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Abstract Progress in humanity has intensified the demand
for efficient and renewable energy storage, which warrants
the development of advanced rechargeable batteries such
as lithium-ion batteries (LIBs), sodium-ion batteries
(SIBs), zinc-ion batteries (ZIBs), and lithium-sulfur bat-
teries (Li—S batteries). Nevertheless, these batteries still
suffer from certain limitations, such as the insufficient
capacity and inferior stability in their electrode materials.
Therefore, developing a feasible electrode material for Li/
Na/Zn ion storage represents a critical challenge. Recently,
polyoxovanadates (POVs) materials, particularly deca-
vanadate anion (V,;00,5)°" clusters, have attracted con-
siderate attention as promising battery electrodes, due to
their rich multi-electron redox process, high structural
stability, simple preparation process, and abundant ligand
environment. In this review, we provide an overview of the
research progress of (V10028)6_—based materials in various
metal-ion battery systems, including LIBs, SIBs, ZIBs, and
Li-S batteries. We also discuss the underlying challenges
associated with this type of materials, and we provide
alternative strategies to overcome these issues. This review
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aims to facilitate the research and development of the next-
generation (V 10028)67-based battery materials.
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1 Introduction

To efficiently utilize the clean energy resources such as
wind, solar, and tidal, various energy storage technologies
have been actively studied and developed [1-6]. Among
them, rechargeable batteries stand out as the prime choice
for portable electronics, electric vehicles, and stationary
energy storage systems, due to their high energy density,
reliable performance, and low maintenance cost [7-12].
Presently, battery research is concentrated on lithium-ion
batteries (LIBs), sodium-ion batteries (SIBs), zinc-ion
batteries (ZIBs), potassium-ion batteries (KIBs), and
lithium-sulfur batteries (Li—S batteries) [13-19]. Taking
the typical SIBs as an example, with the advantages of
abundant resources and wide distribution of Na elements,
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SIBs have been considered a competitive candidate to
replace traditional LIBs for large-scale energy storage
[20-22]. Similarly, other metal-ion batteries such as zinc
and potassium have also been developed extensively, due
to the high abundance of these elements. As a rule, a bat-
tery system usually consists of three main components:
cathode, anode, and electrolyte. Compared with elec-
trolytes, much more research efforts are devoted to the
electrode material level [23-26]. However, the contempo-
rary electrode materials still exhibit inferior performance in
short-term and long-term cycling, possibly due to the
intrinsic defects of them [27-29]. Furthermore, many
electrodes that manifest fast capacity decay can be assigned
to the irreversible structural changes during the ion inser-
tion/extraction process [30, 31]. Therefore, it is of crucial
importance to rationally design suitable electrode materials
for high-performance batteries [23, 32, 33].

Except for traditional electrode materials, polyoxomet-
alates (POMSs) have started to attract attention in recent
years by their ability to be activated in conjunction with
conductive materials. As a result, battery research based on
POMs materials is coming into the public view. Notably,
POMs can remarkably change the electronic structure of
clusters and thus affect the electrochemical performance of
batteries [34, 35]. Polyoxovanadates (POVs), a typical
branch of POMs, can construct all sorts of cluster structures
based on different valence states of vanadium
(+2,+3,+4 and 4+ 5). Moreover, POVs enjoy rich
coordination conditions that could be achieved by adjusting
experimental parameters (e.g., pH, temperature, stoichio-
metric ratio, time, etc.) [36]. In addition, the attractive
redox properties of POVs allow for reversible multi-elec-
tron transfer processes along with a stable crystal structure
[37, 38]. As one of the most investigated and well-char-
acterized POVs, the orange decavanadate anion (V10028)6_
delivers great supramolecular assembly and electrochemi-
cal properties [36]. The downside is that vanadium is toxic
and faces dissolution problems during the cycle, which
may limit its practical application [39].

(V10028)67 anion cluster is usually structurally stable in
the acidic pH range. Structurally, ten vanadium atoms are
assembled into a compact structure with a unit cell size of
0.83 nm x 0.77 nm x 0.54 nm, where v+ occupies the
octahedral gap of the ten [VOg] units [40, 41]. In this mini-
review, the authors focus on (Vloozg)é_—based electrodes
and introduce the very recent research progress in different
battery systems. We review their electrochemical perfor-
mance for different ion storage, discuss the potential
challenges for future application, and propose alternative
strategies to address these issues. This work provides a
comprehensive overview of (V10048)° -based materials,
and it will bring new inspirations of (V10028)° -based
electrodes for future battery applications (Fig. 1).

