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Abstract

Contrastive learning (or its variants) has recently be-
come a promising direction in the self-supervised learn-
ing domain, achieving similar performance as supervised
learning with minimum fine-tuning. Despite the labeling ef-
ficiency, wide and large networks are required to achieve
high accuracy, which incurs a high amount of computation
and hinders the pragmatic merit of self-supervised learn-
ing. To effectively reduce the computation of insignificant
features or channels, recent dynamic pruning algorithms
for supervised learning employed auxiliary salience pre-
dictors. However, we found that such salience predictors
cannot be easily trained when they are naively applied to
contrastive learning from scratch. To address this issue,
we propose contrastive dual gating (CDG), a novel dy-
namic pruning algorithm that skips the uninformative fea-
tures during contrastive learning without hurting the train-
ability of the networks. We demonstrate the superiority
of CDG with ResNet models for CIFAR-10, CIFAR-100,
and ImageNet-100 datasets. Compared to our implemen-
tations of state-of-the-art dynamic pruning algorithms for
self-supervised learning, CDG achieves up to 15% accu-
racy improvement for CIFAR-10 dataset with higher com-
putation reduction.

1. Introduction

The success of the conventional supervised learning
relies on the large-scale labeled dataset to minimize the
loss and achieve high accuracy. However, manually an-
notating millions of data samples is labor-intensive and
time-consuming. This promotes the self-supervised learn-
ing (SSL) to be an attractive solution, since artificial labels
are used instead of human-annotated ones for training.

The state-of-the-art self-supervised learning frame-
works, such as SimCLR [3] and MoCo [ 1], utilize the con-
cept of contrastive learning (CL) [9] with wide and deep
models to achieve comparable performance as the super-
vised training counterpart. Figure 1 shows the CIFAR-10
inference accuracy vs. the number of floating-point opera-
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Figure 1. Inference accuracy of various ResNet models with su-

pervised and self-supervised training [3] from scratch. After con-

trastive pre-training, models are fine-tuned on 50% of training set.

tions (FLOPs). By training from scratch, SimCLR [3] re-
quires a model that is 4 times wider (ResNet-18 (4x)) to
achieve similar accuracy as the baseline model trained with
supervised learning (ResNet-18 (1x)). On the other hand,
it is also difficult to achieve good accuracy with the com-
pact model architecture (e.g., ResNet-20). The extraordi-
nary computation cost necessitates efficient computation re-
duction techniques for self-supervised learning.

Under the context of supervised learning, network spar-
sification has been widely studied. Both static weight prun-
ing [10,21] and dynamic computation skipping [1,8, 14,16,
20] have achieved high accuracy with pruned architecture or
sparse features. A recent work [2] reported the transferabil-
ity of applying the lottery ticket hypothesis [7] to SSL for
the downstream tasks. However, the requirements of self-
supervised pretraining and iterative searching greatly limit
the practicality of the algorithm. Sparsifying the SSL mod-
els that are trained from scratch is still largely unexplored,
despite its importance.

To address this research gap, we investigate efficient dy-
namic sparse feature learning by training the model from
scratch in a self-supervised fashion. Most of the prior
works on dynamic computation reduction [1, 8, 16,20] ex-
ploit the spatial sparsity by using an auxiliary mini neu-
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Figure 2. Overview of the proposed Contrastive Dual Gat-
ing (CDG) algorithm based on SimCLR [3] framework, which
learns sparse feature in both constrative branches.

ral network (mini-NN) to determine the feature salience.
Besides the extra computation cost of the mini-NN-based
salience prediction, we found that it is problematic to use
for contrastive learning due to significant accuracy degra-
dation (see Section 5 for more details).

