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Abstract: An incoming canonical spatially developing turbulent boundary layer (SDTBL) over
a 2-D curved hill is numerically investigated via the Reynolds-averaged Navier–Stokes (RANS)
equations plus two eddy-viscosity models: the K−ω SST (henceforth SST) and the Spalart–Allmaras
(henceforth SA) turbulence models. A spatially evolving thermal boundary layer has also been
included, assuming temperature as a passive scalar (Pr = 0.71) and a turbulent Prandtl number, Prt,
of 0.90 for wall-normal turbulent heat flux modeling. The complex flow with a combined strong
adverse/favorable streamline curvature-driven pressure gradient caused by concave/convex surface
curvatures has been replicated from wind-tunnel experiments from the literature, and the measured
velocity and pressure fields have been used for validation purposes (the thermal field was not
experimentally measured). Furthermore, direct numerical simulation (DNS) databases from the
literature were also employed for the incoming turbulent flow assessment. Concerning first-order
statistics, the SA model demonstrated a better agreement with experiments where the turbulent
boundary layer remained attached, for instance, in Cp, C f , and Us predictions. Conversely, the SST
model has shown a slightly better match with experiments over the flow separation zone (in terms
of Cp and C f ) and in Us profiles just upstream of the bubble. The Reynolds analogy, based on the
St/(C f /2) ratio, holds in zero-pressure gradient (ZPG) zones; however, it is significantly deteriorated
by the presence of streamline curvature-driven pressure gradient, particularly due to concave wall
curvature or adverse-pressure gradient (APG). In terms of second-order statistics, the SST model
has better captured the positively correlated characteristics of u′ and v′ or positive Reynolds shear
stresses (< u′v′ > > 0) inside the recirculating zone. Very strong APG induced outer secondary
peaks in < u′v′ > and turbulence production as well as an evident negative slope on the constant
shear layer.

Keywords: RANS; passive scalar; surface curvature; concave; convex; turbulence

1. Introduction
1.1. Scope of the Present Work

There is still much to understand in the science of computational fluid dynamics (CFD)
for turbulent flows, particularly, in the aspects of wall curvature effects with passive scalar
transport. Describing this type of flow as “unpredictable” carries much weight as a mystery,
so it is more appreciable in the present day to use the word “chaotic” instead. Still, chaos
requires to be explained in a more emphatic way to strangers of this science. However,
solving this issue will not occur in this work.

In the case of turbulent flow over a curved hill, separation zones will occur due to
the strong adverse-pressure gradient (APG) or flow deceleration caused by the presence
of convex wall curvature. An incoming horizontal airstream at 20 m/s passing over a
simple curved protuberance of 1.284 m long with a radius of 1.08 m from the experiments
of Baskaran et al. [1] is considered as a validation tool. In this scenario, a 2D numerical
assessment will be performed with scope to the flow’s separation zone velocity and with
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the presence of temperature in the simulation as a passive scalar. First, a fundamental
literature review will be carried out for flow separation by wall curvature and standard
turbulent models. The numerical approach will be using a RANS (Reynolds-averaged
Navier–Stokes) model. Using open-source CFD software OpenFOAM®, the velocity field
will be solved in the scenario of considering a molecular Prandtl of 0.71 and 0.90 turbulent
Prandtl number (i.e., air as the working fluid) and two turbulent models K − ω shear
stress transport (SST) [2] and Spalart–Allmaras (SA) [3]. The inclusion of temperature is
done based on the theory of passive scalar transport as in [4]. The turbulent transport of
passive scalars is crucial in many industrial applications of technological importance, such
as in turbine-blade film cooling, heat transfer in electronic/mechanical devices, chemicals
dissolved in gases, and contaminant/humidity dispersed in atmospheric flow, to name
a few examples. Furthermore, a passive scalar is defined as a diffusive contaminant that
exists in such a low concentration in a flow that it does not affect the dynamics of the fluid
motion (Warhaft [5]). However, that low concentration of passive scalar is sufficient to
cause a significant impact on energy expenditures, air pollution, and the design of chemical
processes. Results obtained will be discussed to finally present recommendations for future
work improvement in this study. This article represents an improved extension of our
conference paper (Paeres et al. [6]).

1.2. Background

Numerically solving the governing equations for turbulent flows requires much com-
putational power, and often these resources are not readily available. Therefore, formulating
models that significantly reduce the computational power requirement and maintain high
precision between results and proper solution is a simply appreciable benefit. Among
the existing CFD categories, the most commonly known are RANS (Reynolds-averaged
Navier–Stokes), LES (large eddy simulation) and DNS (direct numerical simulation) [7]. As
stated in the name, DNS directly solves the governing formulation of all fluid flows called
the Navier–Stokes equations; it does not use turbulent models and requires significant
computational resources. As a consequence, if one desires to perform DNS, it is mandatory
to employ a highly scalable and efficient flow solver, not to mention if the idea is to pre-
dict spatially developing turbulent boundary layers (SDTBL) implying accurate turbulent
time-dependent inflow conditions. Therefore, DNS requires researchers’ skills, expertise,
and abilities in HPC and parallel programming not only during the running but also in
the postprocessing stage [8]. With the advent of powerful supercomputers, it has become
easier to push the boundaries of turbulent boundary layer simulations at higher Reynolds
numbers via DNS [9,10]. On the other hand, LES models the dynamics and influence of Kol-
mogorov scales but is reasoned in using a borderline as a spatial filter; large-scale motions
(called large eddies) are computed directly, and only the small-scale motions (considered
eddies of thermal energy dissipation) are modeled, resulting in a significant reduction in
computational resources compared to the DNS approach. However, this effort reduction
depends on the analyzed geometry: it is well known that in wall-bounded flows even the
“inertial subrange scales” located in the near wall region could be very small. Thus, the
computing and running effort reduction by considering LES with respect to DNS could be
limited to one order of magnitude, at most, according to the present author’s experience.
Among these three categories, RANS is the approach where the simulation framework is
highly simplified since the whole power spectra of flow fluctuations are modeled. Despite
its simplicity and limitations on complex geometries, RANS may supply important insight
into the flow. Within RANS literature for turbulent flows, there are four most popularly
used turbulent models, namely: K− ε, standard K−ω, K−ω shear stress transport, and
Spalart–Allmaras.

The term flow separation does not precisely imply that the actual fluid ceases contact
with the body where the flowing occurs [11]. This detachment usually describes when the
flow’s boundary layer abruptly modifies interactions with the body. For example, when a
decelerated fluid around bodies flows in reverse or different directions from the streamwise.
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This event most often gives rise to turbulent fluctuations, causing their enhancement. It is
essential to highlight that flow separation can be induced either by geometrical singularities,
for example, in the presence of sharp corners, or by smooth geometry variations, such
as those occurring over a curved wall [12]. The mere presence of a very strong adverse-
pressure gradient (APG), depending on the magnitude, might be sufficient to cause flow
detachment. From a computational point of view, flow separation or recirculation is one of
the most challenging problems to tackle due to its high level of intermittency, huge turbulent
scale separation, obvious three-dimensionality, and unsteadiness. Several LES and RANS
studies (in isolated or in combined “hybrid” form) have been carried out in the past few
decades with the purpose of shedding some light on the boundary layer detachment
problem caused by strong adverse streamline curvature-driven pressure gradient [13–16].
Major conclusions in previously cited works can be summarized as follows: overall, LES
and RANS approaches may predict quite well first-order statistics in turbulent boundary
layers subject to strong APG, which significantly degrades for higher-order statistics.

The inspiration for the assessment presented here is from the experimental work
of Baskaran et al. [1]. In their work, a horizontal air stream at 20 m/s passed over a
simple curved convex hill of 1.284 m long with a radius of 1.08 m. The protuberance’s
entrance and exit had a concave surface of −0.40 m and −0.48 m, respectively. Figure 1
shows an example of the geometries. In [1], the momentum boundary layer parameters
(first and second-order statistics) were measured. Boundary layer thickness, displacement
thickness, momentum thickness, and other integral parameters calculated were used to
describe the flow’s characteristics and behavior. Other relevant information, such as
streamwise pressure and skin friction at the wall, velocities profiles at specific streamwise
locations, and Reynolds stresses, was also measured. Their main objective was “to study
the response of turbulent boundary layers to sudden changes in surface curvature and
pressure gradient” [1]. Although, the experimental data of the velocity field are used as
a point of validation of our numerical approach, it is worth highlighting that the present
study also considers temperature as a passive scalar which was not explicitly accounted for
in the original experiment.

Figure 1. Curved hill diagram. From [6]; reprinted by permission of the American Institute of
Aeronautics and Astronautics, Inc.

