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Improving DNN 
Hardware Accuracy by 
In-Memory Computing 
Noise Injection

 Deep neural networks (DNNs) have been 
very successful across many applications, but they 
require a very large amount of computation and 
storage to achieve high accuracy. On the algorithm 
side, the arithmetic complexity and storage require-
ment of DNNs have been aggressively reduced by 
low-precision quantization techniques [1]. On the 
hardware side, many digital accelerators efficiently 
implemented DNNs with specialized dataflows, 
based on a systolic array of multiply-and-accumu-
late (MAC) engines and on-chip memory hierarchy. 
Still, the energy/power breakdown results reported 
in recent DNN accelerators [2] show that memory 

access and data com-
munication consume a 
dominant portion (e.g., 
two-thirds or higher) of 
the total on-chip energy/
power.

To address such bot-
tlenecks, in-memory com-

puting (IMC) has emerged as a promising technique. 
IMC performs MAC computation inside the memory 
(e.g., SRAM) by activating multiple/all rows, whose 
result is represented by analog bitline voltage/current  
(VBL/IBL), and subsequently digitized by an analog- 
to-digital converter (ADC) in the periphery. This sub-
stantially reduces data transfer (compared to digital 
accelerators with separate MAC arrays) and increases 
parallelism (compared to conventional row-by-row 
access), significantly improving the energy efficiency 
of MAC operations. Several IMC SRAM prototype chips 
[3]–[6] demonstrated high energy efficiency of up to 
hundreds of TOPS/W by efficiently combining storage 
and computation.

However, IMC designs achieve higher energy effi-
ciency than digital counterparts by trading off the 
signal-to-noise ratio (SNR), since analog computa-
tion inherently involves variability/noise. As a result, 
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IMC chips show variability in the ADC outputs for 
the same ideal MAC value and often report accuracy 
degradation compared to the digital baseline [3], 
[5], [7], [8]. For example, DNN accuracy degrada-
tion of ~7% for the CIFAR-10 data set was reported 
when baseline DNNs are evaluated on the noisy IMC 
prototype chip of [3], where all 256 rows of the IMC 
SRAM array are activated simultaneously.

To mitigate this accuracy loss, some IMC SRAM 
works attempted to improve the SNR by limiting the 
number of activated rows for IMC, for example, 36 
rows in [9], but this reduces the computing parallel-
ism and energy efficiency. Other works performed 
DNN training with noise injection at individual 
weight-level [7], [8] or activation-level [10], which 
do not consider the IMC crossbar structure and other 
hardware noise such as bitline/ADC noise.

In this work, we present a new hardware noise-
aware DNN training scheme to largely recover 
the accuracy loss of highly parallel IMC hardware 
(Figure 1). The novelty of our work lies in that: 
1)  noise injection is performed at the partial sum 
level that matches with the IMC crossbar and 2) the 
injected noise is based on actual hardware noise 
measured from multiple chips of two recent IMC 
prototype designs [3], [6]. The actual IMC hard-
ware noise measured at the partial sum level (ADC 
output) captures individual weight-/activation-level 

noise, bitline noise, and ADC offset/quantization 
noise collectively. We report results of hardware 
noise-aware training and inference for various DNN 
models with 1-/2-/4-bit precision. Furthermore, by 
using noise data obtained from five different chips, 
we also evaluate the effectiveness of our proposed 
DNN training using individual chip’s noise data ver-
sus the ensemble noise from multiple chips. 

The key contributions and observations of this 
work are as follows.

•	 To effectively improve the DNN accuracy of IMC 
hardware, we inject hardware extracted noise 
for DNN training at the partial sum level, which 
matches with the IMC crossbar structure. 

•	 We observe that the IMC hardware noise is differ-
ent from a Gaussian distribution, and for DNNs 
trained with Gaussian noise, this causes a mis-
match during inference, resulting in suboptimal 
accuracy. 

•	 We perform noise-injection training and evaluate 
DNN accuracy for multiple DNNs and precision 
values with two different IMC designs’ measure-
ment results. 

