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Resistive random access memory (RRAM)-based in-memory computing (IMC) has
emerged as a promising paradigm for efficient deep neural network (DNN)
acceleration. However, the multibit RRAMs often suffer from nonideal characteristics
such as drift and retention failure against temperature changes, leading to significant
inference accuracy degradation. In this article, we present a new temperature-resilient

RRAM-based IMC scheme for reliable DNN inference hardware. From a 90-nm RRAM
prototype chip, we first measure the retention characteristics of multilevel HfO,
RRAMSs at various temperatures up to 120 °C, and then rigorously model the
temperature-dependent RRAM retention behavior. We propose a novel and efficient
DNN training/inference scheme along with the system-level hardware design to
resolve the temperature-dependent retention issues with one-time DNN deployment.
Employing the proposed scheme on a 256 x256 RRAM array with the circuit-level
benchmark simulator NeuroSim, we demonstrate robust RRAM IMC-based DNN
inference where > 30% CIFAR-10 accuracy and > 60% TinylmageNet accuracy are

recovered against temperature variations.

eep neural networks (DNNs) have shown
D extraordinary performance in recent years for
various applications,’ including image classifi-
cation, object detection, speech recognition, etc. Accu-
racy-driven DNN architectures tend to increase the
model sizes and computations in a very fast pace,
demanding a massive amount of hardware resources.
Frequent communication between the processing
engine and the on-/off-chip memory leads to high
energy consumption, which becomes a bottleneck for
the conventional DNN accelerator design.
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To overcome such challenges, in-memory compu-
ting (IMC) has been proposed as a promising scheme
for energy-efficient DNN acceleration. The weights are
stored in the memory cells and the multiply-and-
accumulate (MAC) operation is performed within the
memory array by asserting multiple rows simulta-
neously. The weighted analog current is accumulated
along the columns, which represents the MAC compu-
tation value and is subsequently digitized by analog-
to-digital converter (ADC) circuits on the periphery.

Regarding the memory technologies for the IMC
scheme, SRAM and DRAM are both volatile and suffer
from the leakage power in the complementary metal-
oxide-semiconductor (CMOS) devices. Such disadvan-
tages promoted the nonvolatile memory (NVM) as an
attractive solution for IMC-based DNN acceleration.
Among different NVMs, RRAM devices can store
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multiple levels in one cell, resulting in dense storage as
well as high MAC throughput.

On the other hand, having a high amount of com-
putation in a small area can increase the power den-
sity, which can, in turn, elevate the temperature. Also,
the temperature can be affected by the digital/analog
modules adjacent to the RRAM-based IMC macros.

When the temperature increases, the ability to hold
the programed values becomes weaker (the detailed
information of the retention characteristics will be pro-
vided later), and the RRAM conductance starts to drift
away. Such variation will affect the macro-level IMC
results, layer-by-layer computations, and eventually
the final output of the DNN, leading to incorrect infer-
ence predictions. Therefore, the RRAM-based DNN
accelerator should have a more stringent retention
requirement compared with the NVM memory storage.

To avoid the DNN accuracy loss caused by the
conductance drifting, very frequent refresh operations
will be required, but this introduces a large amount of
additional energy consumption to the accelerator sys-
tem. Therefore, alleviating the thermal retention issue
becomes critical for energy-efficient RRAM-based
IMC accelerator design.

Several prior works tackled such thermal issues
from both algorithm and hardware perspectives. Tem-
perature-aware refreshing techniques? were designed
to adjust the refreshing frequency based on the oper-
ating temperature. Nevertheless, the proposed refresh
operation requires the special RRAM architecture
design. The on-device tuning algorithm® reduced the
refreshing frequency by updating the conductance
based on the saturation boundary of the RRAM device.
However, acquiring the extra information of the device
itself could be a burden for the control scheme and
peripheral circuit design. In addition to the refreshing
techniques, array-level column swapping techniques*®
change the RRAM mapping scheme by swapping the
important weight from a higher temperature area with
the cells from a lower temperature area. Nevertheless,
manipulating the position of the deployed weight val-
ues is expensive for the hardware design. Furthermore,
the reallocation cannot guarantee the reduction of the
retention variations, and frequent refreshing may still
be required after the swapping.

