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Unsupervised learning exhibiting memory-related symptoms, varying psychological and mental health status,
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Pre-training annotators, makes obtaining quality data with annotations challenging; leaving us with
Human activity recognition limited labeled data and abundant unlabeled data. In this paper, we hypothesize that
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projecting the labeled data representations comprising a specific set of activities onto
a new representation space characterized by the unlabeled data comprising activities
beyond the limited activities in the labeled dataset would help us rely less on the
annotated data to improve activity detection performance. Motivated by this, we propose
STAR-Lite, a self-taught learning framework that involves a pre-training framework to
prepare the new representation space considering activities beyond the initial labels
in the labeled dataset. STAR-Lite projects the labeled data representations on the
new representation space characterized by unlabeled data labels and learns higher-
level representations of the labeled dataset while optimizing inter- and intra- class
distances without explicitly using a computation hungry similarity-based approach. We
demonstrate that our proposed approach, STAR-Lite (a) improves activity recognition
performance in a supervised setting and (b) is feasible for real-world deployment. To
enhance the feasibility of deploying STAR-Lite on devices with limited memory resources,
we explore model compression techniques such as pruning and quantization and pro-
pose a novel layer-wise pruning-rate optimization technique that effectively compresses
the network while preserving the model performance. The evaluation was performed
using the Alzheimer’s Activity Recognition dataset (AAR) captured from 25 individuals
living in a retirement community center with IRB approval (#Y18NR12035) using an
in-house SenseBox infrastructure while concurrently assessing the clinical evaluation of
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the participants for dementia, and independent living. Our extensive evaluation reveals

that STAR-Lite can detect activities with an F1-score of 85.12% despite 62% reduction in

model size and 5% improvement of execution time on a resource constrained device.
© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Recent innovative designs and developments of the Internet of Things (IoT) devices have caused an increase in the
research and commercialization of technologies that use wearable and ambient sensor modalities. Such consumer-grade
IoT devices have helped develop various state-of-the-art methods and frameworks in the domain of human health
monitoring relying on activities of daily living (ADLs) and instrumental activities of daily living (IADLs) for early detection
of physical mobility and cognitive health impairments. Monitoring health conditions and diagnosing the precursor to a
specific functional and/or behavioral health symptom is usually performed by conducting various clinical and survey-based
assessments, which involve multiple trips to the hospital and always turn out to be a hassle, especially for older adults. We
believe an automated system that can (i) sense activities, (ii) identify anomalies or abnormalities in an older adult’s habitual
activities or behavior, and (iii) alert the caregiver to take an appropriate action just in time could greatly improve the quality
of life of older adults while allowing them to live more independently. A variety of commercial wearable devices! 2 and
sensors recently has flooded the market for healthcare applications. Other ambient sensors that have been researched
for healthcare applications include passive infrared sensors [1-3], magnetic sensors, radars [4], acoustic sensors [5,6],
everyday smart objects, and device-free sensing (WiFi [7]).

Several smart-home sensor systems [8,9] have shown their potential in detecting activities through which symptoms
of an underlying health impairment were detected [3,10,11]. However, these state-of-the-art systems exhibit challenges
while scaling the system for multiple people with varying ages and health statuses, different activities in a wider
community, and various houses with different house layouts. Our overarching objective is to identify such challenges
through our real-world deployment in community-dwelling apartments in a retirement community center and postulate
appropriate solutions to mitigate underlying system and data-related problems. Specifically, the target population for this
work is older adults living with neurocognitive disorders such as Dementia. Activity recognition for older adults living
with Dementia is a much challenging problem as a result of their underlying cognitive, functional, and behavioral changes
and aging-related functional inability. For instance, let us consider Preparing a Sandwich activity, which constitutes several
micro-level activities such as picking up a knife, butter, ingredients, applying butter on the bread, and so on. Due to cognitive
impairment, a person may perform the activity of Preparing a Sandwich in a different order and repeating several micro-
level activities. Such inherent variations in the data cause the older adult’s data to experience high inter-class similarity
(two activity patterns look similar) and intra-class variability (same activity patterns look different) [12]. Older adults, in
particular, exhibit such variations more frequently when compared to young adults. Due to the presence of such inherent
variations in the data, a machine learning model for activity recognition requires abundant data comprising of all such
variations in order to be robust. Besides, this abundant data will be useful only when paired with high-quality and large-
scale annotated labels, which is challenging to acquire due to the following reasons: (i) unavailability of annotators as most
older adults live a caretaker and annotating data would hamper their job, (ii) lack of domain expertise for annotators may
provide irrelevant labels, (iii) relying on camera-based systems causes privacy concerns, (iv) aversion towards cameras causes
the older adults to live in fear. Acquiring labels being a herculean task, it is imperative to circumvent these challenges by
leaning on algorithms that require minimal labeled data instances. On the other hand, it is relatively easier to acquire
unlabeled data as it would only involve sensors (wearables and ambient) used by older adults daily, especially in a
retirement community center. Thus, the primary requirement for the algorithm would be to perform well with abundant
unlabeled data and minimal labeled data.

Besides posing labeling challenges, the wider range of inherent variations in the data for older adults severely impacts
the adaptability of the developed AR model in the real world, i.e., while scaling the AR model. Scaling refers to adapting an
already developed sensing system/model to new scenarios. For example, the new scenarios can be a different and bigger
population, young adults vs. older adults, or a population with different underlying health conditions. Therefore, designing
an AR model for a general population and adapting it for older adults may cause the AR model to fail. Furthermore, due
to the additional variations introduced by older adults due to the evolving physical and cognitive health changes due to
aging, developing a generalized and scalable AR model for older adults is non-trivial.

