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Editor’s notes:

Like any other designs, in-memory computing (IMC) also suffers from
operational inaccuracy induced by hardware noise. In this work, the authors
propose to take into account hardware noises during the deep neural
network (DNN) training in order to improve the DNN inference accuracy.
—Yiran Chen, Duke University

Il Deep NEURAL NETWORKS (DNNs) have been
very successful across many applications, but they
require a very large amount of computation and
storage to achieve high accuracy. On the algorithm
side, the arithmetic complexity and storage require-
ment of DNNs have been aggressively reduced by
low-precision quantization techniques [1]. On the
hardware side, many digital accelerators efficiently
implemented DNNs with specialized dataflows,
based on a systolic array of multiply-and-accumu-
late (MAC) engines and ON-chip memory hierarchy.
Still, the energy/power breakdown results reported
in recent DNN accelerators [2] show that memory
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access and data com-
munication consume a
dominant portion (e.g.,
two-thirds or higher) of
the total oN-chip energy/
power.

To address such bot-
tlenecks, in-memory com-
puting (IMC) has emerged as a promising technique.
IMC performs MAC computation inside the memory
(e.g., SRAM) by activating multiple/all rows, whose
result is represented by analog bitline voltage/current
(Vai/Ig), and subsequently digitized by an analog-
to-digital converter (ADC) in the periphery. This sub-
stantially reduces data transfer (compared to digital
accelerators with separate MAC arrays) and increases
parallelism (compared to conventional row-by-row
access), significantly improving the energy efficiency
of MAC operations. Several IMC SRAM prototype chips
[3]-[6] demonstrated high energy efficiency of up to
hundreds of TOPS/W by efficiently combining storage
and computation.

However, IMC designs achieve higher energy effi-
ciency than digital counterparts by trading off the
signal-to-noise ratio (SNR), since analog computa-
tion inherently involves variability/noise. As a result,
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Figure 1. lllustration of the proposed IMC hardware noise-aware training and IMC inference
evaluation. Introducing IMC hardware noise to DNN training helps recover most of the accuracy
loss, which was validated with IMC prototype chip measurements.
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IMC chips show variability in the ADC outputs for
the same ideal MAC value and often report accuracy
degradation compared to the digital baseline [3],
[5], [7], [8]. For example, DNN accuracy degrada-
tion of ~7% for the CIFAR-10 data set was reported
when baseline DNNs are evaluated on the noisy IMC
prototype chip of [3], where all 256 rows of the IMC
SRAM array are activated simultaneously.

To mitigate this accuracy loss, some IMC SRAM
works attempted to improve the SNR by limiting the
number of activated rows for IMC, for example, 36
rows in [9], but this reduces the computing parallel-
ism and energy efficiency. Other works performed
DNN training with noise injection at individual
weight-level [7], [8] or activation-level [10], which
do not consider the IMC crossbar structure and other
hardware noise such as bitline/ADC noise.

In this work, we present a new hardware noise-
aware DNN training scheme to largely recover
the accuracy loss of highly parallel IMC hardware
(Figure 1). The novelty of our work lies in that:
1) noise injection is performed at the partial sum
level that matches with the IMC crossbar and 2) the
injected noise is based on actual hardware noise
measured from multiple chips of two recent IMC
prototype designs [3], [6]. The actual IMC hard-
ware noise measured at the partial sum level (ADC
output) captures individual weight-/activation-level

noise, bitline noise, and ADC offset/quantization
noise collectively. We report results of hardware
noise-aware training and inference for various DNN
models with 1-/2-/4-bit precision. Furthermore, by
using noise data obtained from five different chips,
we also evaluate the effectiveness of our proposed
DNN training using individual chip’s noise data ver-
sus the ensemble noise from multiple chips.

The key contributions and observations of this
work are as follows.

To effectively improve the DNN accuracy of IMC
hardware, we inject hardware extracted noise
for DNN training at the partial sum level, which
matches with the IMC crossbar structure.