•	 Considering inter/intrachip variations, we eval-
uate the individual chip data-based training 
and overall chips’ data-based ensemble training 
methods. 

Figure 1. Illustration of the proposed IMC hardware noise-aware training and IMC inference 
evaluation. Introducing IMC hardware noise to DNN training helps recover most of the accuracy 
loss, which was validated with IMC prototype chip measurements.
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Background and related works 

SRAM-based IMC 
In IMC systems, DNN weights are stored in a cross-

bar structure, and analog computation is performed 
typically by applying activations as voltage on the 
row side and accumulating the bitwise multiplica-
tion result via analog voltage/current on the column 
side. ADCs at the periphery quantize the analog volt-
age/current into digital values. This way, vector-ma-
trix multiplication (VMM) of activation vectors and 
the stored weight matrices is computed in a highly 
parallel manner without reading out the weights. 

Both SRAM-based IMC [3], [4], [6] and nonvol-
atile memory (NVM)-based IMC [11] have been 
presented. While NVMs have density advantages, 
the availability of embedded NVMs in scaled CMOS 
technologies is limited, and device nonidealities 
such as low on/off ratio, endurance, relaxation, and 
so on pose challenges for robust large-scale integra-
tion. Conversely, SRAM has a very high on/off ratio 
and SRAM-based IMC can be implemented in any 
latest CMOS technology. Therefore, we focus on 
SRAM IMC designs in this article. 

SRAM IMC schemes can be categorized into 
resistive IMC that uses resistive pull-down/-up tran-
sistors [3]–[5] and capacitive IMC [6] that employs 
capacitive-coupling or charge-sharing for MAC com-
putation. In a resistive IMC design “XNOR-SRAM” [3], 
binary multiplication (XNOR) between activations and 
weights is implemented by pull-down/-up transistors. In 
a capacitive IMC design “C3SRAM” [6], MAC operation 
is performed via capacitive-coupling with an additional 
capacitor. For resistive/capacitive IMC designs, each 
bitcell’s multiplication result is accumulated onto the 
analog VBL by forming a resistive/capacitive divider. 

Hardware-aware DNN training for accurate 
DNN inference with IMC hardware 

Accuracy degradation has been reported when 
software DNNs are deployed on IMC hardware due 
to quantization, variability, and transistor nonlinear-
ity [3], [6], [7]. To improve the inference accuracy 
with IMC hardware, several works considered the 
nonideal hardware characteristics during DNN train-
ing [4], [5], [7]–[9], as follows. 

on-chip training circuits for IMC 
Considering each chip’s variations, [5] imple-

mented an on-chip gradient descent-based trainer 

to adapt/track on-chip variations for support vec-
tor machine tasks. However, performance for large 
DNNs was not reported, and on-chip training circuits 
incur a large overhead in area/energy. 

Nonlinearity/quantization-aware training for IMC 
In [4], the nonlinearity of VBL was compensated in 

DNN training, but the accuracy was only evaluated 
for MNIST. A quantization-aware training scheme 
was proposed in [9] for NVM IMC, but only 36 rows 
are activated for IMC to maintain SNR, and still >2% 
accuracy loss is reported on DNNs for CIFAR-10. 

Noise-aware training for IMC 
Recent works [7], [8] injected noise during 

training at the individual weight level drawn from 
Gaussian distributions based on NVM variations. 
However, the IMC crossbar structure and the var-
iations of wires/ADCs are not accounted for when 
using weight-level Gaussian distributions. 

Our proposed noise-aware training scheme per-
forms noise injection on the partial sum level that 
matches with the IMC crossbar structure, and the 
injected noise is directly from IMC chip measure-
ment results on the quantized ADC outputs for differ-
ent MAC values. 