In Shin et al.'s work,® to cope with general noise in
analog neural networks, the batch normalization (BN)
parameters are recalibrated by using the exponential
moving average (EMA) while injecting synthetic
Gaussian noise to the weight. However, all DNN mod-
els in Shin et al.'s work® employ 32-bit floating-point
precision, and the proposed algorithm/noise is not
pertinent to any specific hardware. Furthermore,
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continuously calibrating the BN parameters during
inference is expensive to implement in hardware.

Some prior works modeled the conductance varia-
tions as an additive Gaussian noise with zero mean
and temperature-related standard deviations.”® How-
ever, assuming the noise to be zero mean cannot pre-
cisely reflect the on-chip thermal variations. Our
measurements show that both the mean and stan-
dard deviations of the conductance are changing with
different thermal conditions.

CONSIDERING CRITICAL RETENTION
FAILURE ISSUES AGAINST
TEMPERATURE VARIATIONS AND THE
LIMITATIONS OF THE PREVIOUS
TECHNIQUES, WE PROPOSE A
TEMPERATURE-RESILIENT SOLUTION,
INCLUDING BOTH NEW DNN TRAINING
ALGORITHMS AND SYSTEM-LEVEL
HARDWARE DESIGN, FOR RRAM-
BASED IN-MEMORY COMPUTING.

Considering critical retention failure issues against
temperature variations and the limitations of the previ-
ous techniques, we propose a temperature-resilient solu-
tion, including both new DNN training algorithms and
system-level hardware design, for RRAM-based in-mem-
ory computing. Against temperature-dependent RRAM
variations over time, we propose a novel and simple
training algorithm that consists of progressive knowledge
distillation (PKD) training and thermal-aware batch nor-
malization adaptation (BNA) that achieves high robust-
ness with largely improved accuracy without introducing
any complex refreshing or deployment schemes. We use
the circuit-level simulator NeuroSim® to evaluate the sys-
tem-level performance under the retention variations.
The proposed design has been evaluated on a number of
CNNs with different model sizes and activation/weight
precision values for CIFAR-10 and TinylmageNet data
sets, demonstrating significant accuracy improvements
with elevated model robustness. Overall, the main contri-
butions of this work are as follows:

> We conduct a practical and comprehensive anal-
ysis along with the rigorous modeling to investi-
gate the retention failure based on the actual
RRAM chip measurement.

> We provide a new DNN training algorithm consid-
ering both thermal-changes and time-variations of
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FIGURE 1. (a) Die photo of the 64-Kb HfO, TTIR RRAM prototype chip. (b) Temperature-controlled equipment connected to the
RRAM chip. (c) Initial 2-bit cell conductance distribution after write-verify iterations.”

the conductance drifting, leading to the highly
robust DNN models.

> We present a thermal-aware RRAM-based infer-
ence engine design.

» Performance analysis based on 2-4-bit DNNs with
CIFAR-10 and TinylmageNet data sets is done.

In general, the RRAM retention failure is caused by both
conductance drifting and dispersion. We obtained actual
RRAM conductance variation across different tempera-
tures from our RRAM prototype chip. Figure 1(a) shows
the die photo of the 256 x 256 1T1R HfO,-based 2-bit-per-
cell 90-nm RRAM prototype chip along with the periph-
eral circuits."" The conductance of the RRAM cells was
measured through the National Instrument PXle system
with different operating temperatures over time. The
temperature of the RRAM chip/socket was controlled by
TS-150 equipment from Semicon Advance Technology,
as shown in Figure 1(b). The chip measurements not only
include the thermal characteristics but also contain
other device-dependent nonideal effects, such as ran-
dom telegraph noise.™