We observe that the IMC hardware noise is differ-
ent from a Gaussian distribution, and for DNNs
trained with Gaussian noise, this causes a mis-
match during inference, resulting in suboptimal
accuracy.

We perform noise-injection training and evaluate
DNN accuracy for multiple DNNs and precision
values with two different IMC designs’ measure-
ment results.

Considering inter/intrachip variations, we eval-
uate the individual chip data-based training
and overall chips’ data-based ensemble training
methods.
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Background and related works

SRAM-based IMC

In IMC systems, DNN weights are stored in a cross-
bar structure, and analog computation is performed
typically by applying activations as voltage on the
row side and accumulating the bitwise multiplica-
tion result via analog voltage/current on the column
side. ADCs at the periphery quantize the analog volt-
age/current into digital values. This way, vector-ma-
trix multiplication (VMM) of activation vectors and
the stored weight matrices is computed in a highly
parallel manner without reading out the weights.

Both SRAM-based IMC [3], [4], [6] and nonvol-
atile memory (NVM)-based IMC [11] have been
presented. While NVMs have density advantages,
the availability of embedded NVMs in scaled CMOS
technologies is limited, and device nonidealities
such as low ON/OFF ratio, endurance, relaxation, and
so on pose challenges for robust large-scale integra-
tion. Conversely, SRAM has a very high ON/OFF ratio
and SRAM-based IMC can be implemented in any
latest CMOS technology. Therefore, we focus on
SRAM IMC designs in this article.

SRAM IMC schemes can be categorized into
resistive IMC that uses resistive pull-down/-up tran-
sistors [3]-[5] and capacitive IMC [6] that employs
capacitive-coupling or charge-sharing for MAC com-
putation. In a resistive IMC design “XNOR-SRAM” [3],
binary multiplication (XNOR) between activations and
weights is implemented by pull-down/-up transistors. In
a capacitive IMC design “C3SRAM” [6], MAC operation
is performed via capacitive-coupling with an additional
capacitor. For resistive/capacitive IMC designs, each
bitcell’s multiplication result is accumulated onto the
analog Vp; by forming a resistive/capacitive divider.

Hardware-aware DNN training for accurate
DNN inference with IMC hardware

Accuracy degradation has been reported when
software DNNs are deployed on IMC hardware due
to quantization, variability, and transistor nonlinear-
ity [3], [6], [7]. To improve the inference accuracy
with IMC hardware, several works considered the
nonideal hardware characteristics during DNN train-
ing [4], [5], [7]-[9], as follows.

oN-chip training circuits for IMC

Considering each chip’s variations, [5] imple-
mented an ON-chip gradient descent-based trainer
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to adapt/track on-chip variations for support vec-
tor machine tasks. However, performance for large
DNNs was not reported, and on-chip training circuits
incur a large overhead in area/energy.

Nonlinearity/quantization-aware training for IMC
In [4], the nonlinearity of V5 was compensated in
DNN training, but the accuracy was only evaluated
for MNIST. A quantization-aware training scheme
was proposed in [9] for NVM IMC, but only 36 rows
are activated for IMC to maintain SNR, and still >2%
accuracy loss is reported on DNNs for CIFAR-10.

Noise-aware training for IMC

Recent works [7], [8] injected noise during
training at the individual weight level drawn from
Gaussian distributions based on NVM variations.
However, the IMC crossbar structure and the var-
iations of wires/ADCs are not accounted for when
using weight-level Gaussian distributions.

Our proposed noise-aware training scheme per-
forms noise injection on the partial sum level that
matches with the IMC crossbar structure, and the
injected noise is directly from IMC chip measure-
ment results on the quantized ADC outputs for differ-
ent MAC values.

