experiments allow for better identification of the particle mixing state and the particle water
uptake and show that no one kappa value can capture the complexity of mixing across the mixed
particle size distribution. In other words, the PartMC simulations can be used as a guiding tool to
interpret a system’s mixing state based on its experimental droplet activation spectra. This work
demonstrates the importance of the integration and use of mixing models to aid in mixing state

determination and hygroscopicity measurements of mixed systems.

Introduction

Organic and inorganic aerosol particles in the atmosphere come from natural sources such
as volcanic eruptions, sea spray, and wildfires, as well as manmade sources like fossil fuel
combustion and biomass burning. Aerosol particles often exist as a complex mixture and can
undergo transport and aging processes in the atmosphere. The literature has defined the two

extremes of aerosol mixing states as internally mixed and externally mixed, respectively (Winkler
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1973). Internal mixing is present when all particles in the aerosol population have the same
composition of chemical species. Each particle in an internally mixed aerosol can take on various
morphologies which include homogenous, partially engulfed, and core-shell particles. In contrast,
an externally mixed aerosol system consists of particles of pure chemical species with distinct
compositions. An important concept, commonly assumed, is that for fully internal mixtures, all
particles have the same hygroscopicity parameter x. For fully external mixtures, several
subpopulations exist that differ in their x values, but within a subpopulation all particles have the
same « value.

In the atmosphere and under supersaturated conditions, aerosol particles can indirectly
affect the planet’s radiative forcing by acting as cloud condensation nuclei (CCN). In turn, clouds
reflect solar radiation and may absorb longwave radiation emitted by the earth, which can lead to
a cooling or heating impact on the atmosphere. It is known that particle composition, and therefore
the mixing state of aerosols, play a key role in the system’s CCN activity. However, the magnitude
of the CCN influence on climate is still a topic of significant interest, as the spatial, temporal, and
compositional complexity of aerosol particles lead to uncertainties in quantification of aerosol-
cloud interactions and water uptake activity (Vu et al., 2019; Riemer et al., 2019).

Field studies have observed the mixing state of aerosols in the atmosphere. Cubison et al.
(2008) demonstrated that knowledge of mixing state is an important parameter in predicting the
activation of atmospheric aerosol particles at supersaturated conditions in the urban areas of Los
Angeles, California (Cubison et al. 2008). More recently, Bondy et al. (2018) estimated the extent
of internal versus external mixing of aerosol particles in the southeastern United States and
reported that generally, externally mixed aerosols were more prevalent in the atmosphere (Bondy

et al. 2018). Additionally, in the accumulation mode, internal mixing was more prominent during



periods with high secondary organic aerosol (SOA) loadings, and external mixing dominated
during high dust periods — further illustrating the complex nature of aerosol composition and
mixing over time and space (Bondy et al. 2018). Observations of black carbon aerosols in the
North China Plain by Wang et al. (2020) showed that the mixing state of aerosol particles is
dynamic: freshly emitted black carbon aerosols are typically externally mixed and become more
internally mixed over time (Wang et al. 2020).

The mixing state of aerosol particles, along with their sizes and compositions, has been
shown to modify particle water uptake (Cubison et al. 2008; Hudson 2007; Dusek et al. 2006;
Feingold 2003; Roberts et al. 2002). For example, Xu et al. (2020) measured the subsaturated water
uptake of wintertime aerosol particles at Mace Head, Ireland, as a single hygroscopicity parameter
(k) using a humidified tandem differential mobility analyzer (HTDMA) and reported
hygroscopicities between 0.3 and 0.5 for particles from 35 nm to 165 nm in diameter (Xu et al.
2020; Petters and Kreidenweis 2007). It was also emphasized that wintertime aerosol was observed
to be largely externally mixed for both continental and marine air masses (Xu et al. 2020). In
contrast, Kim et al. (2020) measured the hygroscopicity of urban aerosols in Seoul, Korea to have
K values between 0.15 to 0.3, lower than those reported by Xu et al. (2020) and Andreae and
Rosenfeld (2008) (Kim et al. 2020; Xu et al. 2020; Andreae and Rosenfeld 2008). It was also
reported that during their measurement period, externally mixed aerosols dominated the population
(over 70 %) in 100 nm and 150 nm particles. For small particles between 30 nm to 50 nm, internally
mixed aerosols with a growth factor (GF) less than 1.1 constituted over 50% of the population
(Kim et al., 2020). A separate study estimated that internally mixed aerosols in the central North
China Plain to have k = 0.31 and that this can change with time and age of the particles (Wang

et al. 2020).



