ESSCIRC 2022- |EEE 48th European Solid State Circuits Conference (ESSCIRC) | 978-1-6654-8494-7/22/$31.00 ©2022 |EEE | DOI: 10.1109/ESSCIRC55480.2022.9911359

A 28nm 8-bit Floating-Point Tensor Core based
CNN Training Processor with Dynamic
Activation/Weight Sparsification

Shreyas Kolala Venkataramanaiah*, Jian Meng*, Han-Sok Suh*, Injune Yeo*, Jyotishman Saikia*,
Sai Kiran Cherupally*, Yichi Zhang!, Zhiru Zhang!, and Jae-sun Seo*
* Arizona State University, USA TCornell University, USA

Abstract—We present an 8-bit floating-point (FP8) training
processor which implements (1) highly parallel tensor cores
(fused multiply-add trees) that maintain high utilization through-
out forward propagation (FP), backward propagation (BP), and
weight update (WU) phases of the training process, (2) hardware-
efficient channel gating for dynamic output activation sparsity,
(3) dynamic weight sparsity based on group Lasso, and (4)
gradient skipping based on FP prediction error. We develop a
custom ISA to flexibly support different CNN topologies and
training parameters. The 28nm prototype chip demonstrates
large improvements in FLOPs reduction (7.3 x), energy efficiency
(16.4 TFLOPS/W), and overall training latency speedup (4.7 x),
for both supervised and self-supervised training tasks.

Index Terms—Convolutional neural networks, deep neural
network training, structured sparsity, hardware accelerator

I. INTRODUCTION

Training deep convolutional neural networks (CNNs) re-
quires a large amount of memory and iterative computation,
which necessitates speedup and energy reduction for both
cloud and edge devices. Several prior works reported CNN
training processor designs, but some of them did not exploit
sparsity during training [1], [2]. Bit-slice input/output sparsity
is exploited in [3], but did not consider weight sparsity during
training. In [4], the sparse channels are randomly selected to
simplify the hardware design, but resulted in training accuracy
loss. A global threshold is used in [5] to generate the element-
wise sparse masks without sorting, but the non-structured
sparse elements are not skippable.

In this work, we present a new sparse CNN training ac-
celerator that exploits structured activation sparsity, structured
weight sparsity, and gradient skipping to dynamically reduce
the unimportant operations and achieve high speedup. We
developed both hardware-efficient sparse training algorithms
and the custom sparse training accelerator with programmable
instructions. The 28nm prototype chip demonstrates large
improvements in FLOPs reduction (7.3x), energy efficiency
(16.4 TFLOPS/W), and overall training latency speedup
(4.7x) across supervised and self-supervised training tasks.

II. HARDWARE-EFFICIENT SPARSE TRAINING ALGORITHM

A. Dynamic Structured Weight Sparsification

We generate structured weight sparsity dynamically during
CNN training via group Lasso [6], where the unimportant
weight groups get penalized without any sorting. Suppose the
weight groups in DNN layer [ is W; 4. The Lasso penalty term
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Fig. 1: Proposed efficient sparse training techniques.

in the loss function (£ in Eq. (1)) is the summation of group
Ly norm of W , over all groups (G;) and layers (L).
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In Eg. (2), Vw4 is the gradient of the weight element
wi,g€Wj 9. The weight w  is updated by the normal gradient
and also scaled down by the regularization scaler GLcqie-
Since Ly norm of the weight group is pre-computed, G'L ¢¢qie
can be easily implemented in hardware. Smaller weights are
gently scaled down, while larger weights are penalized harder.
As aresult, every |w; g|€W; 4 decreases simultaneously, so the
element-wise threshold can easily sparsify the entire group.
The resultant structured sparse masks are applied to both FP
and WU. Following the hardware design, we choose K; (#
of output channels) x Cj (# of input channels) = 8x8 as the
sparse group size for efficient hardware mapping.

B. Structured Activation Skipping

We also exploit the activation sparsity by skipping the
unsalient features during FP. In CGNet [7], activation sparsity
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was employed during CNN inference without any auxiliary
salience predictors. The input/output channels are divided into
base and conditional paths, and the gated base path’s feature
score determined the skipping of conditional path computation.
However, the learnable threshold and the non-linear gating
function are expensive for hardware implementation.

To elevate the hardware compatibility, we propose struc-
tured CGNet (SCG), including (a) low-precision threshold
schedule, (b) non-linearity relaxation, and (c) structured fea-
ture map sparsification. The learning pattern of the gating
threshold is generalized as a gradually increased low-precision
scheduler, and the non-linear Sigmoid gating function [7] is
simplified as a scaled and shifted HardTanh function:

g(y;use) = mll-lardTanh {025 X (y:a,se =]z 2) - 05)

n=0,max=1

(3

We generate structured sparsity of feature maps by comput-
ing the group salience scores of the base path output features
via 3-D average pooling and HardTanh (Fig. 1). The group
salience scores determine the structured computation skipping
of the conditional path. Table I shows the negligible accuracy
degradation of the highly hardware-compatible SCGNet.

