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Abstract

®

CrossMark

We present a novel deep neural network (DNN) training scheme and resistive RAM (RRAM)
in-memory computing (IMC) hardware evaluation towards achieving high accuracy against
RRAM device/array variations and enhanced robustness against adversarial input attacks. We
present improved IMC inference accuracy results evaluated on state-of-the-art DNNs including
ResNet-18, AlexNet, and VGG with binary, 2-bit, and 4-bit activation/weight precision for the
CIFAR-10 dataset. These DNNs are evaluated with measured noise data obtained from three
different RRAM-based IMC prototype chips. Across these various DNNs and IMC chip
measurements, we show that our proposed hardware noise-aware DNN training consistently

improves DNN inference accuracy for actual IMC hardware, up to 8% accuracy improvement
for the CIFAR-10 dataset. We also analyze the impact of our proposed noise injection scheme
on the adversarial robustness of ResNet-18 DNNs with 1-bit, 2-bit, and 4-bit activation/weight

precision. Our results show up to 6% improvement in the robustness to black-box adversarial

input attacks.

Keywords: IMC noise-aware training, RRAM-friendly DNNss,

Adversarial defense with RRAM noise

(Some figures may appear in colour only in the online journal)

1. Introduction

Deep neural networks (DNNs) have demonstrated high accur-
acy in many computer vision and speech recognition tasks,
but they require large amounts of storage and lead to high
latency and energy consumption. Many recent works have
been presented to address such issues. At the software level,
works such as [1-3] addressed the issue of storage by aggress-
ively reducing the DNN precision, with minimal accuracy
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degradation. On the hardware side, many digital accelerators
have been proposed that address these issues by using optim-
ized dataflows, systolic arrays of multiply-accumulate (MAC)
units, and memory hierarchies [4-6]. However, most of these
digital designs have a physical separation between the compu-
tation unit and memory storage, which makes the power con-
sumption and latency of the DNN hardware to be dominated
by memory accesses and data communication (almost up to
two-thirds).

To address such bottlenecks, the in-memory computing
(IMC) paradigm that integrates MAC computation inside
the memory itself emerged as an effective solution. The

© 2022 I0P Publishing Ltd
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Figure 1. Analog in-memory computing involves inherent variability and noise, as shown in the prototype chip measurements: (a) © [2019]
IEEE. Reprinted, with permission, from [7]. (b) © [2021] IEEE. Reprinted, with permission, from [8].

IMC designs using SRAM or emerging non-volatile
memory (NVM) activate multiple/all rows of the array
simultaneously and generate the MAC values in paral-
lel in the analog domain. Then, an analog-to-digital con-
verter (ADC) at the periphery digitizes the MAC value.
Since MAC operation is a core computation in DNNs,
IMC can significantly improve the energy consumption of
DNN hardware by minimizing memory accesses. Recent
IMC prototype chips have reported high energy efficiency
[7,9-12].

Although the IMC technique significantly improves the
energy-efficiency compared to other digital accelerators, the
signal-to-noise ratio is lower since the MAC operations are
computed in the analog domain. Thus, the inherent variations
in IMC devices and peripheral circuits result in noisy digital
output MAC values, as shown in figure 1. Figure 1(a) shows
the variations in the ADC outputs for different MAC values
in [7] and figure 1(b) shows the deviation of observed ADC
outputs from the expected ADC outputs in [8]. These erro-
neous ADC outputs induce a degradation in the accuracy of
the DNNs whose computations are performed in IMC hard-
ware [7, 13—17]. For example, inference accuracy degradation
of up to ~7% for the CIFAR-10 dataset was reported when
baseline DNNs are evaluated on the noisy IMC ASICs of [13],
where all 128 rows of the IMC crossbar array are activated
simultaneously.

