

1 **Nonlinear electrophoresis of dielectric particles in Newtonian fluids**

2

3 Joseph Bentor,¹ Heston Dort,¹ Rajan Ashutosh Chitao,¹ Youwei Zhang,² and Xiangchun Xuan¹

4 ¹Department of Mechanical Engineering, Clemson University, Clemson, SC 29634-0921, USA

5 ²Shanghai Diecheng Photoelectronics Technology Co., Ltd, Shanghai, China 201800

6

7 **Correspondence:** Prof. Xiangchun Xuan, Department of Mechanical Engineering, Clemson

8 University, Clemson, SC 29634-0921, USA. **E-mail:** xcxuan@clemson.edu

9

1 **Abstract**

2 In classical electrokinetics the electrophoretic velocity of a dielectric particle is a linear function
3 of the applied electric field. Theoretical studies have predicted the onset of nonlinear
4 electrophoresis at high electric fields because of the non-uniform surface conduction over the
5 curved particle. However, experimental studies have been left behind and are insufficient for a
6 fundamental understanding of the parametric effects on nonlinear electrophoresis. We present in
7 this work a systematic experimental study of the effects of buffer concentration, particle size, and
8 particle zeta potential on the electrophoretic velocity of polystyrene particles in a straight
9 rectangular microchannel for electric fields of up to 3 kV/cm. The measured nonlinear
10 electrophoretic particle velocity is found to exhibit a $2(\pm 0.5)$ -order dependence on the applied
11 electric field, which appears to be within the theoretically predicted 3- and 3/2-order dependences
12 for low and high electric fields, respectively. Moreover, the obtained nonlinear electrophoretic
13 particle mobility increases with decreasing buffer concentration (for the same particle) and particle
14 size (for particles with similar zeta potentials) or increasing particle zeta potential (for particles
15 with similar sizes). These observations are all consistent with the theoretical predictions for high
16 electric fields.

17

18 **Keywords**

19 Electrokinetics / Surface conduction / Electrophoresis / Microfluidics

20

1 **1 Introduction**

2 Electrophoresis is an electrokinetic phenomenon widely adopted for particle transport and
3 manipulation in micro- and nano-fluidic devices [1-3]. It is the movement of an electrically
4 charged particle relative to the suspending fluid (either Newtonian [4,5] or non-Newtonian [6,7])
5 in response to an imposed electric field, which results from the Coulomb force acting on the net
6 charge inside the electric double layer (EDL) formed at the fluid-particle interface [8,9]. In
7 classical electrokinetics, the electrophoretic velocity, V_{ep} , of a non-polarizable dielectric particle
8 in an unbounded Newtonian fluid exhibits a linear dependence on the electric field, E , and particle
9 zeta potential, ζ_p , via the Smoluchowski equation under the thin EDL limit [10,11],

10
$$V_{ep} = \frac{\varepsilon \zeta_p}{\eta} E \quad (1)$$

11 where ε is the fluid permittivity and η is the fluid viscosity. However, recent studies indicate that
12 the linearity for V_{ep} is valid only in the limit of a weak electric field, $\beta = Ea/\phi \leq 1$, and a small
13 particle zeta potential, $\zeta_p/\phi < 1$, where a is the particle radius and ϕ is the thermal voltage.
14 Under these conditions, the ions within the EDL of the particle can maintain the equilibrium state
15 yielding a homogeneous electrostatic potential and ionic concentration [12-14].

16

17 Increasing the electric field and/or particle zeta potential distorts the EDL and induces ionic fluxes
18 across the EDL because of the surface conduction effect [15-18], leading to a nonlinear
19 dependence of V_{ep} on both E and ζ_p [19-22],

20
$$V_{ep} = \mu_{ep}^{(1)} E + \mu_{ep}^{(3)} E^3 \quad (2)$$

1 $\mu_{ep}^{(3)} \sim Du \frac{\varepsilon a^2}{\eta \phi}$ (3)

2 $Du = \frac{2 \sinh(\zeta_p/2\phi)}{\kappa a} (1 + 2\alpha^-)$ (4)

3 where $\mu_{ep}^{(1)}$ is the linear electrophoretic particle mobility, $\mu_{ep}^{(3)}$ is the nonlinear electrophoretic
 4 particle mobility, Du is the Dukhin number characterizing the surface conduction effect, κ is the
 5 inverse of the Debye length, and α^- is the dimensionless drag coefficient for counter-ions. The
 6 formula for $\mu_{ep}^{(3)}$ in Eq. (3) was obtained by Schnitzer and Yariv [23] for $Du \ll 1$ at small Peclet
 7 numbers, $Pe = \varepsilon \zeta_p E a / \eta D \ll 1$, where D is the effective diffusion coefficients of ions. A similar
 8 formula to Eq. (3) was also reported by Mishchuk and Dukhin [24] while a slightly different
 9 formula was later obtained by Shilov et al. [25] for arbitrary values of Du . Schnitzer et al. [21]
 10 also obtained an expression for $\mu_{ep}^{(3)}$ in the weak-field limit, $\beta \leq 1$, for arbitrary values of Du ,
 11 which, however, shows inconsistencies with that from Shilov et al. [25] because of the ignored ion
 12 advection and other salt related effects in the latter. In all these formulae except that from Schnitzer
 13 et al. [21], $\mu_{ep}^{(3)}$ increases with increasing Du that may be a consequence of the increasing Debye
 14 length, $1/\kappa$, via the decrease of buffer concentration or the increasing particle zeta potential. It
 15 also increases with the particle radius, a , even though Du itself actually gets smaller for larger
 16 particles. At large Peclet numbers, $Pe \gg 1$, or equivalently strong electric fields, $\beta \gg 1$, Schnitzer
 17 & Yariv [23] predicted an $E^{3/2}$ dependent nonlinear electrophoretic particle velocity,

18 $V_{ep} = \mu_{ep}^{(1)} E + \mu_{ep}^{(3/2)} E^{3/2}$ (5)

19 $\mu_{ep}^{(3/2)} \sim f(\zeta_p) Du \frac{\varepsilon \phi^2 a^{1/2}}{\eta (\zeta_p)^{3/2}} \sim f(\zeta_p) \frac{\sinh(\zeta_p/2\phi)}{\kappa a^{1/2} (\zeta_p)^{3/2}}$ (6)

1 where $f(\zeta_p)$ is a function of ζ_p . Therefore, $\mu_{ep}^{(3/2)}$ increases with the increase of particle zeta
2 potential or the decrease of buffer concentration and particle size. Mishchuk and Dukhin [24]
3 reported a different formula for $\mu_{ep}^{(3/2)}$, which decreases with the increase of particle zeta potential.
4 Other theoretical and numerical studies on nonlinear particle electrophoresis can be referred to a
5 recent review article from Khair [26].