Q

Fig.1 Overview picture of (V100.5)® -based electrode materials
in energy storage batteries

2 POVs [(V410025)° -based] in different batteries

Until now, most efforts have concentrated on decavana-
dates anion cluster (V10028)67 in POVs [42]. These
hydrated salts are typically prepared by liquid-phase
modulation, that is, synthesized under aqueous conditions
and then isolated out, with the chemical formula of
Mg[V10028]-xH,O (M = Li, Na, K, etc.) [27]. The multi-
electron redox capability of POVs has been highly valued
lately in the battery field. In this section, the research
progress of (V10045)° -based electrode materials in four
systems were highlighted. Table 1 shows some of the most
commonly reported (V10028)67-based electrode materials
and their electrochemical properties for batteries.

2.1 (V40025)°  in LIBs

As a representative of energy storage devices, LIBs already
enjoy a long history in the pursuit of electrode materials.
Dating back to the past, the application of (V;¢025)° -
based electrode materials for LIBs is slightly earlier than
those employed for other ion batteries. The reported results
indicated that (VIOOZg)Gf—based materials present a
promising future for energy storage.

Ma et al. prepared a new material, LigV;¢oO,g, by
hydrothermal synthesis and annealing, which was derived
from the dehydration of [Li6(H20)16V10028]n [43] Flg-
ure 2a, b displays X-ray diffraction (XRD) patterns of
[Lig(H>0)16V10028],, and LigVgO,g, reflecting the high
purity orange single crystal. Besides that, the dehydrated
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Table 1 Comparison of electrochemical performance of (V190,5)° "-based electrode materials in different battery systems

Materials Cathode/  Electrolyte Testing Initial discharge capacity (discharge capacity, Battery Refs.
anode component voltage / V  cycles, current density) types

LigV40028 Cathode 1 mol-L~" LiPFg 2.0-4.2 132 (100, 15 cycles, 0.2 mA.cm™2) LIBs [43]

LigV40028 Cathode 1 mol-L™" LiPFg 2.0-4.2 212.4 (167.7, 30 cycles, 1.0 mA-cm~2) LIBs [44]

Nag[V1o02s] Cathode 1 mol-L~" LiPFg 1.75—-4.0 - LIBs [45]

MgV4o Cathode 1 mol-L~" LiPFg 1.0-3.8 198.8 (180, 60 cycles, 50 mA.g~") LIBs [46]

KNaV,o Cathode 1 mol-L™" LiPFg 1.0-3.8 152.6 (-, 60 cycles, 50 mA-g~") LIBs [46]

Nag[V1002s] Anode 1 mol-L~" NaClO, 0-3.8 > 300 (276, 10 cycles, 20 mA-g~") SIBs [49]

KzvO Cathode 3 mol-L™" 0.2-1.9 223.4 (218, 50 cycles, 100 mA-g™") ZIBs [38]
Zn(CF3SO3)2

NagV1oOzs Cathode 3 mol-L~" 0.2-1.9 202.3 (169.5, 100 cycles, 100 mA-g~") ZIBs [59]
Zn(CngO3)2

PANI- Cathode 8 mol-L™" ZnCl, 0.2-1.6 (82% capacity retention, 2000 cycles, 8 A-g~") ZIBs [60]

V1OO28

NVO Cathode 1 molL™"LiTFSI +2 1.7-2.8 1348 (814, 100 cycles, 0.1C) Li-S [62]

wt% LiINO3 batteries

LigV19O,¢ still maintains an orthorhombic symmetry
framework structure. Figure 2c depicts three-dimensional
(3D) structure space view of LigV(O5g. Note that there is a
long tunnel inside the framework structure of LigV¢Oas,
which will facilitate the movement of Lit during the
charging and discharging process. In subsequent tests,
LigV 00,8 delivered higher conductivity than LiMn,Oy,
LiFePO, and LiCoO, at room temperature, owing to their
larger tunnel in the skeleton structure that facilitates the
movement of Lit and electrons. To further explore the
electrochemical performance, electrochemical impedance
spectroscopy (EIS, Fig. 2d) and galvanostatic charge—dis-
charge (GCD) tests were performed. As the cycle pro-
ceeded, the value of resistance (R) decreased from 317 to
26 Q, suggesting that the LigVoOsg/electrolyte interface
was activated and gradually reached the equilibrium sta-
bility. In addition, GCD curves of the first seven cycles
overlap well (Fig. 2e), indicating the excellent reaction
reversibility. The initial test of LigV;9O,g cathode in LIBs
delivered a discharge capacity up to 132 mAh-g~' in the
voltage range between 2.0 and 4.2 V (vs. Li*/Li) at a
current density of 0.2 mA-cm 2, and the capacity remains
above 100 mAh-g~" after 15 cycles with a high Coulombic
efficiency (Fig. 2f).