From the studies above, it can be inferred that the assumption of fully external or internal
mixing can be a source of uncertainty in particle hygroscopicity predictions over time and space.
Moreover, an externally mixed aerosol implies that subpopulations with different kappa values
potentially exist. As such, there is a need for research into the effect of particle composition and
mixing state on water-uptake under controlled conditions. Laboratory studies have demonstrated
that the water uptake of inorganic salts such as ammonium sulfate may change in the presence of
soluble organics, pointing towards the effect and importance of composition in overall particle
hygroscopicity (Razafindrambinina et al. 2022; Lei et al. 2014). Lei et al. (2014) found that for
internal mixtures of levoglucosan and ammonium sulfate, water uptake was continuous between 5
% to 90 % RH, suggesting that highly oxidized organics like levoglucosan may hold a key role in
controlling the subsaturated water uptake properties of atmospheric particles (Lei et al. 2014). Cruz
and Pandis (1998) measured the CCN activity for organic (glutaric acid) coated ammonium sulfate
aerosol particles and found that the hygroscopic organic coating increased the CCN activation of
ammonium sulfate particles and observations could be well predicted via Kohler theory.(Cruz and
Pandis 1998). Work by Svenningsson et al. (2006) measured the subsaturated and supersaturated
water uptake of several mixtures of ammonium sulfate, levoglucosan, succinic acid, and fulvic
acid using a HTDMA and a cloud condensation nuclei spectrometer (Svenningsson et al., 2006).
Mixed particle hygroscopicity for mixtures were accurately predicted by using the Zdanovskii-
Stokes-Robinson (ZSR) model, assuming volume additivity and taking into account the limited
solubility of succinic acid (Svenningsson et al. 2006).

Fewer studies have observed and quantified the dynamically evolving mixing state of
aerosol particles under controlled laboratory conditions. In this manuscript, we refer to this

evolution in aerosol composition as transitional mixing where the aerosol population is neither



fully externally nor fully internally mixed. Vu et al. (2019) measured the cloud condensation nuclei
activation of two-component organic and inorganic systems under internal, external, and
transitional mixing conditions with the use of a laminar flow mixing tube. Separate aerosols
streams of ammonium sulfate and succinic acid were generated and allowed to mix, and it was
shown that mixing dry, non-hygroscopic particles with hygroscopic aerosol particles in a laminar
flow mixing tube allowed for the observation of the dynamic mixing state transition from external
to internally mixed (Vu et al. 2019).

It is challenging to discern the effects of mixing state from atmospheric aerosol of unknown
sources. The work presented here minimizes the influences of unknown parameters and focuses
on two individually well-described inorganic and organic aerosol systems. We utilized a binary
system of ammonium sulfate and sucrose to demonstrate the evolution of hygroscopicity of the
population as the two particle types interact due to coagulation in the flow tube. Ammonium sulfate
is a prevalent inorganic aerosol species formed in the atmosphere from precursors sulfuric acid
and ammonia (Behera et al., 2013; Aneja et al., 2008). Sucrose is an organic compound that exists
in the ambient aerosol and is used as a tracer aerosol particle for biomass burning (Marynowski
and Simoneit 2022).

The stochastic particle-resolved aerosol model PartMC (Riemer et al., 2009) predicted the
evolution of the system and was used to help interpret the experimental findings of particle water
uptake considering the evolving mixing states. PartMC has been used in prior studies to simulate
fresh soot aerosol as it ages and mixes with other types of aerosols such as mineral dust and
inorganic particles (Tian et al. 2014; Zaveri et al. 2010; Riemer et al. 2009). The model has also
been applied to simulate aerosol evolution in laboratory settings (Shou et al. 2019; Tian et al.

2017).