To resolve the issue, we propose Contrastive Dual Gat-
ing (CDG), a dynamic sparse feature learning algorithm
for contrastive self-supervised learning. As opposed to the
mini-NN-based salience prediction, CDG exploits spatial
redundancy by using a spatial gating function. Different
from channel gating network (CGNet) [14] presented for
supervised learning, the proposed CDG algorithm for self-
supervised learning exploits the spatial redundancies with
full awareness of the saliency difference between the con-
trastive branches. As illustrated in Figure 2, CDG learns
the sparse features in both contrastive branches during the
unsupervised learning process. Furthermore, CDG can ex-
ploit the sparse features in both structured and unstructured
manner. Aided by the efficient and optimized sparsification,
CDG achieves high FLOPs reduction and high inference ac-
curacy, without any auxiliary predictors. Overall, the main
contributions of this work are:

e Contrary to dynamic pruning for supervised learning
where mini-NN-based saliency prediction improved
the overall performance, we show that such auxiliary
predictor scheme leads to inferior accuracy in dynamic
pruning for self-supervised learning.

e We present CDG, a new dynamic pruning algorithm
with dual gating strategy, designed for contrastive self-
supervised training with multiple recent contrastive
learning frameworks.

* We evaluate CDG for ResNet models across multi-
ple datasets, where CDG achieved up to 2.25x and
1.65 x computation reduction for CIFAR-10/-100 [15]
and ImageNet-100 datasets, respectively.

2. Related Work
2.1. Dynamic computation reduction

Learnable salience prediction. The inflation of the
model sizes produces the different channel importance with
the changing inputs. Several recent works proposed to use
an additional mini-NN to predict the uninformative fea-
tures or channels. Given the high-dimensional input, the
salience predictor generates the low-dimensional salience
vector, which will be used to formulate the binary feature
masks during supervised training.

FBS [8] estimates the input channel importance by
using an additional fully-connected (FC) layer followed
by the ReLU activation function. Dynamic group con-
volution (DGC) [20] extends the design of FBS with
more FC layers while deploying separate salience predic-
tors in different output channel groups. Dynamic dual
gating (DDG) [16] utilizes both convolution and fully-
connected layers to exploit spatial and channel feature spar-
sity. The complex salience predictor designs improve the
computation reduction with the cost of deteriorating the
trainability of the model. DDG [16] requires the pretrained
static model for initialization, even for the CIFAR-10 [15]
dataset. None of the salience predictor designs have been
studied for self-supervised learning.

Channel gating-based dynamic pruning. Channel gat-
ing networks (CGNet) [14] first executes a subset of input
channels in every layer W}, (base path), the resultant par-
tial sum will be strategically gated to determine the remain-
ing computation of the convolution layer W, (conditional
path). Strong correlations have been reported between the
base path outcomes and the final sum output, which means
the uninformative features of the base path computation are
also highly likely to be unimportant for the conditional path.
The salience of the computation is evaluated based on the
normalized base path output, where the features with large
magnitude are deemed important and selected. Specifically,
the base path output is formulated as:

}/base = Xbase * Wy (1)

Subsequently, the computation decision M, € {0,1} for
the conditional path W, can be computed as:

M. = os(normal(Yyuse) — 7), 2)

where 7 represents the learnable gating threshold. For bet-
ter gradient approximation, the non-linear function o4 con-
sists of a non-linear activation function and a unified step
function. The features with small magnitude (less than the
threshold) will be gated, and the binary decision mask M,
will be applied to the conditional path computation. The fi-
nal output of the convolution layer combines the dense base
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path and the sparse conditional path:

{Kjase}i,j,k
{}/base}i,j,k + {}/cond}i,j,k

if {M.}; =0
if{M.}; =1

3)
As orthogonal to other methods that exploit the structured
channel sparsity, CGNet focuses on fine-grained sparsity
along the spatial axes. However, employing the unstruc-
tured sparsity in hardware could be cumbersome due to the
fine-grained sparse indexes. As a result, the structured fea-
ture sparsity should also be carefully investigated.