In summary, and to the best of our knowledge, the combined effect of flow separation
by strong streamline curvature-driven pressure gradients and passive scalar transport has
not been fully addressed in the past, and knowledge on this matter is relatively scarce.
Furthermore, the performance of widely used RANS models on very strong surface curva-
tures and separated flow is of great interest to the broader computational fluid dynamics
community. To this end, we will resolve the Reynolds-averaged Navier–Stokes equations
over a curved hill with experimental data points to assess the performance of two widely
used CFD models. Furthermore, we will assess where each model excels and where they
fail to capture the physics of the flow using the experimental data as ground truth. Some
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of the research questions to be addressed in this manuscript are as follows: (i) are the
evaluated eddy viscosity models able to capture the outer peaks in Reynolds shear stresses
(i.e., <u′v′> where the angle brackets mean time-averaged) as well as the inclination of the
constant shear layer caused by strong APG?, (ii) is the flow separation bubble dominated
by positively correlated u′ and v′?, (iii) what is the temperature profile trend inside the flow
separation bubble?, (iv) is the Reynolds analogy preserved in strong streamline curvature-
driven pressure gradients?, and (v) is the flow showing quasi-laminar features in zones
where is highly decelerated?

2. Formulations
2.1. Reynolds Averaged Navier–Stokes Equation

Many RANS models are based on the Boussinesq hypothesis [7] and the Reynolds
decomposition, i.e., the mathematical notion that each instant property can be written as the
sum of mean and fluctuations fields; for example, U = U + U′, U being an instantaneous
flow property, U the average of U in time and U′ the fluctuations of U. In RANS, the mean
flow field is resolved whereas the fluctuations are modeled. For general compressible fluid
flows [17], the governing equations (expressed following Einstein notation) are:

Conservation of mass:
∂ρ

∂t
+

∂
(
ρUj

)
∂xj

= 0 (1)

Conservation of momentum:

∂(ρUi)

∂t
+

∂
(
ρUiUj

)
∂xj

= − ∂p
∂xi

+
∂

∂xj

(
µ

∂Ui
∂xj

)
+ Sm,i (2)

Conservation of passive scalar, T being a scalar and assumed to follow a similar Navier–
Stokes equation form

∂(ρT)
∂t

+
∂
(
ρTUj

)
∂xj

=
∂

∂xj

(
k

∂T
∂xj

)
+ ST (3)

where S are the source terms. If the incompressibility assumption and the Reynolds decom-
position are applied, the RANS models for Newtonian fluids have the following equations:

Continuity equation
∂U j

∂xj
= 0 (4)

Conservation of momentum

ρ
∂(UiUj)

∂xj
= − ∂P

∂xi
+

∂

∂xj

(
τij − ρU′i U

′
j
)
+ Sm,i (5)

Note in Equation (5) how, by definition, the derivatives of mean variables with respect
to time disappear but still is the emergence of a new term for the fluctuations variables. In
RANS, the mean parameters are computationally solved, but the fluctuations terms remain
unknown. It is precisely here where the Boussinesq hypothesis acts, enabling the models’
proposal for estimating the unknown terms and balancing the equations. Additionally, the
density parameter at each partial derivative is pulled out due to the constant assumption
of the incompressible condition.

2.2. Turbulent Flow Models

As said in the introduction, there are four most popular RANS models used. To
understand these models is essential to describe four important parameters briefly. The
first and principal is called turbulent kinematic viscosity, generally written as νt. Also
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known as eddy viscosity per density (µt/ρ), it is responsible for identifying the correct
energy dissipation due to flow turbulence based on Boussinesq postulated [17]. νt is an
apparent property for viscosity but accounts for the turbulent phenomenon. The second
parameter is the turbulent kinetic energy (K), which is the kinetic energy per unit mass of
turbulent fluctuations and is mathematically defined by:

K ≡ 1
2

U′i U
′
i =

1
2
(u′2 + v′2 + w′2) =

3
2

U′2 (6)

Third is the turbulent dissipation ratio (ε), defining the ratio at which turbulent kinetic
energy is converted to internal thermal energy. The mathematical description of ε is:

ε ≡ ν
∂U′i
∂Xj

∂U′i
∂Xj

(7)

The last parameter is the specific dissipation rate of turbulent energy (ω). The variable
ω is the ratio of the turbulent kinetic energy converted into internal thermal energy per unit
of time and volume. For precisely having Hertz units, it is also known as frequency turbu-
lence average. The relationship between ω to K and ε is generally written as Equation (8)
where β∗ is a model constant that, for example, can be around 1.0 or even 0.09.

ω =
ε

Kβ∗
(8)

The turbulent model k− ε initially proposed by Launder and Spalding [18] is con-
sidered a high Reynolds number model and this indicates that its specialty is in good
results away from near-wall [19]. This model is uses the scalar conservation Equation (3) to
estimate K and ε. In essence, it says that the rate of change of K (or ε) plus the transport of K
(or ε) by convection is equal to the transport of K (or ε) by diffusion plus the production rate
of K (or ε) minus the destruction ratio of K (or ε). The estimations are performed following
Equation (10) for K and for ε Equation (11). Then, the eddy viscosity (µt) is calculated with
Equation (9) where the constants’ common values use are contained in Table 1.

µt

ρ
= νt =

β∗K2

ε
(9)

∂(ρK)
∂t

+
∂(ρKUi)

∂Xi
=

∂

∂Xj

[
µt

σK

∂K
∂Xj

]
+ 2µtEijEij − ρε (10)

∂(ρε)

∂t
+

∂(ρεUi)

∂Xi
=

∂

∂Xj

[
µt

σε

∂ε

∂Xj

]
+ C1ε

ε

K
2µtEijEij − C2ερ

ε2

K
(11)

2EijEij = (
∂Ui
∂Xj

+
∂Uj

∂Xi
)

∂Ui
∂Xj

(12)

Table 1. Term representations and constant-coefficient values for the K− ε model.

Ui velocity components in notation β∗ σK σε C1ε C2ε

Eij strain-rate tensor 0.09 1.00 1.30 1.44 1.92

The standard K − ω turbulence model was initially proposed by Wilcox [20]. This
model is known as a low-Reynolds model, which means being good at predicting results in
the near-wall [19]. Similar to the k− ε model, the standard K−ω turbulence model uses
two scalar conservation equations to predict K and ω. The turbulent kinetic energy and
specific dissipation rate are solved with Equations (14) and (15), respectively. The model’s
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coefficients values are shown in Table 2 while turbulent kinematic viscosity is calculated
with Equation (13). Considering incompressible flow:

νt =
K
ω

(13)

∂K
∂t

+ Uj
∂K
∂Xj

= τij
∂Ui
∂Xj
− β∗Kω +

∂

∂Xj

[
(ν + σ∗νt)

∂K
∂Xj

]
(14)

∂ω

∂t
+ Uj

∂ω

∂Xj
= αω

ω

K
τij

∂Ui
∂Xj
− βω2 +

∂

∂Xj

[
(ν + σνt)

∂ω

∂Xj

]
(15)

Table 2. Recommended values for the coefficients in the standard K−ω model.

αω β β∗ σ σ∗
5
9

3
40

9
100

1
2

1
2

Menter proposed his shear stress transport model [2], also known as K−ω SST, where
it unifies the advantages of the standard K−ω and K− ε models without inheriting their
weaknesses [19]. Proposing a hybrid model, he reuses Reynolds stress computation and
K-equation from Wilcox’s original K− ω model and transforms the ε-equation into a ω-
equation. A decade later, Menter, along with Kuntz and Langtry, published a revised
version of the turbulent model [21]. The updated version , commonly known as SST-
2003 [22], is shown in Equations (16), (17), and (21) and the revised model constants are
shown in Table 3. In the additional functions, Equations (18)–(20), y is the distance to the
nearest wall. The SST also uses the scalar conservation formulation twice, for that reason,
the three previous turbulent models are classified as two-equation models.

∂(ρK)
∂t

+
∂(ρUiK)

∂Xi
= P̃K − β∗ρKω +

∂

∂Xi

[
(µ + σKµt)

∂K
∂Xi

]
(16)

∂(ρω)

∂t
+

∂(ρUiω)

∂Xi
=

αP̃K
νt
− βρω2 +

∂

∂Xi

[
(µ + σωµt)

∂ω

∂Xi

]
+ 2(1− F1)ρσω2

1
ω

∂K
∂Xi

∂ω

∂Xi
(17)

F1 = tanh

((
min

[
max(

√
K

β∗ωy
,

500ν

y2ω
)

4ρσω2K
CDKωy2

])4
)

F2 = tanh

((
max(

2
√

K
β∗ωy

,
500ν

y2ω
)

)2
)

(18)

CDKω = max
(

2ρσω2
∂K

ω∂Xi

∂ω

∂Xi
, 10−10

)
P̃K = min

(
µt

∂Ui
∂Xj

(
∂Ui
∂Xj

+
∂Uj

∂Xi
), 10β∗ρKω

)
(19)

Sij =
1
2
( ∂Ui

∂Xj
+

∂Uj

∂Xi

)
γ = γ1F1 + (1− F1)γ2 ∀ γ ≡ constant (20)

µt =
a1ρK

max(a1ω, F2

√
2SijSij)

(21)

Table 3. Revised values for the constants coefficients in the K−ω SST model.