Static Retention Variations

Figure 1(c) depicts the cumulative probability distribu-
tion of the normalized conductance after initial pro-
gramming at room temperature (25°C)."" State 1
represents the high-resistance state (HRS) while
state 4 represents the low-resistance state (LRS). The
intermediate states of states 2 and 3 between LRS
and HRS are linearly spaced with respect to conduc-
tance. The conductance is initialized with the two-
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step write-verify scheme' under room temperature.
The conductance of each state was controlled by SET
and RESET current during the iterative SET and RESET
loops; the bias conditions (Vg and Vp) are optimized,
respectively, for each state. Once the conductance
distributions of the RRAM cells meet the targeted
range, the baking temperature starts ramping up
(55°C-120°C)." When the targeted temperature is
reached, the stress time counting begins and the con-
ductance of the RRAM cells is measured intermit-
tently from 20 to 80,000 s.

The measured retention characteristics of the
RRAM cells in the prototype chip are characterized as
the average conductance drifting i« and the standard
deviation o." Overall, we varied the temperature from
25°C to 120°C, and measured the RRAM conductance
for up to 80,000 s at each baking temperature. Based
on the measurement results, the retention variation
can be modeled based on the changes in 1 and o val-
ues for the corresponding retention temperature K
and retention time ¢

Ap® = pB () - ,ui];it = AK x logt (1)

Ao =B (1) — lmt B x log t. (2)

In this static variation scenario, the initial condi-
tion of the retention is defined as the measurement
starting time (20 s) for each baking temperature. Aff
and BE are the temperature-dependent drifting rates,
which can be modeled through linear regression. We

formulate this as

¢ o1
Ay =my Xty 3)
Bf:max(m ><——§—bA ) (4)
IEEE Micro
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FIGURE 2. (a) Static and (b) dynamic retention variations of the normalized state 2 during the testing (10° s). (c) Inference accu-

racy of 2-bit ResNet-18 for CIFAR-10 is shown for static and dynamic thermal variations.

By combining (1)—(4), we can accurately model the
retention variations with Gaussian noises for any
given temperature and time. Figure 2(a) depicts
the variation statistics at 85 °C baking temperature for
10° s of testing time.

Dynamic Retention Variations
In addition to the static retention variations observed
over time at a fixed temperature, we also investigated
the dynamic retention variations caused by the temporal
temperature changes of the RRAM chip. In practice, if
the temperature is increased from K; to K, it means
that the initial condition at K is the variation at the tran-
sition point from Kj. In the previous section, for static
retention variations, we modeled the variation based on
statistical changes from the initial conditions. Therefore,
the dynamic retention variations can be modeled by
accumulating multiple static variations with the updated
initial conditions.

Let us assume that the temperature change from
K to K, happened at time T with the retention statis-
tics of R, = (Auﬁvl,Aa?). Based on (1) and (2), the
equivalent statistical changes with respect to K, can
be computed as

A = p2 (1) = g (5)
— AKS K
= A2log (t+T') — A?log T’ (6)
Koo
= Auzlog((t—i-T/)/T’) (7)

where T' = 107" /42, In other words, the initial condi-
tion of K5 is the equivalent variation (with respect to k)
at time 7', which can be represented by the static time
T'. Ac™2 can also be computed in a similar way. Finally,
given the total testing time, the dynamic retention
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variations can be modeled by accumulating the static
variations at each temperature step. Figure 2(b) shows a
particular dynamic retention scenario where the temper-
ature changes from 25°C to 55°C to 85 °C within 10° s.

