
21178 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 23, NO. 11, NOVEMBER 2022

Gaussian Process-Based Personalized
Adaptive Cruise Control

Yanbing Wang , Ziran Wang , Member, IEEE, Kyungtae Han , Senior Member, IEEE,

Prashant Tiwari, and Daniel B. Work , Member, IEEE

Abstract— Advanced driver-assistance systems (ADAS) have
matured over the past few decades with the dedication to
enhance user experience and gain a wider market penetration.
However, personalization features, as an approach to make the
current technologies more acceptable and trustworthy for users,
have been gaining momentum only very recently. In this work,
we aim to learn personalized longitudinal driving behaviors via
a Gaussian Process (GP) model. The proposed method learns
from individual driver’s naturalistic car-following behavior, and
outputs a desired acceleration profile that suits the driver’s pref-
erence. The learned model, together with a predictive safety filter
that prevents rear-end collision, is used as a personalized adaptive
cruise control (PACC) system. Numerical experiments show that
GP-based PACC (GP-PACC) can almost exactly reproduce the
driving styles of an intelligent driver model. Additionally, GP-
PACC is further validated by human-in-the-loop experiments on
the Unity game engine-based driving simulator. Trips driven by
GP-PACC and two other baseline ACC algorithms with driver
override rates are recorded and compared. Results show that
on average, GP-PACC reduces the human override duration by
60% and 85% as compared to two widely-used ACC models,
respectively, which shows the great potential of GP-PACC in
improving driving comfort and overall user experience.

Index Terms— Gaussian process, adaptive cruise control, car
following, personalization, driving behavior.

I. INTRODUCTION

A. Motivation

PERSONALIZATION has gained increased attention in
the automotive industry. However, the industry-level

personalized features are very limited and mostly at a
complimentary level, such as seat position, radio station
tuning, etc. Personalization on vehicle maneuvers such as
path tracking, steering and car-following is less developed,
yet implicit driving preference significantly impacts driver’s

Manuscript received 31 August 2021; revised 11 March 2022; accepted
4 May 2022. Date of publication 13 May 2022; date of current version
7 November 2022. This work was supported in part by the National Science
Foundation under Grant CNS-1837652; and in part by InfoTech Labs, Toyota
Motor North America, under Digital Twin Project. The Associate Editor for
this article was N. Bekiaris-Liberis. (Corresponding author: Yanbing Wang.)

Yanbing Wang and Daniel B. Work are with the Department of
Civil and Environmental Engineering and the Institute for Software Inte-
grated Systems, Vanderbilt University, Nashville, TN 37212 USA (e-mail:
yanbing.wang@vanderbilt.edu; dan.work@vanderbilt.edu).

Ziran Wang, Kyungtae Han, and Prashant Tiwari are with InfoTech
Labs, Toyota Motor North America, Mountain View, CA 94043 USA
(e-mail: ryanwang11@hotmail.com; kyungtae.han@toyota.com; prashant.
tiwari@toyota.com).

Digital Object Identifier 10.1109/TITS.2022.3174042

acceptance and trust towards the existing advanced driver-
assistance systems (ADAS) [1].

As one of the most common ADAS functionalities, adap-
tive cruise control (ACC) automatically adjusts the longitu-
dinal speed of the ego vehicle to maintain a safe distance
from the vehicle ahead. ACC has been shown to increase
safety, enhance driving comfort, and reduce fuel consumption
[2]–[5]. However, the limited settings of ACC prevent the
drivers to preserve their own car-following styles, resulting
in lack of trust and usage of that technology. In addition,
a variety of usage conditions and the changing of the drivers’
expectations persist in real-world driving. Drivers differ in
their preferences and skills, and their styles may change over
time. Therefore, personalization in ACC has the potential to
capture the adapting preference of drivers, and adjusts the
settings to suit their needs.

B. Related Work

Some of the most common longitudinal control laws are
derived from physics-based control policies, which can be
expressed as an ordinary differential equation (ODE) v̇ =
f (s, v, u) that describes the car-following behaviors given
the space gap s, ego vehicle speed v and leader’s speed u.
Examples include the optimal velocity model (OVM) [6], the
intelligent driver model (IDM) [7], the Gipps model [8], and
the Gazis-Herman-Rothery (GHR) model [9]. The ODE-based
car-following models can work in traffic microsimulation, and
provide provable and interpretable properties such as rational
driving, stability [10] and identifiability [11]. Analysis on
the impact of traffic dynamics also follows [12]–[16]. Other
modeling efforts such as [17], [18] take into account of vehicle
dynamics as well. However, human driving does not strictly
follow these pre-defined rules, and contains subtleties that can-
not be fully captured by the analytical expressions. To this end,
learning-based approaches are becoming a popular modeling
paradigm.

The question of learning individual driving style naturally
motivates us to adopt a supervised-learning approach, where a
certain control action is learned from demonstration. A popu-
lar approach to manipulate a system towards terminal goal
is through reinforcement learning (RL) [19], [20] where a
control policy is learned by maximizing a reward function
that describes the system evolution. Extensions of RL include
inverse reinforcement learning (IRL), which learns a reward

1558-0016 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on April 18,2023 at 14:57:50 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: GAUSSIAN PROCESS-BASED PERSONALIZED ADAPTIVE CRUISE CONTROL 21179

function through expert demonstration [21], [22]. In more
complicated robotics where the system evolution is unknown,
the control tasks are often coupled with system identifica-
tion to achieve various goals such as navigation, path find-
ing, disturbance rejection, and etc. [23]–[25]. A notion of
underactuation in control has recently been studied to design
controllers that take advantage of the natural dynamics of
the system [26]. Other data-driven system identification tools
such as SINDy [27], Gaussian Process (GP) [28] and Neuro-
fuzzy methods [29] are becoming popular to identify unknown
and complex systems. These tools are often coupled with
existing controllers such as Model Predictive Control (MPC) to
enhance control performance and to achieve robust behaviors.

The learning-based control design benefits from the
exploratory data-driven tools, as opposed to the model-based
system identification and control which are often based on a
fixed model structure. However, challenges still persist such
as the verification of safety, stability and rationality. Recent
developments such as the control Lyapunov and control bar-
rier functions have been applied to provide safe and stable
controlled systems [30], [31], as well as formal verification
tools to facilitate assured autonomy from learning [32]–[34].

Amongst all the control design approaches, we draw partic-
ular attention to GP regression, to design an ACC system that
mimics personalized driving behavior and increase drivers’
acceptance and trust on the system. There are several rationales
for using GP models in system identification: (a) Physics-
based model structure can be simplified due to the data-
driven nature of GP. (b) Bayesian treatment relies on marginal
likelihood, which reduces the risk of overfitting. (c) Limited
amount of data relative to the number of regressors makes GP
model suitable to deal with data inadequacy and measurement
noise [35]. These advantages allow GP to model both (a) intra-
driver stochasticity (variation of driving behaviors within the
same driver, through variance modeling), as well as (b) inter-
driver stochasticity (through individual training). Instead of the
explicit personalization (i.e., offering drivers to choose from
a number of predefined system settings), we focus on the
implicit personalization (estimating the drivers’ preferences
based on their past behaviors) [36]. GP regression can be
utilized to identify the relationship between input (driver’s
perceived information) and output (desired acceleration), and
hence provides personalized guidance towards driving.

C. Contributions

Compared to our preliminary work [37] where a GP-PACC
is designed to learn personalized implicit car-following styles
without categorizing based on predefined rules, in this paper
we enhance the results with the following additions:

1) A predictive safety filter is developed at the downstream
of GP-PACC, which guarantees that the acceleration com-
mand will lead to the safe state. This step makes as little
modification to the GP output as possible, preserving the
personalized features while guaranteeing safety.