6

7 There have also been a few experimental studies on nonlinear electrophoresis of dielectric
8 particles. The earliest experiment seems to be reported by Kontush et al. [27] in a Russian colloidal
9 journal that is unfortunately not accessible to the authors of this work. However, Mishchuk and
10 Dukhin [24] noted that the prediction of $\mu_{ep}^{(3/2)}$ in Eq. (6) agrees closely with the experimental
11 result of Kontush et al. [27] for spherical latex particles. Shilov et al. [25] measured the lateral drift
12 of sedimenting polystyrene particles of 30 μm diameter in water and KCl solution under electric
13 pulses. Their observed cubic electrophoresis for electric fields stronger than 0.1 kV/cm agrees with
14 the theoretical prediction of $\mu_{ep}^{(3)}$ in Eq. (3). Later, Barany [28] reported the measurement of
15 polymer-coated polystyrene particles using the same experimental setup as in Shilov et al. [25],
16 where the cubic electrophoresis is found as theoretically predicted to increase with the particle
17 diameter. Mishchuk and Barninova [29] also observed a greater nonlinear electrophoretic velocity
18 for larger latex particles for electric fields of up to 0.2 kV/cm, in line with the prediction of $\mu_{ep}^{(3)}$ in
19 Eq. (3). In contrast, the nonlinear electrophoretic velocity of larger latex particles was found
20 smaller for larger electric fields of up to 0.8 kV/cm, corresponding to the theoretical prediction of

1 $\mu_{ep}^{(3/2)}$ in Eq. (6) though the Peclet number was reported to remain on the order of 1 in both
2 experiments.

3

4 In another study, Youssefi and Diez [30] measured the electrophoretic velocity of carboxyl treated
5 0.2 μm diameter polystyrene particles for electric fields over the range of 0.1 to 250 kV/cm. They
6 observed a 3/2-order dependence of their electrophoresis measurements on electric fields of up to
7 40 kV/cm, in agreement with the prediction of Eq. (6). For even higher electric fields, their
8 measured electrophoretic velocity still increases with the electric field but slower than the 3/2-
9 order dependence. Tottori et al. [31] studied the electrophoretic motion of highly charged
10 polystyrene and poly(methyl methacrylate) (PMMA) particles of 0.5 μm diameter for electric
11 fields of up to several kV/cm. Their measured nonlinear electrophoretic velocity exhibits a 3-order
12 dependence on the imposed electric field, in good agreement with the theoretical prediction of Eq.
13 (3). In a more recent study, Cardenas-Benitez et al. [32] reported a reversed electrokinetic motion
14 for carboxylated polystyrene particles of 1.0, 1.9, and 5.1 μm diameters in dilute KCl solutions
15 when the imposed electric field is beyond a threshold magnitude (smaller than 1 kV/cm for all
16 cases). The authors termed this state the electrokinetic equilibrium condition (EEC) and explained
17 it using the nonlinear electrophoretic particle velocity in Eq. (2) that increases more quickly with
18 the electric field than the opposing linear electroosmotic fluid velocity. They later used the EEC
19 to obtain the nonlinear electrophoretic mobilities of other types of particles [33,34] and achieve
20 the separation of almost identical particles [35] as well as sub-100 V particle trapping [36].

1
2 However, the current experimental studies are still insufficient for a systematic understanding of
3 the parametric effects of fluid and particle properties on nonlinear electrophoresis. We carry out a
4 set of experiments in this work to investigate the respective effects of buffer concentration, particle
5 size, and particle zeta potential on the nonlinear electrophoretic velocity of dielectric particles in
6 aqueous electrolyte solutions through a straight rectangular microchannel. Specifically we will
7 study if and how the nonlinear electrophoretic particle mobility, $\mu_{ep}^{(n)}$, and nonlinear index, $n \neq 1$,
8 vary with each of these fluid and particle properties.
9

10 **2 Materials and methods**

11 **2.1 Microchannel and chemicals**

12 The microchannel was fabricated from polydimethylsiloxane (PDMS) with the standard soft
13 lithography technique [37]. The channel is straight and 1 cm long with a uniform width and depth
14 of 50 μm each. The experiment studies the effects of three individual parameters on nonlinear
15 particle electrophoresis. The first parameter is buffer concentration, for which 5 μm diameter plain
16 polystyrene particles (Sigma-Aldrich) were re-suspended in phosphate buffer solutions with
17 concentrations ranging from 0.01 to 0.05, 0.075 and 0.1 mM. These solutions were all prepared by
18 diluting the original 50 mM buffer solution (pH = 7) with DI water. The second parameter is
19 particle size, for which 3 μm , 5 μm and 10 μm diameter plain polystyrene particles (Sigma-
20 Aldrich) were each re-suspended in 0.075 mM phosphate buffer. The third parameter is particle

1 zeta potential, for which three types of (nearly) 5 μm diameter polystyrene particles, including 5
2 μm plain particles from Sigma-Aldrich, 4.95 μm fluorescent carboxyl particles from Bangs
3 Laboratories, and 4.8 μm fluorescent carboxylate-modified particles from Thermo-Scientific, were
4 each re-suspended in 0.075 mM phosphate buffer. These particles were noticed to travel at
5 different speeds in the same solution under the same electric field, indicating that they have
6 dissimilar zeta potentials probably because of their intrinsic surface groups.