Proposed IMC hardware noise-aware
DNN training and inference

IMC hardware and quantization noise

Both XNOR-SRAM [3] and C3SRAM [6] IMC mac-
ros activate all 256 rows to perform 256-input MAC
with binary activations and weights (-1 and +1).
The MAC result in the range from —256 to +256 is
represented by the analog Vg, which is digitized
by 11-level flash ADCs to one of 11 possible output
levels, that is, [-60, —48, —36, —24, —-12, 0, 12, 24, 36,
48, 60]. Figure 2 shows the ADC output distributions
obtained from XNOR-SRAM chip measurements at
three different supply voltages. If the supply voltage
changes, noise/variability gets affected, and the IMC
chip results change as well. For the resistive IMC
design XNOR-SRAM, Figure 2 shows that the meas-
ured noise worsened for higher supply voltages due
to higher IR drop. These distributions/probabilities
are used to transform the partial sums into noisy
quantized ADC outputs. Intrachip (e.g., different
SRAM columns) and interchip (e.g., different chips)
variations exist, which affect the amount of noise
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Figure 2. ADC output distributions for each partial sum
(MAC) value from XNOR-SRAM chip measurements at
(a) 1.0V, (b) 0.8 V, and (c) 0.6 V supply (adapted from [3]).
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introduced to the analog MAC computation and the
resultant DNN accuracy.

For multibit DNN evaluation, multibit weights are
split across multiple columns of the IMC array and
multibit activations are fed to the IMC array over
multiple cycles to perform bit-serial processing. The
partial sums are then accumulated with proper bina-
ry-weighted coefficients depending on the bit posi-
tions of the subactivations/weights, and the full sum
for a given neuron in the DNN layer is obtained.

DNN inference with IMC hardware emulation

We divide all MAC operations in convolution and
fully connected layers of DNNs into multiple 256-input
MAC operations (Figure 1). For every 256-input MAC
operation, we use IMC chip measurement results with
a sampling method described below. Accumulation
of such 256-input partial sums and other non-MAC
operations are performed via digital simulation.

To characterize the noisy quantization behavior
for both XNOR-SRAM and C3SRAM chips, we per-
formed a total of 409,600 measurements for 256-input
MACs (409,600 = 1,600 x 25), where 1,600 measure-
ments are obtained for each of the 256 binary MAC
values with random activation/weight vectors. With
such measurements, 2-D histograms between the
MAC value and ADC output are obtained (Figure 2).
This data is then converted to a conditional probabil-
ity table, which reports the probability of each MAC
value, resulting in different ADC outputs. Different

Algorithm 1: Noise-aware DNN training

Input: n binary inputs z; and weights w;
Input: IMC row-size r

Input: cumulative noise probability matrix pt
Output: Noisy quantized MAC Q(ZT T; X w;)

Initialize: number of chunks ¢ = ceil(n/r)
Initialize: Divide the inputs and weights into ¢ chunks
Initialize: MAC, d = 0.
cdf.find(cdf, x): identifies the index of the first
element in cdf that is less than x
random.uniform(): returns a random float in [0, 1]
for i =1 to c do

partial sum ps = 3] ; X w;

level-probs = pt[ps]

index = cdf .find(level-probs, random.uniform())

qlevel = levels[index]

Q(cdp) = glevel

d=d + Q(cdp)
end for
return d

chips or operating conditions (e.g., supply voltage)
will be represented by different probability tables.
To evaluate the accuracy of large DNNs, for each
256-input MAC value, we randomly “sample” the
ADC output based on the distribution in the prob-
ability table, since small IMC chips cannot directly
map large DNNs and time-multiplexing the small
IMC chip requires excessive testing iterations.

IMC hardware noise-aware training

In conventional IMC works, the inference accu-
racy is affected by the inherent hardware noise and
variability. To address this, we performed noise-
aware DNN training by injecting the measured IMC
hardware noise into the forward pass during DNN
training (Figure 1).

The proposed training algorithm is described in
Algorithm 1, where we inject the hardware noise by
emulating the IMC macro’s MAC computation and
then use the conditional probability table for each
MAC value. We perform random sampling with the
probability table and predict the corresponding ADC
output value. The DNN is trained while injecting such
IMC noise by using a windowed straight-through-esti-
mator for the backward pass.