2) The proposed GP-PACC is validated on both the synthetic
car-following data and the naturalistic data collected
from human-in-the-loop experiments. Results show that

GP-PACC can recover both the synthetic and naturalistic
car-following data even under reasonable measurement
noises, and it outperforms established car-following mod-
els by reducing the human takeover rate up to 85%.

The remainder of this work is organized as follows.
Section II introduces the problem formulation of this study.
Section III outlines the fundamentals of GP regression used to
model car-following behaviors, and describes the training and
validation method for the GP model. In Section IV we conduct
numerical experiments and human-in-the-loop experiments to
test the validity of the model. Finally, the study is concluded
with some future directions in Section V.

II. PROBLEM FORMULATION

A. Notation

The state of the controlled car-following system at time k is
xk = [sk, vk]T , which is composed of the space gap sk and ego
vehicle’s speed vk . We denote uk as the lead vehicle’s speed
at time k, and yk as the ego vehicle acceleration at time k. The
uniform sampling timestep �t is used to discretize the system,
which runs in N timesteps in total. The nonlinear mapping
fCF : R

3 → R
1 represents the car-following dynamics, and

will be learned by the GP model.

B. Assumptions and Specifications

In this paper we focus on personalized ACC design, i.e.,
the longitudinal control of a vehicle based on the driver’s
car-following preference. The scope of this work is focused
on designing a personalized, high-speed controller for the
combined driver-vehicle system, and the model output is the
predicted acceleration of the vehicle, implicitly considering
the delay of driver reaction and the lag of vehicle actuation.
The driver reaction and the low-level vehicle dynamics can be
separately modeled if commanded acceleration is available.
In this study we consider a simplistic approach to combine
the two systems. Therefore, the personalized control design
problem is formulated as a system identification problem.
We design a data-driven GP-PACC such that the controlled car-
following dynamic matches the individual driver’s naturalistic
car-following style. Furthermore, we consider only the car-
following mode for all the ACCs discussed in this paper, i.e.,
the leader is always present.

C. The Car-Following Dynamics

The driver’s longitudinal acceleration depends on the vehi-
cle state in relation to the lead vehicle, characterized by a
car-following model:

v̇(t) = fCF(s(t), v(t), u(t)). (1)

The ego vehicle’s dynamics will be updated in discrete time:

xk+1 =
�

s
v

�
k+1

=
�

sk + (uk − vk)�t
vk + fCF(sk, vk , uk)�t

�
(2)

where fCF : R
3 → R

1 will be trained with a GP model.
GP-PACC is trained to achieve personalized car-following

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on April 18,2023 at 14:57:50 UTC from IEEE Xplore. Restrictions apply.

21180 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 23, NO. 11, NOVEMBER 2022

behavior by minimizing the difference between the predicted
acceleration and the recorded naturalistic driving acceleration.

The block diagram of the proposed GP-PACC system is
shown in Fig. 1. We consider the ACC algorithm as the high-
level controller, which takes the input of the ego vehicle speed,
lead vehicle speed, and space gap information, and outputs an
acceleration. The low-level vehicle dynamics will then output
the corresponding speed and space gap.

III. METHODOLOGY

In this section, we briefly introduce GP regression both
as a modeling tool and as a controller that will be used
to model personalized car-following behavior. GP regres-
sion has been discussed in many standard textbooks such
as [35], [38], [39]. Here we only outline it briefly in section III-
A. Next we describe the specific training and validation pro-
cedures of GP-PACC in section III-B and III-C, respectively.

A. GP Regression to Model Car-Following Dynamics

In this paper, we use GP regression to model the personal-
ized longitudinal acceleration, namely the mapping from each
driver’s perceived states (e.g., space gap and the relative speed)
to the actual acceleration of the vehicle.

Gaussian processes extend multivariate Gaussian distribu-
tions to infinite dimensionality. They are a form of supervised
learning and the training result represents a nonlinear mapping
fGP(z) : R

dim(z) → R, such as (1). The mapping between the
input vector z and the function value fGP(z) is accomplished
by the assumption that fGP(z) is a random variable and is
jointly Gaussian distributed with z, which is also assumed to
be a random variable [38].

1) Setup: The GP model setup includes selecting the model
regressors, the mean function and the covariance function.
In the following discussion, we focus on the commonly used
zero-mean and the squared-exponential covariance function
that relates two sample input vectors zi and z j :

c(zi , z j) = σ 2
f exp

�
−1

2
(zi − z j)

T P−1(zi − z j)

�
+ σ 2

n δi j ,

(3)

where δi j = 1 if i = j and δi j = 0 otherwise, and P =
diag[l2

1 , . . . , l2
dim(z)] contains the characteristic length scale for

each dimension of the input vector. The hyperparameters of
the covariance function θ = [σ f , σn, l1, . . . , ldim(z)]T include
the measurement noise σn , the process standard deviation σ f ,
and the characteristic length scales, which are learned by
maximizing the likelihood of the observation.

2) Bayesian Model Inference: The inference of a Bayesian
model is a process where the prior knowledge of the hyperpa-
rameter vector θ is updated to a posterior distribution through
the identification (training) data.

We specify the training input Z and target y for a total of
N samples:

Z = [z1, z2, . . . , zN]T (4)

y = [y1, y2, . . . , yN]T , (5)

where the subscript denotes the sample index.

The corresponding GP model can be used for predicting the
function value y∗ given a new input z∗ based on a set of past
observations D = {Z, y}. The key assumption is that the data
can be represented as a sample from a multivariate Gaussian
distribution: �

y
y∗

�
∼ N

�
0,

�
K K T∗

K∗ K∗∗

��
, (6)

where 0 ∈ R
N is a vector of zeros, and K is the covariance

matrix

K =

⎡
⎢⎢⎣

c(z1, z1), c(z1, z2) . . . c(z1, zN)
c(z2, z1), c(z2, z2) . . . c(z2, zN)

. . . , . . .
c(zN , z1), c(zN , z2) . . . c(zN , zN)

⎤
⎥⎥⎦ (7)

K∗ = [c(z∗, z1), c(z∗, z2) . . . c(z∗, zN)] K∗∗ = c(z∗, z∗).
(8)

We want to infer θ by computing the posterior distribution
of the hyperparameters:

p(θ |Z, y) = p(y|Z, θ)p(θ)

p(y|Z)
. (9)

For unknown knowledge of θ , it is reasonable to specify
a uniform distribution p(θ), and as a result, the posterior
distribution is proportional to the marginal likelihood, i.e.,

p(θ |Z, y) ∝ p(y|Z, θ). (10)

Maximizing the posterior distribution is equivalent to mini-
mizing the negative log likelihood l(θ):

l(θ) := ln p(y|Z, θ) = −1

2
ln|K | − 1

2
yT K −1y − N

2
ln(2π).

(11)

Once the best-fit θ is obtained, we can compute the covari-
ance matrix (7) and the output distribution y∗ (in terms of the
prediction mean and variance) given a new input vector z∗:

ŷ∗ = K∗K −1y

var(y∗) = K∗∗ − K∗K −1 K T∗ . (12)

For the simplicity of notation, we denote the output prediction
as:

y∗ = fG P (z∗, θ) + N (0, σ 2
n). (13)

The regression vectors in GP can be augmented to include
lagged terms, for an explicit model of delays. For example,
ŷk = fG P(ẑk, ẑk−1, . . . , ẑk−m , θ), where m is the lagged
timesteps. However, this formulation comes with a complexity
trade-off, as the run time for GP regression is O(N3) due
to the matrix inversion. The naive GP regression does not
lead to closed-loop stability of the car-following system [40].
The training samples are assumed to be independent in time,
i.e., the covariance function c(zi , z j) considers the similarity
between zi and z j only in terms of value, not in terms of time.
When using the naive GP model as a dynamical model for
simulation, the error will accumulate. Therefore, it is important
to consider dynamics (2) in model training as the previous
prediction yk will affect the future states xk+1. We adopt a
nonlinear output-error (NOE) approach to improve the training
accuracy, where the training process is described in the next
subsection.