Qg =

2.2. Contrastive self-supervised learning

In contrast to learning the representative features with
the labeled data, contrastive learning (CL) trains the model
based on the latent contrastiveness of the high-dimensional
features [12, 13]. With the similarity-based contrastive loss
function [ 18], CL maximizes the agreement between similar
samples while repelling mismatched representations from
each other. The success of the contrastive loss enables
the state-of-the-art methods to optimize the model by using
gradient-based learning.

As a representative work, SimCLR [3] encodes two sets
of augmented inputs (e.g., color jitter, Gaussian blur) with
one single base encoder. Such end-to-end training frame-
works exhibit less complexity but perform better with large
models. However, the impact of the salience difference be-
tween the augmented features is still not clearly understood,
which could largely impact the dynamic pruning perfor-
mance for contrastive learning.

3. Learning Sparse Features with Contrastive
Training

In this section, we discuss the optimal dynamic gating
strategy for self-supervised sparse feature learning. We use
ResNet-18 architecture as the default base encoder of Sim-
CLR [3] contrastive learning framework.

3.1. Non-transferability of dynamic sparse masks

The pruning decision of CGNet [14] is formulated by
evaluating the feature salience of the base path outcome.
With supervised learning, all the intermediate features maps
are originated from the clean input image. However, in the
contrastive supervised learning scheme, the inputs of the
base encoder are the transformed images for different con-
trastive branches. For SimCLR [3], the two transformed
inputs are generated by the separate transformation opera-
tors from the same augmentation family 7. Therefore, the
question arises: Given the unique encoder network, will the
base path feature salience be similar between the two aug-
mented paths? In other words, can the pruning decisions be
transferred between the two augmented features?
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Figure 3. Broadcasting the computed sparse masks MZ* to both
contrastive paths results in: (a) reduced contrastive training loss,
and (b) defective generalizability with unsuccessful supervised lin-
ear evaluation.

To answer the above questions, we use CGNet [14] as
the starting point but disable the channel shuffling to avoid
the distortion of randomness. Given the two contrastive
branches a; and as, we first compute M2* based on Eq. 2
with the base path input X;'! | then broadcast M2 to the

base’
conditional path of both contrastive branches:
Yeona = Xeona ¥ We - MY, )
Yc?)%;ld = Xg(?nd * WC ’ Mglv (5)
where
M?* = o,(normal(Y,!’ ) — 7) (6)

We train a ResNet-18 encoder from scratch on the CIFAR-
10 dataset. Due to the low resolution (32x32), the random
Gaussian blur is excluded from the augmentation. Simi-
lar transformation methods have been verified in a previ-
ous implementation [6]. As shown in Figure 3(a), apply-
ing the identical dynamic pruning mask leads to a large re-
duction in contrastive loss from the baseline. However, the
low contrastive pre-training loss cannot empower the subse-
quent supervised linear evaluation stage. The low accuracy
is shown in Figure 3(b) implies that the feature extractor is
defective due to unsuccessful contrastive learning.

With the absence of the geometric transformations,
broadcasting the dynamic sparse masks across different
contrastive paths can be considered as revealing similar spa-
tial features during the conditional path convolution. After
convolving with the shared conditional path W, the pro-
jected low-dimensional vectors tend to have high similar-
ities, leading to decreased contrastive loss. Summarizing
these empirical results, our main observations are:

Al: The unanimous data transformation operation
T and the identical encoder f cannot guarantee the fea-
ture salience to be similar across different augmented
branches. The observation of A1 yields the following con-
clusion of dynamic pruning:

C1: Due to the distinct feature salience of contrastive
learning, the pruning decision M. is non-transferable
between the contrastive branches.
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Gating Cond. path Inference

Methods Groups Spars. (%) Acc. (%)
Baseline - - 89.16
Unified Gating 4 52.29 52.53
Dual Gating 4 71.88 87.67

Table 1. Comparison of different gating schemes for CIFAR-10
accuracy after contrastive pre-training and linear evaluation. Ap-
plying the discriminative dual gating during the contrastive learn-
ing significantly improves the model performance.