Several machine learning paradigms such as Active Learning, Transfer Learning, Self-Supervised Learning have attempted
to address the problem of limited availability of labeled data. Active learning benefits by acquiring labels of most
informative data instances from an oracle [12]. However, it involves higher computation complexity as the algorithm

1 https://www.fitbit.com/home
2 https://www.empatica.com/en-eu/research/e4/
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requires online training. Besides, active learning also relies on crowdsourcing to obtain the labels, which require a
quality annotator with domain-specific knowledge to provide quality labels. On the other hand, transfer learning involves
transferring meaningful information from a source domain to a target domain. We believe transfer learning is one of
the most appropriate techniques due to the challenges involved in acquiring data from older adults. Some semi- or self-
supervised techniques have been found useful where partial label information from the ground truth is leveraged in
fine-tuning the algorithm’s parameters. However, these methodology requires to form pairs, triplets, and N-pair [13-17]
to optimize their loss functions that drastically increases the computational complexity.

The overall objective of this paper is to develop a light-weight AR model in comparison to our prior work [18] that
can be readily deployable in a real-world scenario for older adults with the following characteristics: (a) capable of
scaling with minimal labeled and abundant unlabeled data, (b) optimize inter-class similarity and intra-class variations, (c) has
minimal memory footprint and average model inference time. Considering these requirements in mind, we propose a self-
taught learning framework called STAR-Lite. Our proposed framework, STAR-Lite is an unsupervised activity recognition
model that can leverage the benefits of both minimal labeled data and abundant unlabeled data and learn the generic
feature representations. The learned representations are autonomously optimized for inter-class similarities and intra-
class variations without using a computation-hungry similarity-based approach. The key contributions of the paper are
enumerated below.

o Self-Taught Learning Framework: To address the inherent variations in the activity data of older adults, we propose
a novel methodology involving a pre-training phase that helps us learn a new representation space characterized
by unlabeled data labels, and a self-taught learning framework that projects that labeled data representations in the
newly learned representation space. This framework learns labeled data representations better from limited data
while optimizing inter-class similarities and intra-class variations and helps improve the classification performance
drastically.

e Data Collection from Multiple Smart Homes: We presented a data collection system for activity recognition in a
smart home setting deployed and used in this study. We described the data collection procedure and the dataset
(namely Alzheimer’s Activity Recognition (AAR) dataset, which comprises sensor data and survey-based data that can
help assess an older adult’s functional and behavioral health.

e Evaluation in Practical Setting: We demonstrated that the proposed framework, STAR-Lite helps reduce the
misclassifications related to the system-level faults and data collection errors. Besides, we showcased that a simpler
CNN network is sufficient to boost the performance of the downstream task using STAR-Lite. Finally, we evaluated
STAR-Lite using the in-house Alzheimer’s Activity Recognition (AAR) dataset collected from 25 apartments in a
retirement community center with IRB approval (IRB #Y18NR12035) and contrasted the performance to a publicly
available dataset that comprises a different age-group population.

o Model Compression: We evaluate the adaptability of STAR-Lite across multiple smart homes and show how post-
training model compression techniques, such as pruning and quantization, can help reduce the memory and
computational footprints of the STAR-Lite model. We also propose an iterative layer-wise pruning rate optimization
technique to determine an optimum value to preserve the model performance while minimizing the memory and
computational footprints of STAR-Lite model.

Our experiments reveal that the self-taught learning methodology outperforms the state-of-the-art self-supervised
learning algorithm [19] in detecting activities by 17% and a LSTM based model [20]. Besides, we also show a 62% reduction
in the model size and 28% reduction in average execution time on a single-core Intel processor and 5% reduction on a
resource constrained device, indicating that STAR-Lite can conveniently be deployed on resource-constrained devices.

The reminder of the manuscript is organized as follows. In Section 2, we discuss the related work while Section 3
discusses the methodology of the unsupervised pre-training phase, supervised classification and the model compression
techniques. Section 4 describes the dataset used in our experimentation pipeline (Section 5) and Section 6 shows the
experimental results. We report the feasibility study for resource constrained device implementation in Section 7. Finally,
we discuss and conclude in Section 8 and 9

2. Related work

This section focuses on the literature of activity recognition, self-taught learning and model compression techniques
that help us motivate our work.

2.1. Activity recognition

Activity Recognition is one of the heavily investigated topics in the past decade, especially after deep learning
gained its popularity [12,21]. Typically, the sensors used in AR research are Inertial Measurement Units (Accelerometer,
Magnetometer, Gyroscope) and ambient sensors. Several datasets, such as OPPORTUNITY, PMAP2, WISDM, etc., have been
collected using these sensors. Besides, most work attempts to classify activities from the sensor data using deep learning
approaches such as Convolutional Neural Networks [22,23], Recurrent Neural Networks [22,23], Deep Belief Networks [24],
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and but not limited to Autoencoders [25]. In contrast to the existing literature, our approach involves collecting data from
a real-world deployment from a population of older adults living with neurocognitive disorders.

Several works exist that helps improve classification performance with a minimal amount labeled dataset. Active
learning, a popular method that falls under the former category, determines the most uncertain data instances and queries
the label from an annotator. Such methods drastically reduce the labeling efforts, time and help improve the classification
performance in a supervised setting. Another popular method, Transfer learning, lets us transfer knowledge from a source
domain to a target domain, thus minimizing the training effort. The target domain could be a different person, scenario,
surroundings, and so on. Transfer learning can be broadly classified as Inductive, unsupervised, and transductive based on
the similarity between the source and target domains. STAR-Lite falls under the category of the inductive transfer. Several
algorithms have been proposed for activity recognition using transfer learning to boost the classification performance
in the target domain [1,26,27]. In a study, the authors have proposed a framework that leverages autoencoder features
from unlabeled data and transfer the first two layers to the target domain to recognize unseen activities in the target
domain [28]. In such works, the assumption remains that the source and target domain label space follows the same
distribution in contrast to our approach, STAR-Lite, which assumes otherwise.