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on April 18,2023 at 14:57:50 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: GAUSSIAN PROCESS-BASED PERSONALIZED ADAPTIVE CRUISE CONTROL 21181

Fig. 1. Block diagram of the proposed GP-PACC system.

B. GP-NOE Training

We adopt a training process similar to calibrating an ODE-
based car-following model [41]–[45]. The process is to find
the parameters of which the simulated output is closest to the
recorded measurement. The simulated state {x̂k = [ŝ, v̂]k}N

k=1
given the initial state x0 = [s0, v0], the external input signal
u0:N−1 and a GP model (13) are used as part of the pseudo
training input of the GP-NOE model. This way, the dynam-
ics (2) can be inherently included in the training when the
simulated states are fed back as the regressors. The simulated
state can be obtained via:

x̂k+1 =
�

ŝ
v̂

�
k+1

=
�

ŝk + (uk − v̂k)�t
v̂k + fG P (ẑk, θ)�t

�
x̂0 = x0 = [s0, v0], k = 0 : N − 1 (14)

where ẑk = [ŝk, v̂k, uk] is the kth sample of the pseudo training
input, which contains the simulated state and the measured
external input at time k, as opposed to the recorded data
zk = [sk, vk, uk].

The mean prediction is stated as fG P (ẑk, θ) according
to (12). The training target is the acceleration data at the same
timestep y1:N .

Let us denote Ẑ1:N = [ẑ1, ẑ2, . . . , ẑN]T . The training of the
GP model with NOE structure is an iterative process shown in
Algorithm 1. The implementation is based on the GP-Model-
based System-Identification Toolbox for Matlab [46].

Remarks: Dynamical models trained using GP-NOE are
empirically shown to produce closed-loop stability, which the
naive GP regression usually fails to achieve due to the lack
of time-dependency. In our experiments we found that to
train a reasonable GP-NOE model with 60 sec of 10Hz data,
it takes 15 seconds on a 2.7GHz Quad-Core laptop. Note
that the GP output is a Gaussian distribution on the accel-
eration prediction. The prediction mean is used as the actual
acceleration, and the uncertainty is purely for understanding
the prediction confidence. Although the loss function for GP-
NOE is less smooth than that of the naive GP regression and
non-convex (see a visual illustration in [40]), which does not

Algorithm 1 GP-NOE Training
Data: Training input Z, training target Y, covariance

function c(·, ·), initial hyperparameters θ , initial
condition x0 = [s0, v0]

1 while l(θ) (11) is not minimal do
2 obtain the simulated (pseudo) regression vectors Ẑ1:N

with the initial state x0 = [s0, v0] and the current
hyperparameters θ , according to (14);

3 update θ by minimizing the negative log likelihood
l(θ).

4 end

guarantee the global optimal θ to be found, a good initial
guess on θ can achieve faster convergence and more accurate
data-fitting results. This feature makes GP-NOE suitable for
adaptive training on small batches of data. In other words,
the model can be improved overtime when initialized with
previously trained hyperparameters. In addition, the adaptive
training process can incorporate the changes of driving styles
due to, for example, external conditions (e.g., road, traffic,
weather) and internal conditions (e.g., moods, skills).

C. GP Model Validation

Training a GP-NOE model is similar to calibrating a car-
following model, which is conducted by finding the model
parameters that minimize the error between the simulated
vehicle trajectories and the benchmark. We validate the GP
model in simulation, i.e., obtaining a closed-loop simu-
lated trajectory according to (14), and compare the accel-
eration and space-gap trajectories with the recorded data,
similar to evaluating a car-following model from calibration
(e.g., [41]–[45], [47]).

Two performance metrics are measured: the mean squared
error (MSE) and the log predictive-density error (LPD) [35],
[48] between the GP simulated acceleration and the recorded

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on April 18,2023 at 14:57:50 UTC from IEEE Xplore. Restrictions apply.

21182 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 23, NO. 11, NOVEMBER 2022

acceleration of a validation data set:

MSE = 1

N

N�
k=1

(yk − ŷk)
2

LPD = 1

2
ln(2π) + 1

2N

N�
k=1

ln(σ 2

k) + (yk − ŷk)
2

σ 2
k

�
(15)

where yk is the acceleration data at timestep k, ŷk is the
mean prediction of GP at timestep k, and σ 2

k is the prediction
variance. MSE measures the error only on the mean pre-
dicted acceleration, whereas LPD takes into account the entire
distribution of the prediction by penalizing the overconfident
prediction (smaller variance) more than the acknowledged bad
predicting values (higher variance). In addition, the MSE on
the space gap (MSE-s) will also be calculated, since small and
biased acceleration prediction might lead to a larger space gap
error. The simulated space gap can be obtained from the GP
output using (14). The lower these measures the better GP
model performs in terms of recovering the original driving
data.

D. Predictive Safety Filter

A purely data-driven control approach such as GP does
not explicitly take driving safety into account. Throughout
the literature, we found learning-based control achieves “safe-
by-design” with verified control envelopes [49], fixed-point
computations of the set-valued mappings [50], and safety
filtering [51], as common approaches. In this paper we adopt a
predictive safety filtering approach similar to [51], which finds
a safe acceleration profile that is closest to the GP-predicted
acceleration and achieves collision avoidance.

Consider the following notations and assumptions:
Let I≥k denotes a set of integers in the interval [k,∞) ∈ R.

Let ak denote the acceleration of the leader vehicle at time k,
which we assume can be measured. yk stands for the acceler-
ation for the follower at k. amin denotes the hardest braking
deceleration for the follower, which the follower vehicle can
actuate instantaneously. smin is the minimum space gap.

We develop a safety filter on commanded accelerations to
achieve collision avoidance. The safety filter seeks to ensure
two properties are met at all times. The first property is
collision avoidance in the form sk ≥ smin. The second property
is bounded deceleration in the form yk ≥ amin. To choose
accelerations that achieve these two properties we form at each
time-step k a set of allowable states into which the vehicle can
move to time-step k + 1, which we denote as S:

(sk, vk, uk , ak) ∈ S ⇒ yk
 ≥ amin, sk
 ≥ smin, ∀k
 ∈ I≥k

(16)

according to the following discrete-time dynamics:⎡
⎢⎢⎣

s
v
u
a

⎤
⎥⎥⎦

k+1

= g(sk, vk, uk , ak, yk) =

⎡
⎢⎢⎣

s
v
u
a

⎤
⎥⎥⎦

k

+

⎡
⎢⎢⎣

u − v
y
a
0

⎤
⎥⎥⎦

k

�t .

(17)

S is derived using a standard stopping time condition under
constant acceleration from the leading vehicle (see appendix).
By choosing yk such that (sk, vk , uk, ak) ∈ S the filter ensures
that either both collision avoidance and bounded acceleration
will be met in all following time-steps, or S = ∅ meaning
that a collisions cannot be avoided. In the case that multiple
such commanded accelerations exist, we choose the yk that is
closest to that prescribed by the GP ŷk . This can be stated in
the following form:

minimize
yk

(ŷk − yk)
2

s.t. ŷk = fG P (sk, vk , uk, θ)

[sk+1, vk+1, uk+1, ak+1]T = g(sk, vk , uk, ak, yk)

(sk+1, vk+1, uk+1, ak+1) ∈ S. (18)

Scenarios in which the set S = ∅ can be trivially triggered
through simulating large lead vehicle decelerations that exceed
amin in magnitude. This is consistent with game theoretic
results that describe collisions between systems with equal,
and unequal, dynamics and input ranges. Additional study
of the feasibility of these safety regions through data and
analysis of naturalistic and controlled scenarios is reserved for
future work. One possible alternative formulation is through,
for example, a control barrier function [30].