Materials and Methods
Experimental Setup

Dilute solutions (0.3 g/L) of ammonium sulfate (98%, Millipore) and sucrose (99%
Fisher Chemical) were each prepared by dissolving the solids in ultrapure water (Milli-Q 7003)
and each solution was atomized into a polydisperse aerosol stream by a constant output atomizer

(TSI 3076) according to the setup in Figure 1.
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Figure 1. Schematic of the experimental setup for CCN measurement.

Polydisperse aerosol was generated at a flow rate of 1.1 = 0.1 L min™' and directed into a 0.1 m?
laminar flow mixing tube. Vents downstream of each atomizer were incorporated into the setup
to prevent a build-up of pressure in the system. Details on the mixing tube design is presented in
published literature (Vu et al., 2019). In this experiment, valves were added upstream of the
mixing tube to control the introduction of aerosol particles into the tube. Initial conditions for the

experiments are presented in Table 1. It should be noted that the RH is not constant within the



tube over the course of the experiment in this study. It is possible that the relative humidity in the
mixing tube may facilitate or accelerate the dynamic mixing state towards a fully internally
mixed system. A previous paper has shown this to be the case for AS + succinic acid (Vu et al.,
2019) and Ye et al., 2016 have shown that the presence of water may promote mixing aerosol.
Additional simulations were conducted to explore the effect of varying initial input sizes (see
supplemental material, Figure S1). No visible condensation was observed in the mixing flow
tube. Furthermore, particles are subsequently dried before particle size and CCN activity

measurement.

Table 1. Initial experimental conditions in the mixing tube.

i AS Organi Organi
| Solubility  Mol. | Moraamic . o DrRANC S Row e
Organic @298 K Weight Density (Dp50 at % SS Mixing Geometric Geometric Rate (L Flow
o
Fraction | 7 /el,_,l (@mL) 0.8 % ¢ direction Mode Size Mode Size — C g Rate (L
(g/L) (g/mol) SS) (nm) (nm) min-1) min-1)
, Forward  117.8 131 1.2 1.0
S X 3423 0 0.08 0.8+ 0.06
uerose | 2040 1.59 Reverse  79.1 109.43 11 1.4

“Rumble, J. R.; Lide, D. R.; Bruno, T. J. CRC handbook of chemistry and physics: a ready-
reference book of chemical and physical data, 2017.

PHaynes, W.M. (ed.). CRC Handbook of Chemistry and Physics. 95" Edition. CRC Press LLC,
Boca Raton: FL 2014-2015, p. 4-48

In this work, two mixing directions were studied. The forward mixing experiment is
when ammonium sulfate was introduced into a system of pure sucrose, and the reverse mixing
experiment is when sucrose was added into a system of pure ammonium sulfate in the mixing
tube. Mixing state experiments consisted of three distinct phases. For Phase 1 of the forward
mixing experiment, only the organic aerosol was present in the mixing tube. At the beginning of
Phase 2, ammonium sulfate was introduced into the mixing tube. Both ammonium sulfate and
sucrose aerosol particles were continuously injected into the mixing tube during this phase. In
Phase 3, the sucrose supply was terminated, which allowed ammonium sulfate to become the

only species present in the tube. For the reverse reaction, Phase 1 started with pure ammonium



sulfate, and Phase 3 ended with pure sucrose. Each phase was considered complete when the

residence time of the mixing tube (2 hours) had elapsed.

Water-Uptake Measurements under supersaturated conditions

Prior to water uptake measurements, particles were sampled from the mixing tube at 0.8 L
min! through a diffusion dryer to create a dry, polydisperse aerosol stream. Dry polydisperse
aerosol particles were subsequently size selected by an electrostatic classifier with a differential
mobility analyzer (DMA; TSI 3081) which scanned electrical mobility diameters between 14 nm
to 600 nm. Downstream of the DMA, aerosols were split between the condensation particle counter
(CPC; TSI 3776) with a sample flow of 0.3 L min™' and the cloud condensation nuclei counter
(CCNC; DMT CCN-100) with a sample flow of 0.5 L min™!. The CCNC provided the number of
activated particles at a given supersaturation (CCN), and the CPC provided the size distribution
and total number of all particles (CN). The Python-based CCN analysis tool (PyCAT) software
was used to align the timeseries from the CPC and CCNC and estimate the fraction of activated
particles. This software is based on the scanning mobility CCN analysis program by Moore et al.
(2010), with additional features that allow the fitting of more than one activation curve per scan
(Gohil and Asa-Awuku 2022; Moore et al. 2010). A sigmoid curve was then fit to the data to
retrieve the mixed particles’ activation diameter (Dpso), which is the dry particle diameter at which
half of the total population activates into droplets at a given supersaturation, from the size resolved
particle count from the SMPS and droplet count from the CCNC. (Moore et al., 2010). In this CCN
analysis, it is assumed that the composition of the activation diameter can be applied across the
entire size distribution. The Scanning Mobility CCN Analysis setup has been shown to produce
approximately 120 data points during a single 135 s scan. Notably, previous studies have done