DNN training noise and DNN inference noise

If P is a partial sum between the inputs and
weights in a column of IMC crossbar, we get a quan-
tized partial sum QP at the ADC output as

QP = IF(P); LosSigea = F(W, IF)

IEEE Design&Test
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where IF() is the ideal ADC transfer function,and the
loss corresponding to quantization noise is a func-
tion of IF and weights (W).If we use Gaussian noise
injection for the quantized partial sum during train-
ing, the equation would be

GQP = QP + N(ﬂv O-); Loss;oise = f(Wla I N(ﬂ’ G))

where N(u, o) is a Gaussian distribution with
mean u and standard deviation ¢, and the loss cor-
responding to the noisy quantization is a function of
N and weights W;.On the other hand, if we use noisy
partial sum quantization scheme obtained from IMC
chip measurement data, we get

NQP = NF(P)7 LOSSnoise = f(W27 NF)

where NF() is the measured noisy ADC transfer func-
tion of the IMC hardware, and the loss correspond-
ing to the noisy quantization is a function of NF and
weights W,.

After training, W, and W, will converge to differ-
ent sets of values. Since the real hardware inference
exhibits IMC noise NF, W, is not matched well and
will be suboptimal. More optimal results will be
obtained with W,, since the same IMC noise NF has
been used during both training and inference.

Experiment results

We performed IMC hardware noise-aware DNN
training with 32-bit floating-point precision and
evaluated ResNet18, AlexNet, VGG, and MobileNet
DNNs for CIFAR-10 data set. Targeting DNN infer-
ence with 1-, 2-, and 4-bit activation/weight preci-
sion, we employed quantization-aware training
[12]. For the proposed hardware noise-aware
training, all DNNs were trained by using a batch-
size of 50 and the default hyperparameters in [12].
Furthermore, the reported DNN inference accuracy
values are the average values obtained from five
inference evaluations of the same DNN under the
same noise conditions used during the proposed
training process.

We used measurement results from XNOR-SRAM
[3] and C3SRAM [6] chips at different supply volt-
ages. Also, we performed ideal ADC-aware training
by using the ideal ADC transfer function to quantize
the partial sums, and ensemble IMC noise-aware
training, by combining the probability tables of five
different XNOR-SRAM chips and obtaining a unified
probability table that represents the noise from five
chips.

July/August 2022

We experimented the following four schemes
for DNN accuracy evaluation: 1) baseline repre-
sents the software DNN baseline; 2) conventional
IMC inference represents the scheme with IMC chip
measurement-based evaluation on baseline DNNs
without noise-aware training; 3) ADC-aware IMC
inference represents IMC chip measurement-based
evaluation on the new DNNs trained with ideal ADC
quantization; and 4) noise-aware IMC inference rep-
resents IMC chip measurement-based evaluation on
the new DNNs trained with the proposed hardware
noise injection.

XNOR-SRAM chip noise-aware training and
inference

Using XNOR-SRAM chip [3] measurement results
and probability tables, we performed the proposed
noise-aware DNN training for different DNN models,
with different activation/weight precision and with
different noise models (e.g., noise from different sup-
ply voltages and different physical chips).

Different DNN models and precisions

We performed DNN training/inference on
ResNet-18, VGG, AlexNet, and MobileNet DNNs for
CIFAR-10, using the XNOR-SRAM chip measurement
at 0.6-V supply. Figure 3a shows the results on the
binarized DNNs [12], where the proposed IMC noise-
aware training helps restore the IMC hardware accu-
racy closer to the software baseline in all models.
For ResNet-18, the IMC hardware accuracy can be
restored to within <1% of the software baseline, com-
pared to ~3.5% accuracy degradation of the conven-
tional scheme.

