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Abstract— Autonomous vehicle-based traffic smoothing con-
trollers are often not transferred to real-world use due to
challenges in calibrating many-agent traffic simulators. We
show a pipeline to sidestep such calibration issues by collecting
trajectory data and learning controllers directly from trajectory
data that are then deployed zero-shot onto the highway. We
construct a dataset of 772.3 kilometers of recorded drives on the |-
24. We then construct a simple simulator using the recorded
drives as the lead vehicle in front of a simulated platoon
consisting of one autonomous vehicle and five human followers.
Using policy-gradient methods with an asymmetric critic to
learn the controller, we show that we are able to improve
average MPG by 11% in simulation on congested trajectories.
We deploy this controller to a mixed platoon of 4 autonomous
Toyota RAV-4’s and 7 human drivers in a validation experiment
and demonstrate that the expected time-gap of the controller is
maintained in the real world test. Finally, we release the
driving dataset [1], the simulator, and the trained controller at
https://github.com/nathanlct/trajectory-training-icra.

I. INTRODUCTION

The increased availability of automated lane and distance
keeping in modern vehicles has rapidly transitioned our road-
ways into the mixed autonomy regime where autonomous
and human drivers all operate together. With the availability
of autonomous vehicles (AVs) as mobile traffic actuators, it is
now possible to perform Lagrangian traffic control in which
control of the highway is dispersed amongst many vehiclesin
the flow. The ability to perform distributed control has
brought closer the long-standing goal of AV research [2]-[6]:
to use the programmability and fast reaction time of AVs to
improve socially desirable highway metrics like congestion
and energy efficiency for both humans and AVs.
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Fig. 1: 4 of 11 vehicles in formation on the roadway. Green
arrows and green X on roof indicate AV (AV), orange arrows
and orange X on roof indicate human driven sensing vehicle
(H). During experiments platoon formed in this order: [H,
H, AV, H, AV, H, AV, H, AV, H, H], with no control over
traffic flow consistently cutting in and out.

In particular, prior work [7] has shown that even at low
penetration rates of less than 4%, empirical and theoretical
evidence suggests that AVs can significantly reduce stop-
and-go traffic, a pernicious transitory phenomenon in which
vehicles alternate between starting and stopping, consuming
extra fuel in the process. However, prior approaches have
a unifying problem: they are developed and analyzed in
simplistic settings such as rings or hand-designed input
perturbations. Testing on more complex settings is difficult
as: 1) real-world highway sensor data are sparse and lack
required resolution and detail needed for accurate modeling;
2) developing simulators that properly reproduce emergent
structures from many-vehicle-interactions is challenging.

Building more complex models is heavily data con-
strained. Loop detectors only yield macroscopic statistics,
while cameras tend to cover only a small portion of the
roadway. This lack of available data is a fundamental issue as
the trajectories of vehicles traveling through waves depends
on the wave speed [8], and yet the wave speed is difficult to
estimate with available stationary sensors. However, without
an accurate means of reconstructing the stop-and-go traffic
that is likely to occur on a particular highway, it is difficult to
validate how a controller will perform when deployed on
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that highway. Consequently, it is unclear whether progress
on control design for real-world smoothing is being made.

The contribution of this paper is a pipeline which avoids
these aforementioned modeling challenges and produces a
reinforcement learning (RL) controller that is then success-
fully deployed on four vehicles in dense highway traffic.
This pipeline has three parts: (i) the data collected from
human driving trajectories, (ii) the RL controller, and (iii) the
deployment of the controller on physical vehicles.

