Trends in Biochemical Sciences

Revisiting focused ion beam scanning electron
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The need for resolving complex dynamic spatial relationships between and within cells has driven the development of
super-resolution microscopic techniques [1-3]. The explosion of computational and data storage capabilities has pro-
pelled the evolution of fully automated, high-resolution microscopes capable of rendering fine cellular ultrastructure in
3D with high fidelity. Focused ion beam scanning electron microscopy (FIB-SEM) is a technique with resolution <10 nm
in all planes, making it ideal for exploring organelle-organelle interactions such as endoplasmic reticulum-mitochondrial

Table 1. Examples of 3D reconstruction analysis software

Open-source or publicly available ~ Commercially available
Microscopy Image Browser Thermo Scientific Amira
Reconstruct Imaris

IMOD Dragonfly Pro

ilastik

3D Slicer

ImageJ/FIJI

napari

contacts sites or resolving fine synaptic features [2,4]. FIB-SEM works by pairing a focused beam of ions to finely ablate
the surface of heavily contrasted, resin-embedded samples with a scanning, low-voltage electron beam and backscatter
electron detector for surface imaging [2]. An array of software are available for 3D reconstruction of features of interest
(Table 1) [5,6]. For more versatility, FIB-SEM can be paired with cryo-capabilities and secondary detectors (Figure 1) [7,8].
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Figure 1. Representative schematic of 3D reconstruction of murine kidney muscle using focused ion beam
scanning electron microscopy (FIB-SEM). Following sample collection, FIB-SEM can allow for orthoslices to be obtained

as well as 3D reconstruction. Representative image of 3D reconstruction mitochondria (red) with inner-membrane folds of
cristae (blue) from murine kidney is shown.
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ADVANTAGES:
Precise, fine sample removal along the
Z axis.

Fine balance of ultra-resolution and
volumetric sampling for 3D imaging.

Amenable to pairing with a wide array of
technigues that can yield localization,
topography, and elemental composition
with high spatial resolution.

Easy access to image processing
software.

Fully automated.

Adjustable, allowing for beam strength to
be adjustable and multiple specimens in
a small area to be surveyed to ensure
efficiency.

Cryo-capabilities may aid in fluorescence
confocal imaging, the imaging of
proteins and molecules in their native
state, and avoiding potential damage
and morphological changes which may
occur with fixation and embedding of
traditional FIB-SEM techniques.

CHALLENGES:

Unlike transmission electron microscopy
(TEM), cannot resolve fine, nanostructural
details, such as visualization of viral spike
proteins or between intermembrane
organellar connections [2,9].

Longer acquisition time and smaller
volume sampling capabilities than other
volumetric EM techniques.

Sample is consumed during image
miling and acquisition.

Needs large RAM and storage
(~TB range) for efficient data transfer and
processing for volumetric applications.
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Contamination may occur with gallium
beam, affecting physical and electrical
attributes.

Leaming curve for the analysis software,
which varies across different software,
may have separate user interfaces,
require coding knowledge, or require
manual segmentation.

High-cost commitment (instrumentation,
facility, maintenance, operating, and
training costs) and expertise are
required, inhibiting ancillary uses of
FIB-SEM in many cases; furthermore,
cryo-FIB-SEM requires further extensive
specialized techniques and materials.
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