similar analyses by keeping aerosol diameter constant and then modifying the supersaturation.



However, the resolution of data from the CCN activation spectrum at a constant diameter produces

fewer data points unless one uses a Scanning Flow CCN Analysis set-up (Moore and Nenes 2009).

Hygroscopicity Analysis

Water uptake of a single-component system (or a fully internally-mixed system) can be
represented by the single hygroscopicity parameter (k) (e.g., Petters and Kreidenweis (2007),
Lambe et al. (2011), Kreidenweis and Asa-Awuku (2014), Zhao et al. (2015), Fofie et al. (2018),
Dawson et al. (2020), Peng et al. (2021)).(Peng et al. 2021; Dawson et al. 2020; Fofie et al. 2018;
Zhao et al. 2015; Kreidenweis and Asa-Awuku 2014; Lambe et al. 2011; Petters and
Kreidenweis 2007). The parameter k is composition-dependent, which allows for hygroscopicity
comparisons across instruments and relative humidities (Petters and Kreidenweis 2007, 2008,
2013). For supersaturated water uptake measurements, k can be calculated from the estimated
Dypsousing Eq. 1, based on x-Kohler theory (Petters and Kreidenweis, 2007; Lambe et al., 2011;
Zhao et al., 2015; Peng et al., 2021; Fofie et al., 2018; Kreidenweis and Asa-Awuku, 2014;

Dawson et al., 2020).

40‘s/aMW 3
RTpw
27D350S

(1

The variables o4, Mw, p,, are the surface tension, molecular weight, and density of water, R and

T are the universal gas constant and temperature, respectively. Dpso is the critical activation

diameter and S is the instrument supersaturation.

For internally mixed aerosols, k can be estimated based on the Zdanovskii-Stokes-
Robinson (ZSR) model (Stokes and Robinson, 1966; Petters and Kreidenweis, 2007). The ZSR

model estimates the k-value of a system based on the volume fraction (€) of each solute, i,
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assuming that the solutes take up water independently, and do not interact with each other

(Equation 2)

K= Y€K; (2

Equation 2 assumes that all particles are fully soluble, and the assumption has been demonstrated
to hold for mixed ammonium sulfate-sucrose systems as both are fully soluble under

experimental conditions. (Razafindrambinina et al. in prep)

In contrast, for fully externally mixed aerosols, each solute retains the x of the pure
compound. In other words, a fully external mixture of N aerosol species will have N Dypso and x-
values (Vu et al., 2019). Figure 2 illustrates how external mixtures can be distinguished from
internal mixtures through the particle activation curves, and this concept has been well described

in the literature (Vu et al., 2019; Lance et al., 2013).

CCN/CN

(a)
| | | 1 | ' T T |
40 60 80 100 120 40 60 80 100 120
Dry Diameter (nm)

Figure 2. Pure ammonium sulfate (a) and externally (b) mixed ammonium sulfate-sucrose
aerosol activation curves. Measured data is presented as blue circles, sigmoid fits used to
estimate Dp50 is shown as black lines. Note that in (b), two sigmoid fits are present.