3.2. Dual gating for contrastive learning

Based on the conclusion C1, we employ separate prun-
ing decisions for both contrastive branches. Specifically,

given the base path outputs Y, | Y*2 _ the dynamic sparse

masks can be separately generated based on Wj:

M2 = o;(normal (X,

M?22 = o4(normal(X;?2

* W) =) )
* W) —7) ®)

Following the same training setup as Section 3.1, we apply
separate sparse masks to both contrastive branches during
training. During the subsequent linear evaluation, we only
apply M2 to the frozen backbone model. As summarized
in Table 1, the discriminative dual gating scheme improves
both inference accuracy and conditional path sparsity by a
significant margin. Conclusion C1 confirms the necessity of
applying distinct sparse masks to both contrastive branches
whereas the salience difference between a; and ao requires
a more quantitative investigation.

As shown in Figure 4, we compute the average shape-
wise similarity S, between M2 and M22? along the chan-
nel dimension C. Since the sparse masks are binary, the
element-wise similarity can only be “0” or “1”. The global
average mask similarity is computed by universally averag-
ing the S, of all the layers across all the training images of
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Figure 4. Shape-wise cosine similarity S. between the contrastive
masks M2 and M22. With identical base path W}, of ResNet-18,
M2t and M22 become diverse from each other during training.

the CIFAR-10 dataset. Figure 4 shows the averaged simi-
larity between the contrastive feature masks M2t and M22
across the entire ResNet-18 model. At the start of train-
ing, the feature salience between the contrastive branches
are similar (S, > 0.6). As the sparsity increases during
training, the similarity reduces to 0.34. The magnification
of the dissimilarity during contrastive training leads to the
following conclusion:

C2: Given the unanimous data transformation and
identical base path selections W}, contrastive training
encourages the network f to highlight different con-
trastive features for better learning.

3.3. Unbiased contrastive grouping

To avoid the biased weight update, CGNet [14] diag-
onally selects the base path across the evenly-divided in-
put/output gating groups. In the previous experiments of
Section 3.1 and Section 3.2, we adopted the same compu-
tation strategy for contrastive learning. The conclusion C2
suggests that the discriminative feature masks are beneficial
for learning sparse features during contrastive training. The
effectiveness of the distinct spatial feature selection moti-
vates us to introduce separate base paths for different con-
trastive branches during training.

To that end, we investigate the impact of the overlapped
base paths and different computation partitions between the
two contrastive branches. With four gating groups (G =
4), Figure 5 depicts the different intersection percentages
of the separate base paths, where W, and W, represents
the base path weights of the two contrastive branches. We

Output channel Output channel

Input channel
Input channel

(C) (b)

Output channel Output channel

Input channel
Input channel

(c) (d)
ai. A .
[ w,": Base path weights for contrastive branch a,
[ w,"2: Base path weights for contrastive branch a,
[ Overlapped base paths

Figure 5. Dual gating with different overlapping percentages
based on four gating groups: (a) Unified dual gating with 100%
overlap, (b) 75% overlap, (b) 50% overlap, and (d) 0% with dis-
joint base paths.
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Overlap Gating  Cond. Path  Inference
Groups Sparsity (%) Acc. (%)
Baseline - - 89.16
100 % 4 71.88 87.67
75 % 4 71.02 87.59
50 % 4 70.60 87.12
Disjoint (0%) 4 72.48 88.59

Table 2. Comparison of different overlapping ratio between the
contrastive base paths for CIFAR-10 accuracy after contrastive
pre-training and linear evaluation.

first set W' along the diagonal, then vary the overlapping
ratio with different selection of W,'"2. During the supervised
linear evaluation, we only use IV, as the base path.