We are able to avoid modeling challenges by learning
a traffic-smoothing controller directly from data collected
from human driving trajectories. Instead of attempting to
build a high fidelity simulation, we evaluate and train our
controllers on collected highway trajectory data, ensuring
that our controllers are learning to smooth a realistic rep-
resentation of waves from the particular highway on which
we intend to deploy AVs. We construct a simplified controller
evaluation procedure in which a simulated mixed platoon of
AVs and human drivers follows directly behind trajectories
collected by a human driver on I-24, an interstate highway in
Tennessee, scoring the controllers by their ability to improve
energy consumption while maintaining traffic throughput.
This approach sidesteps the aforementioned difficulties in
calibrating both the waves and the microscopic car following
dynamics. Using Proximal Policy Optimization [9], an RL
policy gradient algorithm, we learn a controller that decreases
the fuel consumption of the platoon in simulation by 16% for
the AV and 10% on average for the platoon vehicles. Finally,
we deploy the controller on real vehicles in highway traffic,
showing the viability of this controller to create real-world
energy savings and use of the complete pipeline.

The rest of this paper is organized as follows: in Section Il
we discuss works informing this research, in Section Il
we discuss the data collection, cleaning, and analysis, in
Section |V we discuss the controller design and structure,
algorithm, training details, and deployment pipeline, in Sec-
tion V we discuss the simulation results, and experimental
results, and finally in Section VI we discuss and provide
practical considerations to be considered in future work.

Il. RELATED WORK

Prior work has investigated the efficacy of traffic smooth-
ing controllers on settings such as rings or hand-designed
input perturbations. The most closely related works are [7],
[10], [11]. In [7], the authors showed that a single AV could
be used to dampen stop-and-go waves on a ring with 21
human drivers, yielding sharply improved fuel efficiency. The
work in [10] studies traffic smoothing with connected AVs
and demonstrates that the connectivity can be used for more
effective dampening of waves on a single-lane, eight-mile-
long public road. The work in [11] conducted an experiment
in which individual vehicle speeds were controlled to smooth
traffic flow. Other works have considered the wave damp-
ening properties of existing commercially-available cruise
controllers, with [12], [13], [14] all observing that the
vehicles they tested were string unstable. Finally, [15] has
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Fig. 2: Portion of the 1-24 highway on which we collected
most of the dataset (section I1I-A) and where we ran the
experiments described in section V.

studied some of the sim-to-real challenges in deploying RL-
learned cruise controllers into more realistic settings.

Prior work has also studied the use of reinforcement
learning (RL) and optimal control for developing micro-
level controllers that optimize mixed autonomy traffic. [16]
learns memory-based policies that infer ring densities and
consequently outputs near-optimal policies for the ring, [17]
uses multi-agent reinforcement learning (MARL) to optimize
the throughput of a merging region, and [18] employs MARL
to investigate the potential impacts of altruistic autonomous
driving on a merge scenario. At a network level, RL has
been used to learn routing behaviors for AVs that induce
the human drivers to select paths that lead to decreased
congestion [19].

I11. TRAINING SET

Here we detail the human driver data collection procedure.
The data serve as the basis for which we train wave smooth-
ing controllers. We then briefly describe the data cleaning
process and analyze the distribution of trajectories collected.

A. Data Collection

We collect data by recording trajectory data on a 14.5-
kilometer-long segment (displayed in Fig. 2) of 1-24 located
southeast of Nashville, Tennessee. Each drive is conducted in
an instrumented vehicle that logs CAN data via libpanda [20]
and GPS data from an onboard receiver. Collected measure-
ments from the vehicle CAN data include the velocity of the
ego vehicle (the vehicle being driven), the relative velocity
of the lead vehicle (the vehicle in front of the ego vehicle),
the instantaneous acceleration, and the space-gap (bumper-
to-bumper distance).

The drives are varied in the time of day, day of the week,
direction of travel on the highway, and level of congestion.
Each drive is made up of one or more passes through
the highway stretch of interest. The data used to train the
algorithm in this work are made publicly available at [1],
along with more details on the data.

B. Data Cleaning

The raw data for a given drive were recorded in two files:
a CAN data file and a GPS file. The pertinent data are pulled
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Fig. 3: Velocity of the ego vehicle (blue) and space-gap to
the lead vehicle (red) for a single trajectory in the dataset,
containing sharp variations in both velocity and space-gap.
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Fig. 4: Histogram showing the distribution of velocities of
the ego vehicle in the dataset.

from the CAN data and interpolated to the GPS time, which
is measured at 10 Hz. High-frequency CAN data are down-
sampled and linearly interpolated to match the GPS time,
and low-frequency CAN data undergo linear interpolation to
match the 10 Hz GPS time as well. Distance traveled and
direction of travel are computed using the GPS position data.
Since the westbound data contain more regular congestion,
we focus on westbound data for training. The westbound
data contain 60 trajectories, representing 8:8 hours and 772:3
kilometers of driving.