PartMC Simulations

11



PartMC is a stochastic, particle-resolved aerosol box model that resolves the composition
of many individual aerosol particles within a well-mixed volume of air. The numerical methods
used in PartMC have been described in detail in previous literature (Riemer et al., 2009; DeVille
etal., 2011; Curtis et al., 2016; DeVille et al., 2019). To summarize, the particle-resolved approach
uses a large number of discrete computational particles (10* to 10°) to represent the particle
population of interest. Each particle is represented by a “composition vector”, which stores the
mass of each constituent species within each particle and evolves over the course of a simulation
according to various chemical or physical processes. For our study, the relevant process is
Brownian coagulation, which is simulated with a stochastic Monte Carlo approach by generating
a realization of a Poisson process. The “weighted flow algorithm” improves the model efficiency
and reduces ensemble variance (Deville et al. 2019; DeVille et al. 2011). The code is open-source
under the GNU General Public License (GPL) version 2 and can be downloaded at
http://github.com/compdyn/partme/. We used version 2.6.0 for this work.

To illustrate the formation of mixed particles in the mixing tube, we set up a PartMC box
model simulation using size distribution parameters informed by the experiment. We simulated
the two cases described above (“forward” and “reverse” experiment). We assumed that the
mixing tube experiments can be approximated by a plug-flow-reactor set up, starting with one
size distribution of ammonium sulfate or sucrose (Phase 1 and Phase 3), or two externally mixed
size distributions of ammonium sulfate and sucrose (Phase 2). This assumes that turbulent
mixing along the flow direction can be neglected. The initial particle size distributions, informed
by the experiments, are listed in Table 2. It should be noted that a dry aerosol system is assumed
in the model and thus simulations are likely a lower estimate of coagulations rates. Additional

simulations were conducted at varying initial input sizes; coagulation rates did vary however the
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overall conclusions regarding mixing state are similar (see Supplemental Information, Figure
S1).
Table 2. Initial particle size distribution for PartMC simulations. AS stands for ammonium

sulfate

Forward Direction: Sucrose to AS

Component ‘ Nm* ‘ Dpe / m ‘ c

Phase 1

Sucrose | 8.18x 101 |  456x10% | 1.73
Phase 2

Sucrose ‘ 3.72x 101 4.56x 108 ‘ 1.73

AS 7.09 x 1011 4.38x 108 1.81
Phase 3

AS 1.30 x 1012 438x 108 1.81

Reverse Direction: AS to Sucrose

Component ‘ Nm ‘ Dpg / m ‘ c

Phase 1

AS | 931x10M | 454x10° | 1.80
Phase 2

AS ‘ 4.10x 101 454 % 10 ‘ 1.80

Sucrose 7.39 x 1011 6.57x 108 1.93
Phase 3

Sucrose 1.32 x 1012 ‘ 6.57x 108 | 1.93

The PartMC simulations predicted the evolution of the aerosol populations during the
residence time in the mixing tube, given by the volume of the tube divided by the flow rate
(about 70 to 80 minutes for the experimental conditions in this paper), from the time of injection
into the mixing tube to the time of sampling. During this time, the particles coagulated with each

other, decreasing the total number concentration and, in the case of the Phase-2 simulations,
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forming a subpopulation of mixed particles. The number of computational particles for these

simulations was 100,000. For simplicity we neglected wall losses.

Results and Discussion

The particle growth measured by the CCNC results in activation curves as shown in
Figure 3a. For Phase 1 of the forward mixing experiment, only sucrose is present in the mixing
tube, and a sample activation curve (sampled 30 minutes after sucrose injection) is presented in
Figure 3a. The measured activation curve of sucrose was fit to a single sigmoid function using
the PyCat algorithm (x = 0.08). Figure 3b shows the two-dimensional number distribution
n(Dary, k) distribution of the system as predicted by PartMC after 80 minutes of simulation. Since
only sucrose is present, all particles had the same k value, equal to K¢, qr0se. The orange, black
and green lines in Figure 3b indicate lines of constant critical supersaturation. The particles to the
right of these lines have critical supersaturation lower than the respective threshold value, and
the particles to the left of the lines have critical supersaturations higher than the threshold value.
Activation curves can also be constructed using PartMC output, and for 0.86% supersaturation,
the predicted activation curve agreed well with the experimental data obtained at the same
supersaturation. During Phase 1, since only a single component was present in the tube (sucrose),
the activation curve predicted by PartMC was a step function, as expected. In comparison, the
experimental activation curve was more of a smooth sigmoid function due to uncertainties in

particle number counting.
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Figure 3. Experimental and simulated data for Phase 1 of the forward mixing (sucrose to

ammonium sulfate) experiment: (a) Activation curve of experimental data points (solid symbols),

and the single sigmoid fit generated by PyCat (solid orange line), (b) PartMC simulated (D, k)

distribution, and (c) PartMC-generated activation curves.