Some recent works have attempted to restore the IMC infer-
ence accuracy loss with the help of software-based training
methods where noise is injected at the weight level [18-20].
The main drawback of these works is that they do not use
actual IMC hardware noise, but only use approximate noise
models that follow the Gaussian distribution. This leads to a
mismatch in the training and inference noise, and hence DNN's
trained with such noise models will still exhibit some degrad-
ation in IMC inference accuracy. This is explained in detail in
the next section. Furthermore, as these works inject noise into
individual weights only, the training algorithm is not aware of
the ADC quantization noise present in actual IMC hardware.
In [21], the authors attempted to closely match the training
and inference noise by using the IMC computation flow in the
forward pass of the DNN, but their hardware aware training

scheme is limited to approximate noise models for the ADC
quantization.

On the other hand, adversarial attacks is one of the key
concerns for the robustness of DNNs, since manipulating
the inputs/weights of DNNs by tiny amounts has effect-
ively reduced the inference accuracy to ~0%. For example,
the projected gradient descent (PGD) [22] and fast gradient
signed method [23] algorithms use back-propagated gradients
to determine the optimal adversarial input pixel perturbations
that are indistinguishable by a naked eye. In earlier works,
the obfuscation of gradients by means of quantizing the DNN
weights and activations was floated as a viable defense against
adversarial input attacks. However, the backward-pass dif-
ferential approximation technique exposes this false sense of
security [24] after bypassing the issue of obfuscated gradients
and reducing the accuracy of low-precision quantized DNNs
to ~0% using adversarial input attacks.

In this work, we propose an IMC noise-aware training
method for obtaining DNNs with high inference accuracy and
enhanced robustness against adversarial attacks. We use actual
noise data that is measured from the resistive RAM (RRAM)
IMC prototype chips reported in [13]. Our proposed IMC
noise-aware training method results in better IMC hardware
inference accuracy when compared to evaluating DNNs that
are trained with software-level Gaussian noise injection meth-
ods. In addition, the same proposed training method helps
improve adversarial robustness by minimizing the accuracy
loss caused by the input pixel perturbations using the noisy
partial sum quantization which occurs during IMC hardware
inference. We present results obtained on ResNet-18, AlexNet,
VGG, and MobileNet DNNs for CIFAR-10 dataset, and also
for three different precisions of 1-bit, 2-bit, and 4-bit for
ResNet-18.

2. Background and related works

2.1 RRAM based in-memory computing

Recently, NVM based IMC prototype chips have been repor-
ted in [13, 16, 25, 26] and SRAM-based IMC prototype chips
have been reported in [10—12]. Although the NVM technology
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Figure 2. (a) Operation of the XNOR-RRAM IMC hardware, and (b) illustration of the actual RRAM hardware noise. (a) © [2019] IEEE.

Reprinted, with permission, from [13].

is less mature than CMOS, they have advantages such as
CMOS-compatibility, low power consumption, non-volatility,
and most importantly, exhibit higher density compared to
SRAMs. To that end, we focus on RRAM-based IMC design
in this work.

Figure 2(a) shows the key operations of the XNOR-RRAM
chip reported in [13]. Each ITIR cell can be programmed to
either a low resistance state (LRS) or a high resistance state
(HRS). According to the combination of each 1TIR cell res-
istance, two 1T1R cells of the successive rows can effect-
ively store a +1 or —1 weight value. The XNOR operation
between the input/activation and the weight follows the func-
tion described in the table in figure 2(a). Thus, by suitably
encoding the HRS and LRS of the RRAM devices, and provid-
ing the suitable values on the word lines, we can effectively
perform the matrix vector multiplication of binary weights and
activations.

2.2. Hardware-aware DNN training for accurate DNN
inference with IMC hardware

Although the IMC technology achieves high energy efficiency,
when DNNs trained in software are deployed on IMC hard-
ware, accuracy degradation can occur due to limited ADC pre-
cision, variations in the IMC devices, ambient conditions, and
transistor non-linearity [11, 13, 19, 25, 27, 28]. Several recent
works have attempted to address these particular issues, and
representative NVM-based works are described below.