7

8 **2.2 Experimental technique**

9 The prepared particle suspensions were each driven through the microchannel by a high-voltage
10 DC power supply (Glassman High Voltage) via platinum electrodes inserted into the end-channel
11 reservoirs. The voltages varying from 0.1 to 3 kV were imposed upon the 1 cm long channel,
12 yielding the average electric fields of 0.1 to 3.0 kV/cm. The corresponding dimensionless electric
13 field, $\beta = Ea/\phi$, for $a = 2.5 \mu\text{m}$ particles was calculated to range from 1 to 30. For each applied
14 voltage, the direction of electric field was reversed once via a two-way electric switch to repeat
15 the test for the purpose of canceling the potential influence of backflow. Moreover, each run of
16 test was kept no more than 30 s (i.e., 15 s for each direction) to minimize both the backflow [38]
17 and Joule heating effects [39]. In addition, the reservoirs were intentionally made large to minimize
18 the impact of pH change due to electrolysis at high electric fields, which also facilitates reducing
19 the backflow. The motion of particles was observed to remain along the direction of the applied
20 electric field, indicating stronger fluid electroosmosis (which is along the electric field direction)

1 than particle electrophoresis (which is against the electric field direction) in all tested cases. It was
2 recorded using an inverted microscope imaging system (Nikon Eclipse TE2000U, Nikon
3 Instruments). The CCD camera (Nikon DS-Qi1Mc) was run in a binning mode for increasing the
4 frame rate to around 50 fps at a reduced concentration. The captured images were processed using
5 the Nikon imaging software (NIS-Elements AR 2.30).

6

7 The velocity of particles was measured using the particle tracking velocimetry, where 3-5 particles
8 traveling along the channel centerline (only) were tracked to obtain an average value. To quantify
9 the effect of the potential pressure-driven backflow at high electric fields, we seeded 1 μm diameter
10 polystyrene particles (Bangs Laboratories) into the reference solution, i.e., 0.075 mM buffer, for a
11 real-time recording of the fluid velocity immediately after the electric field was turned off. The
12 measured velocity of the tracer particles along the channel centerline was found no more than 5%
13 of that of our test particles under the highest electric field. We also monitored the temporal
14 variation of electric current in the highest-concentration 0.1 mM buffer for estimating the Joule
15 heating effects and the accompanying electrothermal flow [39]. The electric current rise was found
16 to remain less than 10% of the initial value within 15 s application of the highest 3 kV/cm electric
17 field, indicating a fewer than 5 $^{\circ}\text{C}$ increase in the average fluid temperature for an assumed 2%
18 temperature coefficient of the electric conductivity [40]. This small temperature elevation was
19 assumed to have an insignificant impact on the fluid properties and hence the particle motion. In
20 addition, we estimated that under pure DC electric fields the induced charge electroosmotic flow

1 at the reservoir-microchannel junction [39] is weak with no significant influence on the particle
2 motion inside the microchannel.

3

4 **2.3 Experimental data analysis**

5 The measured particle velocity, V_p , in the straight microchannel is the sum of the electroosmotic
6 fluid velocity, V_{eo} , and electrophoretic particle velocity,

7
$$V_p = V_{eo} + V_{ep} \quad (7)$$

8 We split V_{ep} into the linear component, $V_{ep}^{(1)}$, and the nonlinear component, $V_{ep}^{(n)}$, where the
9 nonlinear index, $n > 1$. Thus, the measured particle velocity can be rewritten as,

10
$$V_p = V_{ek} + V_{ep}^{(n)} \quad (8)$$

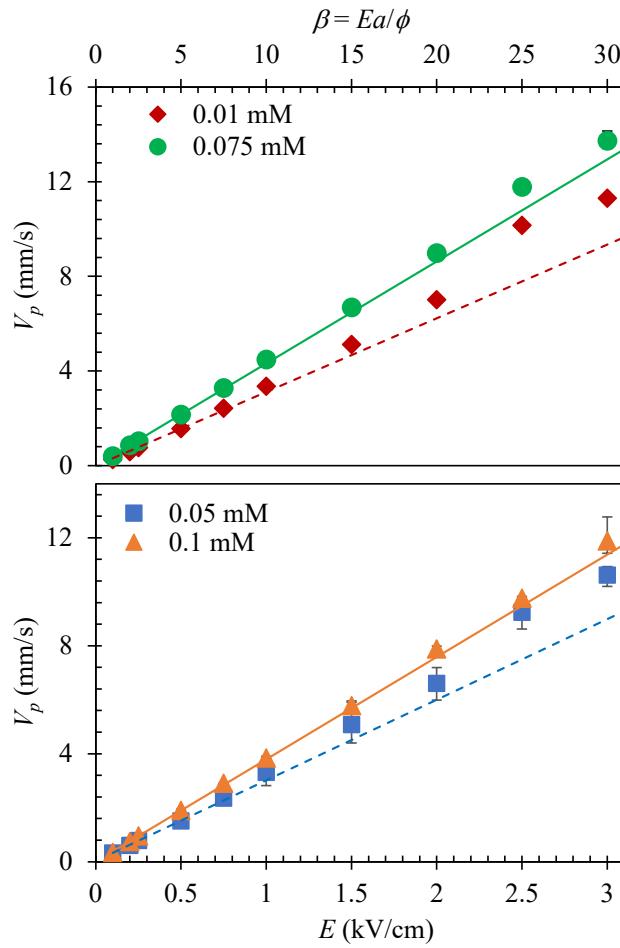
11
$$V_{ek} = V_{eo} + V_{ep}^{(1)} = \mu_{ek}E \quad (9)$$

12
$$V_{ep}^{(n)} = \mu_{ep}^{(n)}E^n \quad (10)$$

13 where V_{ek} is the electrokinetic particle velocity that has been long accepted to scale linearly with
14 the applied electric field in classical electrokinetics [9,12], μ_{ek} is the (linear) electrokinetic particle
15 mobility [11, 14], and $\mu_{ep}^{(n)}$ is the nonlinear electrophoretic particle mobility. The primary objective
16 of this work is to study if and how $\mu_{ep}^{(n)}$ and n vary with the fluid and particle properties. To do so,
17 we utilize the same method as in Tottori et al. [31] to extract $V_{ep}^{(n)}$ from the experimental data.

18 Briefly, the linear electrokinetic particle velocity, V_{ek} , was determined through a linear fit (the
19 slope denotes the electrokinetic particle mobility, μ_{ek}) of the measured particle velocity, V_p , at the
20 three smallest electric fields, i.e., 0.1, 0.2 and 0.25 kV/cm. This analysis was based on the

1 assumption that $V_{ep}^{(n)} \ll V_{ek}$ and hence $V_p \cong V_{ek}$ at small electric fields. The nonlinear
2 electrophoretic particle velocity, $V_{ep}^{(n)}$, was then calculated by subtracting the obtained V_{ek} from
3 the measured V_p . The log-log transformation was then used to determine the nonlinear
4 electrophoretic particle mobility, $\mu_{ep}^{(n)}$, and nonlinear index, n , via the intercept and slope of the
5 linear fit for $V_{ep}^{(n)}$ as a function of E .