C. Dataset Analysis

The data are collected over a wide range of traffic condi-
tions ranging from congested traffic that is nearly stopped to
free-flow, max-speed traffic, including many acceleration and
deceleration patterns corresponding to stop-and-go traffic.
Fig. 3 shows an example velocity and space-gap profile
from a trajectory in the dataset, where we can observe the
ego vehicle going quite rapidly from low to high speeds.
While our main interest is in smoothing high-frequency
waves, which occur primarily in congestion, the distribution
of speeds in the training dataset, shown in Fig. 4, tends
towards higher speeds. While we could filter the dataset to
only contain low speeds, likely making the learning
problem simpler, Fig. 3 suggests that regions of congestion
are often quickly followed by regions of high speed. To
ensure our controller behaves appropriately at high speeds
and in transitions between high and low speed regions, we
keep both low and high velocities in the training dataset.

Fig. 5: Vehicle formation used in simulation. A trajectory
leader (in green) driving a speed profile drawn from the
dataset is placed in front of an AV (in red) which is followed
by a platoon of 5 human vehicles (in white), modeled using
the Intelligent Driver Model.

D. Constructing the Training Environment

In order to use the collected data, we build a one-lane
training environment where the AV follows behind the
trajectory collected from the human drivers. The human
driver is placed at the front of a simulated platoon, followed
by the AV, followed by five vehicles driving according to
the Intelligent Driver Model (IDM) [21] with a set of
parameters that are string unstable below 18, which ensures
that the waves grow in congestion. Although having a full
micro-simulation of the [-24 would allow for training ona
model with complex long-range interactions between the
vehicles, the simulator proposed here allows us to train on
realistic driving dynamics that are representative of both the
types of waves on this highway and how drivers react to
wave formation. As an additional benefit, this single-lane
simulation using half a dozen vehicles achieved 2000 steps
per-second while a comparable micro-simulation of the full
14 kilometer road section would have thousands of vehicles
in congestion and would be very computationally costly to
evaluate.

Our collected dataset contains both the trajectory of our
drivers and the vehicles in front of them (via space-gap
and relative velocity data logged on the CAN). We discard
the lead trajectories and do not use them for simulation as
the lead trajectories contain both cut-ins (a vehicle cuts in
between the lead vehicle and the ego driver) and cut-outs
(the lead vehicle changes lanes). While cut-outs are likely
unaffected by the behavior of the ego driver, cut-ins are
likely a function of the spacing between ego driver and lead
vehicle. Since our trained controller will have different space-
gap keeping patterns, it is possible that the observed cut-outs
would not occur given the controller’s choice of space-gaps;
to avoid dealing with this counterfactual we simply do not
use the leader data for training and only keep ego vehicle
data for our lead trajectories. Since the human drivers who
collected the dataset intentionally rarely change lanes, our
simulator consequently does not contain lead-vehicle lane
changes. Finally, we note that we do not split the data into a
train and test set; we train our controller on all of the
available trajectories and instead use the deployment as our
test set.

IV. METHOD

In this section we describe the control design and structure,
the details on how the controller is trained on the trajectory
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data, and the deployment pipeline that enables experiments
to be conducted on a real vehicle platform.

A. Controller Design

For the model of the system dynamics, controls, and inputs
we adopt the following system. As it is unclear whether
the Markov property holds for this system [22], we will
assume that the system described below may be slightly non-
Markovian.

State space [V;Viead; h] Where v is the AV speed, Viead the
speed of the vehicle right in front of it, and h the space-gap.
All of these features can be acquired by using the forward-
facing radar and the data collection software [20], [23] that
we place on our vehicles.