In [29], the authors present DNNS that are tolerant to ambi-
ent temperature fluctuations. However, additional area and
energy overhead are incurred in the IMC hardware due to
the addition of thermal reference cells. A quantization-aware
DNN training scheme was proposed in [28] which considered
input and weight quantization, RRAM-based convolution, and
ADC quantization. However, only up to 36 rows are activ-
ated simultaneously for IMC to limit the accuracy degrada-
tion, and still, >2% accuracy loss is reported for the CIFAR-
10 dataset. In [19], the authors measured the variation in the
conductance of their 11-state phase-change memory devices,

and the measurements were used indirectly to inject noise via
a Gaussian distribution during DNN training. Furthermore,
since the conductance data of individual devices are used to
inject Gaussian noise for individual weights of DNNs, this
method does not consider the IMC crossbar structure or ADC
quantization.

2.3. Mismatch between Gaussian and IMC hardware noise

In [19], the authors experiment injecting noise in four dif-
ferent ways: additively to the weights, multiplicatively to the
weights, additively to the input activations of each layer, and
additively to pre-activations (full sum) of each layer. Further-
more, only Gaussian distributions are used to sample the noise
values in these experiments. The authors of [19] conclude
that injecting Gaussian noise additively to individual weights
produced the best accuracy results. In [19], partial sum level
(corresponding to the computation on actual IMC crossbar)
Gaussian noise injection has not been explored.

In addition, when DNNss are evaluated on an IMC crossbar,
the layer computation is a composite of several partial sum
evaluations, each of which are quantized by a non-ideal ADC
present at the periphery of the IMC hardware. Thus, the above
techniques do not ideally emulate the lumped noise observed
at the output of the ADC which contains the device noise, bit-
line noise, and the ADC quantization noise.

Furthermore, in section 4, we show that DNN training
based on injecting noise at the partial sum level using Gaussian
distributions results in sub-optimal DNN inference accuracy
for actual IMC chips. If we treat the IMC hardware as a
black-box, the difference between an observed and expec-
ted ADC output represents aggregate noise from all the noise
sources present in the IMC hardware, and it is not neces-
sarily Gaussian, as shown in figure 2(b). This results in a
noise mismatch during Gaussian noise-based training and
actual IMC inference. The mismatch is further aggravated
by the inter/intra-chip variations of this noise. Therefore, if
the DNNs are trained with software-based noise models, usu-
ally with Gaussian distributions, it does not result in optimal
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IMC inference accuracy results. An analysis of the mismatch
between these different types of noise injected at the partial
sum level is presented below.

If P is a partial sum between the inputs and weights in one
column of the IMC crossbar, in the ideal case, we get a quant-
ized partial sum QP at the ADC output as:

QP = IF(P); Lossigeas = f(W,IF), €))

where IF() is the ideal ADC transfer function, and the loss
corresponding to quantization noise is a function of IF and
weights, W. If we use Gaussian noise to distort the quantized
partial sum during training, the equation would be:

GQP: QP+N(,U/7U);LOSSVWI'S€ :f(Wla[F7N(uaU>)a (2)

where N(u,o) is a Gaussian distribution with mean p and
standard deviation o, and the loss corresponding to the noisy
quantization is a function of N and weights, W;. On the other
hand, if we use the noisy partial sum quantization scheme
obtained from IMC chip measurement data, we get:

NQP = NF(P); LosSypise =f(W2,NF), 3)

where NF() is the measured noisy ADC transfer function of
the IMC hardware, and the loss corresponding to the noisy
quantization is a function of NF and weights, W,. After train-
ing, W1 and W2 will converge to different sets of values. Dur-
ing inference, the accuracy will be a function of weights, W,
and real-world hardware noise, NF. Hence, if we use real-
world hardware noise during training and inference (NF), we
get optimal results compared to other approximate model-
based noise-aware training.

2.4. Adversarial input attacks

DNNs have been shown to be vulnerable to small input
pixel perturbation, popularly known as adversarial examples
attack [22, 23, 30]. These attacks can be broadly classified
as white-box [22, 23] and black-box adversarial attacks [30].
The PGD algorithm is a powerful white-box adversarial attack
proposed in [22], which iteratively perturbs the input image
pixels to maximize the corresponding loss to each perturba-
tion (L.-based), by exploiting the signs of the gradients. The
process follows the below equation:

P =3 4 o sign(V.L(AF;6),y)), S

where f{(;) is the DNN inference function with parameters 6,
« is the step size, and x €[0,1] for normalized input. PGD
attack [22] generates universal and strong adversary among
the first order approach (i.e. attacks rely on only first order
gradient information) by adding the gradient sign of the loss
function £ with regard to the input x.