Following the same contrastive training setup as Sec-
tion 3.2, we train the ResNet-18 model for CIFAR-10 with
different levels of overlapping, then evaluate the inference
accuracy after the supervised linear evaluation. Table 2
summarizes the model performance that is trained by differ-
ent base path selections. Noticeably, the pre-trained model
reaches the lowest inference accuracy when the contrastive
base paths are overlapped by 50% with each other. As illus-
trated in Figure 5(c), the first and second half of W' covers
the same input channel groups while the remaining two out-
put channel groups are ignored from the base path computa-
tion. Since the channel importance can be largely different,
the inferior model performance with 50% channel overlap-
ping signifies the importance of evenly distributing the com-
putation to all the channel groups. Specifically, the repeated
channels in base path makes the learning process tend to
update the corresponding weights more frequently, and the
inactive weights in the remaining channels will eventually
cause the accuracy degradation. A similar discovery is also
reported in [14].

On the contrary, when W;"* and W,'? are completely dis-
jointed, the contrastively trained model achieves the best
inference accuracy with only 0.5% degradation from the
dense baseline. By selecting W', and W} along the dis-
joint diagonals, the base path computations are not subject
any biased training, where different features among differ-
ent channels are activated to enhance the contrastive learn-
ing. Based on these experiments and analysis, we have the
following conclusion:

C3: Given the base encoder f, evenly activating the
disjoint channels among the different contrastive paths
will enhance the sparse feature learning during con-
trastive training.

4. Contrastive Dual Gating

Based on the aforementioned analysis, we present the
Contrastive Dual Gating (CDG) algorithm for efficient
dynamic sparse feature learning during contrastive self-
supervised training. We illustrate the details of CDG in

Algorithm 1 The proposed contrastive dual gating (CDG)

Require: Encoder f, projector g, target sparsity s, gat-
ing groups G, feature group size C
1: Initialize Learnable salience threshold 7
2: for sampled minibatch X}, do
3 for contrastive branch a;, € {1,n} do

4 Draw data augmentation t,, ~ T

5: Xp=tq,(Xk)

6: Get base path output: Y.\ = X7 % W,"
7 Compute feature salience

8 if |IC| > 1 then

9: Sg(;se = AVgPOO]dim(IC) (Yb(f;.se’ SZZG(IC))
10: i . = Repeat-Extend (S )

11: else

[£23 — a;

12: Sbase - YE)ase

13: end if

14: Sparse conditional path convolution:

15: M2 = o (normal(S;i ) — )

a; aq i i
16: 5fcond - (Xcond * Wca ) ’ Mi
17: Get final output
a; _ a; a;

18: 1/total - )/base + Ycond

19: end for
20: end for

Algorithm 1. In this work, we mainly focus on the Sim-
CLR [3] framework with two contrastive branches, referred
as a1 and ao. During the forward pass of the contrastive
training, CDG selects the contrastive base paths 1¥,"* and
W, along the diagonal and inverse-diagonal of the chan-
nel groups. The pruning masks M32* and M22 are gener-
ated separately based on the learnable salience thresholds
7 € RY, along with the gating function:

M?* = o(normal( X!  « W) — 1) )

base

M32? = o,(normal(X;2  « W2?) — 1) (10)

base

The resultant element-wise binary sparse feature masks
govern whether the corresponding 3 x 3 convolution of the
conditional path computation is skipped or not. As illus-
trated in Figure 5, the disjoint base paths of CDG allow
the model to exploit the feature redundancy in a symmetric
manner. The unbiased contrastive learning strategy satisfies
our observation in Section 3.3. After the forward pass com-
putation, we optimize 7 via Lo regularization based on the
target sparsity value s:

L

L= Larxen +A Y [ls = 7ll2, (11)
i=1

where L represents the number of layers of the encoder

model. Tunable parameter A controls the penalty level of

the regularization. During the backward pass, we adopt the

gradient smoothing technique [14] to approximate the gra-

dient of the non-differentiable gating function o.
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4.1. Structured contrastive dual gating

Compared to supervised training, the augmented con-
trastive inputs double the sparse indexes. Since both M2*
and M22 have the same size as the output feature map, stor-
ing and processing such large fine-grained masks could in-
troduce a large amount of memory and computation over-
head in practice. Motivated by this, we introduce the coarse-
grained sparsity on top of the CDG algorithm. Specifically,
given the base path output Y%’ we first compute the av-

base’
erage salience map S;¢_~ within each pre-defined group K:

a;
base

= AvgPool i i) (Yyeses 512€(K)) (12)

base’