Impact of the Retention Variations

Deploying the pretrained quantized DNN model to the
RRAM array involves decomposing the low-precision
weights down to the bit-level representations and pro-
gramming the corresponding conductance values,
e.g., mapping one 4-bit weight onto two 2-bit RRAM
cells. To understand the impact of the conductance
distortions on network-level accuracy, we incorporate
the static and dynamic retention variations of 2-bit
RRAM cells into a 2-bit ResNet-18 model (i.e., both
activation and weight precision values are 2-bit).
Figure 2(c) shows the inference results obtained from
the NeuroSim.® Compared to the static thermal varia-
tion, the inference accuracy degrades faster in the
dynamic variation scenario because the nonideality is
inherited and accumulated in both the temperature
and time domains. The conductance variations are
accumulated and propagated throughout the entire
network, eventually leading to accuracy degradation.
Employing very frequent refreshing techniques to
recover such accuracy degradation in a short time
period is expensive. Therefore, it is necessary to
resolve this critical problem in an energy-efficient way.

Challenge of Training With Variation
Injection

Injecting the hardware noise during DNN training is an
effective method to improve the robustness of the
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FIGURE 3. Distribution of the 4-bit distorted weights W, with
the static thermal variations."

model. As we described in the previous section, the
DNN inference process performed by the RRAM
hardware will be divided into the bit-level partial sum
computations along the columns of the RRAM array.®
However, injecting the bit-level noise during training
requires the decomposition of the quantized weights.
Such a decompose-and-reassemble process will largely
slow down the training process and possibly lead to con-
vergence failure. Therefore, to train the model with the
injected retention variation, the first challenge is to learn
how to inject the bit-level (conductance) noises effi-
ciently without limiting the training process.

The decomposed computation of IMC is mathe-
matically equivalent to the low-precision convolution
computation performed by the software. Therefore,
the nonideal cell levels (0-3) can be converted to
the distorted low-precision weights via the shift-
and-add procedure. Figure 3 shows the example of
the nonideal distribution based on the 4-bit weight."
By subtracting the ideal weight levels from the dis-
torted weights, the resultant noises consist of mag-
nitude drifting and distribution dispersion. We inject
the Gaussian noise based on the normalized drift
and standard deviation to the corresponding weight
levels after the ideal quantization. Given the full-pre-
cision weight W and quantization boundary a, the
noise injected n-bit in-training quantization process
can be formulated as

W, = min(max(W, —a), a) (8)

S=@2"'-1)/a (9)

Wo = round(W, x S) (10)

W5 = AW, + B x N (g, 00) iy (11)

Wor = W/S. (12)
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Equations (8)—(10) follow the same procedure as the
ideal quantization. u, and o, represent the mean
and standard deviation of the hardware variation
noises with respect to each low-precision weight
level. The tunable parameter B controls the inten-
sity of the noise injection. Wyr represents the
weights after dequantization from the distorted
low-precision weight 1W;,."®

To validate the effectiveness of such conver-
sion, we perform the noise-injected training based
on a pretrained 2-bit ResNet-18 model and the con-
verted static variation at 55°C for 5,000 s. As
shown in Figure 4(a), at the selected time and tem-
perature, the resultant model can successfully
recover the accuracy even with the decomposed
IMC inference.

We also use the noise-free clean low-precision
model as the teacher to generate the soft labels and
distill the knowledge' to the noise-injected student,
which reduces the performance gap between the two
models. As proved by the results in Figure 4(a), the
model trained through the knowledge distillation
achieved better inference accuracy.

Challenge of Training With Noise
Injection

According to Figure 4(a), training the model while
injecting the selected noise can only recover the
inference performance at the corresponding tem-
perature and time (55°C, 5,000 s). The robustness
of the trained model has a bad generality to the
different scenarios (25°C and 85°C). Similarly,
knowledge distillation' can improve the accuracy
of the student model, but the improvements on
generality are limited.

Such a generality issue is critical for the hardware
inference because the devices usually start operating
under the room temperature, and it is expensive to
retrain the deployed DNN model based on the newly
changed variations. Therefore, the second challenge is
to learn how to improve the general model robustness
across different temperature variations without
retraining the DNN.

In this section, we present the proposed temperature-
resilient solution for RRAM-based IMC inference. We
propose a novel training algorithm that aims at
improving the DNN robustness of the RRAM-based
IMC hardware against the thermal variations.