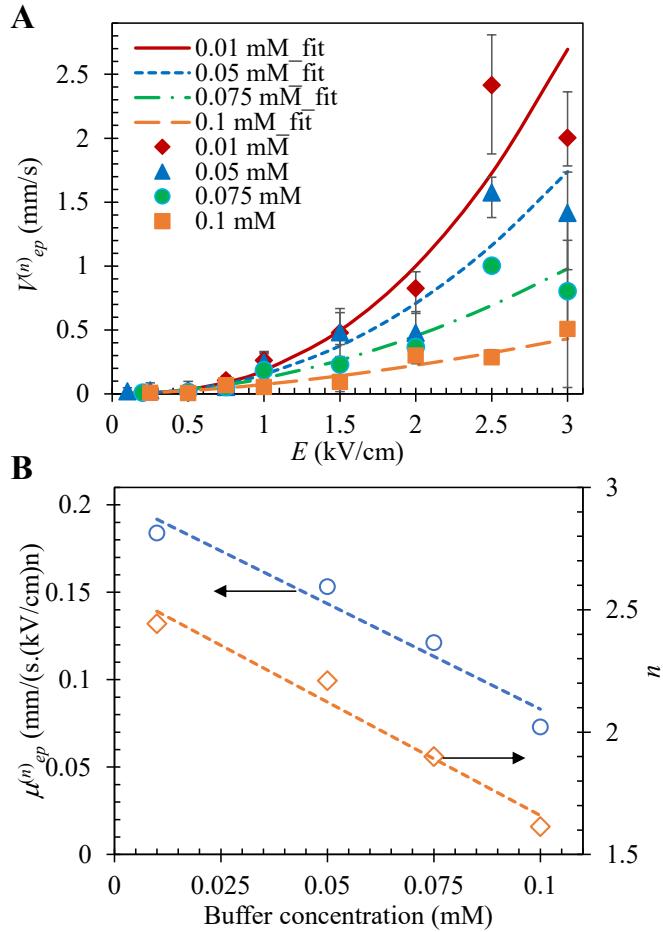

6

7 **3 Results and discussion**

8 **3.1 Effect of buffer concentration**

9 Figure 1 plots the experimentally measured velocities of 5 μm -diameter Sigma-Aldrich particles
10 in buffer solutions with concentration varying from 0.01 to 0.05, 0.075 and 0.1 mM under different
11 electric fields. The error bars (note some of them are within the symbol size and become invisible)
12 highlight the maximum variations of the measured of 3-5 particle velocities with respect to their
13 average for each electric field. The measured particle velocity, V_p , in each buffer solution is
14 observed to increasingly deviate from the linear electrokinetic particle velocity, V_{ek} (reflected by
15 the linear trendlines in Fig. 1), at higher electric fields. This upward trend goes against that reported
16 by Cardenas-Benitez et al. [32], the reason behind which is currently unclear. One possible
17 explanation could be that the electrophoretic particle velocity, V_{ep} , in our experiment decreases
18 nonlinearly with the increase of electric field because of, for example, the predicted retardation
19 effect of surface conduction [23] and/or dielectric-solid polarization at strong fields [43]. We will
20 work on revising the experimental technique to obtain V_{ep} directly. The discrepancy between V_p

1 and V_{ek} , i.e., the nonlinear electrophoretic particle velocity, $V_{ep}^{(n)}$, exhibits an apparent dependence
 2 on the buffer concentration in Fig. 1. The Peclet number in this experiment was estimated to vary
 3 from around 2 to 60 using $Pe = V_p a/D$ based on the effective diffusion coefficient, $D = 0.5 \times$
 4 $10^{-9} \text{ m}^2/\text{s}$ [41], and the average V_p of 0.4 and 12 mm/s for the lowest and highest electric fields of
 5 0.1 and 3 kV/cm, respectively. This range of Pe covers both $1 < Pe < 10$ and $Pe \gg 1$, implying
 6 that $V_{ep}^{(n)}$ may be inclined towards $V_{ep}^{(3/2)}$ in Eq. (6).

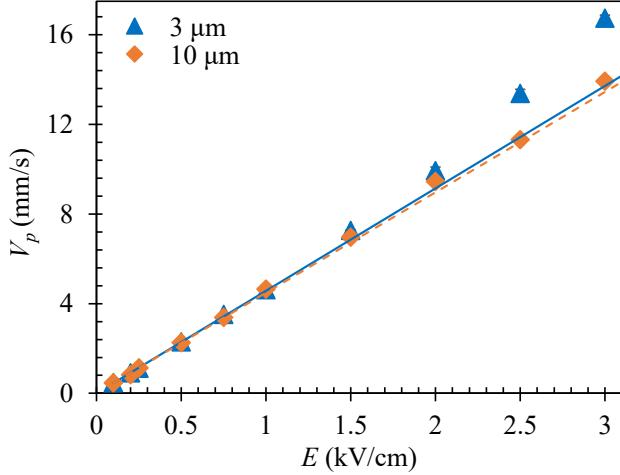


7
 8 **Figure 1.** Experimentally measured (symbols with error bars) velocity, V_p , of 5 μm -diameter
 9 Sigma-Aldrich particles against electric field in 0.01, 0.05, 0.075 and 0.1 mM buffer solutions.

1 The solid and dashed lines are the linear fits of the experimental data points at the three smallest
2 electric fields, representing the linear electrokinetic particle velocity, V_{ek} .