Subsequently, Liu and Wang [44] synthesized the rod-
shaped LigV90O,g powder by rheological phase reaction
and conducted electrochemical tests. After sintering at
different temperatures, a gradual change in the material
morphology from agglomerated small particles to rod-like
morphology was noted, indicating a more regularized
growth with increasing sintering temperature. Interestingly,
X-ray photoelectron spectroscopy (XPS) analysis demon-
strated that the product consisted of a single valence
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vanadium atom, identified by the binding energy of V as
the unique V" valence state. In the charge—discharge tests,
the stability was the worst despite the highest initial dis-
charge capacity at 450 °C. That was primarily due to the
larger and longer material size as the temperature got
higher. The intercalation of Li" during the cycle was a
diffusion-controlled process, so materials with long paths
slowed down the diffusion of Li™, which resulted in a
lower discharge capacity. In contrast, the material at
600 °C delivered good cycling stability, with an initial
discharge capacity of 212.4 mAh-g~' and a stabilized
capacity at 167.7 mAh-g~! after 30 cycles.

Srinivasan et al. investigated the polyoxovanadate
Nag[V100,3] as a cathode material for LIBs, focusing on its
electron transfer properties on long and short timescales
[45]. The physical properties attributed to [V10028]67 were
explored by > V nuclear magnetic resonance (°' V NMR),
and interestingly, the corresponding characteristic signals
were detected at —514 x 107°, =500 x 10°° and — 424

x 107°, which represented three distinct V environments
in the [V,005]®~ anion (Fig. 2g). Additionally, the authors
evaluated the electron transfer of Nag[V90,g] by in situ V
K-edge X-ray absorption near edge structure (XANES)
measurements and chronoamperometric experiments
(Fig. 2h, i). The former demonstrated the -electronic
structure information of the [Vmozg](’* in fully oxidized,
fully reduced, and three intermediate states. The latter
explored information on the dynamic processes occurring
at the electrode—electrolyte interface that follows immedi-
ately after perturbing the system from a steady-state by a
potential pulse. Both sets of experiments complement each
other and present a new insight into electron transfer in
Nag[V100,g], which may be divided into three main parts:
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Fig. 2 XRD patterns of a [Lig(H20)16V10028], and b LigV100.s; ¢ schematic diagram of 3D structure of LigV1002g (blue dots being Li*™
ions); d Nyquist plots of EIS on LigV19O.g cathodes at different potentials; e GCD curves of LigV190,g for the first seven cycles; f cycle
performance of LigV100.5. Reproduced with permission from Ref. [43]. Copyright 2008, Elsevier. g *' V NMR spectrum of Nag[V1002g];
h normalized in situ V K-edge XANES spectra for redox process of Nag[V19O2g] cathodes; i examples of transient currents with fitting
curves at 25 °C. Reproduced with permission from Ref. [45]. Copyright 2017, The Royal Society of Chemistry

(1) V valence state in Nag[V;900,5] can be reversibly
reduced (+5 — 4+ 4). (2) The electron transfer of
Nag[V100,g] was about 30 times faster than LiFePO,. (3)
The fast electron transfer rate was achieved by reorgani-
zation energy smaller than LiFePO,.