IV. EXPERIMENTS AND RESULTS

In this section, the validation of GP-PACC is conducted
on two different data sets. The first one is the synthetically
generated data from a car-following model, with additive
noises on the acceleration to emulate realistic sensor errors.
The second one is human-driving car-following data generated
by the Unity game engine-based driving simulator, which
introduces a more naturalistic driving scenario.

A. Numerical Experiments

A set of car-following data is synthetically generated using
IDM [7], which has been used throughout the literature to
model a realistic driver behavior, such as asymmetric accel-
erations and decelerations. The simulated car-following data
serves as “ground truth”, from which the GP-PACC prediction
errors can be computed, and the prediction variance can be
compared with the known noise. The model is expressed as:

v̇(t) = fCF(s(t), v(t), u(t))

= a

�
1 −

�
v(t)

v f

�δ

−
�

s∗(v(t), u(t))

s(t)

�2
�

(19)

where the desired space gap s∗ is defined as:
s∗(v(t), u(t)) = s j + v(t)T + v(t)(v(t) − u(t))

2
√

ab
. (20)

The parameters of the model are the acceleration expo-
nent δ, free-flow speed v f , the desired time headway T ,
the jam distance s j , the maximum acceleration a and
the desired deceleration b. In this experiment, the syn-
thetic data is obtained from an IDM with parameters
θ = [s j , v f , T, a, b, δ] = [2, 33.3, 1.6, 0.73, 1.67, 4] based on
empirical investigations [7].

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on April 18,2023 at 14:57:50 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: GAUSSIAN PROCESS-BASED PERSONALIZED ADAPTIVE CRUISE CONTROL 21183

Fig. 2. Compare GP predicted acceleration (red solid line) with data (black
dotted line). The first half is training result and the second half is validation
result.

Fig. 3. Performance of GP-PACC compared with synthetic data.

We generate 200 seconds of data at 10Hz given a
pre-recorded, freeway high-speed lead vehicle speed profile
ranging between 25m/s to 35m/s. The simulated data is also
manually polluted with Gaussian white noise ranging from
0.01 to 0.1 standard deviation onto the acceleration signal,
in order to emulate the realistic sensor errors. We train the GP
model on the first 100 seconds and use the second half as the
validation set (see Fig. 2). This composition is shown to repro-
duce the car-following styles for various drivers consistently
well in our later experiments.

Fig. 2 visualizes the GP simulated acceleration (red solid
line) and the benchmark data (black dashed line), as well as
the prediction uncertainty (grey area). The data is synthetically
generated using IDM. One can see that the uncertainty band
well captures the deviation of the data set, and the mean
prediction traces the mean of the data accurately.

More quantitatively, Fig. 3 shows the MSE of the GP simu-
lation on the acceleration, velocity and the space gap, as well
as the LPD on the acceleration, respectively. When various
levels of sensor noises are present, the GP results show that
the MSE of acceleration prediction is overall very low (under
3.5×10−4), and so does the corresponding velocity (under
0.01(m/s)2) and space gap MSE (under 4.5m2). It indicates
that the GP model can very accurately reproduce the driving
profile and is robust under noisy measurements.

Note in Fig. 3 that, as the standard deviation of the added
noise increases (emulating a higher noise of real-world acceler-
ation measurement), the MSE values for both the acceleration
and the space gap prediction are lower. There are two reasons
for this: (a) inverting the covariance matrix K during the
parameter inference step (11) suffers from numerical issues
when the variance of y is too low; (b) Training may not
converge to a global minimal due to the non-convex and non-
smooth objective function (11), albeit the warm start.

Lastly, the LPD (bottom of Fig. 3) on the acceleration pre-
diction indicates that the new observations (from the validating
set) are well-accounted by the posterior predictive distribution,
even with higher sensor errors.

Overall, the numerical experiments suggest that GP can
accurately reproduce the driving data even with reasonable
measurement noise. The posterior distribution can also accu-
rately characterise the uncertainty of the data set. The results
show that GP-PACC almost exactly mimics the driver in a
purely data-driven way, and hence improves the personaliza-
tion in ADAS by adapting the longitudinal driving assistance
to the driver’s preferences and needs.

B. Human-in-the-Loop Experiments on the Unity
Game Engine

1) Modeling and Simulation Environment in Unity Game
Engine: Game engines are conceptually the core software
necessary for a game program to properly run. They generally
consist of a rendering engine for graphics, a physics engine
for collision detection and response, and a scene graph for
the management of elements like models, sound, scripting,
threading, etc. Along with the rapid development of game
engines in recent years, they become popular options in
the development of intelligent vehicle technology [52], with
studies conducted for driver behavior modeling [53], con-
nected vehicle systems prototyping [54], [55], and autonomous
driving simulation [56], [57].

In this paper, human-in-the-loop experiments are con-
ducted on a customized driving simulator platform, which is
built with a Windows gaming laptop (processor Intel Core
i7-9750 @2.60 GHz, 32.0 GB memory, NVIDIA Quadro
RTX 5000 Max-Q graphics card), a Logitech G29 Driving
Force racing wheel, and Unity game engine 2019.2.11f1 [58].
A three-lane highway scene is built in the simulation environ-
ment, where human drivers are able to manually drive the ego
vehicle to follow the target vehicle, shown as Fig. 4.

2) Data Acquisition: The experiment trip resembles a free-
way high-speed scenario, and has a total period of 200 sec-
onds. The lead vehicle’s trajectory comes from the CAN-bus
data of a pre-recorded trip by a human driver [59]. The tra-
jectory contains a time-varying speed profile within the range
25-35m/s that captures a naturalistic freeway acceleration and
deceleration scenario. The data is recorded in 10Hz. The
training input and target are organized according to (4) and
(5), where Z = {zk = [s, v, u]k}N

k=1, and y = {yk}N
k=1.

3) Training Result: The parameter inference takes about
10 seconds to complete, with the best-estimated parameters
θ = [l1, l2, l3, σ f , σn] = [14.4, 1.4, 5.9, 0.56, 0.11], where

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on April 18,2023 at 14:57:50 UTC from IEEE Xplore. Restrictions apply.

21184 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 23, NO. 11, NOVEMBER 2022

Fig. 4. Naturalistic driving in a car-following scenario with a gaming laptop,
a Logitech racing wheel, and the Unity game engine.

l1, l2, l3 correspond to the characteristic length scales of
s, v, u, respectively.

To visualize the training result, Fig. 5 compares the GP
simulated acceleration and Unity recorded acceleration. The
mean prediction (red line) aligns well with the recorded data
(dotted black line) both in the training and validation sets. The
uncertainty captures the variation of the recorded data in the
training set, and accurately acknowledges the uncertain predic-
tion in the validation set (with a wider prediction variance),
with a few exceptions at around 120 sec.