2.2. Self-taught learning

Self-taught learning, which is a special case of inductive transfer learning, where the model learns from the unlabeled
data. Besides, the primary assumption is that the labeled data and the unlabeled data follow different generative
conditional distributions (a different subset of activities are present in both labeled and unlabeled data domains). Such
an assumption has proven to learn good representations of the input data from the unlabeled data and help aid the
classification task in a supervised setting [29]. Self taught learning has shown to be effective in various fields such as audio
classification [30,31], E-Nose in Wound Infection Detection [32], facial beauty prediction [33], image classification [29].
In activity recognition, the authors created codebooks of features called basis vectors corresponding to each activity
using sparse encoding from the unlabeled data [25]. Further, a distance-based methodology was employed to determine
the most appropriate basis vector, and the basis vector-label pair were classified in a supervised setting. In contrast to
this methodology, although our work involves a pre-training phase from unlabeled date, our method does not involve
additional computational complexity related to identifying appropriate basis vectors. We believe, restricting the number
of basis vectors negatively impacts the quality of the latent representation space learned. In another work, the authors
proposed a feature similarity search algorithm in conjunction with self-taught learning to learn features from unlabeled
data [34]. However, this work is limited to a very preliminary analysis using a dataset with one participant and four
activities performed over a 6-hour period. In contrast, our work is evaluated on a dataset with 25 participants performing
14 activities.

Another paradigm of machine learning that leverages unlabeled data to aid supervised classification is self-supervised
learning. Self-supervised learning uses representations learned from unlabeled data through unsupervised transformations
and further uses transfer learning to assist the downstream task in a supervised setting similar to our approach. However,
STAR-Lite does not leverage any label information during the representation learning phase. Additionally, we believe that
the augmentations such as jittering, cropping, rotation [19] of the data do not represent the true variation in the activity
recognition dataset. We believe that the feature engineering step of using wavelet coefficients would expose the variations
in the time-frequency domain to the pre-training and classification phases. In AR, authors of [19] proposed a multi-task
learning framework to learn auxiliary tasks (augmentation of the unlabeled data) during the pre-training phase and used
the primary task to perform classification, which makes it a semi-supervised approach.

2.3. Model compression

Model compression is a salient approach that enables us to perform real-time inference on-edge devices and hardware
accelerators. Model compression can be broadly classified into four major techniques: pruning, quantization, knowledge
distillation, low-rank factorization, and compact convolutional filters [35]. Among the above-listed techniques, pruning
and quantization gained much popularity due to their robustness, support for both training & post-training settings,
reducing model network complexity, and mitigating overfitting problem [36] characteristics. Furthermore, post-training
pruning and quantization techniques will be appropriate for evaluating STAR-Lite implementation due to the model-
friendly characteristics. In paper [37], the authors proposed an architecture-agnostic approach, Degree-Quant (DQ), which
helped enable an improvement to the existing baselines of the quantization-aware training for graph neural networks.
Furthermore, they used a stochastic protective nodes method to achieve higher and better weight update accuracy for
quantization, where a protective node mask is generated for each layer.

Furthermore, the authors of [38] proposed a novel post-training weight pruning for deep learning algorithms.
The proposed pipeline comprises three major modules: layer-wise sparsity rate selection, weight, and activation bias
correctness, and local layer-wise fine-tuning method using auxiliary knowledge distillation (KD) losses. The KD mean-
squared error loss measures the difference of the activation features space of the unpruned and prune layers. Similarly,
in paper [39], the authors proposed a pruning method EagleEye, where the proposed evaluation pipeline is based on an
adaptive batch normalization (BN) approach. The proposed pruning pipeline is classified into three major components:
filter pruning, strategy generation, and adaptive BN. They performed a quantitative analysis to compute the correlation
coefficient between pruning candidates (pruning strategy generation) and their corresponding accuracy.
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Fig. 1. Overall Architecture to illustrate the pre-training phase, the weight transfer and how it aids the classification in supervised setting.

3. Methodology
3.1. Self taught learning

This section describes the proposed methodology that comprises an unsupervised feature learning phase, a feature
fusion component, and the supervised classification phase. A detailed pictorial representation of the pipeline is described
in Fig. 1.

3.1.1. Unsupervised pre-training phase

We propose to leverage the unlabeled data to learn the parameters using generative stochastic neural networks in the
pre-training phase. The notion for using the unlabeled data is because the unlabeled data comprises activities outside of
the labels included in the labeled dataset. In this study, we propose to use Deep Belief Networks (DBN) to learn high-
level representations (from unlabeled data) and further use the learned parameters (from unlabeled data) to generate
high-level representations for labeled data for the classification task. Let us now describe the mathematical formulation
of the pre-training phase using DBN. A DBN is a probabilistic generative network that is formed by stacking Restricted
Boltzmann Machines (RBM). RBMs are probabilistic neural networks that comprise of neurons in two groups (visible and
hidden) and form a bipartite graph between them, with a restriction that the neurons are not connected to each other in
the same group. Let us denote the visible layers as v; and hidden layers as h;, where i and j represent the neurons in the
visible and hidden layers, respectively. The weight update required during the training phase of the RBM is performed
using gradient descent and is given by Eq. (1).

oP(v)
awij

wi(t + 1) = wy(t) + 7 (m

In Eq. (1), n represents the learning rate, w; is the weight vector connecting the visible layer and the hidden layer,
and P(v) is the probability distribution over the visible vectors defined using an energy function is shown in Eq. (2):

Pw) = 5 3 exp(—E(v, h) @
h
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Algorithm 1 : Pseudocode of Contrastive Divergence, CD().