Considering that the insertion/extraction of Li™ requires
a stable structure, Liu et al. prepared two different poly-
oxovanadate materials as Lit storage reservoirs for
investigation [46]. By optimizing the counter cations, they
successfully designed an extended 3D structure where
[V]0028]6_ served as an “electron sponge”, and theoreti-
cally, ten electrons between [Vloozg]ﬁ_ and [V]0028]16_
were reversibly absorbed during each charge/discharge
process. Taking Mg,(NH,4),V100,5:nH,O (MgV,o) with
one-dimensional channels that omit water molecules as an
example (Fig. 3a), the expected lithiation process of
MgV, materials manifested that the existence of such one-
dimensional channels facilitated Li* migration (Fig. 3b).

aQ

Thus, further physical characterization and electrochemical
performance analysis were performed by selecting suit-
able cations (K*, Mg"). Figure 3c, d illustrates the
experimental and simulated XRD  patterns of
K4Na,yV(0,5:nH,O (KNaV,p) and MgV,,. Significantly,
the characteristic diffraction peaks of the two prepared
materials were consistent with the simulated data, sug-
gesting the high purity of these compounds. Figure 3e, i
presents the morphological features of the dehydrated
KNaV,y, and MgV, respectively, which exhibited an
interconnected, open, and porous structure composed of
numerous nanosheets compared with KNaV,, with irreg-
ular particles. Since the solubility product constants of K*
and Na™ surpass those of Mg", the crystallization rate of
KNaV,y was slower than that of MgV, resulting in a
massive particle shape in the former and a sheet-like
morphology in the latter, which also confirmed that the
different morphologies were related to the counter cation
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Fig. 3 Schematic crystal structure of a MgV, and b expected lithiation process; experimental and simulated comparison of XRD

patterns of ¢ KNaV4q and d MgV,; e SEM image, f CV curves, g

cycle performance of KNaVo; i SEM image, j CV curves, k cycle

performance of MgV4o; h, | rate performance between KNaV,, and MgV,o. Reproduced with permission from Ref. [46]. Copyright

2017, The Royal Society of Chemistry

directed crystallization process [47, 48]. Moreover, MgV,
displayed a much better rate performance at different
current densities (Fig. 3h, 1), which could be ascribed to 3D
interconnected, porous, and open structural characteristics.
Such a significant difference between the two types of
materials proved that factors such as structural stability,
morphology, and regulation of counter cations collectively
affected the rapid diffusion and storage of Li™.

2 (V10028)%~ in SIBs
To date, there are limited studies on (V;00,5)® -based
material in SIBs. Thus, we focus on the typical
Nag[V100,g] material and discuss its Na-storage behavior.
Similarly, Srinivasan et al. proposed a polyoxometalate
Nag[V190,g] as a suitable anode for SIBs and conducted a
series of physical characterization and electrochemical
tests in 2015 [49]. Nag[V9O,g]-16H,O crystals were
obtained by precipitating NaVO; solutions conditioned by
HCl with ethanol, and the high purity of
Nag[V100,5]-16H,O was confirmed using 51V NMR. The
Fourier-transform infrared spectroscopy (FTIR) spectrum
of Fig. 4a demonstrated the characteristic absorption bonds
belonging to the [V10028]67 cluster. Typical absorption
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peaks located at 847 and 746 cm™' were attributed to the

antisymmetric stretching of V-O-V, the symmetric
stretching vibration of V-O-V at 521 cm_l, while
956 cm ™! corresponded to the terminal V=0 bond [50]. In
addition, the specific surface area of Nag[V¢O,g]-16H,O
was calculated from N, isothermal adsorption and des-
orption curves and Brunauer—Emmett-Teller (BET) mea-
surements as 21 m*g~"' (Fig. 4b). According to the pore
size distribution (Fig. 4c), most pores were mesoporous
between 3 and 5 nm, while the remaining pore sizes vary
between ~ 5 and 160 nm. Based on field emission scan-
ning electron microscopy (FESEM) and high resolution
transmission electron microscopy (HRTEM),
Nag[V100,5]-16H,O presented a rod-like morphology with
diameters located in the range of 0.5 — 1 pm accompanied
by an aspect ratio of 5 — 10 (Fig. 4d—f). Moreover, the
micro-rods are polycrystalline depending on HRTEM and
display random orientation with d-spacing of 0.769 and
0.333 nm. By comparing cyclic voltammetry (CV) curves
of electrodes with and without active materials, it can be
observed that the current of the redox process involved
during the first discharge was (at least partially) not caused
by the redox reaction of the active material. Namely, the
reaction initiated by the active material does not seem to be
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Fig. 4 a FTIR spectrum, b N, isothermal adsorption and desorption curves, and ¢ pore size distribution of Nag[V19023]-16H20; d SEM
image, e TEM image, and f HRTEM image of Nag[V19O2s]-16H,0; g CV curves of Nag[V1005g] in a half-cell at 0.01 mV-s~"; h fine V
2p-XPS spectra of pristine and i discharged Nag[V1002g]. Reproduced with permission from Ref. [49]. Copyright 2015, Elsevier

the reason for this irreversible capacity, but probably due to
the partial decomposition of the electrolyte, forming a solid
electrolyte interface [51, 52].