To further validate that the GP model captures the driving
dynamics, we compare its ability to reconstruct human-driving
profiles with that of two ODE-based car-following models.
The first model is the constant-time headway relative-velocity
(CTH-RV) model used to characterize adaptive cruise control
driving behaviors [45], and the second one is IDM [7], which
is used to describe human-driving behaviors. Since the GP-
PACC design problem is formulated as a system identifica-
tion problem, where the goal is to minimize the discrepancy
between the predicted driving profiles and the measured ones,
it shares the same objective with calibrating car-following
models. GP-PACC, CTH-RV and IDM are trained (calibrated)
with the same training data, and validated with the same testing
data produced from the same driver shown in Fig. 5. We use
acceleration as the prediction target in order to be consistent
with the GP model training, which also has the target of
minimizing the error on predicted acceleration. A general
form of calibrating any car-following model is written as
minimizing a sum-of-squared cost function:

minimize
θ

:
�N

k=1
(yk − ŷk)

2

subject to: ŷk = fCF(sk, vk , uk, θ), k = 1, 2, .., N (21)

with possible additional constraints on the initial conditions,
and bounds on the parameters.

The training and testing errors are measured by MSE on the
acceleration and space gap. As shown in Table I, GP can per-
form on par with, or even outperform some established analyt-
ical car-following models in terms of reproducing acceleration,
velocity and space gap trajectories. Notably, GP outperforms

Fig. 5. Compare GP-PACC guided acceleration (red) with the actual
acceleration recorded by one of the human-in-the-loop experiments (dotted
black). The first half is training result and the second half is validation result.

TABLE I

MODEL TRAINING RESULTS: ALL TRAINED ON THE SAME TRAINING SET

AND VALIDATED ON THE SAME VALIDATION SET SHOWN IN FIG. 5

both other models with the lowest space-gap MSE, which
tends to accumulate from inaccurate acceleration prediction.

In addition, we see that the training on naturalistic driving
data does not provide satisfactory results as compared to
training with synthetic data. One immediate reason is that syn-
thetic data generated using ODE-based models has a cleaner
relationship between the inputs (s, v, u) and the output (accel-
eration), which can be captured by the squared-exponential
covariance function (3); On the other hand, naturalistic driving
data contains more randomness and inconsistent patterns even
during the same trip. More driving datasets are desired to test
the ability of our model on recovering the longitudinal car-
following behavior. It will be interesting to compare not only
with other car-following models, but also across datasets (e.g.,
naturalistic driving datasets [60] and field experimental data
for ACC vehicles [12], [16]) for future work. Nevertheless, GP
modeling of human-in-the-loop experiments shows promising
results, even with no explicit assumptions on the personalized
driving styles.

C. Human-in-the-Loop Override Validation

In addition to the numerical analytics, the GP controller
is also validated with human-in-the-loop override validation.
The purpose of the tests is to measure each driver’s comfort
and trust of the proposed GP-PACC as well as two other
baseline models (i.e., CTH-RV and IDM). The test drivers
undergo several blind tests: an unknown controller drives the
ego vehicle for each trip, and the frequency and duration of
which the drivers override the equipped ACC (by stepping on
the acceleration/braking pedals) are recorded.

1) Experiment Setup: In this validation, instead of using
manual control for car-following, the ego vehicle is driven
with the trained GP-PACC as well as two other baseline ACC

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on April 18,2023 at 14:57:50 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: GAUSSIAN PROCESS-BASED PERSONALIZED ADAPTIVE CRUISE CONTROL 21185

Fig. 6. A trip driven by GP controller with driver B behind the wheel.

Fig. 7. A trip driven by ACC#1 with driver B behind the wheel.

models. Four drivers (two males and two females with diverse
real-world driving experience) participate in the tests, and each
is randomly provided with the individualized GP-PACC or
either of the two baseline models. The operating controller for
a specific trip is unknown to the driver in order to eliminate
potential bias. Each driver completes the tests when all three
controllers are covered.

Each trip lasts 200 sec, where each driver monitors the trip
and overrides the equipped ACC when he/she feels uncomfort-
able. The equipped ACC resumes control immediately after
the driver lets go the overrides. The timestamps of which the
driver overrides the ACC are be recorded.

2) Controller Specifications: GP-PACC is customized for
each driver. First, a 200-sec naturalistic car-following data is
collected from each driver with the same simulation setup:
all drivers are told to naturally follow the same leader, whose
speed and acceleration profiles are shown as the blue lines in
Fig. 6. All trips are recorded on the same Unity game engine
with the same Logitech G29 Driving Force racing wheel. Other
simulation parameters (e.g., weather, surrounding traffic and
road conditions are fixed for all trips). Next, the training for
GP-PACC is conducted using Algorithm 1. The resulting GP-
PACC specifications are summarized in Table II.

The GP-PACC is enhanced by a predictive safety filter
(formulated in (18)), with parameters emperically chosen as
amin=−3m/s2 and l = 4m.

The other two baseline ACC models are taken directly
from two calibrated ACC models. Specifically, ACC#1 is the
constant-time headway relative-velocity (CTH-RV) model of

TABLE II

GP-PACC PARAMETERS FOR EACH DRIVER

the form:
ak = 0.0131(sk − 1.6881 vk − 7.57) + 0.2692(uk − vk),

(22)

and ACC#2 is of the form of an IDM:

ak = 0.73

�
1 −

� vk

30

�4 −
�

s∗(vk, uk)

sk

�2
�

, (23)

where the desired space gap s∗ is defined as:
s∗(vk , uk) = 2 + 1.5vk + vk(vk − uk)

2.21
. (24)

The parameters for both baseline ACCs are chosen as
suggested in [7], [45].

3) Results: All four drivers override the operating ACC
models to different extents. From Table III, in general, all
drivers intervene the vehicle less when running GP-PACC
as compared to running other two baseline ACC models.
On average, all drivers override only 4.43% (8.7 sec total)
of the 200-sec trip when GP-PACC is on board.

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on April 18,2023 at 14:57:50 UTC from IEEE Xplore. Restrictions apply.

21186 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 23, NO. 11, NOVEMBER 2022

Fig. 8. A trip driven by ACC#2 with driver B behind the wheel.

TABLE III

HUMAN-IN-THE-LOOP EXPERIMENTS RESULTS: DRIVERS GAS

AND BRAKE TAKEOVER PERCENTAGE DURING A 200-sec TRIP

As an illustration, the recorded trips from one of the
drivers (driver B) can be visualized in Fig. 6-8. The top row
(Fig. 6) shows the trajectories when GP-PACC is the selected
controller. The middle row (Fig. 7) corresponds to ACC#1
(CTH-RV controller) being in operation and the bottom row
(Fig. 8) corresponds to ACC#2 (IDM controller). The recorded
trajectories include the speeds for leader and follower (left-
most column), space gap (middle column) and accelerations
for leader adn follower (right column) with respect to time.
The magenta highlights indicate the timestamps when the
driver overrides ACC (either by pressing gas or brake pedal)
that is in operation.

Driver B indicates that he overrides when he feels “falling
behind from the lead vehicle, and the neighboring vehicles on
the right lane will cut into the gap between the ego vehicle and
the lead vehicle”. Fig. 6 shows that the driver feels comfortable
when GP-PACC is in control, i.e., the driver only overtook
the controller for about 1 second during the entire trip. On the
other hand, the driver pressed the gas pedal several times when
ACC#1 is in operation (Fig. 7), and even more so with ACC#2
engaged (Fig. 8). The results strongly indicate that the driver
favors the personalized controller (GP-PACC) in the unbiased
test settings.

V. CONCLUSION AND FUTURE WORK

In this paper we propose GP-PACC that mimics personal-
ized car-following behavior. The learning is achieved using
a Gaussian Process regression with nonlinear output-error
training on the car-following data. We explore this purely

data-driven controller design in conjunction with a predictive
safety filter to capture personalized driving styles, which some-
times cannot be captured by an explicit car-following model.