3

4 A summary of $V_{ep}^{(n)}$ in the four buffer solutions is shown in Fig. 2A as a function of the electric
5 field. There is a clear trend that the nonlinear particle electrophoresis gets enhanced in lower-
6 concentration buffers, which should be attributed to the thicker EDL therein (characterized by the
7 Debye length, $1/\kappa$) and hence the stronger surface conduction effect. This trend is consistent with
8 the predictions of both $\mu_{ep}^{(3)}$ in Eq. (3) and $\mu_{ep}^{(3/2)}$ in Eq. (6) in terms of the increased Dukhin
9 number, Du . The experimentally obtained data for $V_{ep}^{(n)}$ in each buffer solution are found to be best
10 fitted with a positive power trendline as illustrated in Fig. 2A. We used the log-log transformation
11 (see Fig. S-1 in the Supporting Information for the log-log plot) as noted above to determine the
12 nonlinear electrophoretic particle mobility, $\mu_{ep}^{(n)}$, and nonlinear index, n , from the linear fit of $V_{ep}^{(n)}$
13 against E . Fig. 2B presents the extracted $\mu_{ep}^{(n)}$ and n that each exhibit a linear decreasing trend with
14 the increase of buffer concentration. Specifically, the value of n decreases from approximately 2.4
15 in 0.01 mM buffer to 1.6 in 0.1 mM buffer, both of which appear to be within the theoretically
16 predicted $n = 3$ and $3/2$ for small and large electric fields [23,24], respectively. The value of
17 $\mu_{ep}^{(n)}$, whose unit is noted to vary roughly around $n = 2$, decreases from approximately 0.18 to 0.08
18 mm/(s·(kV/cm)²) when the buffer concentration increases from 0.01 to 0.1 mM. As the change of
19 buffer concentration often modifies the particle zeta potential [42], the observed trend for $\mu_{ep}^{(n)}$ may
20 be associated with both factors. The sole effect of particle zeta potential will be discussed later in
21 section 3.3.


1
2 **Figure 2.** Nonlinear electrophoresis of 5 μm -diameter Sigma-Aldrich particles in 0.01, 0.05, 0.075
3 and 0.1 mM buffer solutions: (A) Experimentally obtained (symbols with error bars) nonlinear
4 electrophoretic velocity, $V_{ep}^{(n)}$, as a function of electric field, where the curves are the positive
5 power trendlines best fitted for the experimental data points; (B) Analytically extracted (symbols)
6 nonlinear electrophoretic particle mobility, $\mu_{EP}^{(n)}$, and nonlinear index, n , from the power trendlines
7 in (A) as a function of the buffer concentration, where the dashed lines are the linear fits for the
8 analytical data points.

9

10 **3.2 Effect of particle size**

11 Figure 3 shows the experimentally measured velocities for 3 μm and 10 μm -diameter Sigma-
12 Aldrich particles in 0.075 mM buffer solution. The electrokinetic particle velocity, V_{ek} (see the

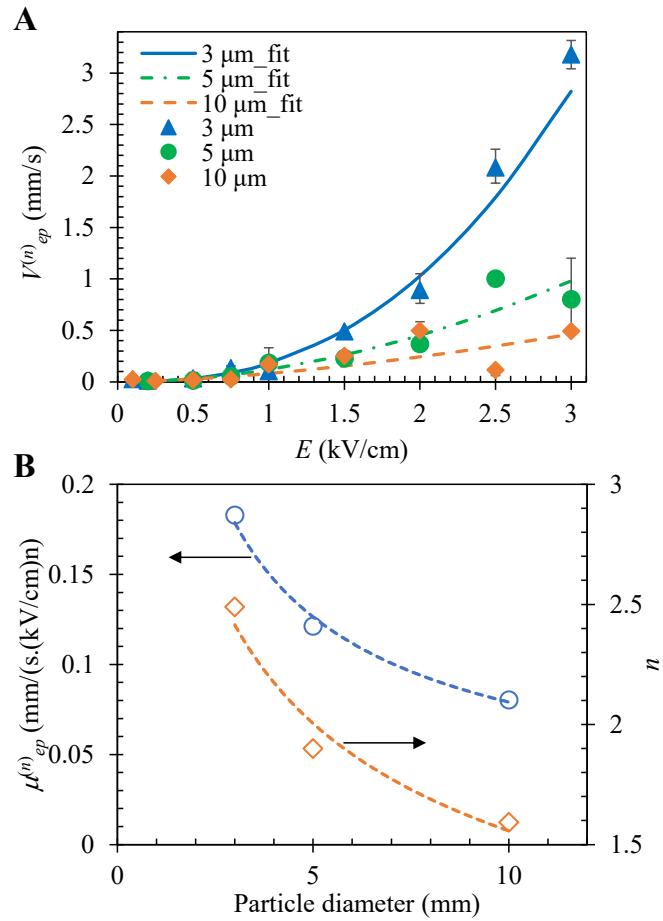
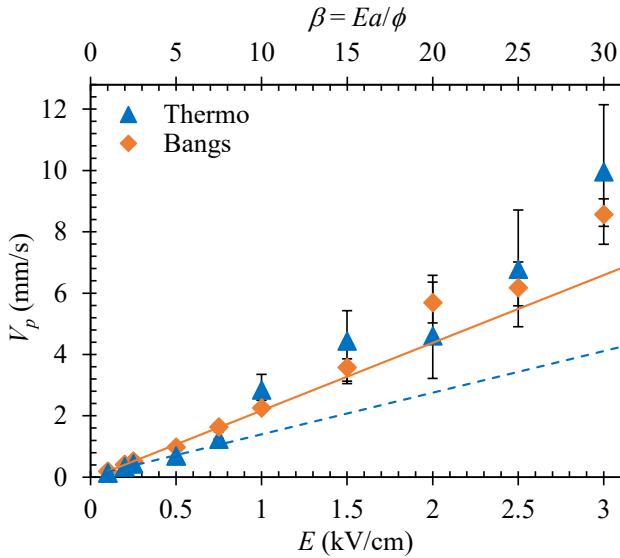

1 linear trendlines), is found insensitive to the particle size (including 5 μm), so is the electrokinetic
2 particle mobility, $\mu_{ek} = 4.3 \times 10^{-8} \text{ m}^2/\text{V}\cdot\text{s}$, and particle zeta potential. However, the deviation of
3 the measured particle velocity, V_p , from V_{ek} is clearly greater for the smaller 3 μm particles. The
4 estimated Peclet number spans from around 1.2 to 36 for 3 μm particles and from 4 to 120 for 10
5 μm ones over the range of electric fields tested. Both ranges of Pe remain in the intermediate ($1 <$
6 $Pe < 10$) and high ($Pe \gg 1$) regimes, and hence $V_{ep}^{(n)}$ should be also inclined towards $V_{ep}^{(3/2)}$ for
7 3 μm and 10 μm particles. The experimentally obtained nonlinear electrophoretic velocities, $V_{ep}^{(n)}$,
8 for the three sizes of particles are compared in Fig. 4A, which shows a generally increasing trend
9 with the decrease of particle diameter over the range of electric fields. They are again each best
10 fitted with a positive power trendline, whose intercept and slope in the log-log space (see Fig. S-2
11 in the Supporting Information) gives the nonlinear electrophoretic particle mobility, $\mu_{ep}^{(n)}$, and
12 nonlinear index, n , respectively. The extracted values of $\mu_{ep}^{(n)}$ and n both decrease with the increase
13 of particle diameter, which are each best fitted with a negative power trendline as viewed in Fig.
14 4B.