Input: unlabeled data (X,)
Output: RBM trained weights (Wggy)
Initialization : visible units, v < X,

1: for epoch = 1 to E, total epochs do

2: for k =1 to N, total number of instances in X, do
3: update hidden units, p(h; = 1|v)

4: reconstruction step: p(v; = 1]h)

5: update hidden units, p(h; = 1|v)

6: update weight, w;(t + 1) = wy(t) + n%(;)

7: end for

8: end for

9: return Wggy

Here, E(v, h) is the energy function. A lower value of energy function is desirable and is thus minimized during training
by adjusting the weights and biases. The derivative of the log probability in Eq. (1) with respect to the weights are defined
as

dP(v)

Bw,j

= (Vi) data — (Vihj)model (3)

where () denotes the expectations under the distribution by the subscript. Since there is no connection among the hidden
layers and among visible layers, it is possible to obtain (vihj)qaq for the visible layer given the hidden layer (using Eq. (5))
and hidden layer given visible layer (using Eq. (4)).

Py = 1v) = o(by+ Y viwy) o

1

p(vi = 1lh) = o(a; + Y _ hjwy) (5)
J

However, obtaining (vihj)meder iS cumbersome as it requires alternating Gibbs Sampling. Hence, we use [40] to train
RBM using Contrastive Divergence (as explained in algorithm 1). Besides, training DBNs is a greedy process; each RBMs
are individually trained before moving on to the next RBM. The activations of the first RBM (after training) are fed as an
input to the second RBM, and so on (as explained in algorithm 2).

3.1.2. Self-taught feature leaning phase

After the pre-training phase, the next step is to feed the labeled data to the pre-trained DBN network to obtain
representations. These representations of the labeled data are projected in a representation phase obtained with respect
to the unlabeled data representations. The unlabeled data representations are characterized by activity labels that are
not encountered in the labeled space. To obtain these representations of the labeled data, we subject the labeled data to
the same feature extraction methodology (using DBN) proposed in the unsupervised pre-training step initialized with the
parameters learned using the unlabeled data. Let us assume to have m training data instances denoted by X; with class
labels y;. The unlabeled data be denoted as X,,. Besides, let us denote the DBN feature extraction function as fpgn(.), so, the
representation of the labeled data in the new representation space, R; is defined as R; = fpgn(X;) as shown in Fig. 1b. Now,
the new data instance for the supervised classification task is obtained by fusing the input data, X; and the representation,
R, ie., X/ = [X;, R)]. The data-label fed to the supervised classification pair is denoted as (X/"**’, y).

Careful examination of this methodology reveals that there are two crucial steps: (i) representation learning in a new
feature space and (ii) fusing input data and the learned representations. Fig. 2 illustrates the effect of these two steps. As
the pre-training phase for the labeled data learns representations with respect to the activities in the unlabeled data, it
tries to maximize the distance between the labeled and unlabeled data in the representation space. On the other hand,
the second step for fusing the input data with the representations introduces bias to the fused data by introducing the
inherent variations of different activities in the raw data, which help maximize the intra-class variations. Collectively, the
pre-training and the self-taught feature learning phases help us enhance both intra-class and intra-class distances, which
consequently helps with the classification performance.

3.1.3. Computational complexity

It is evident that the unsupervised pre-training phase is performed in addition to the classification pipeline (discussed
in the following section). Therefore, it is critical to evaluate and discuss the computational complexity of the unsupervised
pre-training phase. As explained in the algorithm 1, each epoch comprises of a forward pass and a backward pass
both involving weight updation. For k data instances, the forward pass involves matrix multiplication (Eq. (4)) with a
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Algorithm 2 : Pseudocode of extracting self-taught features.

Input: unlabeled data (X,), labeled data (X;), CD(X,)
Output: self-taught data, X

1: for each RBM in DBN do

2: Whgpy < training_cd(X,)

3: WDBN <« stack (WRBM)

4: end for

5: for m = 1 to M, total number of instances in X; do
6:  R; < Compute forward pass, fpan(X]")

7:  temp < append(X]", R(t))

8: end for

9: Xy < temp

10: return Xy

Activities in
unlabeled data space

Pre-training

Self-Taught AN 7
Feature Fuse .. &
Extraction Data . n
- R

\~1

\ J Representations

Activities in
labeled data space

Legend
. Activities in both labeled — Maximize distance between labeled
and unlabeled data and unlabeled data activities
" Activities in only Maximize distance between
[l unlabeled data = |abeled data activities

Fig. 2. Illustration of labeled data representations learned by self-taught feature extraction phase.

computational complexity of O(i * j * k). The weight updation equation’s computational complexity can be written as
O(i * j * k + exp(i + j + k)). As the backward pass involves the same steps as the forward pass, the overall complexity can
be written as O(2 = [i xj * k + exp(i + j + k)]) and simplified to O(i * j x k + exp(i + j + k)).

3.1.4. Supervised classification phase

The fused data obtained from the self-taught feature learning phase is then fed to a Convolutional Neural Network
(CNN) that comprises 1-D convolutional layers and fully connected layers for classification. The objective of this phase is
to learn a model, M, that maps the fused data, (X{md and the label, y,).