The training result shows that GP has the potential
to provide safe and realistic acceleration guidance that
closely resembles personalized acceleration profile. Specifi-
cally, GP almost exactly recovers the car-following profiles
of an IDM driver (data generated using an IDM), and outper-
forms two other established analytical car-following models
in terms of reproducing naturalistic car-following space gap
trajectories. A series of human-in-the-loop experiments are
conducted on the Unity driving simulator to test drivers’ over-
ride rates when running their personalized GP-PACC versus
other baseline ACC models. Results indicate that all tested
drivers express comfort using GP-PACC, which reduces the
human override duration 60% and 85% as compared to two
other standard ACC models, respectively. This brings promis-
ing potentials of the acceptance towards the personalized
controller in near real-world scenarios.

For future work, adaptive GP training can be incorporated
into current routine to enhance the proposed GP-PACC. Since
training a GP dynamical system requires only limited data,
it is possible to adaptively train the GP model as more data
is collected. This training procedure allows to capture the
variations in driving behaviors across a longer period of time
and a wider range of speed. Additionally, since driver override
has only been adopted as a measurement to test our GP-PACC
in this paper, it can also be considered as a direct feedback
to the GP model, which will enhance the performance of our
future GP-PACC in a more straightforward manner. As more
contextual information (e.g., weather, road geometry) becomes
available, the training features can be augmented to expand the
functionality of personalization.

Furthermore, safety critical scenarios were not triggered for
simulation ranges utilized within this paper, even with the con-
servative assumption (e.g., constant acceleration dynamics).
More work that relies on reachability analysis with controller-
based methods is reserved for future work.

APPENDIX

Derivation of Safe Set: For a car-following system shown
in Figure 9, we derive the safe set S given the state
(s0, v0, u0, a0) and amin, which stand for the initial space gap,

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on April 18,2023 at 14:57:50 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: GAUSSIAN PROCESS-BASED PERSONALIZED ADAPTIVE CRUISE CONTROL 21187

Fig. 9. A car-following system.

follower velocity, leader velocity, leader acceleration and the
hardest braking deceleration for the follower. The safe condi-
tion gives a requirement for (s0, v0, u0, a0) such that future
collision can be prevented if the follower vehicle executes
amin, amin < 0. Let the safety space-gap margin be smin,
smin > 0, and assume the given state is safe, i.e., s0 ≥ smin,
and v0 ≥ 0, u0 ≥ 0.

Consider two scenarios:
1) a0 < 0 and
2) a0 ≥ 0.
Scenario 1): Denote the leader and follower position as

pl(t) and p f (t), respectively. Consider a non-decreasing posi-
tion for the leader vehicle when decelerating:

pl(t) =

⎧⎪⎪⎨
⎪⎪⎩

pl(0) + u0t + 1

2
a0t2, 0 < t < −u0

a0

pl(0) − u2
0

2a0
, t ≥ −u0

a0
,

Similarly, the non-decreasing follower’s position during hard-
est braking can be denoted as

p f (t) =

⎧⎪⎪⎨
⎪⎪⎩

p f (0) + v0t + 1

2
amint2, 0 < t < − v0

amin

p f (0) − v2
0

2amin
, t ≥ − v0

amin
.

Denote the stopping time for leader and follower as

T s
l = −u0

a0
, T s

f = − v0

amin
.

Safety requires that the space gap between the two vehicles is
above the safety margin when both vehicles are at a stop, i.e.,

pl(T s
l) − p f (T s

f) − l > smin, or

pl(0) − u2
0

2a0
−

p f (0) − v2

0

2amin

�
− l > smin

s0 − u2
0

2a0
+ v2

0

2amin
> smin.

Consequently, the condition for safe state when a0 < 0 is

C1 := s0 − u2
0

2a0
+ v2

0

2amin
> smin.

Scenario 2): The position for the leader becomes

pl(t) = pl(0) + u0t + 1

2
a0t2.

The same safety criterion can be derived by setting

s(t) = pl(t) − p f (t) − l

= 1

2
(a0 − amin)t

2 + (u0 − v0)t + s0 > smin ∀t > 0.

Note that s(t) is a convex quadratic function. It can
be observed that s(t) > 0 ∀t if s(t) has no real
roots, i.e., (u0 − v0)

2 − 2(a0 − amin)(s0 − smin) < 0,
or the larger of the real roots < 0, i.e., −(u0 − v0) −�

(u0 − v0)2 − 2(a0 − amin)(s0 − smin) < 0. The correspond-
ing safe condition becomes

C2 := s0 − (u0 − v0)
2 − 2(a0 − amin)(s0 − smin) < 0

∪ (u0 − v0) +
�

(u0 − v0)2 − 2(a0 − amin)(s0 − smin)

> 0

The overall set for the safe state is

S = {s0 ≥ smin, v0, u0 ≥ 0|((a0 < 0) ∩ C1)

∪ ((a0 ≥ 0) ∩ C2)}.
ACKNOWLEDGMENT

The authors would like to sincerely thank Zhouqiao Zhao
and Ziwei Zhang for their participation in the human-in-the-
loop experiments. The comments and suggestions came from
George Gunter, Jonathan Sprinkle, Rohit Gupta, Akila Gan-
lath, Sergei Avedisov, Xuewei Qi, and Takamasa Higuchi are
also greatly appreciated. The contents of this study only reflect
the views of the authors, who are responsible for the facts and
the accuracy of the data presented herein. The contents do not
necessarily reflect the official views of Toyota Motor North
America.

REFERENCES

[1] M. Hasenjager, M. Heckmann, and H. Wersing, “A survey of person-
alization for advanced driver assistance systems,” IEEE Trans. Intell.
Vehicles, vol. 5, no. 2, pp. 335–344, Jun. 2020.

[2] S. E. Shladover et al., “Automated vehicle control developments in the
PATH program,” IEEE Trans. Veh. Technol., vol. 40, no. 1, pp. 114–130,
Feb. 1991.

[3] R. Rajamani, Vehicle Dynamics and Control. New York, NY, USA:
Springer, 2011.

[4] R. E. Stern et al., “Dissipation of stop-and-go waves via control of
autonomous vehicles: Field experiments,” Transp. Res. C, Emerg. Tech-
nol., vol. 89, pp. 205–221, Apr. 2018.

[5] Z. Wang, Y. Bian, S. E. Shladover, G. Wu, S. E. Li, and M. J. Barth,
“A survey on cooperative longitudinal motion control of multiple con-
nected and automated vehicles,” IEEE Intell. Transp. Syst. Mag., vol. 12,
no. 1, pp. 4–24, Dec. 2019.

[6] M. Bando, K. Hasebe, A. Nakayama, A. Shibata, and Y. Sugiyama,
“Dynamical model of traffic congestion and numerical simulation,” Phys.
Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top., vol. 51,
pp. 1035–1042, Feb. 1995, doi: 10.1103/PhysRevE.51.1035.

[7] M. Treiber, A. Hennecke, and D. Helbing, “Congested traffic states
in empirical observations and microscopic simulations,” Phys. Rev. E,
Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top., vol. 62, no. 2,
pp. 1805–1824, Aug. 2000, doi: 10.1103/PhysRevE.62.1805.

[8] P. G. Gipps, “A behavioural car-following model for com-
puter simulation,” Transp. Res. B, Methodol., vol. 15, no. 2,
pp. 105–111, Apr. 1981. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/0191261581900370

[9] R. E. Chandler, R. Herman, and E. W. Montroll, “Traffic dynamics:
Studies in car following,” Oper. Res., vol. 6, no. 2, pp. 165–184, 1958,
doi: 10.1287/opre.6.2.165.

[10] R. E. Wilson and J. A. Ward, “Car-following models: Fifty years
of linear stability analysis—A mathematical perspective,” Transp.
Planning Technol., vol. 34, no. 1, pp. 3–18, Feb. 2011, doi:
10.1080/03081060.2011.530826.