Figure 4a shows a sample activation curve (sampled 75 minutes after ammonium sulfate

injection) from Phase 2 of the same forward mixing experiment. The activation curve displays

two distinct plateaus at CCN/CN = 0.5 and at CCN/CN = ~1.0, indicating the presence of a

system with more than one aerosol type, similar to what was shown in Figure 2b. The PyCat

algorithm fits a sigmoid curve over each distinct plateau over the experimental activation curves

and retrieved two distinct k-values: 0.2 and 0.6. The interpretation of this result is that at the

supersaturation of 0.86%, the aerosol population appears externally mixed, consisting of two
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components, with k of 0.2 and 0.6, respectively. k = 0.6 is indicative of ammonium sulfate, and
Kk = 0.2, which is higher than the k-value of sucrose (kg crose = 0.08), may be indicative of a
partial internal mixture that has begun to form. The corresponding simulated activation curve is
depicted as orange line in Figure 4c. The simulated activation curve for the supersaturation of
0.86% also shows the two distinct plateaus. However, the two experimentally retrieved k-values
at one particular supersaturation do not capture the complexity of the full hygroscopicity
distribution in a system of coagulating particles which forms particles that cover a continuous
range of k. This is illustrated in Figure 4b where we see the simulated n(Day,x) distribution after
75 min of simulation. Due to the process of coagulating sucrose and ammonium sulfate particles,
the space between k=0.65 and k=0.08 filled out, resulting in a fairly continuous 7n(Dary, k)
distribution. An exception is the diameter range below 50 nm, which coincides with the size
range that the line sc=0.86% intersects. Although some particles in this size range consist of
sucrose/ammonium sulfate mixtures, most of the particles are still either ammonium sulfate or
pure sucrose. The reason for this is the coagulation dynamics. Coagulation events between large
and small particles are more likely and therefore producing mixed particles of diameters smaller
than 50 nm is not favored given the initial size distributions used here. As a result, the activation
curve at this supersaturation resembles that of an external mixture as we have seen in Figure 4a
and 4c, even though the population at larger sizes is not externally mixed. For comparison,
Figure 4c also includes the activation curves for 0.3% and 0.1% supersaturation based on the
PartMC simulation results. In contrast to the activation curve for 0.86%, they do not display a
secondary plateau but increase indeed smoothly across the diameter range. This behavior can be

understood by comparing to Figure 4b. The lines of constant critical supersaturation for 0.3%
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and 0.1% intersect the n(Dary,x) distribution at diameter ranges where a continuum of k values

exist. Therefore, as the diameter increases, the CCN/CN fraction smoothly increases.

Although PyCat sigmoid fits and retrieved k-values for 0.86% are sound, the current
experimental setup is unable to probe the complete n(Dary,x) distribution as simulated by
PartMC. To do this, activation curves at lower supersaturations would need to be measured, or

smaller particles should be used.
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Figure 4. Experimental and simulated data for phase two of the forward mixing experiment
which includes: (a) Activation curve of experimental data points (solid symbols), and the double-
sigmoid fit generated by PyCat (solid orange line), (b) PartMC simulated n(Dary, k) distribution,
and (c) PartMC-generated activation curves. Solid orange, black, and green lines represent 0.86

%, 0.3 %, and 0.1 % supersaturation.
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Phase 3 began when the injection of the aerosol species that was introduced first during

Phase 1 was ceased. In the case of the forward mixing experiments, only ammonium sulfate was

being injected into the mixing tube. Particle activation at two hours into phase 3 of the forward

mixing experiment is shown as the activation curve in Figure 5a. The double activation curve

seen in Phase 2 (Figure 4a) evolved into a single activation as sucrose in the mixing tube had

been removed, and ammonium sulfate became the sole species in the system. This experimental

result matched the simulated activation curves by PartMC (Figure 5b, 5c)
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Figure 5. Experimental and simulated data for phase three of the forward mixing experiment

which includes: (a) Activation curve of experimental data points (solid symbols), and the single

sigmoid fit generated by PyCat (solid orange line), (b) PartMC simulated n(Day, k) distribution
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of the system, and (c) PartMC-generated activation curves. Solid orange, black, and green lines

represent 0.86 %, 0.3 %, and 0.1 % supersaturation conditions.