TABLE I: High hardware compatibility and negligible accu-
racy drop of the SCGNet with ResNet-18 model on CIFAR-10.

Cond. Path

Method  Gating Func. Threshold Sparsity Granularity Ace.

Baseline - - 0.0% = 94.78%
CGNet [7] Sigmoid Learnable 70.21% Element-wise 94.45%

SCGNet HardTanh  Scheduled 68.71% Structured ~ 94.41%

C. Gradient Skipping

Inputs with high confidence during FP will have minimal
weight update in the training process, thus can be skipped from
the BP and WU phases [8]. As shown in Fig. 1, we exclude
inputs with high softmax confidence from the BP and WU
phases. Combined with the structured weight/gradient sparsity,
the proposed scheme achieves high energy efficiency in both
gradient accumulation and the gradient itself.

Putting together the structured weight sparsity, structured
activation skipping and gradient skipping, ResNet-18 FP8
training result for CIFAR-10 dataset is shown in Fig. 2.
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Fig. 2: Validation accuracy, sparsity, and skipping ratio of
ResNet-18 FP8 training on CIFAR-10 dataset.
III. CHIP ARCHITECTURE AND OPERATION
Fig. 3 shows the overall architecture of the sparse training
processor, featuring four sparse compute cores (SpCC), a cen-
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Fig. 3: Overall chip architecture and custom ISA.

A. Sparse Compute Cores (SpCC) and Central Core (CC)

Each SpCC is a programmable core that can be configured
individually using the custom ISA (Fig. 3). The ISA is flexible
to support all operations for CNN training, facilitates off-chip
memory accesses during training, and controls all proposed
sparsity/datafiow optimizations. The CC synchronizes all four
SpCCs, accumulates gradients from SpCCs in WU phase,
and processes off-chip DDR3 access requests using a round-
robin arbiter. The SpCC includes (1) a 16x8 PE array for
MAC operations, (2) SRAMs to store activations, weights,
instructions, and sparsity masks, (3) vector processing units
for non-MAC operations, (4) sparsity controllers to exploit
dynamic structured sparsity of activations/weights, and (5) data
scatter/gather units to store SRAM data in the required format.

During WU, the CC performs (1) weight gradient (WG) ac-
cumulation, (2) structured weight sparsity generation for new
weights, and (3) weight update at the end of the batch based
on stochastic gradient descent. After all four SpCCs complete
the WG computations, a gradient accumulation instruction is
dispatched to the CC controller. The CC controller loads the
weight update memory with the previous WGs and reads all
computed WGs from the SpCCs. The WG accumulator obtains
all gradients and accumulates them using an FP16 adder tree.

B. PE Array

Each SpCC has a PE array that consists of eight PE columns
with 16 PEs and a PE load balancer (Fig. 4). The PE column
shares the weights obtained from the weight register, and the
PE row shares the input activations during FP and BP. Each
PE is a configurable dot-product engine with eight FP8 (1-
5-2) multipliers and one FP16 (1-5-10) adder. The multiplier
products are aligned by matching the exponents and shifting

tral core (CC), a global controller, and external I/O interface. the mantissa. The aligned mantissa products are sent to the
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Fig. 5: Convolution with dynamic structured weight sparsity.

8-way FP16 adder tree, whose output is normalized and
quantized back to FP8 precision (nearest neighbor rounding).

The PE array supports standard, transposed, and weight
update convolutions required for training. During FP and BP,
it follows output stationary dataflow (OSD) and computes 16
output pixels of 8 output channels in parallel with high PE uti-
lization. However, OSD leads to low PE utilization for weight
gradient computation during WU, because the typically small
kernel size (e.g. 3x3) makes it difficult for the 4-D tensor
weight gradient [K, C, R, S] (K/C: number of output/input
channels, Rx S: kernel size) to efficiently use the PE array. To
overcome this, we propose a new kernel stationary dataflow
(KSD) during WU, where each PE computes one output kernel
(RxS) and the PE array computes &/16 output/input channels
(K/C) in parallel. The PE load balancer unit dynamically
switches from OSD to KSD during WU phase, improving the
PE utilization (Fig. 4 (right)).

C. Structured Weight Sparsity

Fig. 5 shows the FP/BP operation with structured weight
sparsity (WS) that is generated in. 8x8x 1x1 (K xCxRxS)
groups. WS controller selects a weight group, stores it in the
weight register, and compares the weights with a deterministic
threshold to generate the sparsity mask. Only the non-zero
weight groups are executed in the PE array.
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Fig. 7: Compiler for the sparse training processor.