Action space an instantaneous acceleration a, bounded be-
tween [ 4:5;2:6] 3, to be applied to the AV. Note that we
do not allow the AVs to lane-change in this work.

Reward function the reward the AV receives at time-step t
is a combination of minimizing energy consumption, accel-
eration regularization and penalties for leaving too small or
too large gaps. It is given by

re=1 coEt cia] CaPr:

Here E: is the instantaneous gallons of fuel consumed by
the AV (given by a piece-wise polynomial energy model
calibrated to a RAV-4 Toyota vehicle; the fitting procedure
and function coefficients are given in [24]), a: the AV’s
instantaneous acceleration in o and P: its gap penalty, all
at time-step t. The first term is intended to discourage fuel
consumption, the second to encourage smooth driving, and
the third to discourage the formation of large gaps that induce
cut-ins or small gaps that might lead to driver discomfort.
For our reward functions, we use coefficients co = 1:04,,
c1 = 0:002s> and c; = 2, and penalize with Py = 1
when the gapmis below 7m, above 120m or when the time-
gap (i.e., space-gap over speed) to the leader is below 1
second. These particular values were selected via an informal
hyperparameter search and found to yield improved fuel
consumption of the platoon while maintaining all constraints
that might set off the penalty term P;.

Finally, we note that our reward function does not include
the energy consumption of the following platoon. While
we experiment with such a reward, we observed more
improvement by only optimizing for the energy consumption
of the AV.

B. Controller Structure

The RL controller G() takes as inputs the current vehicle
speed, the speed of the lead vehicle, and the space-gap
provided by recorded or real-time CAN-to-ROS translation
[23], and outputs a desired acceleration to a supervisory Fol-
lowerStopper [25] wrapper controller. The FollowerStopper
leverages reachability analysis to verify safety and allows
for total avoidance of a collision with the lead vehicle
by taking in a desired velocity and returning a safe com-
manded velocity Vsafe. The controller output during learning

is acceleration-based; to convert it into a desired velocity
we return Vges = Vi + 0:6 G() where vges is the speed
passed to the FollowerStopper and G() is the acceleration
output by the RL controller. This desired velocity is then
sent via CAN [20] to the vehicle’s ECU for actuation.
The particular “integration constant” 0:6 corresponds to the
vehicle’s responsiveness of about = 0:6s, which is found by
making the mapping from desired speed to realized speed as
close as possible to the identity function, a mapping that we
get from a transfer function approximating the vehicle’s
dynamics.

C. Algorithm

We train our policy using Independent Proximal Policy
Optimization [9] (PPO), a policy gradient algorithm. We
modify the standard PPO algorithm by providing the value
function with a few additional inputs: the total distance
traveled from start to time t, the total energy consumed by the
agent at time t, and time t. The value function V estimates the
discounted cumulative reward from a given state s; and a
particularly controller . This quantity is difficult to estimate
without the additional information we provide due to the
partially observed state described in Sec. IV-A. The non-
local information provided to the value function is used
exclusively during training for variance reduction (see [9]
for details), and these additional inputs are neither available
nor needed by the controller during evaluation.

Training was done using the PPO implementation provided
in Stable Baselines 3 [26] version 1.0, a Pytorch-based
deep RL library. Training details and hyperparameters are
provided in the linked code-base.

D. Deployment Pipeline

An initial software-in-the-loop (SWIL) step is taken to
check functional correctness and interface testing in a 2-
vehicle Gazebo simulation [27]. Structured velocity profiles
(e.g., constant acceleration, sinusoidal, trapezoidal) are input
to the controller to ensure outputs are not unusual. This also
checks for software correctness. For hardware-in-the-loop
(HWIL) deployment on the physical vehicle, there is a series
of three tests to mitigate safety risks from the transition from
simulation to physical vehicle before testing the controller
on the 1-24 segment. All three tests have varied input from
the leader vehicle to ensure performance in non-equilibrium
states.