The size of K can be either 2-D or 3-D, depending on the
practical needs of the computation. Since the average pool-
ing operation will cause the reduced size of S, _ ., we dupli-
cate each averaged value by || times to avoid the dimen-
sionality mismatch. Compared to the fine-grained CDG,
introducing the structured pruning strategy simplifies the
sparse indexes by |K| times, leading to reduced computation
complexity and memory cost. The performance of the spar-
sified contrastive learning model is highly dependent on the
group size selection. The larger pruning granularity leads
to the compendious sparse convolution, whereas the unitary
features will also magnify the accuracy degradation [17].
To balance the model performance and inference efficiency
on targeted hardware, we consider K as a tunable parameter
and use the unified group size || across the entire network.
In particular, given the base path output Yjq5. € RE*HXW,
we set the group size to K = Cyx1x1, where 1 < Cy < C.
Figure 6 depicts the group configuration of CDG.

5. Experimental Results

We present the experimental results of the proposed
CDG algorithm for CIFAR-10, CIFAR-100, and ImageNet-
100 datasets. We used 50% labeled data for supervised fine-
tuning. Similar to prior works [6], all experiments are con-
ducted by training the SimCLR-ResNet-18 [3] model from
scratch. Additional results with larger models (e.g., ResNet-
50) are reported in the supplementary materials.
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Figure 7. Unstructured conditional path sparsity vs. CIFAR-10
inference accuracy of ResNet-18 with 4 gating groups.

5.1. The impact of gating groups and model widths

The effectiveness of CDG is built upon the high correla-
tion between the base path output and the final convolution
results. Increasing the number of gating groups G reduces
the amount of dense computation, whereas the insufficient
base path partial sums will degrade the model performance.
We evaluated model performance by changing the number
of gating groups during the contrastive training. Given the
number of gating groups G and conditional path sparsity 7,
the inference FLOPs reduction Drrops is computed as:

1
1/G+(1—-n)x(1-1/G)

Table 3 summarizes the CIFAR-10 accuracy and un-
structured conditional path sparsity after post-training lin-
ear evaluation. With only 0.5% accuracy degradation, the
proposed CDG algorithm achieves 2.19x FLOPs reduction
by only using 1/4 dense convolution as the base path com-
putation. On the other hand, keeping 7/8 (G = 8) of the
convolution operation sparse has conservative computation
reduction to maintain the accuracy. Therefore, we use 4
gating groups for the ensuing experiments. Figure 7 illus-
trates the CIFAR-10 accuracy and computation reduction
with different target s values and conditional path sparsity.

We also evaluated the proposed CDG algorithm based
on ResNet-18 models with different widths. Table 4 sum-
marizes the inference accuracy by training the model with
CIFAR-100 and ImageNet-100 datasets from scratch. The
first and last layer of the ResNet-18 model are adjusted ac-
cordingly for different input image sizes. After the con-
trastive pre-training, the resulting sparse models are fine-
tuned with 50% labeled training set. Compared to the
ResNet-18 baseline (1 x) model, increasing the model width
by 2x largely alleviates the accuracy degradation from the
respective baseline model.

Following Algorithm 1, we exploit the structured feature
sparsity based on the designed sparse group selections. Ta-
ble 5 reports the inference accuracy by exploiting the struc-
tured spatial-wise sparsity with group size of L = 8 x 1 x 1.

Drrops = (13)
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# of Gating Conditional Path Inference Top-1 FLOPs
Groups Sparsity (%) Accuarcy (%) Accuracy Drop (%) Reduction

2 75.15 88.67 -0.42 1.60 x

4 72.48 88.59 -0.50 2.19 x

8 60.29 88.03 -1.06 1.83 x

Table 3. Accuracy and FLOPs reduction of CDG with ResNet-18 (1 x) on CIFAR-10 dataset with different number of gating groups.