The white-box adversarial input attacks require smooth
back-propagation of gradients from the output side to the input
side of the DNN, without any obfuscation of the gradients.
However, the DNN activation/weight quantization often use

non-linear functions in the forward path of the DNNs, which
gives rise to gradient obfuscation [24]. The ADC quantiza-
tion of MAC values in IMC hardware is another example of
such non-linear functions. This non-linearity correlates with
non-differentiability, and hinders the true approximation of the
gradients. This leads to poor white-box attack performance,
and a false sense of adversarial robustness. The black-box
adversarial attacks can be employed to bypass this gradient
obfuscation and evaluate adversarial robustness in the pres-
ence of gradient obfuscation. To perform this attack, a full
precision substitute model is trained to mimic the function-
ality of the DNN under attack, where no gradient obfusca-
tion is present. The substitute model is attacked to obtain
strong adversarial examples, which are then used to evaluate
the inference accuracy of the target models. This black-box
attack is illustrated in figure 3.

The robustness of DNNs to adversarial input attacks is
improved by training them with both clean and adversarial
input images [22]. This optimizes both the adversarial and
clean image losses simultaneously, and the adversarial optim-
ization follows the equation: Ming{Max,  L(f(x;0),y)}. Here,
the inner maximization generates adversarial samples x by
maximizing the loss with regard to label y, and the outer min-
imization trains the DNN parameters 6 using the adversarial
samples forming a min-max optimization problem.

Recent works have improved the adversarial robustness
of DNNs by injecting noise into the DNN weights during
training, as noise injection acts as a regularizer, and pre-
vents DNNs from over-fitting [31-33]. However, noise injec-
tion combined with adversarial training also causes gradient
obfuscation. Alternatively, some works have quantized the
DNN parameters during training to use this inherent introduc-
tion of gradient obfuscation as an adversarial defense mech-
anism [34, 35]. Although quantization of DNN parameters
improves adversarial robustness, it alone is not sufficient to
defend against adversarial attacks. Hence, we studied the
effect of actual IMC hardware noise-aware training along with
adversarial training on the adversarial robustness of DNNs by
subjecting them to black-box PGD adversarial attacks.

3. Proposed IMC hardware noise-aware DNN
training and inference

In IMC hardware, the MAC values (partial sums) are conver-
ted into an M-bit binary number, where the range of quant-
ization is 2¥ discrete levels. The value of M is desired to be
as low as possible in order to minimize the ADC overhead.
Due to the IMC variations, the MAC values from the DNN
computation that have the same value could result in differ-
ent ADC outputs. The limited ADC precision, coupled with
other IMC variations results in noisy computations, and mak-
ing the training algorithm aware of such a noise will improve
DNN robustness to IMC hardware noise. In this work, we
used the noise data that is measured at a supply voltage of
1.2 V from the XNOR-RRAM IMC prototype chips reported
in [13].
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3.1. IMC hardware and quantization noise

In the XNOR-RRAM macro [13] two bit-cells from successive
rows are used to store one weight value, and all the 128 rows
are activated simultaneously to perform 64-input MAC oper-
ations between signed binary activations and weights (—1 and
+1). The MAC value is expected to be between —64 to 464,
and is measured as an analog voltage, V. This analog voltage
is digitized by a 3-bit flash ADC to one of the 8 possible bin-
ary output levels, i.e. [0, 1,..., 7]. These levels can be fur-
ther encoded as different actual quantization values, namely,
[—17, —11, =7, =3, 0, 4, 8, 14]. This encoding scheme was
finalized by doing several software simulations and analyses
of the partial sum distributions in various DNNs during train-
ing. We found that less than 0.1% of the possible partial sum
values are either less than —32 or greater than +32. Hence, we
clipped the possible partial sum values to —32 or 432 before
performing the ADC quantization.