First, the controller is tested in a ‘Ghost Mode’ as in [28]
where the vehicle follows a simulated ‘Ghost’ vehicle as its
leader. This provides the opportunity for a bad implementa-
tion to fail and crash into a virtual vehicle instead of a real
one. The full HWIL setup is used with the modification that
the real sensing done by the vehicle is replaced by a spoofed
recording of a lead vehicle ahead using [23]. Second, the
controller is tested in a ‘CAN Coach Mode’ as in [28] where
the controller feedback is sent through a human-in-the-loop
(HIL) for actuation. This second test occurs on a low-traffic,
high speed route. Here the vehicle sensors feed real-time data
into the controller, and the controller gives feedback to the
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Fig. 6: Diagram showing how information flows though the
HWIL system when deployed. The vehicle sensors send data
on the CAN bus. Libpanda [20] records the data and data
are translated into ROS [23]. The neural net is embedded in
a ROS node subscribing to pertinent data, and its output is
filtered through a supervisory safety controller to get vsafe.
This value is sent to the vehicle interface which takes a
desired ROS command and sends it via CAN to the vehicle.

HIL to indicate what input should be provided to the vehicle,
but if the controller provides unsafe input to the HIL it is
rejected to maintain safety and replaced with human control.

Finally, the controller is used on a low-traffic, high-speed
route testing the complete HWIL control loop. Once these
are successfully finished, the controller is ready to be tested
on the heavy traffic, high speed 1-24 roadway segment.

V. RESULTS
A. Simulation Results

Here we analyze the performance of the controller in
terms of energy efficiency improvements in miles per gallon
(MPG) observed in our simulator. In Fig. 7, we compare
the energy consumption of the AV and all vehicles in the
platoon (as shown in Fig. 5) when the AV is using our RL
controller compared to an IDM controller, over the whole
training dataset. We split the trajectories by leader speed,
computing the energy savings at leader speeds above and
below 18%, which is the speed boundary beyond which IDM
vehicles with the parameters used in this work go from being
string-unstable to string-stable. The results in the left and
middle columns indicate that most of the expected energy
improvements from the controller will come at low speeds.
While these savings are significant, in more complex settings
imperfections in actuation, modeling of human drivers, and
cut-ins would likely lower the actual improvement. The
rightmost column is described in Sec. V-B.

B. Experimental Results

In this section, we describe the validation experiment con-
ducted on the segment of 1-24 shown in Fig. 2. We assess the
success of the controller deployment onto AVs by showing
an accurate match between simulation and reality. Finally,
we seek to determine whether our controller improved the
energy efficiency of its platoon.
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Fig. 7: Percent improvement in MPG relative to a baseline
in an IDM vehicle leads the platoon in Fig. 5. Each column
contains both percent improvement on the y-axis and MPG
values used to compute this improvement inside each column
with IDM (AV) on the left (right) of the arrow. High and
low speed columns are over the training set. The ”Test
trajectories” column is the controller evaluated on data from
the physical test.

Fig. 1 shows four vehicles from the eleven-vehicle platoon
of alternating humans and AVs that we deployed on I-24.
For each test, we got the platoon onto the highway without
any non-platoon vehicles lane-changing into it. Once on the
highway, non-platoon traffic cut in and out of our platoon.
Since our vehicles were only instrumented to sense the
vehicle in front of them, the number of vehicles that managed
to enter into our platoon is unknown. We ran experiments on
August 2nd, 4th, and 6th of 2021, each day launching the
platoon of vehicles three times and bringing the vehicles back
to the start of the highway section in between each run. The
controller presented here was only actuated on 08/06, over
three tests that occurred at 6:45, 7:29 and 8:36 AM. Fig. 8
shows individual vehicle trajectories on a time-space diagram
from the 6:45 AM test; the two regions of red correspond to
congestion events. The deployment of the controller from
simulation to real vehicles was overall successful as all tests
ran safely and smoothly.