The accuracy improvement for VGG in Figure 3a
is relatively small, with low IMC noise at 0.6 V for
XNOR-SRAM chip (Figure 2c). When we applied high
IMC noise of XNOR-SRAM chip at 1.0 V (Figure 2a),
the conventional IMC inference accuracy was
degraded severely to 68.3%, but the proposed IMC
noise-aware scheme largely improved the accuracy
to 86.4%, similar to the trend of ResNet-18 results, as
shown in Figure 3c.

On the other hand, MobileNet have depth/point-
wise convolution layers that are shallow and have
kernel sizes down to 1 x 1, which makes the convo-
lution computation sensitive to noise-induced varia-
tions, leading to large accuracy degradation.

Figure 3b shows the IMC hardware accuracy
improvements in ResNet-18 DNNs for activation/
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weight precision values of 1-, 2-, and 4-bit. As we
increase the DNN precision, the IMC accuracy with-
out noise-aware training worsens. This is because
IMC hardware performs bitwise computations in
each column, and as multiple columns’ ADC outputs
get shifted/accumulated, a higher amount of noise is
added to the multibit MAC computation. However,
the proposed noise-aware training scheme restores
the accuracies for 1-/2-/4-bit ResNet-18 DNNs, close
to the software baseline.

Noise measured at different chip voltages

The supply voltage affects the analog IMC oper-
ation. XNOR-SRAM measurements reported that
higher supply voltages worsened the IMC noise [3],
due to a higher IR drop on Vj;.. Using the XNOR-SRAM
measurements at supply voltages of 0.6, 0.8, and
1.0 V, we performed hardware noise-aware training.

Figure 3c shows that the noise-aware IMC accu-
racy is better than the conventional IMC accuracy
in all three supply voltages for binary ResNet-18. IMC
accuracy degrades rapidly as the IMC noise worsens,
but the proposed noise-aware training largely recov-
ers this severe accuracy loss.

Noise from different chips

We performed the same noise-aware DNN train-
ing for binary ResNet-18 by using five different noise
probability tables, obtained from five different
XNOR-SRAM chips at 0.6 V supply. Table 1 shows the
results for 1-, 2-, and 4-bit ResNet-18, where the noise-
aware IMC inference achieves consistently higher

accuracy than conventional IMC inference across all
five chips.

Ensemble of noise from different chips

We also obtained an ensemble probability table by
combining the probability data from five XNOR-SRAM
chips. To achieve this, 100,000 random samplings of
ADC outputs were performed from each chip’s proba-
bility table for random inputs, and the new ensemble
probabilities from the pool of 500,000 samplings were
obtained. This ensemble probability table represents
a more generalized version of the hardware noise
and allows us to test the performance of DNNs when
trained with IMC noise averaged from multiple chips.

We trained 1-/2-/4-bit ResNet-18 DNNs by inject-
ing the ensemble IMC noise from five chips and then
evaluated the inference by: 1) using each individual
chip’s probability table and 2) using ensemble prob-
ability table from five chips, as shown in the last two
columns of Table 1. We performed five inference
evaluations for each experiment, and the mean of
the five inference accuracies and the average devia-
tion from the mean are reported.

For individual chip’s IMC inference, using the
trained DNN model with each chip’s IMC noise injec-
tion shows the best accuracy in Table 1. Employing
one ensemble DNN model trained with many chips’
noise data could mitigate the chipwise training
overhead, while slight accuracy degradation occurs
compared to the DNNs trained with individual chip’s
noise. If we use ensemble noise for inference, the
DNN accuracy improves to the level of individual
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Table 1. IMC inference accuracies for 1-/2-/4-bit ResNet-18 on CIFAR-10 for different noise-aware training
experiments. (a) 1-bit ResNet-18. (b) 2-bit ResNet-18. (c) 4-bit ResNet-18.