The IMC noise can also be visualized in another way.
We can define the ADC quantization error as the difference
between the measured ADC output and the ideal ADC out-
put. Inferred from the corresponding conditional probability
table, figure 2(b) shows a distribution of the ADC quantiz-
ation error in the XNOR-RRAM chips measured at 1.2 V
for, where each curve represents the error distribution for
a particular partial sum value in the range of —64 to +64.
These errors follow a Gaussian distribution for a majority
of the MAC values, and hence an approximate Gaussian
curve-fit was obtained with a mean of 0.146 and a stand-
ard deviation of 2.36. The fitted Gaussian model depicts
a MAC-value-independent ADC quantization error distribu-
tion, which can approximate the XNOR-RRAM hardware
noise.

3.2. DNN inference with IMC hardware emulation

Figure 4 shows an illustration of the computation flow that
is used to evaluate a fully connected DNN layer with 128
input neurons on XNOR-RRAM IMC hardware with 128 bit-
cells per column. We can perform one 64-input MAC opera-
tion per column at a time because two RRAM devices in the
same column are used to store one weight value. Therefore,
the computation is broken down into two groups of 64 inputs.
The quantized partial sums are then accumulated to obtain the
quantized full-sum. Additionally, for multi-bit DNN evalu-
ation, multi-bit weights are split across multiple columns of
the IMC array and multi-bit activations are fed to the IMC
array over multiple cycles to perform bit-serial processing.
The partial sums are then accumulated with proper binary-
weighted coefficients depending on the bit positions of the
sub-activations/weights, and the full sum for a given neuron
in the DNN layer is obtained.

Therefore, for every 64-input MAC operation, we use IMC
chip measurement results with a sampling method described
below to quantize the partial sum. Accumulation of such
64-input partial sums and other non-MAC operations are per-
formed via digital simulation. First, to characterize the noisy
quantization behavior for the XNOR-RRAM chips, we per-
formed a total of 128 000 measurements for 64-input MACs
with randomized input vectors, and obtained 2D histograms
between each MAC value and ADC output. A conditional
probability table is obtained from this data, which reports the
probability of each MAC value being quantized to different
ADC outputs. Each probability table is unique to the chip
being measured, the supply voltage, and ambient conditions.
In this work, we used the probability data shown in figure 1(a),
where it can be seen that the same bit count value can be
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transformed to more than one ADC value. Thus, to evaluate
the accuracy of large DNNs, for each 64-input MAC value,
we randomly ‘sample’ the ADC output based on the distribu-
tion in the probability table. We employ this sampling method
from the chip measurement results since the small size of IMC
chips prevents us from directly mapping large DNNs, and
time-multiplexing the small IMC chip will make the testing
time excessively long.

3.3. IMC hardware noise-aware training

In the conventional IMC works, the training algorithm was not
made aware of the hardware variability and quantization noise,
and the IMC inference accuracy of software-trained DNNs is

affected by the above-discussed hardware noise. Hence, we
performed noise-aware DNN training by injecting the meas-
ured IMC hardware noise into the forward pass during the
training phase, as shown in figure 5. This enables the optim-
ization of DNN parameters by considering the noisy partial
sum quantization, resulting in better IMC hardware inference
accuracy performance.

We injected the hardware noise by emulating the IMC
macro’s computation flow and then used the conditional prob-
ability tables to transform the smaller chunks of MAC values
(i.e. partial sums) in a similar way to the actual IMC hard-
ware, as shown in Algorithm 1. We also made this trainable by
using a windowed straight-through-estimator for the backward
pass.
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Algorithm 1. Noise-aware DNN training.