IEEE Micro
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Progressive Knowledge
Distillation (PKD)
We propose the PKD algorithm to resolve the general-
ity and robustness challenges. The proposed PKD
algorithm starts the training by injecting the low-tem-
perature noises to the student model while the clean
model is employed as the teacher. Subsequently, we
change the injected noises to the higher temperature
noises while using the previous student model as the
new teacher. As shown in phase 1 of Figure 5, distilling
the knowledge in a step-by-step fashion enables the
student model to learn the high-temperature varia-
tions while matching up with the teacher that was
trained with the low temperature. To improve the
model’'s generality even further, the injected noises for
each step (temperature) are generated based on the
temporally averaged variation between 0 and 10,000 s.
As shown in Figure 4(b), the proposed PKD algo-
rithm aided the DNN model to improve generality at
the low temperature while learning the high-tempera-
ture variations for better robustness. The model

IEEE Micro

trained by the PKD algorithm that performed noise
injection with 55°C variations can fully recover the
accuracy under the 55°C scenario while only having
0.8% accuracy degradation under the low-tempera-
ture 25°C scenario. Compared to the conventional
noise injection training method, the significant
improvements achieved by the proposed PKD training
algorithm demonstrate the potential of the model to
maintain the high inference accuracy under different
thermal variation scenarios without frequent refresh-
ing. The results presented in Figure 4(b) are based on
the static variations sampled from a relatively short
operating time. Furthermore, even the improved per-
formance under the high-temperature 85°C scenario
still exhibits ~5% accuracy loss. Considering the accu-
racy degradation with the low-temperature variation,
naively applying the PKD training with the incremental
noises will gradually make the resulting model perfor-
mance irreversible to the previous training scenario
resulting in degrading the low-temperature inference
accuracy even further.
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FIGURE 6. PKD+BNA: 2-bit ResNet-18 inference results under (a) 70 °C and (b) 85 °C with a different number of adaptive BN.
(c) High-level hardware implementation of the proposed PKD-BNA algorithm.

Batch Normalization Adaptation (BNA)
To further improve the PKD algorithm, we propose the
BNA algorithm to elevate the robustness with high
hardware compatibility.

After the PKD training, we freeze the weight update
process of all the convolutional and fully connected
layers, and then continue the noise-injection training
with a high-temperature variation. By doing so, the BN
parameters will be individually trained with respect to
the different thermal variations while all weights and
learnable parameters (e.g., trainable activation quantiza-
tion range'®) remain the same. The output preactivation
of each layer will be normalized by the corresponding BN
with the measured temperature 7. Mathematically,
given the current temperature 7" and the preactivation
Y, the normalization can be simply expressed as

Y —n

Yana = Wy L (13)

Phase 2 in Figure 5 shows the training process of
the proposed BNA algorithm. BNA trains the BN indi-
vidually to adapt to the changed activation distribu-
tion caused by the thermal variations. Consequently,
the robustness of the model can be improved even
further without changing the values of the DNN
weights. As shown in Figure 4(c), normalizing the pre-
activation by the separately trained BN with 55°C and
85°C variations significantly improves the inference
accuracy under the high-temperature variations. The
combination of BNA and the model trained under the
35°C variations achieved the best performance with
high generality and robustness.

The only overhead introduced by the proposed
BNA algorithm is the extra BN parameters with
respect to the different temperature ranges. Given the
operating temperature range from 25°C to 120°C,
Figure 6(a) and (b) shows the impact of dividing the
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total temperature range on different number of sub-
sets for BNA training. Considering the minimum accu-
racy and generality difference between the 4-step
training (BN=4) and 8-step training (BN=28), we
choose to use four adapted sets of BN parameters to
cover the temperature ranges of [25°C, 50°C), [50°C,
70°C),[70°C, 90°C), and [90°C, 120°C].