(a) 1-bit ResNet-18

BASELINE BINARY RESNET-18 CIFAR-10 ACCURACY: 89.24 4+ 1.05 %

CONVENTIONAL IMC

NOISE-AWARE IMC

NOISE-AWARE IMC
ENSEMBLE (5 CHIPS)
INDIVIDUAL CHIP

NOISE-AWARE IMC
ENSEMBLE (5 CHIPS)
ENSEMBLE (5 CHIPS)

87.26% + 0.71%
87.32% 4+ 0.65%
87.36% 4+ 0.74%
87.65% + 0.38%
88.05% £+ 0.62%

88.74% + 0.42%

87.53% 4+ 0.62%

88.74% 4+ 0.42%

BASELINE 2-BIT RESNET-18 CIFAR-10 ACCURACY: 90.24 £ 0.53 %

NOISE-AWARE IMC
ENSEMBLE (5 CHIPS)
INDIVIDUAL CHIP

NOISE-AWARE IMC
ENSEMBLE (5 CHIPS)
ENSEMBLE (5 CHIPS)

88.54% £ 0.64%
87.15% £+ 0.73%
88.26% + 0.63%
88.05% + 0.82%
87.19% + 0.78%

88.94% 4+ 0.39%

87.84% £ 0.72%

88.94% £+ 0.39%

BASELINE 4-BIT RESNET-18 CIFAR-10 ACCURACY: 92.81 +0.32 %

NOISE-AWARE IMC
ENSEMBLE (5 CHIPS)
INDIVIDUAL CHIP

NOISE-AWARE IMC
ENSEMBLE (5 CHIPS)
ENSEMBLE (5 CHIPS)

89.11% £ 0.53%
88.63% £ 0.74%
89.52% + 0.58%
88.93% + 0.64%
89.26% + 0.42%

89.96% £ 0.52%

TRAINING BASELINE INDIVIDUAL CHIP
INFERENCE INDIVIDUAL CHIP INDIVIDUAL CHIP
CHIP 1 85.24% 4+ 0.29% 88.11% 4+ 0.61%
CHIP 2 86.15% 4+ 0.32% 87.63% =+ 0.64%
CHIP 3 86.3% +0.41% 88.40% 4+ 0.56%
CHIP 4 85.72% + 0.31% 88.32% 4+ 0.42%
CHIP 5 84.58% 4+ 0.52% 88.36% 4+ 0.61%
AVERAGE 85.60% 4+ 0.37% 88.16% 4+ 0.57%
(b) 2-bit ResNet-18
CONVENTIONAL IMC  NOISE-AWARE IMC
TRAINING BASELINE INDIVIDUAL CHIP
INFERENCE INDIVIDUAL CHIP INDIVIDUAL CHIP
CHIP 1 84.13% 4+ 0.32% 88.14% £ 0.72%
CHIP 2 84.28% 4+ 0.28% 88.34%=+ 0.43%
CHIP 3 84.45% 4+ 0.27% 88.29% £ 0.58%
CHIP 4 84.86% 4 0.35% 88.624 0.67%
CHIP 5 84.22% 4+ 0.31% 88.4240.48%
AVERAGE 84.39% 4+ 0.30% 88.362 + 0.57%
(c) 4-bit ResNet-18
CONVENTIONAL IMC  NOISE-AWARE IMC
TRAINING BASELINE INDIVIDUAL CHIP
INFERENCE INDIVIDUAL CHIP INDIVIDUAL CHIP
CHIP 1 83.92% £+ 0.26% 90.32% 4+ 0.41%
CHIP 2 83.84% £ 0.29% 90.82% =+ 0.36%
CHIP 3 84.16% £ 0.33% 91.11% £ 0.31%
CHIP 4 84.08% + 0.26% 90.29 +£0.53%
CHIP 5 84.11%=+ 0.37% 90.13+0.41%
AVERAGE 84.02% £ 0.30% 90.53+0.40%

89.09% + 0.58%

89.96% + 0.52%

chip’s DNN (or achieves even higher accuracy for
1- and 2-bit ResNet-18 DNNs).

C3SRAM chip noise-aware training and
inference

We evaluated the same DNN models as previous
section using the C3SRAM chip [6] measurement
results. First, we obtained the C3SRAM IMC inference
accuracy for baseline ResNet-18, AlexNet, VGG, and
MobileNet DNNs trained without noise injection.
In addition, we performed noise-aware training for
those DNNs with the probability table from C3SRAM
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measurements and evaluated the C3SRAM inference
accuracy.