[11] Y. Wang, M. L. D. Monache, and D. B. Work, “Identifiability of
car-following dynamic,” Phys. D, Nonlinear Phenomena, vol. 430,
Feb. 2021, Art. no. 133090.

[12] G. Gunter et al., “Are commercially implemented adaptive cruise control
systems string stable?” IEEE Trans. Intell. Transp. Syst., vol. 22, no. 11,
pp. 6992–7003, Nov. 2021.

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on April 18,2023 at 14:57:50 UTC from IEEE Xplore. Restrictions apply.

21188 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 23, NO. 11, NOVEMBER 2022

[13] M. Makridis et al., “Empirical study on the properties of adaptive cruise
control systems and their impact on traffic flow and string stability,”
Transp. Res. Rec., J. Transp. Res. Board, vol. 2674, no. 4, pp. 471–484,
Apr. 2020, doi: 10.1177/0361198120911047.

[14] B. Ciuffo, M. Makridis, T. Toledo, and G. Fontaras, “Capability of
current car-following models to reproduce vehicle free-flow acceler-
ation dynamics,” IEEE Trans. Intell. Transp. Syst., vol. 19, no. 11,
pp. 3594–3603, Nov. 2018.

[15] J. A. Laval, C. S. Toth, and Y. Zhou, “A parsimonious model
for the formation of oscillations in car-following models,” Transp.
Res. B, Methodol., vol. 70, pp. 228–238, Dec. 2014. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0191261514001581

[16] M. Makridis, G. Fontaras, B. Ciuffo, and K. Mattas, “MFC
free-flow model: Introducing vehicle dynamics in microsimula-
tion,” Transp. Res. Rec., vol. 2673, pp. 762–777, Mar. 2019, doi:
10.1177/0361198119838515.

[17] K. Fadhloun, H. Rakha, A. Loulizi, and A. Abdelkefi, “Vehicle dynamics
model for estimating typical vehicle accelerations,” Transp. Res. Rec.,
J. Transp. Res. Board, vol. 2491, no. 1, pp. 61–71, Jan. 2015, doi:
10.3141/2491-07.

[18] K. Fadhloun and H. Rakha, “A novel vehicle dynamics and
human behavior car-following model: Model development and pre-
liminary testing,” Int. J. Transp. Sci. Technol., vol. 9, no. 1,
pp. 14–28, Mar. 2020. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S2046043018301631

[19] M. Wiering and M. Van Otterlo, Reinforcement Learning: State of the
Art. Berlin, Germany: Springer, 2012.

[20] R. S. Sutton and A. G. Barto, “Reinforcement learning: An introduction,”
IEEE Trans. Neural Netw., vol. 9, no. 5, p. 1054, Sep. 1998.

[21] M. Kuderer, S. Gulati, and W. Burgard, “Learning driving styles for
autonomous vehicles from demonstration,” in Proc. IEEE Int. Conf.
Robot. Autom. (ICRA), May 2015, pp. 2641–2646.

[22] Z. Zhao, Z. Wang, K. Han, P. Tiwari, G. Wu, and M. Barth, “Person-
alized car following for autonomous driving with inverse reinforcement
learning,” in Proc. IEEE Int. Conf. Robot. Automat., May 2022, pp. 1–7.

[23] S. A. Billings, Nonlinear System Identification: NARMAX Methods in
the Time, Frequency, and Spatio-Temporal Domains. Hoboken, NJ, USA:
Wiley, 2013.

[24] G. B. Giannakis and E. Serpedin, “A bibliography on nonlinear system
identification,” Signal Process., vol. 81, no. 3, pp. 533–580, 2001.

[25] L. Ljung, “System identification,” in Wiley Encyclopedia of Electrical
and Electronics Engineering. Upper Saddle River, NJ, USA: Prentice-
Hall, 1999, pp. 1–19.

[26] R. Tedrake, “Underactuated robotics: Algorithms for walking, run-
ning, swimming, flying, and manipulation course notes for MIT
6.832,” Work. Draft Ed., vol. 3, pp. 1–109, 2020. [Online]. Available:
http://underactuated.mit.edu

[27] S. L. Brunton, J. L. Proctor, and J. N. Kutz, “Discovering governing
equations from data by sparse identification of nonlinear dynamical
systems,” Proc. Nat. Acad. Sci. USA, vol. 113, no. 15, pp. 3932–3937,
2015.

[28] J. M. Wang, D. J. Fleet, and A. Hertzmann, “Gaussian process dynamical
models for human motion,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 30, no. 2, pp. 283–298, Feb. 2008.

[29] R. Babuška, “Neuro-fuzzy methods for modeling and identification,”
in Recent Advances in Intelligent Paradigms and Applications. Berlin,
Germany: Springer, 2003, pp. 161–186.

[30] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier
function based quadratic programs for safety critical systems,” IEEE
Trans. Autom. Control, vol. 62, no. 8, pp. 3861–3876, Aug. 2017.

[31] A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath,
and P. Tabuada, “Control barrier functions: Theory and applications,”
in Proc. 18th Eur. Control Conf. (ECC), Jun. 2019, pp. 3420–3431.

[32] W. Xiang, H.-D. Tran, and T. T. Johnson, “Output reachable set esti-
mation and verification for multilayer neural networks,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 29, no. 11, pp. 5777–5783, Mar. 2018.

[33] K. P. Wabersich and M. N. Zeilinger, “Linear model predictive safety
certification for learning-based control,” in Proc. IEEE Conf. Decis.
Control (CDC), Dec. 2018, pp. 7130–7135.

[34] A. K. Akametalu, J. F. Fisac, J. H. Gillula, S. Kaynama, M. N. Zeilinger,
and C. J. Tomlin, “Reachability-based safe learning with Gaussian
processes,” in Proc. 53rd IEEE Conf. Decis. Control, Dec. 2014,
pp. 1424–1431.

[35] J. Kocijan, A. Girard, B. Banko, and R. Murray-Smith, “Dynamic
systems identification with Gaussian processes,” Math. Comput.
Model. Dyn. Syst., vol. 11, no. 4, pp. 411–424, 2005, doi:
10.1080/13873950500068567.

[36] H. Fan and M. S. Poole, “What is personalization? Perspectives on
the design and implementation of personalization in information sys-
tems,” J. Organizational Comput. Electron. Commerce, vol. 16, no. 3,
pp. 179–202, 2006.

[37] Y. Wang, Z. Wang, K. Han, P. Tiwari, and D. B. Work, “Personalized
adaptive cruise control via Gaussian process regression,” in Proc. IEEE
Int. Intell. Transp. Syst. Conf. (ITSC), Sep. 2021, pp. 1496–1502.

[38] C. E. Rasmussen, Gaussian Processes in Machine Learning. Berlin,
Germany: Springer, 2004, pp. 63–71, doi: 10.1007/978-3-540-28650-
9_4.

[39] M. P. Deisenroth, “Efficient reinforcement learning using Gaussian
processes,” Ph.D. dissertation, Karlsruhe Ser. Intell. Sensor-Actuator-
Syst./Karlsruher Institut für Technologie, Intell. Sensor-Actuator-
Systems Lab., Karlsruhe, Germany, 2010.

[40] J. Kocijan and D. Petelin, “Output-error model training for Gaussian
process models,” in Adaptive and Natural Computing Algorithms,
A. Dobnikar, U. Lotrič, and B. Šter, Eds. Berlin, Germany: Springer,
2011, pp. 312–321.

[41] T. Ma and B. Abdulhai, “Genetic algorithm-based optimization approach
and generic tool for calibrating traffic microscopic simulation para-
meters,” Transp. Res. Rec., J. Transp. Res. Board, vol. 1800, no. 1,
pp. 6–15, Jan. 2002, doi: 10.3141/1800-02.