Besides that, the subsequent CV curve presented a
characteristic shape similar to a supercapacitor rather than
a typical intercalation process (Fig. 4g). Interestingly, a
couple of small characteristic peaks were noted at 0.01 and
0.09 V, indicating the presence of a definite electrochem-
ical process (possibly originating from acetylene black).
Subsequently, XPS was utilized to detect whether the
capacitive process was only physical adsorption or asso-
ciated with an electrochemical redox reaction (Fig. 4h, 1).
In the intrinsic material, only the oxidation state of + 5
valence V was observed. However, the valence state of
vanadium was partially induced to + 4 valence when dis-
charged. Thus, these polyanions actually played the role of
redox centers, allowing Na* to accumulate between them,
while V ions were reduced to hold the charge balance.

Q

Through performance tests of half- and full-cells, this type
of material has also been proven to be a suitable choice as
anode for SIBs.

2.3 (V40025)°~ in ZIBs

As aqueous ZIBs develop, growing attention has been paid
to the search for high-energy and long-cycling cathode
materials [53, 54]. Since several existing cathode materials
suffer from corresponding defects, the pursuit of suit-
able novel cathodes is highly desired [55, 56]. Due to their
appealing properties, (V;0O25)°” materials also find
applications in ZIBs.

More recently, Cao et al. synthesized POVs-
K5Zn,V90,5:16H,O by the liquid-phase modulation
method and dehydrated it into K,Zn,V,yO,3 (KZVO)
material [38]. As shown in Fig. 5a, a prominent pair of
redox peaks can be observed in CV tests, which indicate
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the removal and insertion of Zn**. In addition, a slight
difference existed between the oxidation peaks in the first
two cycles, which was caused by the instability of the
system due to the material activation during cycling [57].
Cycle performance and rate performance of KZVO/Zn-
based cells were further carried out, and a capacity reten-
tion rate of 97.6% could be achieved with 50 cycles at 0.1
A-g~! (Fig. 5b). Additionally, the average discharge
specific capacities of KZVO were 225.7, 200.8, 161.2,
126.4, 100.8 and 71.1 mAh-g~" at 0.05, 0.1, 0.2, 0.5, 1.0
and 2.0 A-g™', respectively (Fig. 5c). Interestingly, a high
reversible specific capacity of 216.8 mAh-g~' was obtained
as the current density was recovered to 0.05 A-g~', con-
firming the fast Zn>" storage behavior of KZVO. Capaci-
tive behavior and diffusion behavior were analyzed in-
depth by pseudo-capacitance calculations and galvanostatic
intermittent titration technique (GITT) tests. By calculating
the pseudo-capacitance contribution of KZVO at different
scan rates, the percentage of capacitance contribution at the
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scan rates of 0.1, 0.2, 0.4, 0.6, 0.8, 1.0 and 1.2 mV-s~! was
found to be 68.7%, 68.4%, 69.8%, 71.5%, 73.3%, 73.7%
and 74.9%, respectively (Fig. 5d). In general, the increase
in capacitive contribution favors the storage of large
amounts of Zn?* on KZVO surface, thus leading to the
rapid transfer of Zn>" [58].

GITT test results indicated that the KZVO/Zn system
exhibited a Zn>" diffusion coefficient as high as 1 x 10~'°
cm?s™', which was several orders of magnitude higher
than typical manganese oxides (Fig. Se, f). High diffusion
coefficients enable long cycling of KZVO materials even at
high current densities, which may be facilitated by the high
conductivity of the aqueous electrolyte and the KZVO
crystal structure suitable for Zn>* detachment. Apart from
that, a series of ex-situ tests were performed to explore the
zinc storage mechanism of the KZVO/Zn system. The
results of ex-situ XRD, XPS and transmission electron
microscopy (TEM) demonstrated that Zn>* could be
reversibly inserted and removed during the cycling process.
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At the same time, the irreversible phase product
Zn3(OH),V,07-2H,0 (defined as ZVOH) appeared during
the cycling process, thus, the unique zinc storage behavior
during the cycling process might originate from the com-
bined effect of the irreversible phases ZVOH and KZVO.
To further investigate the electrochemical behavior and
zinc storage mechanism in this system, Cao et al. carried
out a similar investigation based on the same series of
POVS-Naﬁvl()Ozg'lSHzO [59] N36V10028'18H20 was
successfully prepared by pH adjustment and anhydrous
ethanol precipitation (Fig. 5g), which is subjected to the
subsequent electrochemical tests. GCD results revealed
that NagV;00,g delivered outstanding rate performance and
long cycle properties, with no significant capacity loss at 2
A-g~! for 2000 cycles. Meanwhile, high capacitance con-
tributions and high Zn*" diffusion coefficients were simi-
larly presented in the NagVgO.8/Zn system, and the
storage behavior of Zn*" was further corroborated by ex-
situ tests, which were consistent with the previous discus-
sion. In short, those works offered novel opinions on the
research and utilization of POVs in aqueous ZIBs and
demonstrated that POVs materials are extremely promising
electrode materials.