We investigate the effect of the sim-to-real gap induced by
the presence of cut-ins and cut-outs, which we did not have
when training our controller, as well as imperfect modeling
of the transfer function of the AV. First, we attempt to
compute a counterfactual baseline in which we replay our
controller in simulation behind a trajectory collected during
the tests. This mechanism is imperfect as the real-world
trajectory has cut-ins and replaying a different controller
behind it might affect the cut-in frequency. Without a model
of lane changing, we cannot perform this counterfactual
perfectly so instead we make the calculations assuming that
both the times when cut-ins occur and the space-gap directly
after the cut-in are unchanged. Occasionally, we choose to
relax this latter condition in order not to experience, in
simulation, cut-ins that would be more aggressive than what
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real (solid) and simulated (dashed) roll-out. There are small
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Fig. 10: The density of the AV acceleration when simulating
an AV or an IDM vehicle behind leader trajectories from
the tests. The AV case places less mass at high, energy-
consuming accelerations. The peak observed at 0.75 corre-
sponds to the lead vehicle being out of range due to cut-outs.

the real-world AV experienced. To that end, at each time-step
t where a cut-in would leave the AV with a space-gap ff”“
while the real-world AV experienced a space-gap ht'ea', we
set h$™ = max(hs™; min(hi‘ml; h{ea')).

Fig. 9 shows the velocity and time-gap (space-gap divided
by velocity) of an AV from the validation experiment as
well as the replay of the trajectory in our simulation using
the counterfactual cut-in mechanism mentioned above. The
velocity profile of the vehicle closely matches its expected
behavior computed in simulation. Although there are mis-
matches around cut-ins and cut-outs (regions where time-gap
changes discontinuously), the time-gaps are relatively close
and we can observe the vehicle roughly tracking a three-
second time-gap in both cases. We observe similar results
on the other trajectories we collected during the tests.

Finally, we analyze the potential fuel efficiency improve-

Fig. 8: Time-space diagram showing the trajectories
of our platoon of vehicle during the first test. We can
observe two low-speed regions of congestion where
vehicles following behind the AV could experience
wave smoothing.

H
G
Speed (m/s)

ments from the validation experiment. The third columnin
Fig. 7 depicts the energy savings obtained when re-
playing in simulation using the trajectories collected during
the experiments using the counterfactual cut-in mechanism
mentioned earlier. We observe that the fuel efficiency of the
AV has improved by 8% with additional small gains for the
IDM vehicles. Fig. 10 shows the density of accelerations
taken by the IDM vs. the AV; the higher density of large
accelerations of the IDM vehicle are likely the reason for the
improved fuel efficiency of the RL AV over the IDM AV.
Unfortunately, the day of the deployment featured limited
congestion so potential improvements are smaller than might
be observed in heavier traffic conditions. More experimental
testing on a number of days are needed to provide conclusive
experimental energy savings results.

VI.

In this work we propose and test a pipeline that allows
for effective validation and training of traffic smoothing con-
trollers. We collect over 700 km of training data that is used to
build a controller validation system. This system avoids the
fundamental modeling issues that have restricted the learning
or design of traffic smoothing controllers to relatively simple
settings, or prevented them from deployment on real cars. In
our validation system, we use Policy Gradient methods to
train a controller that improves the MPG of an AV by 16%
and has benefits for the following human vehicles. We then
construct a pipeline for porting these controllers to four AVs
and perform physical validation experiments over three days.
The behavior of the vehicle on the validation experiment
closely matches its expected simulation behavior, suggesting
that our pipeline is an effective mechanism for validating
controllers.

There are a few missing features in our environment that
merit further work. First, our simulator lacks counterfactual
lane-changes. In future work, this can be addressed using the
observed lane changes in the data to build a single-lane lane
changing model that can be used to extend our simulation. In
terms of the Markov Decision Process we design, our
controller is memory-free, which may prevent the agent from
learning a predictive model of downstream speeds that can be
used for further smoothing. Additionally, we do not penalize
the energy consumption of the platoon; the addition of this
penalty may lead to qualitatively different behavior. Finally,
additional field experiments can support the assessment of
our approaches in a range of traffic congestion levels.

CONCLUSIONS AND FUTURE WORK
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