α1 β1 σK1 σω1 α2 β2 σK2 σω2 β∗ a1
5
9

3
40 0.85 0.5 0.44 0.083 1.0 0.856 9

100 0.31

Very different is the SA turbulent model, proposed by Spalart and Allmaras [3] and
classified as a one-equation model since it only solves for a working variable of the tur-
bulence model, ν̃. The principal parameter ν̃ is computed by the scalar conservation
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Equation (22). The eddy viscosity µt is calculated with Equation (23), where fv1 is a wall-
dumping function that causes zero value at the wall and reaches unity at high Reynolds
number cases [17]. Additionally, Ω̃ is the production rate of ν̃ related to the local mean
vorticity as shown in Equation (24). The Spalart–Allmaras model has earned high popu-
larity and is often used in the aerospace and aerodynamics industry for its high reduction
in computational effort [23,24]. In addition, empirical adjustments to the eddy-viscosity
turbulence model were performed in [25] to account for system rotation and streamline cur-
vature effects based on the idea of Knight and Saffman [26]. In [27], the rotation-curvature
correction of Spalart and Shur [25] was extended to the SST model. The new proposed
version (SST-CC) was successfully tested on both wall-bounded and free shear turbulent
flows with rotation and/or surface curvature. Of current interest, in a 2D channel flow with
a U-turn, the SST-CC model performed well; however, it was stated that the model still
predicted a slow flow recovery downstream of the separation bubble. Whereas the present
study only considers standard SA and SST models without curvature correction, a future
investigation may imply an assessment of model adjustments as in [25,27] in the curved
hill configuration. The SA turbulent model’s recommended constant values are in Table 4.

∂ν̃

∂t
+∇ · (ν̃U) =

1
σv
∇ ·

(
(ν + ν̃)∇ν̃ + Cb2(∇ν̃)2

)
+ Cb1ν̃Ω̃ + Cw1

( ν̃

κy
)2 fw (22)

µt = ρν̃ fv1 (23)

Ω̃ =

√√√√1
2

(
∂Ui
∂Xj
−

∂Uj

∂Xi

)2

+
ν̃

(κy)2 fv2 fv1 =
(ν̃/ν)3

(ν̃/ν)3 + C3
v1

fv2 = 1− (ν̃/ν)

1 + (ν̃/ν) fv1
(24)

Table 4. SA turbulent model’s recommended constant values.

σv κ Cb1 Cb2 Cw1 Cv1
2
3 0.4187 0.1355 0.622 Cb1/κ2 + (1 + Cb2)/σv 7.1

In summary, both turbulence models were not selected arbitrarily. We have chosen the
best representatives from one and two-equation turbulence models. The Spalart–Allmaras
(SA) model (or one-equation model) has been described to be incomplete by Wilcox [28]
since any turbulence model would require at least two scales: a velocity scale and a length
scale. However, the SA model has shown simplicity, robustness, and versatility in attached
turbulent boundary layer simulations [3,29–31] including high-speed turbulent boundary
layers [32,33]. Previously mentioned studies have emphasized a degradation in the SA
model’s accuracy for more complex geometries with flow separation. In particular, the SA
model under-predicted the size of the separation bubble. On the other hand, the hybrid SST
model by Menter involves blending two well-known two-equation turbulence models: the
standard K−ω model in the near wall region and the K− ε model in the outer region and
freestream of the boundary layer to overcome the strong freestream sensitivity of the K−ω
turbulence model. It is worth highlighting that the SST eddy viscosity model involves a
further improvement based on the idea of the Johnson–King model, which assumes that
the transport of the main turbulent shear stresses is critical in the simulations of strong
adverse-pressure gradient (APG) flows prone to boundary layer detachment.

2.3. Flow Solver and Numerical Schemes

The software used to run all the CFD cases presented in this work was OpenFOAM®.
The strategy implemented was to use the algorithm called semi-implicit method for
pressure-linked equations consistent (SIMPLE-C) with a residual control value of 1 × 10−8

for all the variables or fields. For the specific-pressure field (P), the solver selected is called
the geometric agglomerated algebraic multigrid solver along with a Gauss–Seidel smoother
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(GAMG), a relative tolerance of 0.1, and a tolerance of 1 × 10−8. For the passive scalar field,
it was used the preconditioned bi-conjugate gradient (PBiCGStab) solver with a simplified
diagonal-based incomplete LU preconditioner (DILU); relative tolerance was set to 0, and
the tolerance 1 × 10−9. Lastly, for all the other variables (i.e., U, ν̃, K, ω), the solver adopted
was a smooth solver accompanied by a symmetric Gauss–Seidel smoother, and tolerances
values equal to the P field. The relaxation factor for P was 0.3 meanwhile 0.7 for U, ν̃, K,
and ω.

As for numerical schemes, the following were designated for the time, gradient, Lapla-
cian, interpolation, surface-normal gradient, and wall distance calculation, respectively:
steady state, Gauss linear, Gauss linear corrected, linear, corrected, and mesh wave method.
The divergence schemes chosen were Gauss linear for the non-linear stress and the effective
viscous stress; Gauss linear upwind for the divergence of the surface scalar field (φ) with
the passive scalar; bounded Gauss linear upwind for φ with U and with ν̃; while for the
divergence of φ with K and ω it was used bounded Gauss limited linear 1.

All the solvers and numerical schemes determined for the work presented were
already available in the open-source software OpenFOAMr version 7 as a standard option
without any modification in the algorithms or implementation. For details on the approach
of any method mentioned in this section, readers are referred to [7,17].

2.4. Boundary Layer Detection Based on Potential Flow

A potential flow is characterized as an inviscid and irrotational velocity field, described
as the gradient of a scalar function. On the other hand, a boundary layer develops from
strong viscous interactions within a small region, usually caused by the presence of a
surface or vorticity source. The potential flow satisfies the Laplace equation as,

∇2Φ = 0 (25)

where Φ is the scalar function, the potential velocity field is defined as ~Up = ∇Φ, with the
flow being irrotational, i.e., ∇× ~Up = 0. However, since for any arbitrary velocity flow
field expressed using finite, floating-point arithmetic, the divergence is not strictly zero,
OpenFOAM implements a numerical scheme following Poisson’s equation to enforce a
solenoidal field and conditions required for the irrotationality of the flow. This issue is not
exclusive to OpenFOAM as it is an inherent limitation of finite-precision arithmetic using
floating points. The scheme can be expressed as follows, where φ is the face flux of a finite
volume as,

∇2Φ = ∇ · φ (26)

As done in Baskaran et al. [1], the edge of the boundary layer is determined based
on the potential flow theory in curved geometries. It is the standard procedure used in
the fluid dynamics theory since surface curvature locally induces a streamwise pressure
gradient, making it challenging to identify the beginning of the inviscid zone above the
turbulent boundary layer. Given that viscous interactions are not present in potential
flows, the boundary layer can be described as the region where these viscous interactions
can not be neglected (a somewhat simplistic description, but it suffices for the proposed
methodology). We hypothesize that the edge of the boundary layer can be detected by
searching for the region where the potential flow and the real viscous flow cross paths and
exhibits similar behavior. According to Baskaran et al. [1], the edge of the boundary layer
thickness, δ, is defined as “that wall distance at which the dynamic pressure is 99% of the
free-stream value”. In the present work, we apply the following criteria for identifying the
edge of the boundary layer:

U2
s,Viscous ≥ (99%)U2

s,Potential &
∣∣∣∣∂2Us

∂n2

∣∣∣∣
Potential

≥
∣∣∣∣∂2Us

∂n2

∣∣∣∣
Viscous

(27)
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Here, Us represents the wall-parallel component of the fluid flow, and n is the wall-
normal coordinate. It is important to mention that the fulfillment of both criteria according
to Equation (27) ensures an acceptable identification of the viscous–inviscid interface or
boundary layer edge, particularly in the recirculation flow zone. The second derivative of
Us in the wall-normal direction describes the local curvature of the velocity profile, which
must be zero in the inviscid region. Figure 2 provides a pictorial representation of the
intuition behind the approach employed in the present work. Note, in Figure 2a, that the
viscous RANS solution starting from the wall highly disagrees with the potential solution.
However, as the distance from the wall grows, viscous RANS tends asymptotically to the
potential solution until further, in the free-stream, the viscous RANS solution is consistently
very similar to the potential solution. Moreover, with the cyan color curve of station
s = 2500 mm (at the separation bubble), note how the velocities first matched in a wall
level without actually both solutions having the asymptotical behavior, confirming that the
second criterion in Equation (27) is necessary. With the possibility of multiple wall levels
with the solution’s paths crossed, the issue is solved by looking at the Us slopes. Figure 2b
shows the wall-normal derivative of the streamwise velocities; note the asymptotical and
overlapping behavior of the viscous solution towards the zero value and potential solution
again. It can be intuitive that after some n distance, the absolute value of the wall-normal
second derivative of viscous solution is going to be equal to the corresponding derivative
of the potential solution; or at least, a smaller second derivative for the viscous solution
compared to the potential solution due to the tendency to zero showed in both solutions.