Model # of Gating Dataset Conditional Inference Top-1 FLOPs
Groups Path Sparsity (%) Acc. (%) Acc. Drop (%) Reduction

CIFAR-100 70.10 66.04 -1.74 2.11x

ResNet-18 (1) 4 TmageNet-100 50.05 76.82 2.05 L.60x

CIFAR-100 73.32 67.62 -1.04 2.25x%

ResNet-18 (2x) 4 TmageNet-100 51.57 80.06 114 1.65x

Table 4. Accuracy and FLOPs reduction of CDG on CIFAR-100 and ImageNet-100 datasets with different ResNet-18 widths.

Model # of Gating Dataset Conditional Inference Top-1 Acc. FLOPs Index
Groups Path Sparsity (%) Acc. (%) Drop Reduction Reduction
CIFAR-10 71.64 90.37 -0.89 2.16% 8x
ResNet-18 (1x) 4 CIFAR-100 66.24 65.94 -1.84 1.98 % 8x
ImageNet-100 45.52 76.63 -2.24 1.53x% 8x

Table 5. Structured contrastive dual gating for different datasets with the spatial group size L = 8 x 1 x 1. After the sparse contrastive
pre-training, the model is fine-tuned on 50% of the training labels.

Method # of Gating Linear Eval. Fine-tuning FLOPs
Groups Inference Accuracy (%) Inference Accuracy (%) Reduction
This work
(CDG_SimCLR) 4 88.84 90.74 2.12x
FBS_SimCLR - 86.91 88.89 2.00x
DGC_SimCLR 4 73.10 81.77 2.11x
CGNet_SimCLR 4 87.40 89.26 2.09x

Table 6. With ResNet-18 (1x) for CIFAR-10 dataset, CDG outperforms our re-implementaiton of FBS [8], DGC [20], and CGNet [14]
for SIMCLR [3] (referred to as FBS_SimCLR, DGC_SimCLR, and CGNet_SimCLR, respectively) in both accuracy and FLOPs reduction.

Compared to unstructured pruning, the structured CDG al- Method #of Gating ~ Linear Eval. ~ Top-1Acc. ~ FLOPS
. . .. . Groups Inference Acc. Drop (%) Reduction
gorithm achieves similar accuracy and computation reduc- This work
tion with 8 x index reduction. (CDG_MoCo) 4 90.58% -0.86% 200
FBS_MoCo - 88.29% 3.15% 2.00%
5.2. Performance comparison DGC_MoCo 4 85.42% -4.20% 2.11x
CGNet MoCo 4 90.24% -1.20% 2.04x
. . . . . This work
A.s discussed in Section 2, the typical feature salience (CDG.SimSiam) 89.04% -0.32% 2.12x
predictors can be fully-connected layers [8, 20] or con- FBS_SimSiam - 88.21% 1.15% 2.00x
volution layers [16, 19]. The increased complexity of DGC._SimSiam 4 82.24% 7.12% 2.11x
. .y CGNet_SimSiam 4 88.65% 0.71% 2.03x
the CNN-based salience prediction usually needs the pre- X
Table 7. With ResNet-18 (1x) for CIFAR-10 dataset, CDG

trained model as the starting point [16], which is not suit-
able for our case. Therefore, we mainly aim to evalu-
ate CDG with the methods that can train the models from
scratch, e.g., FBS [20], DGC [8] and CGNet [14]. Note
that these works only reported the performance with su-
pervised training. To evaluate the performance of the prior
works’ methods for self-supervised learning, we transferred

outperforms our re-implementaiton of FBS [20], DGC [8], and
CGNet [14] with MoCoV2 [5] and SimSiam [4] SSL framework.

by training the ResNet-18 encoder on CIFAR-10 dataset
from scratch, using multiple SSL frameworks including
SimCLR [3], MoCoV2 [5], and SimSiam [4]. For the al-

the open-sourced dynamic pruning frameworks of [8, 14,20]
and re-implemented them with our self-supervised learn-
ing setup. As part of the model architecture, the auxiliary
salience predictors will be shared between the contrastive
paths then get updated in an end-to-end manner.