Figure 3. Experimentally measured (symbols with error bars) velocity, V_p , of 3 and 10 μm -diameter Sigma-Aldrich particles in 0.075 mM buffer solution at varying electric fields. The solid and dashed lines are the linear fits of the experimental data points at the three smallest electric fields, representing the linear electrokinetic particle velocity, V_{ek} .

It is noted from Eq. (4) that the Dukhin number, Du , get larger for smaller particles, which should yield stronger surface conduction effects. However, the theoretically predicted $\mu_{ep}^{(3)}$ in Eq. (3) for small Peclet numbers turns out to be a positive function of the particle diameter. Such a trend goes against our observation in Fig. 4B, where the value of $\mu_{ep}^{(n)}$ decreases from approximately 0.18 to 0.08 $\text{mm}/(\text{s}\cdot(\text{kV}/\text{cm})^2)$ for assumed $n = 2$ when the particle diameter increases from 3 μm to 10 μm . It, however, appears consistent with the prediction of $\mu_{ep}^{(3/2)} \sim a^{-1/2}$ in Eq. (6) for large Peclet numbers because our estimated Pe are indeed more inclined towards the high regime as noted above. Moreover, the extracted range of $\mu_{ep}^{(n)}$ for particles of different sizes in Fig. 4B is found to match that in Fig. 2B for 5 μm particles in buffers of varying concentrations. In addition, our extracted value of n decreases from approximately 2.5 for 3 μm particles to 1.6 for 10 μm particles.

1 This range is also consistent with the experimentally obtained variation of n in Fig. 2B, and is
 2 again within that of the theoretically predicted $n = 3$ and $3/2$ for small and large electric fields
 3 [23,24], respectively.

4
 5 **Figure 4.** Nonlinear electrophoresis of 3, 5 and 10 μm -diameter Sigma-Aldrich particles in 0.075
 6 mM buffer solution: (A) Experimentally obtained (symbols with error bars) nonlinear
 7 electrophoretic velocity, $V_{ep}^{(n)}$, as a function of electric field, where the curves are the positive
 8 power trendlines best fitted for the experimental data points; (B) Analytically extracted (symbols)
 9 nonlinear electrophoretic particle mobility, $\mu_{EP}^{(n)}$, and nonlinear index, n , from the power trendlines
 10 in (A) as a function of the particle diameter, where the dashed lines are the power fits for the
 11 analytical data points.


12

3.3 Effect of particle zeta potential

2 Figure 5 shows the experimentally measured velocities of 5 μm -diameter Thermo (Scientific) and
 3 Bangs (Laboratories) particles in 0.075 mM buffer solution. The electrokinetic velocity, V_{ek} (see
 4 the linear trendlines), of Thermo particles is smaller than that of Bangs particles, both of which are
 5 lower than that of Sigma (Aldrich) particles. The measured velocity, V_p , of Thermo particles shows
 6 a greater deviation from V_{ek} than that of Bangs particles, indicating stronger nonlinear
 7 electrophoresis. The estimated Peclet number is $1 \leq Pe \leq 43$ for Bangs particles and $0.6 \leq Pe \leq$
 8 50 for Thermo particles over the range of electric fields tested. Therefore, the nonlinear
 9 electrophoretic velocities, $V_{ep}^{(n)}$, should be in theory inclined towards $V_{ep}^{(3/2)}$ for both types of
 10 particles. Fig. 6A compares the experimentally determined, $V_{ep}^{(n)}$, for the three types of particles,
 11 which are each best fitted with a positive power trendline. It is apparent that $V_{ep}^{(n)}$ grows larger
 12 with the decrease of V_{ek} over the range of electric fields, where the linear electrokinetic particle
 13 velocity, V_{ek} , as traditionally defined in Eq. (9), depends on the particle zeta potential via the
 14 following (linear) electrokinetic mobility, μ_{ek} , under the thin EDL limit [9,11,14],

$$15 \quad \mu_{ek} = \frac{\varepsilon(\zeta_p - \zeta_w)}{\eta} \quad (11)$$

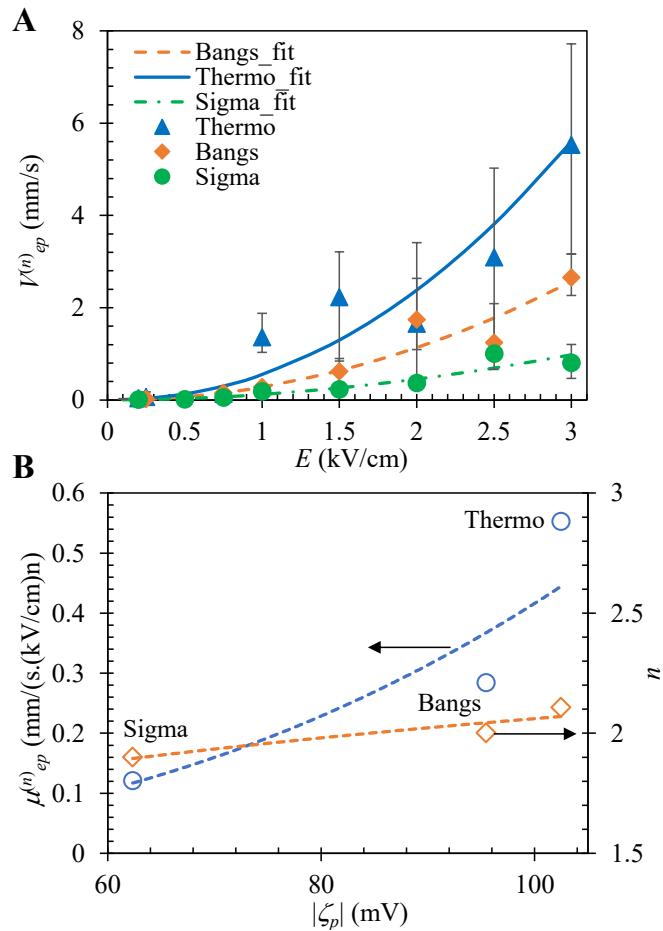

16 The wall zeta potential, ζ_w , for 0.075 mM buffer was found to be around -123 mV from the
 17 experimentally measured electroosmotic fluid velocity via the electric current monitoring method
 18 [44]. The particle zeta potential, ζ_p , was then calculated from Eq. (11) using the experimentally
 19 determined μ_{ek} .