(a)
(b)

Figure 2. (a) Potential flow and RANS wall normal profiles, Us in m/s; (b) wall-normal derivative of
the streamwise velocity, ∂Us

∂n in 1/s.

2.5. Turbulent Inflow Generation

Before beginning with the curved hill cases, a scenario of the turbulent flow over a
flat plate was considered using SST and SA models. For all cases presented in this work,
the classical no-slip condition was prescribed at the wall surfaces for the velocity fields;
meanwhile, an isothermal condition of 293.15 K was prescribed for the thermal field. The
top-surface boundary condition was set via a zero-gradient of all flow parameters (shear-less
wall) and a zero-pressure gauge value at the outlet boundary. For the SA’s conditions, ν̃ and
νt were specified as zero at the walls, while ν̃ = 1.5 × 10−5 m2/s and νt = 1.1 × 10−5 m2/s for
both constant inlet and domain’s initial state. For the SST’s conditions, the turbulent intensity
was assumed as 1%, giving K = 0.06 m2/s2 and ω = 4000 1/s to be applied as Dirichlet
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conditions at the inlet plane and walls, while νt = 1.5 × 10−5 m2/s was employed to initialize
numerical predictions.

In the flat plate or turbulence inflow generator scenario, the total domain’s length was
set to 3.85 m with an initial 0.15 m length as a slip-condition. Three meshes were designed,
namely coarse, medium, and fine mesh, as described in Table 5. Furthermore, vertically
end-to-start cell expansion ratios (γy) were 4140, 3000, and 1900, respectively. The vertical
cell expansion ratio, γy, is defined as the dimensionless relationship between the end cell
near the top surface to the start cell in the near-wall region, i.e., γ = (∆y)end/(∆y)start. In
the inlet plane, freestream conditions were set, i.e., 20 m/s for the horizontal velocity and
323.15 K for the static temperature (passive scalar).

In the curved hill scenario, mean flow solutions from the flat plate were extracted and
injected as velocity and temperature inlet profiles to overcome the unrealistic freestream
inlet profiles and avoid a lengthy inlet developing section. In addition, this recycling
strategy allows better control of the inlet boundary layer parameters as a solid requirement
for validating numerical predictions against wind-tunnel experiments. As shown later
in this section, these “recycled” profiles are validated. Like in the flat plate scenario, the
curved hill had three meshes: coarse, medium, and fine mesh; all three meshes with height
divided into two blocks for an efficient cell distribution control. The coarse mesh had
200 cells in the first 25% of vertical distance with γy = 1000 and the other 75% of height with
100 cells in uniform distribution to comply with an acceptable mesh aspect ratio. In the
medium mesh, the nearest block to the wall was only 3.5% of total height with 200 cells and
γy = 386, while the outer region was composed of 200 cells with γy = 12. Similarly, the fine
mesh possessed the vertical 3.5% and 96.5% split with the same end-to-start cell-expansion
ratio as the medium mesh, but both regions were populated with 400 cells. Horizontally, all
three meshes were divided into five blocks; Table 6 shows the resolution and the horizontal
cell distribution.

Table 5. Flat plate mesh cells’ horizontal distribution; from left to right.

(Horizontal Cell Count; γx) (Horizontal × Vertical)

Id Block 1 Block 2 Block 3 Total Cells

Coarse 75; 1 75; 1 525; 1 675 × 100

Medium 100; 1 100; 1 700; 1 900 × 134

Fine 150; 1 150; 1 1050; 1 1350 × 201

Table 6. Curved hill mesh cells’ horizontal distribution; from left to right.

(Horizontal Cell Count; γx) (Horizontal × Vertical)

Id Block 1 Block 2 Block 3 Block 4 Block 5 Total Cells

Coarse 250; 0.1 75; 1 350; 1 75 ; 1 250; 10 1000 × 300

Medium 450; 0.25 150; 1 700 ; 1 150; 1 425; 4 1875 × 400

Fine 810; 0.3125 22 ; 1 1050 ; 1 340; 1 960; 4 3385 × 800

Figures 3 and 4 show schematics of the computational domains for the flat plate as
well as for the curved hill. Figures 5a and 6a display a full view of the fine meshes for the
flat plate and curved hill domains, while the corresponding figures (b) are the near wall
region close-ups, respectively. Figure 7a,b show the ZPG regions’ near-wall resolution for
the flat plate and curved hill, also respectively.
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Figure 3. Example of dimensions and cell distribution for flat plate medium mesh. From [6]; reprinted
by permission of the American Institute of Aeronautics and Astronautics, Inc.

Figure 4. Example of dimensions of curved hill computational domain (not at scale) [1].

(a)

(b)

Figure 5. Schematic of the fine mesh configuration in the flat plate (turbulence precursor): (a) full
view, (b) near wall region close-up.
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(a)

(b)

Figure 6. Schematic of the fine mesh configuration in the curved hill: (a) full view, and (b) near wall
region close-up at the second concave surface.

(a)
(b)

Figure 7. Comparison of the dimensionless near-wall mesh resolution in: (a) the flat plate domain,
and (b) the curved hill domain.

The flat plate simulations have shown excellent agreement with empirical correlations.
The obtained information (i.e., velocity and thermal profiles) was used to inject a more
realistic (and developed) boundary layer flow into the curved-hill domain inlet. Because
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Spalart–Allmaras cases were executed first, it was found that the results of coarse to fine
mesh were sufficiently resolution independent; therefore, SST was only performed with
coarse and medium resolutions. Figure 8a displays the boundary layer thickness and
comparison with the 1/7-power law given in [34]. Figure 8b presents the skin friction
coefficient and the theoretical formulation proposed by Kays and Crawford [35]. Regarding
the passive scalar solution, the temperature boundary layer thickness is shown in Figure 9a;
as it can be seen, the results are just differentiated by the turbulent model used. Furthermore,
to validate the temperature fields, the Stanton number was used in Figure 9b by comparison
with the theoretical formulation given by Kays and Crawford [35].

(a) (b)

Figure 8. Flat plate solutions of: (a) boundary layer thickness, and (b) skin friction coefficient.
From [6]; reprinted by permission of the American Institute of Aeronautics and Astronautics, Inc.

(a) (b)

Figure 9. Flat plate passive scalar solutions of: (a) temperature boundary layer thickness, and
(b) stanton number.

Figure 10 shows the extracted streamwise velocity and thermal profiles from the
flat plate simulations for the three meshes and based on the SA turbulence model at a
location (X = 2.458 m) where the local momentum-thickness Reynolds number, Reθ , is
approximately 5659.7. Furthermore, in Figure 10a, the mean streamwise velocity is depicted
in wall units (i.e., U+ = Us/uτ and y+ = yuτ/ν), where a consistent trend can be observed
in all meshes. Here, uτ =

√
τw/ρ where τw is the wall shear stress and ρ is the fluid

density. It is worth highlighting that we will use interchangeably y+ and n+ to denote
wall-normal coordinates in this manuscript. In addition, a very good agreement is seen
with DNS data from [9,10] at Reθ = 2354.7 and 4060, respectively. Some discrepancies can
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be detected around y+ ≈ 10 and in the wake region (i.e., beyond the log region). The latter
could be attributed to some Reynolds number dependency. Figure 10b exhibits the mean
temperature profile (or passive scalar) normalized in wall units, as well. Here, T+ = Θ/θτ ,
where Θ = (T− Tw)/(T∞ − Tw) T being the dimensional static temperature, Tw is the wall
temperature, and T∞ is the freestream temperature. The friction temperature is defined as
θτ = qw/(ρCpuτ), where qw is the wall heat flux and Cp is the fluid specific heat. Moreover,
an excellent collapse of the RANS results via the SA turbulence model is visualized in
the linear viscous layer and buffer region (i.e., for y+ < 20) as well as with DNS data
from [4,9] at Reθ = 2354.7 and 800, respectively. In the log and wake region, significant
differences can be observed between the RANS and DNS approaches. One can infer that
the turbulent Prandtl number model employed in RANS simulations has performed quite
well in the near wall region, whereas it has been able to reproduce moderately well the
thermal field in the outer part of the turbulent boundary layer. Despite the fact that all
meshes have generated similar outcomes, the solutions of SA medium mesh were selected
for inflow in the curved hill cases (i.e., streamwise and wall-normal components of the
mean velocity and temperature). Readers are referred to Appendix A for a comprehensive
grid sensitivity study.