3.2, Model compression

Consider a scenario of a retirement community center where multiple older adults live as a community. If the center
decides to implement a system for the older adults to monitor their activities to provide them an assisted living concierge
service, we believe a system like STAR-Lite would be ideal. In such a scenario, an instance of STAR-Lite for each older adult
would be running on a remote server operated by the service provider. In an attempt to provide a real-time inference
of activities, especially for detecting fall, or to determine if the older adults need help, STAR-Lite must execute in real-
time, i.e., the latency in processing the input data and provide the model inference should be minimal. In this section,
we postulate how to compress the already trained AR model to reduce memory usage and inference time. We evaluate
the performance of our proposed compressed AR model using two compression techniques with two types of model
compression techniques: pruning and quantization.
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Algorithm 3 : Pseudocode of layer-wise pruning rate optimization.

Input: Pre-trained Model (M), Fused Data (X/***®), Labels (y)

Output: Layer-wise prune rate, P

Initialize: min < 0, max < 1, prune rate:p < 0, BestCost < MinCost
1: for each layer in M do

2:  MinCost < M(X,fused)v,o <« min

3:  MaxCost < M(X,fused)v,o <« max
4: P = (min+ max)/2

5: PruneCost < M(X!"*“WVp <« P
6:  if |[MaxCost — PruneCost| > |PruneCost — MinCost| then
7: min < P

8: else

9: max < P

10:  end if

11:  if PruneCost > BestCost then
12: BestCost < PruneCost

13: Append(P, P)

14: else

15: max < P

16:  end if

17: end for

18: return P

3.2.1. Network pruning

Pruning refers to removing unimportant connections in a neural network. In a deep architecture, the initial layers
provide low-level features of the data. The information represented by these features are highly localized and very specific
to a certain characteristic to a certain data instance. As we move deeper, the features obtained are the generalized
representations of those low-level information. As each layer in a deep architecture contributes to various levels of
information, we believe each layer must be pruned accordingly. Thus, we propose to prune the model in a layer-wise
fashion and propose a simple optimization method to reduce the computational complexity as explained in algorithm 3.

3.2.2. Quantization

We also employ quantization to compress our proposed AR model. Quantization refers to computing and storing
network parameters at a lower bit-width (e.g., 8-bit integer instead of 32-bit floating-point). The perks of quantizing
the network include (i) the network structure does not change, (ii) lower model size, and (iii) lower inference time,
which are precisely the type of characteristics we desire for the proposed STAR-Lite model. From the literature, we chose
the most desired 8-bit integer quantization for our work as it can potentially provide up to 4x improvement in model
compression [37].

3.2.3. Pruning + quantization

Model Compression using pruning alters the network structure. On the other hand, quantization does not alter the
network structure. However, both pruning and quantization individually help with compressing the models without
affecting the model performance. The contribution of each weight or activation in the network towards the classification
performance may not be discretized as important/unimportant (in the case of pruning) or assumed important in the case
of quantization (and reduce bit-width). This is because each weight and activation (despite being zero) helps with the
computation of the logits. Thus, we hypothesize that combining quantization with layer-wise pruning can help retain such
weights/activations that do not have a higher value but can be present in the compressed model at a lower precision to
help with retaining the model performance.

4. Alzheimer’s Activity Recognition (AAR) dataset

This section presents the Alzheimer’s Activity Recognition (AAR) dataset created to study the relationship between
activities and behavioral health, especially Dementia. AAR dataset was acquired from a population of 25 older adults
living in a retirement living facility and possessing symptoms consistent with Dementia from a mix of individuals who are
healthy, mild cognitive impairment, and cognitive impairment. The dataset has two components, sensor-based and survey-
based data. The aim of capturing the sensor-based dataset was to record the movement patterns (activities performed on
a daily basis: ADLs and IADLs; Table 1). In contrast, the survey-based questionnaire aimed to acquire the current state
(clinical evaluation) of the individual’s functional and behavioral health. Below, we describe the data collection procedure,
system architecture, and details of both the sensor and survey-based datasets.
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Table 1
List of activities in AAR dataset.
Categories Activities Abbreviation
Sitting Sit
Activities of Daily Living(ADLs) Standing St
Walking Wa
Brushing Hair BH
Folding Laundry FL
Phone Ph
Preparing Sandwich PS
Sweeping Sw
Instrumental Activities of Daily Living (IADLs) Taking Trash Out T
Using Toothbrush uT
Wash Hands WH
Wear Jacket W]J
Wear Shoes WS
Writing Wr

4.1. Sensor system architecture

To collect the AAR dataset (especially the sensor-based data), we developed a raspberry-pi based system to integrate
various sensors (extended from SenseBox [8]). Raspberry-pi is a Linux-based miniaturized computer that consists of
Broadcom BCM2837B0, Cortex-A53 (ARMv8) 64-bit processor, which clocks at 1.4 GHz with 1 GB LPDDR2 SDRAM onboard.
The role of the raspberry-pi in a smart-home is to act as a hub, connect to an existing network, provide internet
connectivity to various sensors in the smart-home, and finally log the data. The notion of such a system was to develop
a system that can be readily deployable in a new home. Further, the system is comprised of two categories of sensors:
wearable and ambient. Empatica-E4 was used as the wearable sensor to record the movement (through accelerometry;
32Hz sampling frequency), Electro-Dermal Activity (EDA), skin temperature, and heart-rate variability. Besides, ambient
sensors such as passive infrared sensors (PIR; in each room), reed switches (on each door), and object tags (on objects
used on a daily basis) were connected to the hub. The hub was in continuous connection with a server (present in the
author’s laboratory) via a reverse-ssh tunnel for constant monitoring of the state of the hub and the connected sensors.
The overview of the sensor system architecture is depicted in Fig. 3a and the placement of various ambient sensors are
shown in Fig. 3b. Finally, we integrated cameras with the hub (for limited time usage) to acquire the ground truth and
the cameras were place in each room. We further elaborate the dataset collection in the following sections.