We evaluate the performance of the selected algorithms

gorithms with group-wise computation [14,20], we strictly
follow the reported pruning strategy (e.g., sparsity sched-
ule, number of output groups) during the self-supervised
training. The pre-trained sparse encoder will be fine-tuned
under both supervised linear evaluation and fine-tuning pro-
cess. During the supervised fine-tuning phase, we use the
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Figure 8. Conditional path sparsity during (a) sparse con-

trastive training and (b) supervised fine-tuning based on CIFAR-10
dataset. (c) The layer-wise sparsity of ResNet-18 after fine-tuning.

target (final) sparsity value to avoid the duplicate pruning.
The model performance of methods that we implemented
are summarized in Table 6 (SimCLR [3]) and Table 7 (Mo-
CoV2 [5], and SimSiam [4]). With different SSL training
schemes, the proposed CDG algorithm outperforms all im-
plementations of prior dynamic pruning methods in both in-
ference accuracy and computation reduction. Specifically,
the proposed CDG algorithm outperforms FBS [20] and
DGC [8] by up to 15.7% (SimCLR), 2.3% (MoCoV2), and
7.8% (SimSiam) CIFAR-10 accuracy.

One important observation from the results in Table 6
and Table 7 is the opposite trend on the effectiveness of
complex salience predictors between supervised vs. self-
supervised learning. DGC [20] employed salience predic-
tors for different output groups with 2x deeper mini-NNs
than FBS [8], which improved the overall performance be-
yond FBS and CGNet [8, 14] for supervised training. For
self-supervised training, however, such intricate salience
predictors are difficult to train from scratch, resulting in de-
graded inference accuracy.

5.3. Sparsity variation during contrastive learning

Given the shared regularization target s, the conditional
path sparsity between two contrastive branches has mini-
mum difference, as shown in Figure 8(a). The balanced
sparsity exploitation represents successful unbiased training
and sparsification. With an inherited base path W, and
the learnable threshold 7, the subsequent fine-tuning pro-
cess optimizes the model with the retained sparsity level, as
shown in Figure 8(b). As shown in Figure 8(c), the latter
layers of the model tend to achieve higher spatial sparsity,
since the increase of the channel depth generates more re-

Channel 1

Channel 64 Channel 128

=== Base Path
=== Cond. Path

Contrastive branch a, |

Figure 9. Feature map visualization of base path and conditional
path along two different contrastive branches.

dundant features.
5.4. Sparse feature visualization

To validate the effectiveness of the proposed CDG al-
gorithm, we visualize the second convolutional layer of the
ResNet-18 (2x) model with ImageNet-100 input. As shown
in Figure 9, for both contrastive branches a; and as, the
base path (red rectangle) preserves the details with the dense
computation while the sparse conditional path only keeps
the important edges (e.g., the contour of the rooster’s crest).
As a result, the combined final output saves most of the in-
formation with considerable computation reduction.

6. Conclusion

In this work, we propose contrastive dual gating (CDG),
a simple and novel dynamic pruning algorithm designed
for contrastive self-supervised learning. As one of the
first studies in this area, we analyze different sparse gating
strategies with rigorous experiments. Based on the well-
knit conclusions, we present the detailed algorithm design
to exploit the feature redundancy in both fine-grained and
structured manner. The proposed algorithms have been
verified on multiple benchmark datasets and various SSL
frameworks. Without any auxiliary salience predictors, the
proposed CDG algorithm achieves up to 2.25x computa-
tion reduction for CIFAR-10 dataset, and outperforms our
implementations of recent dynamic pruning algorithms. In
addition, pruning the model in a structured manner elevates
the practicality in terms of efficient hardware computing.
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