(a) (b)

Figure 10. Quality assessment of turbulent inflow profiles of: (a) mean streamwise velocity, U+, and
(b) mean temperature, T+, in wall units.

3. Numerical Results and Discussion For The Curved Hill

Turning into the curved hill scenario, let us begin by setting our bases by contrast-
ing our numerical predictions with experimental data from the paper “A turbulent flow
over a curved hill Part 1”, [1]. Figures 11–13 show contour results of kinematic pressure
gauge (p/ρ), streamwise velocity (Ux) and static temperature (T), respectively; via the
SA turbulence model and fine mesh. Zero values of the kinematic pressure gauge were
assigned to the outflow plane (reference or atmospheric pressure). It is very important to
note that in this work the surface streamline distance (s) was matched to the presented
in [1], also the wall-normal distance is represented with n. In the path of the shear-layer
region (i.e., turbulent boundary layer), the following aspects can be mentioned. As the
flow approaches the hill or obstacle, the pressure increases, the flow decelerates and the
pressure gradient becomes strongly adverse. Zones with intense red color can be seen
along the first concave region (987 mm < s < 1191.5 mm). The fluid velocity in the viscous
and buffer layer decelerates, inducing a decrease in the skin friction coefficient, as will be
shown later in the manuscript. However, no strong backflow or reverse flow is seen due to
the moderate APG infringed. Whereas, the temperature generally shows a small gradient
with just a small temperature drop in a very limited location at the peak of this pressure
strong adverse gradient. In the geometry change from concave to convex, the pressure
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gradient switches to favorable (FPG), this is translated to streamwise velocity acceleration.
This flow acceleration or FPG continues until the flow reaches the hill’s top. Clearly, the
flow decelerates downhill, with a significant recovery of the pressure coefficient (as seen in
Figure 14a). The presence of this strong APG (the pressure increase equals the dynamic
pressure, since the change in Cp ≈ −1) ends up in flow separation, with a posterior flow
reattachment due to the presence of zero-pressure gradient (ZPG) zone, again. Temperature
shows no change during this section with the exception of the very near wall. At the
start of this separation zone, the temperature begins to drop. At the end of the hill, the
separation “bubble” is noticeable due to the presence of a quasi-isothermal zone (in blue).
The high level of mixing inside the separation bubble balances the static temperature. This
is consistent with observations in the thermal boundary layer downstream of crossflow jet
problems via DNS [36].

Figure 11. Contours of kinematic pressure gauge in m2/s2. The image has been zoomed in to
highlight the curved hill and immediate surroundings.

Figure 12. Contours of streamwisevelocity in m/s. The image has been zoomed in to highlight the
curved hill and immediate surroundings.
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Figure 13. Contours of the static temperature in K. The image has been zoomed in to highlight the
curved hill and immediate surroundings.

Figure 14a depicts the pressure coefficient along the computational domain. The pres-
sure coefficient is defined as Cp = (Pw − P∞)/q∞. Here, Pw is the wall static pressure, P∞ is
the freestream static or reference pressure, and q∞ is the freestream dynamic pressure. In
general, a fair agreement is observed with experimental data by [1]. As the flow approaches
the obstacle or hill, it decelerates due to the presence of an increasing pressure or APG.
The maximum Cp (≈0.375) is located at the hill feet. Interestingly, good performance of
both turbulence models in reproducing the wall pressure coefficient was observed in the
vicinity of the hilltop, where the streamwise pressure gradient abruptly switches from
FPG to APG, passing through a very short ZPG-zone. It is expected that boundary layer
flow experiences a severe distortion in that zone with combined pressure gradients. Major
discrepancies occur by the end of the strong APG zone (second half of the hill) where
back or recirculating flow can be found. This is consistent with the deficient performance
of RANS-eddy viscosity models in capturing boundary layer detachment. While both
turbulence models have predicted constant wall static pressures in the separation bubble
(ZPG zone), which is physically sound; however, smaller pressure gauges were obtained
by SA and SST, e.g., Cp ≈ −0.0625 and −0.125, respectively, as compared to the measured
valued of −0.25. In Figure 14b, the skin friction coefficient, C f , is depicted. The skin friction
coefficient is defined as follows, C f = τw/q∞, where τw is the wall shear stress. One can
observe an opposite trend of C f as compared with the pressure coefficient Cp. As the flow
decelerates due to the presence of moderate APG nearby the hill feet (concave surface), it is
seen a decreasing behavior of C f just downstream of the ZPG region where almost constant
skin friction coefficient values are seen, as expected. However, it never reaches negative
values, indicating that the mean flow does not separate. The wall shear stress then recovers
as the flow starts to accelerate in the FPG region (convex surface). At roughly one-quarter of
the curved hill (where the surface changes geometry from concave to convex) a meaningful
increase of the wall shear stress and C f is observed since the flow strongly accelerates
(FPG), and approximately a 100% increase can be seen with respect to the incoming C f
under ZPG-flow conditions. Downhill, the pressure coefficient Cp recovers (presence of
APG), inducing a reduction in C f , to finally reach slightly negative values in the separation
bubble (s ≈ 2100 mm). Obviously, the boundary layer flow should “pass-through” the
laminar skin friction coefficient value before separating (i.e., C f < 0). This may indicate
the presence of quasi-laminarized flow within 2000 mm < s < 2100 mm and in the near
wall region [37] (extension of the viscous sub-layer). This supposition would be better
addressed when discussing mean streamwise velocity and Reynolds shear stress profiles
in the next pages. In summary, the SA and SST turbulence models have estimated similar
and consistent values for C f regarding the experimental data from [1], perhaps the SA
model has shown moderate supremacy, overall. The skin friction coefficient in the incoming
ZPG zone is slightly under-predicted by both turbulence models (∼15% lower than in [1]).
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As previously mentioned, the most “challenging” situation for turbulence models has
undoubtedly been the hilltop and vicinity since the flow goes through acceleration and
deceleration in a very short distance. Major differences were computed as roughly 35% in
that zone. According to [1], the location of the boundary layer detachment point was found
to be situated at s = 2095 mm by extrapolation. The SA and SST models have predicted a
separation point around s ≈ 2100 mm, in very close agreement with experiments.

(a) (b)

Figure 14. Coefficients on wall compared to experimental data from [1]: (a) pressure coefficient, and
(b) skin friction coefficient.

The streamwise variation of the Stanton number and the Reynolds analogy ratio
(i.e., St/(C f /2)) are shown in Figure 15. The Stanton number is defined as follows,

St =
qw

ρcpU∞(T∞ − Tw)
(28)

where qw is the wall heat flux defined as:

qw = −
(

k
∂T
∂n

)
w

(29)

Here, k is the fluid thermal conductivity, cp is the fluid’s specific heat at constant
pressure, and ∂T/∂n is the thermal gradient at the wall in the wall-normal direction. The
Stanton number is a dimensionless number that relates the heat interchanged between
the surface and the fluid to the thermal capacity of the fluid. From Figure 15a, one can
observe nearly constant St in the incoming flow (ZPG), which is typical in canonical
or flat-plate boundary layers. A very good agreement was obtained with the empirical
correlation by Kays and Crawford [35], who proposed a variation of St as a function of
the local momentum thickness Reynolds number, Reθ , for ZPG turbulent flows (adapted
to Pr = 0.71). The Stanton number (and heat transferred) peaks by s ≈ 1125 mm, where
(C f )max is located, demonstrating a high similarity between maximum viscous shear force
and total heat transferred at the wall. This peak in the heat transfer (representing about an
80% increase regarding the incoming baseline St) is situated approximately by the end of the
first concave bend. Downstream, the Stanton number decreases much faster than C f does,
suggesting a non-similarity between these two boundary layer parameters. The strong
changes of streamwise pressure gradients in this zone, which are sources of dissimilarity
between the momentum and thermal boundary layer transport [38], are the reasons for
that behavior. Beyond s = 1500 mm, a “plateau” is observed in St values, and an abrupt
reduction of the heat transfer is achieved by s ≈ 2100 mm, caused by the presence of the
flow recirculation zone. This separation bubble is characterized by a quasi-adiabatic process,
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since no heat transfer occurs between the surface and the fluid (St ≈ 0). Furthermore, the
Stanton number can also be related to the skin friction coefficient via the Reynolds analogy
(similarity between the viscous drag to the heat interchanged). We introduce the St/(C f /2)
ratio in Figure 15b. An excellent agreement with the Pr−2/5 empirical correlation by [35] is
seen in the ZPG zone. This ratio significantly departs from the unitary value by the hill
feet (beginning of the concave bend, s ≈ 987 mm). It is worth highlighting that St/(C f /2)
remains very close to one in most of the curved hill for s > 1100 mm, getting large negative
values in the vicinity of the separation bubble due to the very small (and negative) values
of C f . In essence, both turbulence models have generated very similar Stanton numbers.