D. Structured Channel Gating (SCG) Dataflow

Fig. 6 describes the SCG dataflow. We first compute all out-
puts of a given CNN layer using the base input channels in the
SCG-enabled convolutions. Upon a base path instruction, the
SpCC reads the parameters required to compute only the base
path from input/weight memory, and enables the SCG decision
unit to compute a SCG sparsity mask, a 168 average pooling
module, and a comparator. Structured activation sparsity is
achieved by performing 16x8 average pooling instead of
element-wise comparison. The SpCC reads the sparsity mask
for the conditional path (CP) and enables structured output
activation skipping. The CP outputs are accumulated with
base channel outputs stored in the partial sum memory. Since
the 168 block structure exactly matches the PE array size,
the SCG sparsity controller efficiently eliminates input/weight
memory accesses as well as the computations associated with
the skipped 16x8 CP blocks, largely reducing latency/power.

E. Sparse Training Compiler

Fig. 7 illustrates the sparse training compiler (STC), which
takes CNN models from TensorFlow or PyTorch frameworks
as inputs, extracts the layer-wise details, and generates an
instruction snippet deployed on the accelerator. STC also takes
(1) training parameters such as SCG threshold, learning rate,
group Lasso parameters, etc. and (2) hardware configuration
details such as SpCC selection, enable/disable the sparsity
memory layout, etc. as inputs. Based on these inputs and the
given on-chip memory and PE array size of the accelerator,
STC performs loop optimizations including unrolling the con-
volution loops and dividing the convolution into smaller tiles.

IV. MEASUREMENT RESULTS

The prototype chip was fabricated in 28nm CMOS
(Fig. 8(a)). Fig. 8(b) shows power/energy measurements of
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Fig. 8: (a) Chip micrograph. (b) Power/energy measurements with voltage and frequency scaling. (c) Average energy-efficiency
improvement breakdown with the proposed techniques on ResNet-18/ResNet-20/VGG8 models.
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Fig. 9: FLOPS, speedup, and accuracy for training of CNNs.

the prototype chip with voltage and frequency scaling. In-
cluding the skipped operations, throughput of 3.76 TFLOPS
is achieved at 1.1V, and average energy-efficiency of 16.4
TFLOPS/W is achieved at 0.6V for VGGS training. The pro-
posed architecture efficiently exploits the structured sparsity
(CG, WS) and improves PE utilization (KSD) during training
achieving ~6.4x improvement in energy-efficiency (Fig. 8(c))
compared to the baseline of training dense CNNs without
activation/weight sparsity, KSD and GS.

We trained various CNNs for both supervised and self-
supervised learning [9] tasks with our chip programmed using
custom ISA. As shown in Fig. 9, most of the FLOPs reduction
(up to 7.3x) results in corresponding training speedup (up to
4.7x) with minimal accuracy degradation. Table II shows the
comparison to prior works, where our work achieves higher
average energy-efficiency for actual DNN training, including
and excluding the skipped operations. Our training speedup is
~2.7x higher than that of the state-of-the-art work [5].

V. CONCLUSION

In this work, we present an energy-efficient 8-bit floating-
point programmable training processor with a custom ISA.
The proposed KSD/WS/CG/GS schemes collectively achieved
a high amount of hardware-efficient sparsity and computation
skipping (up to 7.3 x). The 28nm training processor was evalu-
ated across various CNNs, and achieved high energy-efficiency
and 4.7 x speedup compared to training dense CNNs.
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TABLE II: Comparison with prior works.

B3] 4 5] | ThisWork
Technology 28nm 65nm 28nm 28nm
Precision Dyn. FXP FPB/16 BFP8M16 FPB/16
o %J«igig; Fine | coarse Flcﬁ;ﬁ?;l :cmc!h;mg)
Sparsity Support - oo P
w NIA Fine | coarse | 7o (group Lasso)
Supply (V) 058104 | 07811 | 08811 | 0611
Area (mm?) 12 96 160 20 96 16.4
Freq. (MHz) 2-250 50-200 40-440 75-340
On-Chip SRAM (MB) 0.55 0.34 0.63 125
Throughput (TFLOPS) 36813 0.611-18.02 | 0.9'-58.7¢ 3.76¢
Power (mW) 1.9-500 0.49-425 23-363 51.1-623.7
Dense! 337512080 34 43 |, jégm
Energy- |ldeal?(90% 190% W[ NiA 1465 2765 NIA
(5;?.‘3?;‘:! Peak-Skipped® |z ool 108 @ilentet] WA | 10 @VG8 |
or TOPSW) [ Avg.-Skipped+ 1?95&?,5’1;!}93 sa@ieet[ NA [, 184 OVC08
Avg.-Executed’ /A N/A N/A 3‘15 g:ﬁgtsiﬂ
Training Speedup N/A N/A 1.76X 47X

Isparsity = 0%, *input/outputfweight sparsity = 90% (nof relevant for any specific DNN training)
* peak energy-efficiency including skipped operations during sparse DNN training

4 average energy-efficiency including skipped operations throughout sparse DNN training

4 average energy-efficiency for actual executed operations throughout sparse DNM training
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