Proposed IMC hardware noise-aware 
DNN training and inference

IMC hardware and quantization noise 
Both XNOR-SRAM [3] and C3SRAM [6] IMC mac-

ros activate all 256 rows to perform 256-input MAC 
with binary activations and weights (−1 and +1). 
The MAC result in the range from −256 to +256 is 
represented by the analog VBL, which is digitized 
by 11-level flash ADCs to one of 11 possible output 
levels, that is, [−60, −48, −36, −24, −12, 0, 12, 24, 36, 
48, 60]. Figure 2 shows the ADC output distributions 
obtained from XNOR-SRAM chip measurements at 
three different supply voltages. If the supply voltage 
changes, noise/variability gets affected, and the IMC 
chip results change as well. For the resistive IMC 
design XNOR-SRAM, Figure 2 shows that the meas-
ured noise worsened for higher supply voltages due 
to higher IR drop. These distributions/probabilities 
are used to transform the partial sums into noisy 
quantized ADC outputs. Intrachip (e.g., different 
SRAM columns) and interchip (e.g., different chips) 
variations exist, which affect the amount of noise 
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introduced to the analog MAC computation and the 
resultant DNN accuracy. 

For multibit DNN evaluation, multibit weights are 
split across multiple columns of the IMC array and 
multibit activations are fed to the IMC array over 
multiple cycles to perform bit-serial processing. The 
partial sums are then accumulated with proper bina-
ry-weighted coefficients depending on the bit posi-
tions of the subactivations/weights, and the full sum 
for a given neuron in the DNN layer is obtained. 

DNN inference with IMC hardware emulation
We divide all MAC operations in convolution and 

fully connected layers of DNNs into multiple 256-input 
MAC operations (Figure 1). For every 256-input MAC 
operation, we use IMC chip measurement results with 
a sampling method described below. Accumulation 
of such 256-input partial sums and other non-MAC 
operations are performed via digital simulation. 

To characterize the noisy quantization behavior 
for both XNOR-SRAM and C3SRAM chips, we per-
formed a total of 409,600 measurements for 256-input 
MACs (409,600 = 1,600 × 25), where 1,600 measure-
ments are obtained for each of the 256 binary MAC 
values with random activation/weight vectors. With 
such measurements, 2-D histograms between the 
MAC value and ADC output are obtained (Figure 2). 
This data is then converted to a conditional probabil-
ity table, which reports the probability of each MAC 
value, resulting in different ADC outputs. Different 

chips or operating conditions (e.g., supply voltage) 
will be represented by different probability tables. 
To evaluate the accuracy of large DNNs, for each 
256-input MAC value, we randomly “sample” the 
ADC output based on the distribution in the prob-
ability table, since small IMC chips cannot directly 
map large DNNs and time-multiplexing the small 
IMC chip requires excessive testing iterations. 

IMC hardware noise-aware training
In conventional IMC works, the inference accu-

racy is affected by the inherent hardware noise and 
variability. To address this, we performed noise-
aware DNN training by injecting the measured IMC 
hardware noise into the forward pass during DNN 
training (Figure 1). 

The proposed training algorithm is described in 
Algorithm 1, where we inject the hardware noise by 
emulating the IMC macro’s MAC computation and 
then use the conditional probability table for each 
MAC value. We perform random sampling with the 
probability table and predict the corresponding ADC 
output value. The DNN is trained while injecting such 
IMC noise by using a windowed straight-through-esti-
mator for the backward pass. 

DNN training noise and DNN inference noise 
If P is a partial sum between the inputs and 

weights in a column of IMC crossbar, we get a quan-
tized partial sum QP at the ADC output as 

QP = IF(P); Lossideal = f (W,  IF) 

Figure 2. ADC output distributions for each partial sum 
(MAC) value from XNOR-SRAM chip measurements at 
(a) 1.0 V, (b) 0.8 V, and (c) 0.6 V supply (adapted from [3]).
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where IF() is the ideal ADC transfer function, and the 
loss corresponding to quantization noise is a func-
tion of IF and weights (W). If we use Gaussian noise 
injection for the quantized partial sum during train-
ing, the equation would be

GQP = QP + N(µ, σ); Lossnoise = f (W1,  IF,  N(µ, σ)) 

where N(µ, σ) is a Gaussian distribution with 
mean µ and standard deviation σ, and the loss cor-
responding to the noisy quantization is a function of 
N and weights W1. On the other hand, if we use noisy 
partial sum quantization scheme obtained from IMC 
chip measurement data, we get

NQP = NF(P);  Lossnoise = f (W2,  NF) 

where NF() is the measured noisy ADC transfer func-
tion of the IMC hardware, and the loss correspond-
ing to the noisy quantization is a function of NF and 
weights W2. 