Other than the research that directly utilizes (VloOzg)(’_-
based POVs as electrode materials, doping ions with POVs
have also become a new research direction. Liu et al. doped
decavanadate anions into polyaniline (PANI) by the elec-
tro-polymerization method and then employed them as
cathode for aqueous ZIBs [60]. The precursors included
Na3zVQ,, aniline and HCI. During the positive CV scan, the
aniline was electro-polymerized to generate PANI and
anions, e.g., (V10028)®~ and Cl~, and were doped into
PANI polymer chain so as to achieve electrical neutrality.
More specifically, C1~ was doped into PANI by the neg-
ative scan, while (V;00,5)°~ was trapped in PANI due to
the steric hindrance. As indicated in the Raman spectrum
(Fig. 6a), the symmetric stretching modes of the typical
terminal V=0 bonds belonging to (V10028)67 at 968 and
993 cm™' were observed in PANI-VgO5g. Similarly,
symmetric and antisymmetric stretching vibrations of V—
O-V ascribing to (V10028)®~ were also presented in the
FTIR spectrum [40]. These characteristic peaks suggested
the successful doping of (V10045)®~ into PANL. TEM
images (Fig. 6b) revealed that PANI-VyO,g films were
deposited on the exfoliated graphite/graphene sheets atop
exfoliated graphite substrate (EG). These highly conduc-
tive graphite/graphene sheets were sandwiched in PANI
film, facilitating electron transfer. High-angle-annular-
dark-field scanning transmission electron microscopy
(HAADF-STEM) images observed that many bright spots
appeared (Fig. 6¢), which represented the heaviest element
vanadium in PANI-V,3O,5. The bright spots in STEM
images primarily refer to (V10028)6_ cluster in PANI-
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V00,5, which demonstrated (V10023)6_ uniform doping in
PANI chain. This distinctive structure allows full exposure
of V-based active sites for charge storage, thereby
improving the utilization of materials. To evaluate the
electrochemical properties after doping, conventional Cl-
doped PANI (defined as PANI-CIl) was applied as a control
sample. As depicted in the EIS plots (Fig. 6d), PANI-
V1005 displayed a smaller equivalent series resistance (R;)
and charge transfer resistance (R.) than PANI-CI, which
suggests the better conductivity of PANI-V(O,g. Conse-
quently, PANI-V(O,4 exhibited an enhanced rate perfor-
mance compared with PANI-Cl (Fig. 6e). Moreover,
PANI-V 40,4 also showed much better cycle life, with
only 18% capacity loss after 2000 cycles at 8 A-g~'
(Fig. 6f). To analyze the charge storage mechanism of
PANI-V 705z in 8 mol-L™! 7ZnCl, solution, extensive ex-
situ tests were performed. In general, during the electro-
polymerization process, (V10023)6_ will be incorporated
into PANI and interact with the protonated N sites (-NH*—
and -NH'=) to equilibrate the positive charges in the
polymer chains (Fig. 6g). The decavanadate anions were
trapped in the polymer as a result of the strong steric
hindrance effect. Interestingly, the content of structural
water also increased after cycling, which was explained by
the insertion of Zn(H20)2C142_ during charging and the
generation of Zns(OH)gCl,-H,O during discharging
(Fig. 6h). This explanation was further corroborated by ex-
situ SEM tests. The above results strongly supported the
reversible proton-dependent redox reaction in the PANI-
V00,5 electrode.