(a) (b)

Figure 15. Streamwise variation of: (a) Stanton number, and (b) ratio St/(C f /2).

To the best of our knowledge, the implemented approach, based on a potential flow-
based scheme, has shown robustness and accuracy in the detection of boundary layer edge
parameters as well as its integral values in comparison to the classical 99%U∞ criterion.
This made the overall calculation of the parameters shown in Figures 16 and 17 consistent
in the presence of strong pressure gradients, and subsequently, severe boundary layer
distortion. The boundary layer thickness is slightly underestimated, although it follows
the experimental results’ behavior. Baskaran et al. have limited data in the separation
bubble, and we focus on the sections highlighted by them [1]. The overestimated shape
factor is likely due to an overestimation in the boundary layer’s edge velocity incurred
when comparing the potential and RANS flow fields. Nonetheless, the comparisons along
the hill are extremely favorable to our approach compared to the experimental baseline.
Overall, the SA model has superior performance when compared to the K − ω SST [2].
This is particularly noticeable within the portion 800 mm < s < 1200 mm seen in the
integral parameters prediction. Both turbulence models significantly over-predict the
maximum shape factor, H, located at s ≈ 1000. At this point, the meaningful thickening
of the turbulent boundary layer is consistent with the presence of strong APG and flow
deceleration (note the Cp peak in Figure 14a). Consequently, the shape factor increases
(up to ∼15% increases with respect to the incoming flow), and discrepancies in numerical
results are within 25% regarding experimental values. Since the shape factor, H, is the
ratio of the displacement thickness to the momentum thickness, the previously mentioned
discrepancies on Hmax are caused by over-predictions on the displacement thickness, δ∗,
as confirmed from Figure 17. In addition, the momentum thickness, θ, has been almost
faithfully replicated by RANS as compared to experiments. This is consistent with the
good agreement on the C f variation (see Figure 14b), since the momentum thickness is
proportional to the drag force over the surface.

For the creation of Figure 17, our potential flow-based scheme used Equations (30)
and (31) to calculate displacement and momentum thickness parameters. Meanwhile, for
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Figure 16, the parameter Reθ used a reference velocity, Ure f , where after following the
results of [1], it was found to be s = 596 mm, i.e., the reference station.∫ δ

0

(
1− Us

UPotential

)
dn (30)

∫ δ

0

Us

UPotential

(
1− Us

UPotential

)
dn (31)

(a)

(b)

Figure 16. Boundary layer thickness, shape factor, and momentum thickness Reynolds number
compared to experimental data from [1]: (a) Spalart–Allmaras model, and (b) K−ω SST model.
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Figure 17. Displacement thickness and momentum thickness compared to experimental data from [1].

To assess the distortion of the momentum boundary layer due to the hill, we present
wall normal, inner scaled profiles at several streamwise stations in Figure 18. Comparison
is performed with experiments by [1] as well as against two DNS baselines by Schlatter
and Orlu (Reθ = 4060) [10] and Lagares and Araya (Reθ = 2305) [9]. For the ZPG zone in
Figure 18a, the inner scaled velocity profiles of both closure models collapse near perfectly
with a very slight variation observed in the wake region where the K − ω SST variant
predicts a slightly higher streamwise velocity, Us. Both DNS databases exhibit a high
level of consistency (almost overlap), and a long log region can be seen due to the high
Reynolds numbers considered. The flow starts to decelerate by the first concave bend
beginning (s ≈ 710 mm), which causes a decrease in the skin friction coefficient and in
the friction velocity as well. This is the reason for the slight upward movement of the
wake in Figure 18b, which is over-predicted by the turbulence models. The effects of flow
acceleration and FPG can be observed in Figure 18c,d, inducing a “hump” in velocity
profiles over the log region, also reported by [39] in sink flows. The boundary layer suffers
a significant distortion around the hilltop where a “plateau” in Us can be observed between
n+ = 300 and 1000 from experimental data. In this FPG zone, the SA model predictions
are in better agreement with experiments by [1]. As discussed in Figure 14a, the pressure
coefficient recovers from s ≈ 1700 mm and the streamwise pressure gradient becomes more
adverse. Therefore, one can describe the APG influence as steeper slopes of the velocity
profiles within the log-wake region. Finally, the sudden deceleration (strong APG) of the
boundary layer produces a recirculation bubble above the wall, i.e., between 2 to 1000 wall
units, as can be seen in Figure 19, where streamwise velocity profiles can be seen at three
different stations. While the SA model predicts a slightly stronger reversal flow, the SST
model predicts a larger (in terms of wall-normal distance) bubble. This recirculation zone
is characterized by a low level of velocity fluctuations (this will be confirmed later in the
Reynolds shear stress profiles) and back (negative) flow, where almost constant values
of Us can be observed (within 5 to 10 in wall units, according to the streamwise station).
Beyond the separation zone in the wall-normal direction, the streamwise velocity exhibits
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very sharp increases towards the boundary layer edge, resembling Blasius velocity profiles.
The substantial discrepancies observed in both turbulence models confirm our previous
statement regarding the limitations of eddy viscosity models to accurately predict boundary
layer detachment.

(a) (b)

(c) (d)

(e)
(f)

Figure 18. Streamwise velocity profiles in wall units at locations of: (a) s = 596 mm; (b) s = 710 mm;
(c) s = 1345mm; (d) s = 1596 mm; (e) s = 1862 mm; (f) s = 1990 mm.
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Figure 19. Velocity profiles in the flow separation bubble at s = 2250 mm, 2350 mm, and 2500 mm.

We apply the Boussinesq hypothesis to estimate Reynolds shear stresses from the
RANS output as per the equation:

< u′v′ >≈ −νT

(
∂Us

∂n
+

∂Un

∂s

)
(32)

In Figure 20, profiles of Reynolds shear stresses are plotted in inner units and several
streamwise stations by considering the friction velocity at the reference station (s = 596 mm
or ZPG zone). This choice is based on the isolated assessment of the baseline (incoming)
Reynolds shear stresses under combined streamwise pressure gradients caused by the
curved hill. Moreover, we remove any scaling effect according to the local values of the
friction velocity. At the ZPG station (s = 596 mm), it can be seen that both turbulence
models tend to capture the inner portion of the boundary layer with very good agreement
with DNS from [9,10]. The comparison breaks down in the outer region where both models
predict larger values, perhaps, caused by the higher Reynolds numbers considered in
RANS predictions. The APG effect at s = 1139 mm is manifested as a clear secondary
peak on < u′v′ > around n+ ≈ 800. We can infer that the flow is subject to a very strong
deceleration or APG since the outer peak is larger (almost twice as large) than the inner
peak, around n+ ≈ 15. The SST model predicts a more intense outer peak, addressing one
of the original research questions of this study. These outer secondary peaks of < u′v′ >
have also been reported by [38] in DNS of turbulent spatially developing boundary layers
subject to strong streamwise APG. Moreover, outer streaks are enhanced by APG, which in
turn cause local increases of streamwise velocity fluctuations and Reynolds shear stresses,
according to DNS studies by Skote et al. [40]. Interestingly, a much stronger APG effect can
be seen at s = 1990 mm, just upstream of the separation bubble, given by the inclined shear
layer or “plateau” in the zone 10 < n+ < 200. The larger the APG, the more inclined the
shear layer [38]. At the flow recirculation zone, i.e., at s = 2500 mm, there is an appreciable
attenuation of the Reynolds shear stresses in the near wall and buffer region (n+ < 100).
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(a) (b)

Figure 20. (a) Inner-scaled Reynolds shear stresses; (b) zoomed view of the inner-scaled Reynolds
shear stresses.

Furthermore, the SST model predicts large positive values of the cross-correlation <
u′v′ > inside the bubble (not seen in the SA model), which is consistent with previous DNS
studies in flow separation [36,40]. Clearly, the very low values of the Reynolds shear stresses
suggest that the flow is quasi-laminarized or on the verge of relaminarization [41] (viscous
sublayer extended). On the other hand, the very large values of < u′v′ > in the outer
region (1000 < n+ < 3000) plus the non-negligible wall normal gradients of the streamwise
velocity indicate the presence of significant turbulence production (i.e., < u′v′ > ∂Us/∂n)
well above the separation bubble, and thus, the flow is highly turbulent in that zone, as
will be shown in the next figure. The published data by Baskaran et al. [1] do not contain
much information beyond the early portions of the separation bubble.