System-Level Inference Hardware
Design

After training the model with both PKD and BNA algo-
rithms, PKD-trained low-precision weights will be
mapped to the RRAM array. To implement the BNA in
hardware, the additional circuits for on-chip tempera-
ture measurement and BN multiplexing are necessary.

For the on-chip temperature sensor, we adopted
the compact temperature sensor circuits from
Yang et al's work,'® where the proportional-to-abso-
lute-temperature and complementary-to-absolute-
temperature voltages are digitized using a 16-bit off-
chip ADC for accurate temperature digitization.

In our work, as discussed in the previous section, we
coarsely divide the temperature into four ranges and
have a corresponding set of BN parameters for each
range. Therefore, we only need a 2-bit ADC to quantize
the analog temperature sensor voltages, for which we
employed a flash ADC with three sense amplifiers. The 2-
bit ADC output is connected to the select signal of the 4-
to-1 multiplexer, which chooses the corresponding pre-
trained BN parameters from the on-chip buffer.

We use 16-bit fixed-point representation for all BN
parameters for better hardware compatibility. The BN
operation for DNN inference will be performed inside
the fixed-point computing unit. Figure 6(c) depicts
the high-level hardware implementation of the pro-
posed RRAM-based IMC scheme using the PKD-BNA
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FIGURE 7. Experiments of 2-bit ResNet-18 on the CIFAR-10 data set. (a) Inference accuracy with static variations. (b) Accuracy

and refresh frequency comparison among the baseline model, prior work,® and the proposed work. (c) Inference accuracy with

dynamic thermal variations.

algorithm. Compared with other solutions that require
either very frequent refreshing or continuous BN cali-
bration, our proposed design is simple and the hard-
ware overhead is minimal.

In this section, we present the experimental results on
CIFAR-10 and TinylmageNet data sets. The PKD algo-
rithm fine-tuned the pretrained low-precision DNN
model using stochastic gradient descent for optimiza-
tion and the straight-through estimator' for gradient
approximation. The baseline 2-bit and 4-bit DNN models
are fully quantized for all layers using the PACT quan-
tizer." For both PKD and BNA training, we incorporated
the EMA™ technique with a momentum of 0.9997 to
improve the knowledge distillation. We use the circuit-
level simulator NeuroSim?® to evaluate the hardware per-
formance of the proposed design. The RRAM array size
is 256256 and 6-bit ADCs are employed at the column
periphery to digitize the IMC partial sum.

Static Retention Variation Results
We first evaluated the proposed scheme based on
static retention variations, with the baking tempera-
ture varying from 25°C to 120°C. The injected varia-
tion of each temperature is Gaussian noise, where the
mean and standard deviation are averaged across the
operating time from 20 to 10* s. After implementing
the proposed PKD training from 25°C to 35°C with 20
epochs fine-tuning, we subsequently apply the BNA
algorithm for training with 55°C, 85°C and 120°C
noises throughout 20 epochs for each temperature.
Figure 7(a) shows the RRAM IMC hardware inference
results with the 2-bit ResNet-18 model for static retention
variations at different temperatures. For each of the four
temperature ranges we employ for BNA, we used one set

IEEE Micro

of fixed-point BN parameters (trained by BNA) to cover
the entire time period of the experiment (20-10° s). As
shown in Figure 7(b), calibrating BN with EMA® has a lim-
ited improvement to the DNN model robustness. Com-
pared to the IMC inference results when we use the
baseline quantized DNN model without any noise injec-
tion, the proposed method improved the inference accu-
racy by a significant margin. When the temperature
changes, the corresponding set of BN parameters will be
selected, and none of the RRAM weights will be updated
or retrained. Even though the accuracy cannot be fully
recovered when running the inference with a long operat-
ing time and high temperature (e.g, 120°C), the high
degree of robustness in our scheme will significantly
reduce the energy consumption of the periodic
RRAM refreshing. If we assume that refresh will be trig-
gered when the inference accuracy is lower than 90%,
Figure 7(b) shows that the baseline model requires peri-
odic refreshing after ~30 s of operation. On the other
hand, the proposed PKD-BNA method can maintain
>90% accuracy until 10 s. Compared to the ideally
quantized baseline model and Calibrated BatchNorm,®
the proposed scheme can reduce the refreshing fre-
guency by ~250x and ~100 x , respectively.