After training, W1 and W2 will converge to differ-
ent sets of values. Since the real hardware inference 
exhibits IMC noise NF, W1 is not matched well and 
will be suboptimal. More optimal results will be 
obtained with W2, since the same IMC noise NF has 
been used during both training and inference.

Experiment results
We performed IMC hardware noise-aware DNN 

training with 32-bit floating-point precision and 
evaluated ResNet18, AlexNet, VGG, and MobileNet 
DNNs for CIFAR-10 data set. Targeting DNN infer-
ence with 1-, 2-, and 4-bit activation/weight preci-
sion, we employed quantization-aware training 
[12]. For the proposed hardware noise-aware 
training, all DNNs were trained by using a batch-
size of 50 and the default hyperparameters in [12]. 
Furthermore, the reported DNN inference accuracy 
values are the average values obtained from five 
inference evaluations of the same DNN under the 
same noise conditions used during the proposed 
training process. 

We used measurement results from XNOR-SRAM 
[3] and C3SRAM [6] chips at different supply volt-
ages. Also, we performed ideal ADC-aware training 
by using the ideal ADC transfer function to quantize 
the partial sums, and ensemble IMC noise-aware 
training, by combining the probability tables of five 
different XNOR-SRAM chips and obtaining a unified 
probability table that represents the noise from five 
chips. 

We experimented the following four schemes 
for DNN accuracy evaluation: 1) baseline repre-
sents the software DNN baseline; 2) conventional 
IMC inference represents the scheme with IMC chip 
measurement-based evaluation on baseline DNNs 
without noise-aware training; 3) ADC-aware IMC 
inference represents IMC chip measurement-based 
evaluation on the new DNNs trained with ideal ADC 
quantization; and 4) noise-aware IMC inference rep-
resents IMC chip measurement-based evaluation on 
the new DNNs trained with the proposed hardware 
noise injection.

XNOR-SRAM chip noise-aware training and 
inference

Using XNOR-SRAM chip [3] measurement results 
and probability tables, we performed the proposed 
noise-aware DNN training for different DNN models, 
with different activation/weight precision and with 
different noise models (e.g., noise from different sup-
ply voltages and different physical chips). 

Different DNN models and precisions
We performed DNN training/inference on 

ResNet-18, VGG, AlexNet, and MobileNet DNNs for 
CIFAR-10, using the XNOR-SRAM chip measurement 
at 0.6-V supply. Figure 3a shows the results on the 
binarized DNNs [12], where the proposed IMC noise-
aware training helps restore the IMC hardware accu-
racy closer to the software baseline in all models. 
For ResNet-18, the IMC hardware accuracy can be 
restored to within <1% of the software baseline, com-
pared to ~3.5% accuracy degradation of the conven-
tional scheme.

The accuracy improvement for VGG in Figure 3a 
is relatively small, with low IMC noise at 0.6 V for 
XNOR-SRAM chip (Figure 2c). When we applied high 
IMC noise of XNOR-SRAM chip at 1.0 V (Figure 2a), 
the conventional IMC inference accuracy was 
degraded severely to 68.3%, but the proposed IMC 
noise-aware scheme largely improved the accuracy 
to 86.4%, similar to the trend of ResNet-18 results, as 
shown in Figure 3c.

On the other hand, MobileNet have depth/point-
wise convolution layers that are shallow and have 
kernel sizes down to 1 × 1, which makes the convo-
lution computation sensitive to noise-induced varia-
tions, leading to large accuracy degradation. 

Figure 3b shows the IMC hardware accuracy 
improvements in ResNet-18 DNNs for activation/
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weight precision values of 1-, 2-, and 4-bit. As we 
increase the DNN precision, the IMC accuracy with-
out noise-aware training worsens. This is because 
IMC hardware performs bitwise computations in 
each column, and as multiple columns’ ADC outputs 
get shifted/accumulated, a higher amount of noise is 
added to the multibit MAC computation. However, 
the proposed noise-aware training scheme restores 
the accuracies for 1-/2-/4-bit ResNet-18 DNNs, close 
to the software baseline.