Figure 5. The experimentally measured (symbols with error bars) velocity, V_p , of 5 μm -diameter Thermo-Scientific and Bangs Laboratories particles in 0.075 mM buffer solution at varying electric fields. The solid and dashed lines are the linear fits of the experimental data points at the three smallest electric fields, representing the linear electrokinetic particle velocity, V_{ek} .

Figure 6B shows the extracted values of $\mu_{ep}^{(n)}$ and n as a function of $|\zeta_p|$ from the power trendlines in Fig. 6A (see Fig. S-3 in the Supporting Information for the log-log plot). The nonlinear index increases slightly from $n = 1.9$ for Sigma particles at $\zeta_p = -62.3$ mV to $n = 2.1$ for Thermo particles at $\zeta_p = -102.5$ mV. Accordingly, the nonlinear electrophoretic particle mobility increases quickly from $\mu_{ep}^{(n)} = 0.12$ to $0.55 \text{ mm}/(\text{s}\cdot(\text{kV}/\text{cm})^2)$ (for assumed $n = 2$), where the data points can be fitted with a positive power trendline. Such an increasing trend with $|\zeta_p|$ for $\mu_{ep}^{(n)}$ seems consistent with the recent report of Tottori et al. [31] on the nonlinear electrophoresis of polystyrene and PMMA particles. It may be the consequence of the enhanced surface conduction effect as reflected by the increasing Dukhin number in the theoretical prediction of $\mu_{ep}^{(3/2)}$ in Eq.

1 (6) for high Peclet numbers. Specifically, the estimated value of Du [with $\alpha^- = 0.25$ in Eq. (4)],
 2 increases from 0.067 for Sigma particles to 0.14 and 0.16 for Bangs and Thermo particles,
 3 respectively, with the increase of $|\zeta_p|$. This trend is noted to also agree with the prediction of $\mu_{ep}^{(3)}$
 4 in Eq. (3) for low Peclet numbers. It, however, goes against that reported by Vaghef-Koodehi et
 5 al. [35], the reason behind which is currently unclear. Overall, our observed buffer concentration,
 6 particle size, and particle zeta potential effects on nonlinear electrophoresis are all in good
 7 agreement with the prediction of $\mu_{ep}^{(3/2)}$ in Eq. (6). This phenomenon seems to align with our
 8 estimated values of Peclet number that are more inclined towards the high regime.

9

1 **Figure 6.** Nonlinear electrophoresis of 5 μm -diameter Thermo-Scientific, Bangs Laboratories and
2 Sigma-Aldrich particles in 0.075 mM buffer solution: (A) Experimentally obtained (symbols with
3 error bars) nonlinear electrophoretic velocity, $V_{ep}^{(n)}$, as a function of electric field, where the curves
4 are the power trendlines best fitted for the experimental data points; (B) Analytically extracted
5 (symbols) nonlinear electrophoretic mobility, $\mu_{EP}^{(n)}$, and nonlinear index, n , from the power
6 trendlines in (A) as a function of the particle zeta potential, $|\zeta_p|$, where the dashed lines are the
7 power fits for the analytical data points.

8

9 **4 Concluding remarks**

10 We have experimentally studied the effects of buffer concentration, particle size, and particle zeta
11 potential on the nonlinear electrophoresis of polystyrene particles in a straight rectangular
12 microchannel. The measured data for the nonlinear electrophoretic particle velocity as a function
13 of the applied electric field are best fitted with a positive power trendline for each case. The
14 nonlinear electrophoretic particle mobility, $\mu_{ep}^{(n)}$, and nonlinear index, n , extracted from the
15 trendlines are both found to increase with the decrease of buffer concentration and particle size or
16 the increase of particle zeta potential. However, the nonlinear index, n , stays at the value of 2 with
17 a deviation of no more than ± 0.5 in all the tested cases, which appears to be within the 3- and 3/2-
18 order dependences for low and high electric fields, respectively. Moreover, the obtained trends for
19 $\mu_{ep}^{(n)}$ as a function of the tested fluid and particle properties are all consistent with the theoretical
20 prediction of $\mu_{ep}^{(3/2)}$ in terms of the Dukhin number. This observation turns out to be in line with
21 our estimated values of Peclet number that are inclined towards the high regime in all cases. For
22 future work, we will study if biological cells experience nonlinear electrophoresis [45] that may

1 be utilized for enhanced detection throughput [46]. We will also look into the influences of other
2 factors on nonlinear particle electrophoresis such as dielectric polarization and hydrophobicity etc.
3 [43,47-50].

4

5 *This work was supported in part by NSF under grant number CBET-2100772 and CBET-2127825,*
6 *and by Clemson University through the Creative Inquiry Program.*

7

8 *The authors have declared no conflict of interest.*

9

10 **Data availability statement**

11 The data that support the findings of this study are available from the corresponding author upon
12 reasonable request.

13

14 **5 References**

- 15 [1] Xuan, X., *Electrophoresis* 2019, *40*, 2484-2513.
- 16 [2] Vaghef-Koodehi, A., Lapizco-Encinas, B. H., *Electrophoresis* 2022, *43*, 263–287.
- 17 [3] Diaz-Armas, G. G., Cervantes-Gonzalez, A. P., Martinez-Duarte, R., Perez-Gonzalez, V.
18 H., *Electrophoresis* 2022, *43*, 327–339.
- 19 [4] Kang, Y., Li, D., *Microfluid. Nanofluid.* 2009, *6*, 431-460.
- 20 [5] Zhao, C., Yang, C., *Microfluid. Nanofluid.* 2012, *13*, 179-203.