WITHOUT RETRAINING OR UPDATING
ANY DNN WEIGHTS AFTER THE INITIAL
RRAM PROGRAMMING, OUR
PROPOSED SCHEME LARGELY
IMPROVES THE INFERENCE ACCURACY
ACROSS ALL EXPERIMENTS AND
ENHANCES THE ROBUSTNESS OF
RRAM HARDWARE AGAINST A WIDE
RANGE OF TEMPERATURE VARIATIONS.
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TABLE 1. RRAM hardware inference accuracy results for 4-bit ResNet-20/ResNet-18 on CIFAR-10/tinyimagenet data set.

Accuracy for 25°C (static) | Accuracy for 55°C (static)
Dataset DNN model Scheme at 20 seconds at 1,000 seconds
. X Baseline 91.61 + 0.46 67.15 + 1.04
CIFAR-10 | 4-bit ResNet-20 | —ppeesrorp 91.69 T 0.31 91.39 T 0.42
. . Baseline 70.51 £ 0.51 0.63 £ 0.25
TinylmageNet | 4-bit ResNet-18 |—peSay 7123 £ 0.44 6756 £ 0.52

We use the bold font to highlight the accuracy improvements of the proposed algorithm.

It has been shown in Gao et al's work' that
wider DNNs usually have a relatively higher robustness.
In this work, we applied the proposed algorithm to
both a large model (e.g, ResNet-18 with 11.17 million
parameters) and a compact model (e.g., ResNet-20 with
0.27 million parameters). Following the training scheme
of Figure 5, Table 1 shows successful inference accuracy
recovery with the compact 4-bit ResNet-20 model for
the CIFAR-10 data set. Table 1 also shows the perfor-
mance of the proposed scheme with the large 4-bit
ResNet-18 model for the TinylmageNet data set. The
model trained by the complex data set (e.g., Tinylmage-
Net) is more sensitive to the variations. Fully recovering
the model accuracy might require additional sets of
adaptive BN parameters within a single operating
temperature.

Dynamic Retention Variation Results
Assuming that the temperature of the RRAM hard-
ware increases over time as in Figure 2, the proposed
scheme is applied to the 2-bit ResNet-18 for the
CIFAR-10 data set to evaluate the dynamic retention
variation scenario. As shown in Figure 7(c), the operat-
ing temperature changes occurred at the times of
2 x10* (25°C — 55°C) and 4 x 10* (55°C — 85 °C).
While the baseline DNN suffered ~48% accuracy deg-
radation (at 1x 10° s), our proposed scheme showed
only ~8% accuracy drop against the large temperature
variation in the same period.

In this article, we first analyzed and modeled the
retention failure caused by the thermal variations
from prototype RRAM chip measurements. To resolve
the RRAM retention issue, we presented the PKD and
BNA algorithms that can efficiently recover the hard-
ware inference accuracy against temperature varia-
tions. Considering the crossbar-based IMC RRAM
hardware, we also proposed the high-level hardware
system design and evaluated the hardware inference
accuracy with different model precisions and architec-
tures for the CIFAR-10 and TinylmageNet data sets.
Using the proposed algorithm/hardware scheme, the
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2-bit ResNet for the CIFAR-10 data set can recover
over 30% inference accuracy, and the 4-bit ResNet-18
for the TinylmageNet data set can recover over 60%
accuracy. Without retraining or updating any DNN
weights after the initial RRAM programming, our pro-
posed scheme largely improves the inference accu-
racy across all experiments and enhances the
robustness of RRAM hardware against a wide range of
temperature variations.
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