Noise measured at different chip voltages
The supply voltage affects the analog IMC oper-

ation. XNOR-SRAM measurements reported that 
higher supply voltages worsened the IMC noise [3], 
due to a higher IR drop on VBL. Using the XNOR-SRAM 
measurements at supply voltages of 0.6, 0.8, and 
1.0 V, we performed hardware noise-aware training.

Figure 3c shows that the noise-aware IMC accu-
racy is better than the conventional IMC accuracy 
in all three supply voltages for binary ResNet-18. IMC 
accuracy degrades rapidly as the IMC noise worsens, 
but the proposed noise-aware training largely recov-
ers this severe accuracy loss. 

Noise from different chips 
We performed the same noise-aware DNN train-

ing for binary ResNet-18 by using five different noise 
probability tables, obtained from five different 
XNOR-SRAM chips at 0.6 V supply. Table 1 shows the 
results for 1-, 2-, and 4-bit ResNet-18, where the noise-
aware IMC inference achieves consistently higher 

accuracy than conventional IMC inference across all 
five chips. 

Ensemble of noise from different chips 
We also obtained an ensemble probability table by 

combining the probability data from five XNOR-SRAM 
chips. To achieve this, 100,000 random samplings of 
ADC outputs were performed from each chip’s proba-
bility table for random inputs, and the new ensemble 
probabilities from the pool of 500,000 samplings were 
obtained. This ensemble probability table represents 
a more generalized version of the hardware noise 
and allows us to test the performance of DNNs when 
trained with IMC noise averaged from multiple chips.

We trained 1-/2-/4-bit ResNet-18 DNNs by inject-
ing the ensemble IMC noise from five chips and then 
evaluated the inference by: 1) using each individual 
chip’s probability table and 2) using ensemble prob-
ability table from five chips, as shown in the last two 
columns of Table 1. We performed five inference 
evaluations for each experiment, and the mean of 
the five inference accuracies and the average devia-
tion from the mean are reported. 

For individual chip’s IMC inference, using the 
trained DNN model with each chip’s IMC noise injec-
tion shows the best accuracy in Table 1. Employing 
one ensemble DNN model trained with many chips’ 
noise data could mitigate the chipwise training 
overhead, while slight accuracy degradation occurs 
compared to the DNNs trained with individual chip’s 
noise. If we use ensemble noise for inference, the 
DNN accuracy improves to the level of individual 

Figure 3. IMC inference accuracy after hardware noise-aware training of (a) different DNN 
topologies (*MobileNet only binarized convolution layers), (b) different activation/weight precisions 
for ResNet-18 with XNOR-SRAM chip at 0.6V, and (c) different XNOR-SRAM supply voltages for 
ResNet-18 DNN.
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chip’s DNN (or achieves even higher accuracy for 
1- and 2-bit ResNet-18 DNNs).

C3SRAM chip noise-aware training and 
inference

We evaluated the same DNN models as previous 
section using the C3SRAM chip [6] measurement 
results. First, we obtained the C3SRAM IMC inference 
accuracy for baseline ResNet-18, AlexNet, VGG, and 
MobileNet DNNs trained without noise injection. 
In addition, we performed noise-aware training for 
those DNNs with the probability table from C3SRAM 

measurements and evaluated the C3SRAM inference 
accuracy. 

For the C3SRAM chip, we used the noise data 
measured at 1.0 and 0.6 V supply voltages. Unlike 
the XNOR-SRAM chip, where the noise is reduced as 
the supply voltage decreased, the noise of C3SRAM 
chip increases as the supply voltage is lowered. This 
is because, as a resistive IMC, XNOR-SRAM experi-
ences more IR drop at higher supply voltages where 
the current is large [3]. On the other hand, C3SRAM 
is a capacitive IMC based on capacitive coupling, so 
it is not affected by IR drop much, but the VBL range 

 
Table 1. IMC inference accuracies for 1-/2-/4-bit ResNet-18 on CIFAR-10 for different noise-aware training 
experiments. (a) 1-bit ResNet-18. (b) 2-bit ResNet-18. (c) 4-bit ResNet-18. 
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linearly decreases at lower supply voltages, limiting 
the ADC functionality [6]. 