P ≡ −u′iu
′
j
∂Ui
∂xj
≈ − < u′v′ >

(
∂Us

∂n
+

∂Un

∂s

)
(33)

The turbulent kinetic energy (K) production, P , inside the boundary layer can be
evaluated by computing the term with the highest contribution to K and mean-flow kinetic
energy equations. The time-averaged velocity gradients act against the Reynolds stresses,
removing kinetic energy from the mean flow and transferring it to the fluctuating velocity
field, Pope [42]. The turbulent kinetic energy is defined as in Equation (6); whereas the
Boussinesq hypothesis leads to the following definition of P in Equation (33), where
the Reynolds shear stress definition in Equation (32) is employed. Figure 21 shows the
principal term of K production in wall units at different streamwise stations, as done with
the RANS-modeled Reynolds shear stresses. It was observed that the term ∂Un/∂s in
the mean flow gradient was negligible, even in zones with large wall curvatures. For
the incoming flow (ZPG zone) at s = 596 mm, the SA turbulence model reproduces
properly the turbulence production in the turbulent boundary layer, as contrasted to DNS
from [9,10] at lower Reynolds numbers. Peak values are approximately 0.25 to 0.29 in the
buffer layer at n+ ≈ 10. While an increase in the term P+ would suggest a mean flow
deceleration; whereas, an enhancement of the fluctuating component of the velocity field
and Reynolds shear stresses. Previous flow physics descriptions can be clearly seen at
stations s = 1469 mm and 1665 mm. Down the hilltop, turbulence production begins to
recover the inflow features (attenuation process) as the Reynolds shear stresses decrease
in the viscous sub-layer and buffer region. In addition, flow deceleration by APG tends
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to destabilize the boundary layer, inducing turbulence intensification in the outer portion.
Based on DNS studies by Skote et al. [40], the outer streaks are intensified by strong APG
and can be related to local increases in turbulence production and <u′v′> (outer peaks). As
seen in Figure 21, SA and SST models predict outer peaks of turbulence production around
n+ ≈ 1500–2500 at s = 2500 mm, where the separation bubble is thicker. Furthermore, the
production of K inside the bubble is almost negligible, suggesting that the flow is locally
quasi-laminar.

In general, the thermal boundary layer profiles presented in Figure 22 follow similar
tendencies (i.e., Reynolds analogy) to those presented for the momentum boundary layer.
This is expected since the temperature is modeled as a passive scalar. Particularly, a high
level of similarity has been observed in ZPG zones since streamwise pressure gradient
is a source of dissimilarity between momentum and thermal fields. For instance, nearby
the hilltop, strong FPG effects were described by the presence of “humps” in velocity
profiles over the log region. However, thermal profiles look very different at s = 1345 mm
and 1596 mm, indicating Reynolds analogy breakdown. Actually, a significant portion
of the thermal boundary could be represented by a logarithmic curve fitting, given by
the observed “linear” behavior when plotted on a semi-log scale. From Figure 23, the
separation bubble seems to elongate the thermal “plateau”, although the distortion effects
are less “violent" than those seen in the momentum boundary layer. As expected, the
predictions at the separation bubble seem to disagree more than on any other station
between turbulence models. Interestingly, we can now visualize two distinctive logarithmic
regions of the thermal profile: one log slope inside the bubble and the other (steeper)
outside the separation zone up to the thermal boundary layer edge. This log behavior may
open up the opportunity for future better turbulence modeling of passive scalar transport
in flow separation. Furthermore, a deeper analysis must be performed in this sense, which
falls outside the scope of the present manuscript and may be published elsewhere.

(a) (b)

Figure 21. (a) Inner-scaled K Production; (b) zoomed view of the inner-scaled K Production.

It is worth highlighting that the 2D results presented in this work assume spanwise
homogeneity. The main expected deviations when considering a full 3D domain and
unsteady simulations can be summarized as follows: (i) the appearance of Görtler-like
vortices due to the strong concave curvatures (δ/R ≈ −0.13 to −0.15, where δ is the local
boundary layer thickness and R is the local radius of curvature) present in the complex
geometry and (ii) flow separation bubble. Our previous experience on supersonic turbulent
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boundary layers subject to strong concave surfaces via DNS [43] dictated the existence of
Görtler-like vortices caused by centrifugal forces, which in turn, enhanced spanwise flow
fluctuations. However, no spanwise inhomogeneity has been observed in time-averaged
flow statistics of turbulent flows. On the other hand, flow separation at the second concave
surface should be ruled by unsteadiness and three-dimensionality effects. Even when
the assumption of spanwise homogeneity may not be perfect, our results have shown
reasonable agreement with wind-tunnel experiments.

(a) (b)

(c) (d)

(e) (f)

Figure 22. Thermal profiles in wall units at locations of: (a) s = 596 mm; (b) s = 710 mm;
(c) s = 1345mm; (d) s = 1596 mm; (e) s = 1862 mm; (f) s = 1990 mm.
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Figure 23. Thermal profiles in the flow separation bubble at s = 2250 mm, 2350 mm, and 2500 mm.

4. Conclusions

We have presented a numerical study of a turbulent boundary layer subject to a curved
hill. The study was limited to a Reynolds-averaged Navier Stokes simulation (RANS)
plus two eddy-viscosity turbulence models (i.e., SST and SA). The domain geometry was
reproduced following work by Baskaran et al. [1]. The inlet velocity components and
temperature were recycled and injected from a precursor ZPG simulation to avoid a longer
developing section and better control (and match with experiments) the incoming reference
boundary layer parameters. By leveraging a boundary layer identification scheme based
on a potential flow field, we showed very good agreement with the experimental data by
Baskaran et al. [1]. This approach led to better identification of the turbulent boundary
edge to compute the integral parameters and boundary layer thickness. Furthermore, the
proposed methodology has been resilient and robust in the presence of strong pressure
gradients and significant boundary layer distortion. Overall, the SA model had a better
agreement with the experimental data in those zones where the turbulent boundary layer
remained attached, for instance, in Cp, C f , and Us predictions. On the contrary, the SST
model has depicted slightly superior agreement with experiments in the separation bubble
(in terms of Cp and C f ) as well as in Us profiles just upstream of the bubble, capturing more
evidently the positively correlated characteristics of u′ and v′ or positive < u′v >. Both
models have detected outer peaks of < u′v >, turbulence production, and the inclined shear
layer caused by strong APG. We also highlighted the more notable effect of the detachment
on the velocity profile (with significant differences between turbulent model predictions)
than on the thermal profile. Strong streamline curvature-driven pressure gradients cause a
noticeable Reynolds analogy breakdown. However, more data are needed to judge their
overall accuracy in the separation bubble objectively.

Additional sources of validation will be included to better characterize the considered
model’s performance in strong pressure gradients. Further, we will extend this study to a 3D
geometry and conduct a large eddy simulation (LES) to understand better the unsteadiness
of the detached boundary layer and the laminarescent state we have hypothesized inside
the separation bubble. Additionally, we will further investigate the proposed approach
for boundary layer detection and its resiliency in more complex geometries and stronger
pressure gradients; as well as extend the study to other turbulence closure models. One
important variable not considered in this study in its current form is the effect of the
curvature-driven pressure gradients on the thermal boundary layer as a function of Pr.
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Appendix A. Grid Sensitivity Study

Figure A1 depicts the results of the grid independence test performed over the curved
hill domain. Some clarifications: (i) we have picked up a highly distorted flow, namely,
the flow separation zone, (ii) additionally, we have explored the performance of grid point
distribution in zones where the boundary layer is attached. Turning to Figure A1a of the
Us profiles, it can be seen a clear convergence of the three types of meshes (coarse, medium,
and fine) in the SA and SST models; in particular, there is a high level of similarity between
the medium and fine mesh. This confirms that the refinement strategy has been adequate.
By contrasting both models, the SST model predicts a much thicker separation bubble,
and significant discrepancies are visualized inside the momentum boundary layer. It is
important to mention that the SST model by Menter [2] considers a further improvement to
the eddy viscosity model and is based on the idea of the Johnson–King model. It determines
that the transport of the main turbulent shear stresses is critical in the simulations of
strong APG flows. Specifically, the Menter SST turbulence model has been developed to
outperform in turbulent boundary layer flows subject to APG, with eventual separation.
Unfortunately, in [1], the streamwise velocity profiles were not measured at the separation
bubble in order to validate our RANS results, and thus, further studies should be performed
in the future to assess the SST model under flow detachment. The thermal distribution
inside the temperature boundary layer is displayed in Figure A1b. Similarly, the SST
model underpredicts temperature (passive scalar) with respect to the SA model. Significant
differences are observed in thermal results at each refinement level. However, the number
of vertical points was increased from the coarse to the fine mesh by an x2.66 factor, and
additionally, special care was taken in the near wall region of the fine mesh (∆y+ ≈ 0.15
in the separation bubble, or lower). At this point, we can only ensure that numerical
predictions are error-free of grid resolution. Therefore, the numerical predictions’ accuracy
of the thermal field is warranted and the fine mesh is deemed appropriate for the goals
of this study. The errors presented in Figures A1 and A2 are regarding the fine-grid
convergence index (GCI), where the latter figure is for an additional station s ≈ 596 mm
corresponding to the ZPG region before the curved hill. The errors shown are much lower
in the ZPG station compared to the complicated station at the separation zone of Figure A1,
supporting our conclusion on the mesh convergence. The estimation of discretization
errors follows the procedure as described by Celik et al. [44], which is obtained from
coarse mesh quality relative to medium mesh quality and medium mesh relative to fine
mesh, respectively.
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(a) (b)

Figure A1. Grid resolution independence assessment of: (a) streamwise velocity, Us (m/s), and
(b) normalized temperature, T = (T − Tw)/(T∞ − Tw), at the separation bubble.