- 1 [6] Khair, A. S., Poslusny, D. E., Walker, L. M., *Phys. Rev. E* 2012, *85*, 016320.
- 2 [7] Zhao, C., Yang, C., *Adv. Colloid. Interface Sci.* 2013, *201-202*, 94-108.
- 3 [8] Hunter, R. J., *Zeta potential in colloid science*, Academic Press, New York 1981.
- 4 [9] Masliyah, J. H., Bhattacharjee, S., *Electrokinetic and Colloid Transport Phenomena*,
5 Wiley-Interscience 2006.
- 6 [10] Morrison, F. A., *J. Colloid. Interface Sci.* 1970, *34*, 210-214.
- 7 [11] Li, D. *Electrokinetics in microfluidics*, Elsevier Academic Press, Burlington, MA 2004.
- 8 [12] Lyklemma, J., *Fundamentals of Interface and Colloid Science*, Academic Press 1991.
- 9 [13] Dukhin, S. S., *Adv. Colloid Interface Sci.* 1993, *44*, 1-134.
- 10 [14] Chang, H. C., Yeo, L. Y., *Electrokinetically Driven Microfluidics and Nanofluidics*,
11 Cambridge University Press, New York 2010.
- 12 [15] O'Brien, R. W., White, L. R., *J. Chem. Soc. Faraday Trans.* 1978, *74*, 1607-1626.
- 13 [16] Dukhin, S. S., Shilov, V. N., *Adv. Colloid Interface Sci.* 1980, *13*, 153–195.
- 14 [17] O'Brien, R. W., *J. Colloid Interface Sci.* 1983, *92*, 204-216.
- 15 [18] Schnitzer, O., Yariv, E., *Phys. Rev. E* 2012, *86*, 021503.
- 16 [19] Dukhin, S. S., *Adv. Colloid Interface Sci.* 1991, *36*, 219-248.
- 17 [20] Mishchuk, N. A., *Adv. Colloid Interface Sci.* 2010, *160*, 16-39.
- 18 [21] Schnitzer, O., Zeyde, R., Yavneh, I., Yariv, E., *Phys. Fluids* 2013, *25*, 052004.
- 19 [22] Sherwood, J. D., Ghosal, S., *J. Fluid. Mech.* 2018, *843*, 847-871.
- 20 [23] Schnitzer, O., Yariv, E., *Phys. Fluids* 2014, *26*, 122002.

- 1 [24] Mishchuk, N. A., Dukhin, S. S., *Electrophoresis* 2002, 23, 2012–2022.
- 2 [25] Shilov, V., Barany, S., Grosse, C., Shramko, O., *Adv. Colloid Interface Sci.* 2003, 104, 159–
- 3 173.
- 4 [26] Khair, A. S., *Current Opinion Colloid Interface Sci.* 2022, 59, 101587.
- 5 [27] Kontush, S. M., Dukhin, S. S., Vidov, O. I., *Kolloidnyi Zh.* (in Russian) 1994, 56, 654–660.
- 6 [28] Barany, S., *Adv. Colloid Interface Sci.* 2009, 147–148, 36–43.
- 7 [29] Mishchuk, N. A., Barinova, N. O., *Colloid J.* 2011, 73, 88–96.
- 8 [30] Youssefi, M. R., Diez, F. J., *Electrophoresis* 2016, 37, 692.
- 9 [31] Tottori, S., Misiunas, K., Keyser, U. F., *Phys. Rev. Lett.* 2019, 123, 014502.
- 10 [32] Cardenas-Benitez, B., Jind, B., Gallo-Villanueva, R. C., Martinez-Chapa, S. O., Lapizco-
- 11 Encinas, B. H., Pérez-González, V. H., *Anal. Chem.* 2020, 92, 12871–12879.
- 12 [33] Coll De Peña, A., Miller, A., Lentz, C. J., Hill, N., Parthasarathy, A., Hudson, A. O.,
- 13 Lapizco-Encinas, B. H., *Anal. Bioanal. Chem.* 2020, 412, 3935–3945.
- 14 [34] Antunez-Vela, S., Perez-Gonzalez, V. H., De Peña, A. C., Lentz, C. J., Lapizco-Encinas, B.
- 15 H., *Anal. Chem.* 2020, 92, 14885–14891.
- 16 [35] Vaghef-Koodehi, A., Dillis, C., Lapizco-Encinas, B. H., *Anal. Chem.* 2022, 94, 6451–6456.
- 17 [36] Ruz-Cuen, R., de los Santos-Ramírez, J. M., Cardenas-Benitez, B., Ramírez-Murillo, C. J.,
- 18 Miller, A., Hakim, K., Lapizco-Encinas, B. H., Perez-Gonzalez, V. H., *Lab Chip*, 2021, 21,
- 19 4596–4607.
- 20 [37] Zhu, J., Xuan, X., *Electrophoresis* 2009, 30, 2668–2675.

- 1 [38] Yan, D., Yang, C., Huang, X., *Microfluid. Nanofluid.* 2007, *3*, 333-340.
- 2 [39] Xuan, X., *Electrophoresis* 2021, *43*, 167–189. <https://doi.org/10.1002/elps.202100090>
- 3 [40] Xuan, X., *Electrophoresis* 2008, *29*, 33-43.
- 4 [41] DGT Research, <https://www.dgtresearch.com/diffusion-coefficients/>.
- 5 [42] Kirby, B. J., Hasselbrink Jr., E. F., *Electrophoresis* 2004, *25*, 203-213.
- 6 [43] Schnitzer, O., Yariv, E., *Phys. Fluids* 2012, *24*, 082005.
- 7 [44] Sze, A., Erickson, D., Ren, L., Li, D., *J. Colloid Interface Sci.* 2003, *261*, 402–410.
- 8 [45] Li, N., Wang, P., Wang, S., Wang, C., Zhou, H., Kapur, S., Zhang, J., Song, Y., *J. Environ. Chem. Eng.* 2022, *10*, 107516.
- 9 [46] Hou, T., Chang, H., Jiang, H., Wang, P., Li, N., Song, Y., Li, D., *Measurement* 2022, *187*, 110304.
- 10 [47] Yossifon, G., Frankel, I., Miloh, T., *Phys. Fluids* 2007, *19*, 068105.
- 11 [48] Yariv, E., Davis, A. M. J., *Phys. Fluids* 2010, *22*, 052006.
- 12 [49] Bhattacharyya, S., De, S., *Phys. Rev. E* 2015, *92*, 032309.
- 13 [50] Bhattacharyya, S., Majee, P. S., *Phys. Rev. E* 2017, *95*, 042605.