Input: n binary inputs x; and weights w;
Input: IMC row-size r, cuamulative noise probability matrix pt
Output: Noisy quantized MAC Q3" xi x wi)
Initialize: number of chunks ¢ = ceil(n/r)
Initialize: Divide the inputs and weights into ¢ chunks, MAC
value, d =0.
cdf.find(cdf, x): identifies the index of the first
element in cdf that is less than x
random.uniform(): returns a random float in [0, 1]
fori=1tocdo
partial sum ps = >} xi X w;
level-probs = pt[ps]
index = cdf.find(level-probs, random.uniform())
glevel = levels[index]
Q(cdp) = qglevel
d=d + Q(cdp)
end for
return d

4. Experiment results

We performed XNOR-RRAM IMC hardware noise-aware
DNN training and evaluated ResNet-18, AlexNet, VGG, and
MobileNet DNNs for the CIFAR-10 dataset. For VGG DNN,
We used the model presented in [2], i.e. input-128C3-128C3-
P2-256C3-256C3-P2- 512C3-512C3- P2-1024 FC-1024 FC-
10 FC. Here, 128C3 is convolution layer with 128 channels
and 3 x 3 kernels, P2 is 2 X2 max-pooling, and 1024FC is fully-
connected (FC) layer with 1024 neurons. We also evaluated
ResNet-18 and VGG DNNs with three different activation/
weight precisions of 1-bit, 2-bit, and 4-bit. We used meas-
urement results from the XNOR-RRAM IMC prototype chip
reported in [13]. We employed quantization-aware training [2]
for low-precision DNN inference. For the proposed hardware
noise-aware training, all DNNs were trained by using a batch
size of 50 and the default hyper-parameters in [2]. Further-
more, the reported DNN inference accuracies are the average
values obtained from five inference evaluations of the same
DNN under the same noise conditions used during the pro-
posed training process.

4.1 Improvement in IMC inference accuracy

We trained baseline DNNs where no noise was injected dur-
ing training, and also trained the same DNNs by injecting the
IMC hardware noise. Specifically, the following set of infer-
ence accuracies are obtained: (1) Baseline Accuracy repres-
ents software baseline accuracy without any noise injection,
(2) Conventional IMC Inference Accuracy represents the DNN
inference accuracy with IMC chip measurement-based evalu-
ation on the baseline DNNs without noise-aware training, and
(3) Noise-Aware IMC Inference Accuracy represents IMC chip
measurement-based evaluation on the new DNNSs trained with
the proposed hardware noise injection.

We performed DNN training/inference on ResNet-18,
VGG, AlexNet, and MobileNet DNNs for CIFAR-10, using
the XNOR-RRAM IMC noise measured at 1.2 V supply.

Initially, the weights and activations were binarized in all
networks during training, except MobileNet where only the
convolution layers were binarized. Later on, we evaluated
multi-bit ResNet-18 and VGG DNNs using our proposed
noise-aware training scheme. In all the binarized models, the
inputs to the first layer were normalized to be between £2.5
to obtain optimal training results, instead of the typically used
normalization range of [0, 1].

Furthermore, in order to compare the effectiveness of
the proposed noise-aware training with Gaussian noise-based
training, we first replaced the bit-wise probability table-based
noise injection with the ideal partial sum quantization func-
tion of the IMC hardware. We then added noise drawn from
a single noise model obtained from the quantization error dis-
tribution, an example of which is shown in figure 2(b). The
Gaussian curve that best fits the error distribution was chosen
as the single noise model, which has a mean of 0.146 and a
standard deviation of 2.36.

4.1.1. Different DNN models.  Figure 6(a) shows the results
on the binarized DNN models reported in [2], where the pro-
posed IMC noise-aware training helps restore the IMC hard-
ware accuracy closer to the software baseline in all models.
In all the cases, although adding Gaussian noise to the par-
tial sums results in improvements compared to conventional
IMC inference, the best results are obtained when injecting
actual IMC noise during training. For ResNet-18 and VGG,
the IMC hardware accuracy can be restored to <3% of the soft-
ware baseline, compared to ~3%-11% accuracy degradation
of the conventional scheme. The accuracy improvement is sub-
optimal in the Mobilenet case as this DNN is highly sensitive
to noise because of the depth-wise and point-wise convolution
layers. It is a highly optimized DNN, making it more sensit-
ive to noise-induced variations in the computations. The scope
for decreasing the influence of computation errors in the depth-
wise and point-wise convolution layers is less when compared
to using conventional convolution layers.