2.4 (V10025)°” in Li-S batteries

Li—S batteries are believed to be one of the most promising
alternatives for high-energy battery applications, due to the
very high capacity of both lithium and sulfur. However, the
reduction of sulfur generates soluble polysulfide species
(Li,Sg, Li»Se and Li,S,), which diffuse to the Li anode, get
reduced, and then shuttle back to the cathode for further
oxidization. This “oxidization/reduction” loop leads to the
infamous polysulfide shuttling issue, which further results
in the low capacity, poor cycling, and low Coulombic
efficiency in Li-S batteries. Recently, considerable pro-
gress has been made regarding the utilization of anchoring
materials to restrict the polysulfides (LiPSs) shuttling [61],
but the interaction mechanism and restrain processes are
still unclear. Therefore, investigating the interaction
between these materials and LiPSs is of vital importance
for Li-S batteries. This section highlights the interaction
mechanism and electrochemical properties based on
(V10028)®~ in Li-S batteries.

Li et al. firstly introduced (NH4)6V 10025 (denoted as
NVO) clusters as sulfur fixation materials [62]. They found
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that these clusters exhibited excellent electrochemical
properties and led to a distinctive two-step progressive
sulfur fixation mechanism. Based on the complex structure
of NVO, exploration and principal research were carried
out for the absorption process in the reaction. Density-
functional theory (DFT) calculation manifested that the
interaction energy between Li,S,, species and NVO was 1.6
times higher than Li—O interaction alone, which is owing to
the double interaction of Li—O and V-S. Therefore, by this
strong interaction, the application of NVO to Li—S batteries
extended the lifetime of Li—S batteries. To further observe
the interactions between NVO and LiPSs, a series of tests
were performed including ultraviolet—visible absorption
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spectra, XPS analysis, ultra-fast transient absorption (TA)
spectra, and XRD tests. The above tests lead to the fol-
lowing conclusions: i) NVO presented a strong adsorption
ability to LiPSs. ii) Chemical interactions trapped LiPSs
inside the cathode and thus improving the cycling stability
of the cell. iii) Electron transfer processes existed between
LiPSs and NVO. iv) Changes in the crystal configuration of
NVO were driven by small changes in the positions of V
and O during the interactions. Likewise, the strong
adsorption between LiPSs and NVO was further verified by
visualizing the electrochemical experiments as depicted in
Fig. 7a. Interestingly, the electrolyte color of conventional
electrodes (CE) + NVO (the electrodes containing 10 wt%
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NVO) batteries was significantly lighter than that of CE
batteries at different discharge states (Fig. 7b), which
confirmed that NVO could successfully restrict LiPSs and
avoid their diffusion from the cathode into the electrolyte.
Both rate performance (Fig. 7c) and cycling performance
(Fig. 7d) tests illustrate the superior performance of elec-
trodes with NVO present. In addition to the conventional
tests, achieving a high area loading cathode for practical
Li-S battery applications is also crucial. The cycling
capacity of a high sulfur-loading CE-NVO cathode (sulfur-
loading of 6 mg-cm™?) was tested at 0.1C and showed that
the cell could achieve a high reversible capacity of 781
mAh- g_l. Moreover, after activation at a current density of
0.05C, the decay rate of each cycle was about 0.1% during
200 cycles (Fig. 7e). In conclusion, the explicit interaction
process and ultra-strong double interaction force in the
whole reaction allow such excellent performance and also

Q

pave the way for broadening the application of sulfur-fix-
ing materials.

3 Scientific challenges and strategies

Although substantial progress has been achieved in the
investigation of (V10028)67-c1uster derivatives as battery
electrode materials, extensive problems remain to be
solved. The corresponding scientific strategies are pro-
posed in this section as follows (Fig. 8).

(1) Improving poor electrochemical properties. As
revealed in Table 1, those (V 10028)67-based electrode
materials mentioned above do not exhibit particularly
outstanding electrochemical performance compared
with other materials (e.g., vanadium oxides [63, 64]

and metal organic frameworks (MOFs)-based
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2)

3)

materials [65, 66]). Therefore, it is urgent to find
approaches to improve their electrochemical proper-
ties effectively. Many relevant modification methods
have been employed for electrode materials, includ-
ing nanostructure regulating [67], pre-intercalation of
guest species [68, 69], introduction of electrolyte
additives [7, 70], surface coating [71], and introduc-
tion of defects [72-74]. By these modification meth-
ods, the insertion and removal of the ions during the
reaction can be dramatically improved.