Figure 4a shows the IMC hardware inference accu-
racy improvements obtained for all four DNNs after 
performing noise-aware training using the C3SRAM 
chip measurements at 1.0 V supply with low noise. 
For binary ResNet-18, the IMC hardware accuracy 
was improved by 3.8% from 84.94% before noise-
aware training to 88.74% after noise-aware training.

Figure 4b shows the noise-aware DNN training 
and inference results on 1-, 2-, and 4-bit ResNet-18 
DNNs. In all three cases, the proposed scheme is 
able to restore the IMC inference accuracy very close 
to the software baseline, while 4-bit ResNet-18 shows 
the highest 5.72% accuracy improvement compared 
to the conventional IMC scheme.

Figure 4c shows the effect of supply voltage of 
the C3SRAM chip on the IMC accuracy for binary 
ResNet-18. When a 0.6-V supply with high noise is 
used for conventional IMC inference without noise-
aware training, considerable accuracy degradation 
of 20.1% is observed. Using the proposed IMC noise-
aware training, the DNN accuracy substantially 
improved from 67.35% to 83.55%.

Comparison to relevant works
We also compared the performance of our work 

with two relevant works [7], [8]. In an attempt to 
make an apple-to-apple comparison, we performed 
noise-aware training using the approaches proposed 
by each scheme and evaluated DNN inference, 
where all three schemes employed the same noise 
data from the XNOR-SRAM chip measurements. 

For example, to compare the performance at 
0.6 V XNOR-SRAM noise, we performed noise-aware 
training using the ηtr = ηinf combination with a value 
of 0.11 for the work of [7] and a value of 0.058 for 
the work of [8]. These values were chosen so that 
the noise remains the same during training and 
inference. The maximum and minimum MAC val-
ues on which noise is applied (corresponding to the 
XNOR-SRAM design [3]) are +60 and −60, respec-
tively. If we substitute these values into the noise for-
mula of σnoise/Wmax = η provided by [7] and the noise 
formula of σ ηnoise max min

l l lW W= × −( )  provided by 
[8], we obtain the aforementioned η values of 0.11 
and 0.058. 

Figure 5 shows the IMC inference accuracy com-
parison results for binary ResNet-18 DNNs, which are 

Figure 5. Comparison of our work to [7] and [8] using 
equivalent noise used for binary ResNet-18 training 
and inference.

Figure 4. IMC inference accuracy after hardware noise-aware training of (a) different DNN topologies 
(*MobileNet only binarized convolution layers), (b) different activation/weight precisions for 
ResNet-18 with C3SRAM chip at 1.0 V, and (c) different C3SRAM supply voltages for ResNet-18 DNN.
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trained with three noise models of the XNOR-SRAM 
chip measured at 0.6, 0.8, and 1.0 V, and two noise 
models of the C3SRAM chip measured at 0.6 and 
1.0 V. Compared to [7] and [8] that used the equiva-
lent amount of noise, our work results in better infer-
ence accuracy, especially when the noise amount is 
high, for example, XNOR-SRAM at 1.0 V and C3SRAM 
at 0.6 V. 

In this work, we presented a new hardware noise-
aware DNN training scheme to improve the DNN 
inference accuracy of IMC hardware. During DNN 
training, noise injection is performed at the partial 
sum level, and the injected noise is based on IMC 
chip measurements. We validated our proposed 
scheme across different DNN models and preci-
sions, by using measured noise at different supply 
voltages from multiple chips of two different IMC 
prototypes. We also examined the effectiveness of 
using an ensemble of noise from multiple chips. The 
degraded accuracy of conventional IMC hardware is 
largely recovered for all experiments that we eval-
uated by using the proposed noise-aware training, 
especially when the IMC hardware noise is high.� 
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