4.1.2. Different DNN precision.  Figures 6(b) and (c) show
the IMC hardware accuracy improvements in ResNet-18 and
VGG DNN s respectively, for activation/weight precision val-
ues of 1-bit, 2-bit, and 4-bit. As we increase the DNN pre-
cision, the IMC accuracy without noise-aware training wor-
sens because IMC hardware performs bit-wise computations
in each column, and as multiple columns’ ADC outputs get
shifted/added to perform the multi-bit MAC operations, more
noise accumulates to the final MAC value. Another cause for
more accuracy degradation as we increase the DNN precision
is the 64-input size limitation for the binary MACs, as a result
of which more noise is added compared to a larger MAC size
of say 256 inputs used in [10]. However, the proposed noise-
aware training scheme restores the accuracies for 1-bit/2-bit/4-
bit ResNet-18 and VGG DNNSs significantly compared to the
conventional training scheme.

4.1.3. Noise from different chips. = We performed the same
noise-aware DNN training for ResNet-18 by using three
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Figure 6. IMC inference accuracy along with corresponding standard deviation error bars after hardware noise-aware training across

different DNN topologies shows consistent improvement.

Table 1. IMC inference accuracies for binary ResNet-18 on CIFAR-10 dataset after different noise-aware training schemes.

Baseline Binary ResNet-18 CIFAR-10 Accuracy: 89.24 + 1.05%

Conventional IMC

Noise-aware IMC Noise-aware IMC

Training Baseline Individual chip Ensemble (3 Chips)
Inference Individual chip Individual chip Ensemble (3 Chips)
Chip 1 82.60% =+ 0.54% 87.24% + 0.58%
Chip 2 82.17% =+ 0.62% 87.33% + 0.6% 87.57% £ 0.6%
Chip 3 81.53% + 0.48% 87.11% £ 0.55%
Average 82.1% =+ 0.55% 87.22% + 0.58% 87.57% + 0.6%
2-bit ResNet-18 CIFAR-10 Accuracy: 90.24 £+ 0.53%

Conventional IMC Noise-aware IMC Noise-aware IMC
Training Baseline Individual chip Ensemble (3 chips)
Inference Individual chip Individual chip Ensemble (3 chips)
Chip 1 81.26% + 0.51% 87.59% =+ 0.61%
Chip 2 80.80% =+ 0.62% 87.41% =+ 0.54% 87.82% £ 0.66%
Chip 3 81.37% £+ 0.55% 87.64% + 0.58%
Average 81.14% =+ 0.56% 87.55% + 0.58% 87.82% =+ 0.66%

4-bit ResNet-18 CIFAR-10 Accuracy: 92.81 4+ 0.32%

Conventional IMC Noise-aware IMC Noise-aware IMC
Training Baseline Individual chip Ensemble (3 chips)
Inference Individual chip Individual chip Ensemble (3 chips)
Chip 1 79.26% + 0.49% 90.86% =+ 0.63%
Chip 2 79.11% + 0.52% 90.72% =+ 0.66% 91.22% + 0.58%
Chip 3 79.81% + 0.51% 91.05% =+ 0.68%
Average 79.39% + 0.51% 90.88% =+ 0.66% 91.22% + 0.58%

different noise probability tables, obtained from three differ-
ent XNOR-RRAM chips. Table 1 shows that, on average, the
IMC inference accuracy was improved by 5.1%, 6.41%, and
11.49% for 1-bit, 2-bit, and 4-bit ResNet-18 DNNs respective.
Hence, DNNSs trained with our proposed training algorithm are
robust to inter-chip variations in the IMC noise as well.