Regulation of morphologies with different structures.
Typically, various morphologies are linked to counter
cation directed crystallization processes [46, 75].
Morphologies of the material often play a crucial role
in the process of electrochemical reactions, and
different morphologies will produce distinct energy
storage behaviors. On the basis of the current
research, we find that most of the morphologies
discussed are nano-rods/wires/tubes/sheets/flow-
ers/particles [76]. Since the existing (V10028)6_-
based materials tend to display relatively common
morphologies, preparing cluster materials with
sophisticated morphologies by directional modulation
is a fascinating strategy, which may also improve the
electrochemical properties of the system to some
degree.

Further exploration of the energy storage mechanism.
At present, the energy storage mechanism about
(V10028)® -based electrode materials in different
battery systems mainly involves the intercalation
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(6)

process of Li* in LIBs accompanied by the change of
the chemical valence of vanadium, the predominant
insertion of Na™ in SIBs between the interstices of
(V10022)®~ clusters rather than the crystal structure,
the reversible (de)insertion of Zn>" and the irre-
versible production of alkali vanadate in ZIBs, the
two-step progressive sulfur fixation mechanism in Li—
S batteries, etc. [38, 43, 49, 59, 62]. Nevertheless,
there is still a paucity of mechanistic research on
different systems and materials with various
(V10028)67 cluster derivatives, so in-depth investiga-
tion of the energy storage mechanism in such
materials is also essential for the subsequent work.
Research on other derived cluster materials. POVs
display significant advantages in the energy storage
field thanks to their superior redox properties. Except
the most investigated decavanadate anion, there exist
a variety of other cluster structures, including
[V3001*", [V4Or]'™, [VVgVY7056]",
VYV VY5051, [Vis04l”", [VV16VV15082]"7,
etc. [36]. With the different spatial structures of
cluster materials, their electrochemical reaction pro-
cesses appear to be more diversified, so it would be an
excellent idea if the subsequent work could be
developed toward the derivatives corresponding to
such substances. Besides that, novel designs of these
cluster materials are also feasible, such as the design
of amorphous zinc storage materials via Ag™ [77].
Refinement of experimental conditions. Besides the
above-mentioned cases, a deeper study of the influ-
encing factors related to experimental conditions
(e.g., electrolyte composition [7, 78], reaction pH
[79], temperature [80], etc.) is essential, as well as the
effect of changes in the substitution of metal atoms in
the cluster lattice on the material properties. Just as
the introduction of NO5;™ could change the solvation
structure of Li* and thus facilitate the effective de-
solvation of Li* to improve the battery performance
[81], aqueous polyacid clusters may also be available
as electrolyte additives to boost the interfacial
stability in the reaction and consequently enhance
the stability of aqueous batteries.

POVs as electrolyte additives. Currently, the devel-
opment of reliable electrolytes has become an
emerging research hotspot in the field, especially
the employment of various organic or inorganic
compounds as electrolyte additives [82]. Other than
the typical addition of Mn”, Nat, etc., to the
electrolyte to inhibit material dissolution and phase
change, searching for new electrolyte additives is
also critical [7, 83]. Among them, aqueous POVs
clusters with high proton conductivity and favorable
chemical stability are promising electrolytes.
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Unfortunately, there is still a lack of research on
POVs clusters as electrolyte additives. Therefore,
subsequent research could expand to the construction
of functionalized -electrolyte additives based on
POVs, which may help solve the Zn metal corrosion
and hydrogen evolution problem in aqueous battery
systems.

4 Conclusion

Based on the above introduction and discussion,
(V10028)° -based compounds hold great promise as
advanced electrode materials for rechargeable batteries,
due to their stable structure, easy preparation, and strong
coordination ability. However, the implementation of
(V10028)° -based electrode materials in the battery field
still faces some intrinsic challenges. From the above dis-
cussion, poor cycling and rate performance, irregular
morphology, and unclear energy storage mechanism are
fundamental problems that need to be urgently addressed
for this type of materials. Accordingly, regulating nanos-
tructures, refining synthesis methods, optimizing elec-
trolytes, and new testing methods are effective approaches
to tackle the above problems. With efforts, the electro-
chemical properties of such materials are expected to be
further enhanced, which will also be a competitive elec-
trode material in next-generation rechargeable batteries. In
conclusion, this review puts forward a comprehensive
review of the research progress of (V 10028)° " -based elec-
trode materials, which will provide helpful references for
future research.
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