For the C3SRAM chip, we used the noise data
measured at 1.0 and 0.6 V supply voltages. Unlike
the XNOR-SRAM chip, where the noise is reduced as
the supply voltage decreased, the noise of C3SRAM
chip increases as the supply voltage is lowered. This
is because, as a resistive IMC, XNOR-SRAM experi-
ences more IR drop at higher supply voltages where
the current is large [3]. On the other hand, C3SRAM
is a capacitive IMC based on capacitive coupling, so
it is not affected by IR drop much, but the Vi, range
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linearly decreases at lower supply voltages, limiting
the ADC functionality [6].

Figure 4a shows the IMC hardware inference accu-
racy improvements obtained for all four DNNs after
performing noise-aware training using the C3SRAM
chip measurements at 1.0 V supply with low noise.
For binary ResNet-18, the IMC hardware accuracy
was improved by 3.8% from 84.94% before noise-
aware training to 88.74% after noise-aware training.

Figure 4b shows the noise-aware DNN training
and inference results on 1-, 2-, and 4-bit ResNet-18
DNNs. In all three cases, the proposed scheme is
able to restore the IMC inference accuracy very close
to the software baseline, while 4-bit ResNet-18 shows
the highest 5.72% accuracy improvement compared
to the conventional IMC scheme.

Figure 4c shows the effect of supply voltage of
the C3SRAM chip on the IMC accuracy for binary
ResNet-18. When a 0.6-V supply with high noise is
used for conventional IMC inference without noise-
aware training, considerable accuracy degradation
of 20.1% is observed. Using the proposed IMC noise-
aware training, the DNN accuracy substantially
improved from 67.35% to 83.55%.

Comparison to relevant works

We also compared the performance of our work
with two relevant works [7], [8]. In an attempt to
make an apple-to-apple comparison, we performed
noise-aware training using the approaches proposed
by each scheme and evaluated DNN inference,
where all three schemes employed the same noise
data from the XNOR-SRAM chip measurements.

For example, to compare the performance at
0.6 V XNOR-SRAM noise, we performed noise-aware
training using the 1, = n;,; combination with a value
of 0.11 for the work of [7] and a value of 0.058 for
the work of [8]. These values were chosen so that
the noise remains the same during training and
inference. The maximum and minimum MAC val-
ues on which noise is applied (corresponding to the
XNOR-SRAM design [3]) are +60 and —60, respec-
tively. If we substitute these values into the noise for-
mula of 6,/ Winax = 11 provided by [7] and the noise
formula of Gllloise =N x(eran —erm) provided by
[8], we obtain the aforementioned 7 values of 0.11
and 0.058.

Figure 5 shows the IMC inference accuracy com-
parison results for binary ResNet-18 DNNs, which are
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trained with three noise models of the XNOR-SRAM
chip measured at 0.6, 0.8, and 1.0 V, and two noise
models of the C3SRAM chip measured at 0.6 and
1.0 V. Compared to [7] and [8] that used the equiva-
lent amount of noise, our work results in better infer-
ence accuracy, especially when the noise amount is
high, for example, XNOR-SRAM at 1.0 V and C3SRAM
at 0.6 V.

IN THIS WORK, we presented a new hardware noise-
aware DNN training scheme to improve the DNN
inference accuracy of IMC hardware. During DNN
training, noise injection is performed at the partial
sum level, and the injected noise is based on IMC
chip measurements. We validated our proposed
scheme across different DNN models and preci-
sions, by using measured noise at different supply
voltages from multiple chips of two different IMC
prototypes. We also examined the effectiveness of
using an ensemble of noise from multiple chips. The
degraded accuracy of conventional IMC hardware is
largely recovered for all experiments that we eval-
uated by using the proposed noise-aware training,
especially when the IMC hardware noise is high. ®
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