Results show that PyCat analysis and PartMC simulations are comparable for single
component systems, as only a single x-value is retrieved. However, the stochastic process of
coagulation leads to a population of particles with a continuous distribution of hygroscopicities
between the minimum « value of pure sucrose particles and the maximum « value of pure
ammonium sulfate particles. Although the various hygroscopicity subpopulation is shown in the
PartMC simulations, not all discrete x-values were able to be identified in the experimental data.
Although the size-resolved measurement method used in the experiment currently provides over
one data point per second, only two sigmoids were able to be distinguished per scan.
Additionally, the inflection points and plateau of each sigmoid must be distinct enough from
each other (approximately 0.4 difference in k) to be effectively identified as distinct sigmoid
curves. The findingin regard to the particle-to-particle heterogeneity of mixtures has
recently been supported by the work of Yuan and Zhao, 2023; who used HTDMA data sets.
While their work focuses on field observations, they also stress the importance of capturing the
kappa-distribution of an aerosol and the fact that the mean kappa value of a population can be

very misleading in characterizing its hygroscopicity.
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Figure 6. Experimental k-values as retrieved by PyCat as a function of time for the forward (a)

and reverse (b) mixing directions.

The evolution of k-values over time is shown in Figure 6. In both the forward and reverse
mixing directions, experimental results confirm that, during phase one and phase three, only one
species with a single k-value of either Kgmmonium suifate OF Ksucrose 18 present in the system,
which agreed with the simulations. During phase 2, k-values retrieved by PyCat for the forward
mixing experiment showed a single k-value that gradually increases with time and ammonium
sulfate content in the mixing tube. This occurs because not enough time has elapsed for aerosol
particles to traverse the tube. It is also indicative of a complex transient state where experimental
results are difficult to interpret. At the end of phase 2, PyCat was able to identify two distinct k-
values. In comparison, PyCat consistently identified two distinct x-values in the reverse
direction. In both cases, experimental data and subsequent analysis were unable to capture the k
distribution simulated by PartMC. As such, information on the effects of aerosol mixing states on
measured particle water-uptake from the experimentally derived k may be incomplete and not

representative of the system.
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Summary and Implications

The current size-resolved CCN analysis software (PyCAT) can rapidly provide activation
curves of populations that are either internally mixed or fully externally mixed (subpopulations
exist that can differ in their k values, but within each subpopulation all particles have the same «).
CCN analysis using PyCAT results in the highest resolution data, with over tenfold more data
points over each two-minute scan compared to experiments operated at a constant diameter for a
range of supersaturations. However, for complex mixtures that are neither fully internal nor
externally mixed, the experimentalist is still responsible for determining how many sigmoid curves
would be sufficient to capture the mixing state of a system during one activation scan. In this work,
we used a model system of ammonium sulfate and sucrose to demonstrate the usage and integration
of a particle mixing model to assist in activation determination of size resolved CCN analysis.

For single component systems, PartMC simulated the experimental observations with very
good agreement. In comparison, for more complex binary mixtures, PartMC predicted that the
presence of particles consisting of two pure compounds dominated the system at diameters that
activate at 0.86 % supersaturation, and that some mixed particles were also present at much lower
number concentrations. Knowledge of the relative abundance of the mixed particles and their
predicted activation curves is valuable information for fitting sigmoid curves onto experimental
data. In this case, although mixed particles are predicted to be present, their low number
concentrations suggest that their contribution to the hygroscopicity of the system is minimal. As
such, experimental data can be sufficiently fit with two sigmoid curves, one for each pure
compound. The model predicts that given the initial size distributions, mixed particles are more
prevalent at larger diameters (corresponding to activation at lower supersaturations) and recreating

the mixing evolution at such conditions is a suggested future direction. This work confirms that
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the integration of a particle mixing model to further improve the size resolved CCN analysis
method leads to more insight into the mixing evolution of aerosol particles. This improvement in
analysis is valuable, especially when working with complex or unknown systems such as ambient

aerosols.
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