4.2. Improvement in adversarial input attack robustness

We evaluated the adversarial robustness of multi-bit ResNet-
18 DNNs using black-box adversarial attack and CIFAR-10

dataset, as shown in figure 7. As shown in figure 7(a), the PGD
attack accuracy is improved by up to ~6% in comparison to
the conventionally trained baseline by adding XNOR-RRAM
IMC noise from [13] to the DNN training and inference pro-
cess. The PGD attack accuracy is further improved by using
adversarial training, and significant accuracy improvement is
observed across all the DNNGs in figure 7(b) compared to those
in figure 7(a). Hence, the IMC hardware noise and partial sum
quantization act as an inherent regularizer. This improves the
tolerance of the DNN to the deviation in the partial sum values,
which are in-turn caused by perturbations in the input pixels.
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Figure 7. Black-box adversarial accuracy with IMC-noise-aware training based on IMC measurements at 1.2 V [13]. The average results
across 5 runs of PGD attacks are shown for (a) DNNs trained with only clean images and (b) DNNs trained with clean and adversarial

images (i.e. adversarial training).

Table 2. Comparison of our work with two other related works, where we demonstrate better capability to restore DNN IMC inference

accuracy after noise-aware training.

Training noise

XNOR-RRAM IMC inference accuracy (%)

DNN model ResNet-18 VGG

Precision 1-bit 2-bit 4-bit 1-bit 2-bit 4-bit
Software baseline 89.24 90.24 92.81 923 92.68 93.5
No noise 82.6 81.26 79.26 84.45 83.33 81.39
Joshi et al [19] 85.26 85.48 86.92 86.33 86.63 88.19
Zhou et al [36] 86.16 86.2 87.14 86.4 86.58 88.83
XNOR-RRAM (our work) 87.24 87.89 90.9 88.2 90.6 91.85

Therefore, we can also improve the adversarial robustness of
DNNs using IMC hardware noise-aware training.

4.3. Comparison to relevant works

We compare our work with two relevant works [19, 36]. In
both of these works, noise is added to individual weights dur-
ing DNN training, and it differs from actual IMC hardware
noise, as discussed in section 2.3. Thus, although these works
tend to improve the IMC inference accuracy compared to the
software baselines trained without any noise injection, some
IMC inference accuracy degradation is expected. Our pro-
posed noise-aware training scheme matches well with actual
IMC hardware noise, and therefore more effectively improves
IMC inference accuracy.

We performed noise-aware training using the 7, = 7,
combination with a value of 0.138 for the work of [19], and a
value of 0.069 for the work of [36]. These values were chosen
so that the noise remains the same during training and infer-
ence, and also so that the noise intensity remains similar to
that of the XNOR-RRAM noise. The maximum and minimum
ADC output values on which noise is applied (corresponding
to the XNOR-RRAM design [13]) are +17 and —17, respect-
ively. The standard deviation of the XNOR-RRAM chip noise
is 2.36. We obtain the aforementioned 7 values by substituting

g,

these values into the noise formulae of = =1 provided
by [19] and Ufmixe =nx (Wmax - Wlmin) prOVided by [36].

Table 2 shows that our proposed IMC noise-aware training
algorithm achieves better IMC inference accuracy compared
to the two related works across ResNet-18 and VGG DNN5s
with 1-bit, 2-bit, and 4-bit precision. Furthermore, the amount
of net noise for IMC inference with higher precision DNNs
increases since error accumulates during bit-by-bit operations,
and this results in larger accuracy degradation. Hence, by using
IMC hardware noise-aware training, the accuracy loss can be
recovered more effectively compared to the two relevant works
in 2-bit and 4-bit DNNSs.

5. Conclusion

In this work, we presented a new hardware noise-aware DNN
training scheme to improve the DNN inference accuracy and
adversarial robustness of RRAM-based IMC hardware. By
injecting noise measured from RRAM IMC prototype chips
during DNN training, the RRAM IMC inference accuracy for
CIFAR-10 dataset improved by up to 8%. We have also shown
that the DNNs can be made more robust to adversarial input
attacks by using our proposed noise-aware training scheme,
and robustness improvements of up to 6% can be obtained
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by just introducing IMC hardware noise during DNN training
and inference. If adversarial training is used alongside IMC
noise-aware training, the robustness can be improved by up
to 25%. The techniques proposed in this work can be util-
ized as a general DNN framework to integrate empirically
measured hardware errors that are more complicated than
simple Gaussian noise and exhibit data dependence, towards
achieving high accuracy and robustness.
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