4.2. Sensor-based data collection

As soon as the hub and the ambient sensors are placed in strategic positions, we request the participating individuals
to wear the wearable device on their dominant hand (preferably, although not compulsory). Now, we divide our data
collection duration into two phases: scripted activities and unscripted activities. For the first two hours, the participants
are requested to perform scripted activities that involve both ADLs and IADLs with a camera online for ground truth
collection. For the following 2 h, the participants are monitored with a camera for any activity (unscripted); however,
none of the team members of data collection will be present in the house. Further, we leave the ambient sensors and
the wearable device to operate in the house (no cameras) to collect unlabeled data for the next 20 h. This procedure was
repeated for 25 different participants in their own homes, where the home’s layout was different from each other.

4.3. Survey-based data collection

During the scripted activities collection (described in the previous section), we requested the participants to perform
certain activities based on the scales used for clinical evaluation of functional and behavioral health assessment (described
in this section). First, the survey-based questionnaire collects the basic demographics of the participants. The inclusion
criteria to participate in the study includes (i) must be above 65 years of age, (ii) must be a candidate for the symptoms
of dementia due to old age or any underlying neurodegenerative disorders. Hence, the first survey we conducted uses the
Saint Louis University Mental Status (SLUMS) Examination to help screen for Alzheimer’s or any other type of dementia.
The advantage of SLUMS is that it can identify people with milder cognitive problems even if it has not risen to the level
of dementia. The second survey we collected was related to mental health. We used the Geriatric Depression Rating Scale
to measure the participant’s mental depression state. Besides, we used the Geriatric Anxiety Scale to measure older adults’
anxiety levels. Next, we used the Barthel Scale and the Lawton Instrumental Activities of Daily Living Scale to measure the
performance of ADLs and IADLs, respectively. These measures were ideal for this study as they were performance-based
and would provide us with the current state of functional health (can be compared to sensor-based data). We would
ask the participants to perform the scripted activities, and based on their performance, we would score them, which we
believe can help us measure their ability to carry out everyday activities required for independent living.
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Fig. 3. (a) Sensor System Architecture Overview, (b) Ambient Sensors Layout.

5. Experimentation pipeline

The experiments were conducted on a Linux server consisting of i7-6850K with 4x NVIDIA GeForce GTX 1080Ti GPUs
and 64 GB RAM. Data preprocessing, feature extraction, classification, deep learning techniques were implemented and
visualized using python. The deep learning tasks were implemented using PyTorch libraries.

5.1. Annotations

The raw accelerometer data was annotated by two different annotators by matching the time stamps on the wearable
device and the captured video. The annotators provided the (start time, end time) of each activity block. We computed
the intersection of (start time, end time) provided by both the annotators and used them to separate out labeled data.
The remaining data (not considered in the labeled data/ data captured when no camera was present) were considered as
unlabeled data in this work. The labeled data, and the unlabeled data were then subjected to preprocessing as discussed
below. The set of labels chosen for the annotations are listed in Table 1. These activities were chosen as the labels for this
study as these activities were supplemented with a survey-based assessment score using either Barthel or Lawton scales.
When the participants remained idle, those data instances were labeled as “Idle” and were ignored from this study.

5.2. Preprocessing

This study only considers the body-worn sensor data for analysis (only accelerometer for AAR dataset). Body-worn
sensors are affected by motion artifacts. For instance, if the Empatica E4 is not tight enough, then the devices’ slight
movements on the wrist can cause motion artifacts. Motion artifacts are nothing but high-frequency noise. Hence, we
employ a median filter of window size four, which acts as a low pass filter. We compared the effect of 2nd order
Butterworth filter and Kalman filter and found the results comparable. Hence, we chose the median filter as it was
computationally faster. Further, a windowing approach was employed to prepare the data of the AAR dataset. The body-
worn sensors provide continuous time-series, and a patch of the series represents annotation an activity takes, thus
requiring a windowing approach. A window size of 1 second with an overlap of 0.5 s was used for each axis and then
concatenated. Additionally, we performed a feature extraction step after the windowing phase. We extracted discrete
wavelet transform coefficients (using Daubechies 5(db5) scaling function) for each window and used that as the input
data for the unsupervised feature learning phase.
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5.3. Pipeline and model parameters

In the pre-training phase, we feed the unlabeled data (widowed (1 s) with overlap (0.5 s)) after wavelet transform to
the feature extraction function that uses DBN to learn the representations. The raw input data instance vector’s size was
(3 * 32), where 3 is the number of accelerometer channels and 32 is the window size. Besides, the wavelet coefficients
remains with the same dimension. We stacked three RBMs with 90, 80, 70 neurons in each RBM to form DBN. We opted to
use a decreasing number of neurons so that the representations are both sparse and with a reduced dimension. Following
the pre-training phase using the unlabeled dataset, we preserved the network structure and froze the weights. The labeled
dataset was then passed into the preserved pre-trained network to acquire the representations, making the data instance
to a size of (3 x 32 4+ 70) for the supervised classification task.