(a) (b)

Figure A2. Grid resolution independence assessment of: (a) streamwise velocity, Us (m/s), and
(b) normalized temperature, T = (T − Tw)/(T∞ − Tw), at different streamwise locations.

Tables A1 and A2 unveil the momentum and displacement thickness results and
relative errors between meshes’ qualities, corresponding to the same stations of Figure 17
where the solutions of fine mesh were only displayed. In general, integral values of the
turbulent boundary layers, i.e., δ∗ and θ, exhibit a tendency to converge as the mesh
is refined. Looking at Table A1, both SST and SA models had the highest discrepancy
among grids at s ≈ 1139 mm, with −6.82% and 8.15%, respectively. Table A2 shows how
outstanding and low the relative errors for the momentum thickness are, where the most
elevated error for the SST cases is −4.31% in the FPG region (s ≈ 1596 mm). Meanwhile,
for the SA cases is 4.34% at s ≈ 1139 mm. SA cases had more consistency and lower errors,
even some reaching zero differences. Altogether, the relative errors are more than suitable
for the presented assessment, favoring the momentum thickness compared to displacement
thickness and SA slightly over SST for consistency. It is also observed that maximum
discrepancies are concentrated at s ≈ 1139 mm in both models and are within 30%. This
zone, located around the first concave–convex surface intersection, seems to be one of the
“hardest" to be simulated (aside from the flow separation bubble) since peaks on the C f
were found there. Table A3 supplies a summary of the relative errors between different
types of meshes at all streamwise stations. The low obtained values on the average relative
errors (∼2%) confirm the numerical convergence in the refinement process.
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Table A1. Relative error of the displacement thickness.

Stations (mm) 596 710 867 1015 1139 1183 1345 1469 1596 1665 1730 1862 1990

Experimental δ∗ (mm) 5.3108 6.2568 9.3987 11.5946 4.6352 3.7230 2.2703 2.0000 1.9325 2.4730 2.3716 3.4189 7.0338

SST fine mesh δ∗ (mm) 6.4351 7.6986 12.1624 15.2198 6.5256 4.7115 2.3776 2.0155 2.0727 2.2290 2.4768 3.4724 5.9165

SST medium mesh δ∗ (mm) 6.3852 7.6428 12.1447 15.1597 6.0952 4.6767 2.3269 1.9677 2.0225 2.1779 2.4090 3.3711 5.8081

SST coarse mesh δ∗ (mm) 6.3403 7.5589 12.0473 15.2093 6.5252 4.6499 2.2817 1.9098 1.9505 2.1029 2.3374 3.2521 5.5843

Rel. Error (fine to exp.) 19.14% 20.66% 25.64% 27.04% 33.88% 23.44% 4.62% 0.77% 7.01% −10.38% 4.34% 1.55% −17.26%

Rel. Error (medium to fine) −0.78% −0.73% −0.15% −0.40% −6.82% −0.74% −2.16% −2.40% −2.45% −2.32% −2.78% −2.96% −1.85%

Rel. Error (coarse to medium) −0.71% −1.10% −0.80% 0.33% 6.81% −0.57% −1.96% −2.99% −3.63% −3.50% −3.02% −3.59% -3.93%

Experimental δ∗ (mm) 5.3108 6.2568 9.3987 11.5946 4.6352 3.7230 2.2703 2.0000 1.9325 2.4730 2.3716 3.4189 7.0338

SA fine mesh δ∗ (mm) 6.1274 7.2940 11.3322 14.4704 6.3664 4.6301 2.3285 1.9750 2.0251 2.1694 2.3982 3.2684 5.3129

SA medium mesh δ∗ (mm) 6.1019 7.2670 11.3463 14.3841 5.9822 4.6167 2.3026 1.9526 2.0026 2.1372 2.3769 3.2297 5.3106

SA coarse mesh δ∗ (mm) 6.1584 7.3110 11.4325 14.6143 6.4907 4.6748 2.3088 1.9493 2.0002 2.1509 2.3815 3.2517 5.3431

Rel. Error (fine to exp.) 14.28% 15.31% 18.65% 22.07% 31.47% 21.72% 2.53% −1.26% 4.68% −13.08% 1.11% −4.50% −27.88%

Rel. Error (medium to fine) −0.42% −0.37% 0.12% −0.60% −6.22% −0.29% −1.12% −1.14% −1.12% −1.49% −0.89% −1.19% −0.04%

Rel. Error (coarse to medium) 0.92% 0.60% 0.76% 1.59% 8.15% 1.25% 0.27% −0.17% −0.12% 0.64% 0.19% 0.68% 0.61%
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Table A2. Relative error of the momentum thickness.

Stations (mm) 596 710 867 1015 1139 1183 1345 1469 1596 1665 1730 1862 1990

SST fine mesh θ (mm) 4.3102 5.0204 6.9113 8.0405 4.5770 3.6047 1.9612 1.6479 1.6661 1.7738 1.9503 2.6493 4.1432

SST medium mesh θ (mm) 4.2982 5.0054 6.9092 8.0269 4.4109 3.5962 1.9384 1.6272 1.6437 1.7511 1.9145 2.5915 4.0891

SST coarse mesh θ (mm) 4.2629 4.9495 6.8559 8.0036 4.5478 3.5571 1.8894 1.5681 1.5744 1.6807 1.8486 2.4937 3.9427

Rel. error (fine to exp.) 6.45% 6.47% 4.46% 0.79% 15.57% 10.55% −0.06% −8.22% −12.27% −12.73% −3.12% 1.51% −0.87%

Rel. error (medium to fine) −0.28% −0.30% −0.03% −0.17% −3.69% −0.23% −1.17% −1.27% −1.36% −1.29% −1.86% −2.20% −1.31%

Rel. error (coarse to medium) −0.82% −1.12% −0.77% −0.29% 3.06% −1.09% −2.56% −3.70% −4.31% −4.10% −3.50% −3.85% −3.64%

Experimental θ (mm) 4.0407 4.7058 6.6096 7.9771 3.9158 3.2434 1.9625 1.7892 1.8840 2.0151 2.0122 2.6097 4.1793

SA fine mesh θ (mm) 4.2706 4.9702 6.8606 8.1599 4.5825 3.6021 1.9310 1.6236 1.6401 1.7414 1.9069 2.5261 3.8347

SA medium mesh θ (mm) 4.2728 4.9717 6.8777 8.1362 4.4378 3.6099 1.9285 1.6236 1.6401 1.7335 1.9083 2.5151 3.8494

SA coarse mesh θ (mm) 4.2944 4.9844 6.9055 8.1997 4.6345 3.6316 1.9211 1.6079 1.6246 1.7312 1.8979 2.5165 3.8549

Rel. error (fine to exp.) 5.53% 5.46% 3.73% 2.27% 15.69% 10.48% −1.62% −9.71% −13.84% −14.57% −5.37% −3.26% −8.60%

Rel. error (medium to fine) 0.05% 0.03% 0.25% −0.29% −3.21% 0.22% −0.13% 0.00% 0.00% −0.45% 0.07% −0.44% 0.38%

Rel. error (coarse to medium) 0.50% 0.26% 0.40% 0.78% 4.34% 0.60% −0.39% −0.97% −0.95% −0.14% −0.54% 0.06% 0.14%
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Table A3. Summary ofrelative errors for the displacement/momentum thickness.

δ∗ Average Error (%) Maximum Error (%)

SST 2.29 6.82

SA 1.19 8.15

θ Average Error (%) Maximum Error (%)

SST 1.84 3.69

SA 0.56 4.34
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