[42] H. Wang, W. Wang, J. Chen, and M. Jing, “Using trajectory data
to analyze intradriver heterogeneity in car-following,” Transp. Res.
Rec., J. Transp. Res. Board, vol. 2188, no. 1, pp. 85–95, 2010, doi:
10.3141/2188-10.

[43] B. Ciuffo and V. Punzo, “‘No free lunch’ theorems applied to the
calibration of traffic simulation models,” IEEE Trans. Intell. Transp.
Syst., vol. 15, no. 2, pp. 553–562, Apr. 2014.

[44] V. Papathanasopoulou and C. Antoniou, “Towards data-driven car-
following models,” Transp. Res. C, Emerg. Technol., vol. 55,
pp. 496–509, Jun. 2015. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0968090X15000716

[45] G. Gunter, R. Stern, and D. B. Work, “Modeling adaptive
cruise control vehicles from experimental data: Model compari-
son,” in Proc. IEEE Intell. Transp. Syst. Conf. (ITSC), Oct. 2019,
pp. 3049–3054.

[46] M. Stepančič and J. Kocijan. (2017). Gaussian Process Model-
Based System Identification Toolbox for MATLAB. [Online]. Available:
https://github.com/Dynamic-Systems-and-GP/GPdyn

[47] F. de Souza and R. Stern, “Calibrating microscopic car-following models
for adaptive cruise control vehicles: Multiobjective approach,” J. Transp.
Eng., A, Syst., vol. 147, no. 1, Jan. 2021, Art. no. 04020150.

[48] A. Girard, “Approximate methods for propagation of uncertainty with
Gaussian process models,” Ph.D. dissertation, Dept. Comput. Sci. Univ.,
Univ. Glasgow, Glasgow, U.K., 2004.

[49] N. Arechiga and B. Krogh, “Using verified control envelopes for
safe controller design,” in Proc. Amer. Control Conf., Jun. 2014,
pp. 2918–2923.

[50] P. Nilsson et al., “Correct-by-construction adaptive cruise control:
Two approaches,” IEEE Trans. Control Syst. Technol., vol. 24, no. 4,
pp. 1294–1307, Jul. 2016.

[51] K. P. Wabersich and M. N. Zeilinger, “A predictive safety filter for
learning-based control of constrained nonlinear dynamical systems,”
Automatica, vol. 129, Jul. 2021, Art. no. 109597.

[52] J. Ma, C. Schwarz, Z. Wang, M. Elli, G. Ros, and Y. Feng, “New
simulation tools for training and testing automated vehicles,” in Road
Vehicle Automation 7, G. Meyer and S. Beiker, Eds. Cham, Switzerland:
Springer, 2020, pp. 111–119.

[53] Z. Wang et al., “Driver behavior modeling using game engine and real
vehicle: A learning-based approach,” IEEE Trans. Intell. Veh., vol. 5,
no. 4, pp. 738–749, Dec. 2020.

[54] Z. Wang et al., “Cooperative ramp merging system: Agent-based model-
ing and simulation using game engine,” SAE Int. J. Connected Automated
Vehicles, vol. 2, no. 2, pp. 1–16, May 2019.

[55] Y. Liu, Z. Wang, K. Han, Z. Shou, P. Tiwari, and J. H. L. Hansen,
“Sensor fusion of camera and cloud digital twin information for intel-
ligent vehicles,” in Proc. IEEE Intell. Vehicles Symp. (IV), Oct. 2020,
pp. 182–187.

[56] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“CARLA: An open urban driving simulator,” 2017, arXiv:1711.03938.

[57] G. Rong et al., “LGSVL simulator: A high fidelity simulator for
autonomous driving,” in Proc. IEEE 23rd Int. Conf. Intell. Transp. Syst.
(ITSC), Sep. 2020, pp. 1–6.

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on April 18,2023 at 14:57:50 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: GAUSSIAN PROCESS-BASED PERSONALIZED ADAPTIVE CRUISE CONTROL 21189

[58] Z. Wang, K. Han, and P. Tiwari, “Digital twin simulation of connected
and automated vehicles with the unity game engine,” in Proc. IEEE 1st
Int. Conf. Digit. Twins Parallel Intell. (DTPI), Jul. 2021, pp. 1–4.

[59] Y. Wang, G. Gunter, M. Nice, M. L. D. Monache, and D. B. Work,
“Online parameter estimation methods for adaptive cruise control sys-
tems,” IEEE Trans. Intell. Vehicles, vol. 6, no. 2, pp. 288–298, Jun. 2021.

[60] R. Jiang, M.-B. Hu, H. M. Zhang, Z. Y. Gao, and Q.-S. Wu,
“On some experimental features of car-following behavior and how
to model them,” Transp. Res. B, Methodol., vol. 80, pp. 338–354,
Oct. 2015. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0191261515001782

Yanbing Wang received the B.S. degree from the
University of Illinois at Urbana-Champaign in 2018.
She is currently pursuing the Ph.D. degree in civil
and environmental engineering with the Institute for
Software Integrated Systems, Vanderbilt University.
She was a Research Intern with InfoTech Labs of
Toyota Motor North America. Her research inter-
ests include systems identification and control for
autonomous vehicles. She was a recipient of the
Eisenhower Graduate Fellowship from 2018 to 2021.

Ziran Wang (Member, IEEE) received the B.E.
degree from the Beijing University of Posts and
Telecommunications in 2015 and the Ph.D. degree
from the University of California at Riverside, River-
side, in 2019. He is currently a Principal Researcher
with InfoTech Labs, Toyota Motor North America,
Silicon Valley, where he conducts research in the
“Digital Twin” Project. His research focuses on
intelligent vehicle technology, including cooperative
automated driving, driver behavior modeling, and
vehicular cyber-physical systems. He serves as a

member for four other technical committees across IEEE and SAE, the
Founding Chair for the IEEE Technical Committee on Internet of Things
in Intelligent Transportation Systems (IoT in ITS), and an Associate Editor
for SAE International Journal of Connected and Automated Vehicles.

Kyungtae (KT) Han (Senior Member, IEEE)
received the Ph.D. degree in electrical and computer
engineering from The University of Texas at Austin
in 2006. He is currently a Senior Principal Scientist
with InfoTech Labs, Toyota Motor North America.
Prior to joining Toyota, he was a Research Scientist
at Intel Labs and the Director of Locix Inc. His
research interests include cyber-physical systems,
connected and automated vehicle technique, and
intelligent transportation systems.

Prashant Tiwari received the Ph.D. degree in
mechanical engineering from the Rensselaer Poly-
technic Institute in 2004 and the M.B.A. degree
from The University of Chicago in 2016. He is
currently the Executive Director of InfoTech Labs,
Toyota Motor North America. He is highly active in
Automotive Edge Computing Consortium (AECC)
and SAE. Prior to joining Toyota, he held several
leadership positions of increasing responsibilities at
GE and UTC aerospace systems.

Daniel B. Work (Member, IEEE) received the B.S.
degree from The Ohio State University, OH, USA,
in 2006, and the M.S. and Ph.D. degrees from the
University of California at Berkeley, Berkeley, in
2007 and 2010, respectively, all in civil engineer-
ing. He is an Associate Professor with the Civil
and Environmental Engineering Department and the
Institute for Software Integrated Systems, Vanderbilt
University. His research interest includes transporta-
tion cyber-physical systems. He was the recipient
of the CAREER Award from the National Science

Foundation in 2014 and the Gilbreth Lectureship from the National Academy
of Engineering in 2018.

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on April 18,2023 at 14:57:50 UTC from IEEE Xplore. Restrictions apply.