5.4. Evaluation strategy

To evaluate the effectiveness of the proposed methodology, we first visualize the representations learned from the
DBNs for the labeled data. Further, we evaluate the performance of the classifiers using classification accuracy, precision,
recall, f1-score, markedness and Informedness [41]. The choice of evaluation metrics relied on factors such as the number
of classes in the classification problem and class imbalance in the AAR dataset. When a dataset consists of class imbalance
(i.e., varying number of data instances in each activity class), the evaluation metric must equally represent the correct
and missed detections. Often, the classifiers tend to be biased towards the majority class (more correct detections) while
ignoring the minority class (more missed detections). Metrics such as accuracy, precision, and recall do not effectively
represent the minor class’s missed detections effectively. Thus, in this work, we rely on evaluation metrics such as
Informedness and Markedness. Informedness tells us about how well the model has learned the correct and missed
detections of classification while markedness tells us the trustworthiness of those correct and missed detections [41,42].
We also employ a 70-20-10 split for training, testing, and validation for shallow learning and deep learning approaches.
The validation set for deep learning algorithms was used to tune the hyper-parameters and select the best model. The
validation set and test set were truly held out data and were neither a part of the training phase nor the feature extraction
phase. We have a massive set of unlabeled instances (50936470 instances) compared to 651844 labeled instances for the
AAR dataset before windowing.

6. Evaluation

This section discusses the various analysis performed using the AAR dataset. Before analyzing the classification task,
it is imperative to assess the quality of the representation of the labeled data in the new self-taught space (obtained
due to pre-training). Thus, we leverage visualization techniques to assess the quality of the representations. As the
representations are high-dimensional, visualizing them requires a dimensionality reduction step to convert the high-
dimensional representation to a 2-dimensional matrix without losing information. We use Compression Variational
Autoencoders (CVAE), a dimensionality reduction technique built on variational autoencoders with inverse autoregressive
flow layers that makes the learned distribution more expressive [43]. Fig. 4 shows the CVAE visualization of the data at
various stages of the STAR-Lite model for different numbers of activities (row-wise). The left, center, and right columns
show the CVAE visualization of the raw data, fused data, and output of the final convolutional layer, respectively. The
CVAE visualizations are color-coded with respect to the class labels. We observe that the raw data has the highest overlap
between data instances belonging to different classes in the left column of Fig. 4. Also, as the number of classes increases,
the separability in the data is not observed, which makes the classification task difficult. Therefore, we can infer that
both the inter-class similarity and intra-class variations are high for the raw data. For the visualization of the fused data,
we observe marginal clustering behavior, i.e., data instances belonging to the same classes are relatively closer, and those
belonging to a different class are also closer to each other, suggesting that the intra-class variations have been minimized,
even when the number of classes is increased. Finally, from the CVAE visualization of the output of the final convolution
layer (right column), we observe clear clustered data instances. Here, both inter-class similarity and intra-class variations
have been optimized, which helps with the downstream classification task. As the cluster formation holds true for an
increasing number of activities, we can infer that STAR-Lite is invariant to the number of labels in the labeled data and
can be considered scalable for an increasing number of activity labels.

In Fig. 5, we present the illustration of the self-similarity matrix for each of the activity labels. The self-similarity matrix
is calculated by computing the cosine similarity of each data instance with every other data instance. Fig. 5a shows the
self-similarity matrix visualization for the raw features, and Fig. 5b shows that of the self-taught features. We observe
that the self-taught features have a higher number of data instances that are similar to other data instances belonging to
the same class. Such observation also holds true for every activity class label considered in this study’s labeled dataset.
We also plotted the probability density functions of the obtained cosine similarities in Figs. 6a, b and observed that the
self-taught features consisting of about 70% of the data instances have a cosine similarity value greater than 0.5 compared
to 10% for the raw data. This observation helps us conclude that the self-taught features have fewer intra-class variations.

Now that we have obtained a good representation of the labeled data in a new representation space, we now aim
to perform the classification task. First, we used some popular shallow learning algorithms such as k-NN, SVM, Random
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Fig. 4. CVAE Visualization of raw data (left column), fused data (center column) and self taught features (right column) for increasing number of
activities (row-wise).

forest, and Multi-layer perceptron to perform the classification task. The notion behind this step was to check the efficacy
of our pre-training and self-taught learning step for algorithms that highly depend on feature engineering. In contrast,
we also investigated if we could extract more meaningful features from the self-taught features using deep learning
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Fig. 5. Self-similarity matrix visualization of (a) raw features, (b) self-taught features.
PDF of Similarity maxtrix values for features PDF of Similarity maxtrix values for Self-Taught features
BH FL Ph PS Sit BH FL Ph PS Sit
03 ] 841
0.2 02 4
0‘3'./.\ / /.\ ./.\ ./.\ 0-3-/\/\/\/\/\/\/\/\’\/\

T T T T T T T T T T
Wa

N\

NN
N
\ |
L?
Lj
gs
ég

WH w| ws Wr WH w) ws Wr
0.4 0.4
iE iE
611\ /\ /\ ’\J\ 01 '/\J\ /\/\ ya
0 T T T T T T T T 0 T 1 T T T 1 T 1
0 0.5 10 0.5 10 0.5 10 0.5 1 0 0.5 10 0.5 10 0.5 10 0.5 1
(a) (b)
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Table 2
Hyper-parameters of CNN model.
Hyper-parameters Values
No. of convolution layers 3
No. of filters in convolution layers 256, 256, 512
Convolution filter dimensions 55,5
No. of maximum fully connected layers 6
No. of neurons in fully connected layers 512, 256, 256, 128, 64, 14
Batch size 32

approaches such as Convolutional Neural Networks (CNN). We chose CNNs for the deep learning approach because the
convolution operation makes the algorithm shift-invariant. In the AAR dataset, some activities may have been performed
in 3 s, and other instances of the same activity may have been performed in 2 s. The shift-invariant property of convolution
operation in CNN ensures (at various depths of convolutional layers) to gather this information and represent them as a
higher-level representation for the classification task. Table 2 shows the hyper-parameters used to train the convolutional
neural network. Besides, the classification metrics have been listed in Table 3. Comparing the shallow learning algorithms
for the AAR dataset with/without self-taught features, we see an increase of 2% in both informedness and markedness
metrics with a maximum of 44.56% for k-NN using the proposed pre-training methodology. Such a result ascertains the
need to improve the feature representation of labeled data and supports our decision for a deep learning-based approach.
Performing the same comparison with CNN-based classification, we noticed a 36% improvement in informedness and
markedness metrics. Fig. 7 shows the learning curves of the CNN model comparing both with/without self-taught learning.
For the AAR dataset, the model converges relatively quickly at ten epochs with higher accuracy when compared to
the baseline CNN. Besides, Fig. 8 shows the confusion matrix for STAR-Lite. Interestingly, we notice that some of the
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Table 3

Evaluation metrics: Comparison of shallow learning and deep learning for downstream classification task.
Classifiers Without Self-taught learning (in %) Using Self-taught learning (in %)

P R F1 I M P R F I M

k-NN 46.38 46.38 46.38 44.56 44.56 48.30 48.30 48.30 44.32 44.32
SVM 21.56 21.56 21.56 15.53 15.53 40.16 40.16 40.16 35.55 35.55
RF 21.91 21.91 21.91 15.91 15.91 23.82 23.82 23.82 17.96 17.96
MLP 20.62 20.62 20.62 14.51 14.51 36.66 36.66 36.66 31.78 31.78
Baseline-CNN 53.23 53.23 53.23 49.63 49.63
STAR-Lite 86.18 86.18 86.18 85.12 85.12
SOTA [19] 69.53 69.53 69.53 68.09 68.11
SOTA [20] 49.11 49.11 49.11 49.02 49.02

P: Precision, R: Recall, F1: F1-score, I: Informedness, M: Markedness
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Fig. 7. AAR Dataset: (a) loss vs epoch, (b) accuracy vs epoch; OPPORTUNITY Dataset: (c) loss vs epoch, (d) accuracy vs epoch.

misclassifications are related to Standing activity. Activities such as Wash Hands, Walking, Using Tooth Brush, Sweeping,
Preparing Sandwich have been misclassified as Standing (2 - 15 %). We believe the reason for this is because each of these
activities was performed while standing. A part of these activities constitutes Standing, which makes it plausible for some
windows labeled as Wash Hands, Walking, Using Tooth Brush, Sweeping, Preparing Sandwich activities could contain the
pattern of Standing. In addition, STAR-Lite can successfully mitigate the practical challenges that arise during our data
collection drive. For instance, let us consider some activities/sub-activities such as brushing hair, picking up phone call,
writing, wearing shoes. Most of the time, the wearable device may not detect these activities based on its dominant/non-
dominant hand position. Alternatively, as previously discussed, some of these activities may be performed while sitting.
However, based on the confusion matrix (Fig. 8), we notice a tremendous improvement in the detection of such activities
using the proposed methodology. We believe our approach can also help mitigate the shortcomings of such system-related
and practical challenges as well.

6.1. Comparison with baseline

To better highlight the efficacy of our approach, we perform two types of comparisons. First, we compare how the
state-of-the-art algorithm performs on the AAR dataset. Secondly, we use a publicly available dataset to show how well
the algorithm scales to different scenarios.
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Fig. 8. AAR Dataset: Confusion matrix generated for (a)baseline, (b) STAR-Lite .

6.1.1. State-of-the-art algorithms

The state-of-the-art algorithm for a similar category of data includes a pre-training phase combined with a multi-
task learning framework falling under the category of self-supervised learning [19](discussed in related work section).
We evaluated the AAR dataset on this algorithm and found the informedness and markedness to be 68.09% and 68.11%.
Comparing [19] with STAR-Lite, we see that STAR-Lite outperforms the state-of-the-art algorithm. The key difference
between [19] and STAR-Lite lies in the pre-training phase where we use a generative energy-based model while compared
to learning a focused variation or augmentation version of the data. Additionally, we also compare our work with other
deep architectures known to perform well on activity recognition datasets such as LSTM [20]. With LSTM, we found the
informedness and markedness to be 49.02% each with the AAR dataset, which suggests that our framework outperforms
LSTM based networks.

6.1.2. Publicly available dataset

We chose OPPORTUNITY dataset [44,45] as the publicly available dataset for the analysis. The OPPORTUNITY dataset
comprises both wearable sensors and ambient sensor data totaling 145 attributes. In this study, we limit the usage of 77
attributes corresponding to the worn body sensors placed at different locations on the body. The 77 attributes correspond
to the 3D accelerometer and 3D inertial measurement data (3D acceleration, 3D rate of turn, 3D magnetic field, and
orientation of the sensor), and the sensors were placed at various positions on the body for 4 participants. In this dataset,
some high level and low-level activities such as Relaxing, coffee time, early morning, cleanup, sandwich time, unlock the
door, stir, lock the door, close door, reach the door, open door, sip, clean, bite, cut, spread, release the door and move are
considered. Data corresponding to 2 participants constituted the labeled data, and the remaining unlabeled data of the
same participants and all the data of another 2 participants were considered unlabeled data. We also considered the null
class data to be a part of the unlabeled data pool from which the features were derived during the pre-training phase. We
performed the same experiments as the AAR dataset and reported the analysis below. We found a substantial increase in
the accuracies for shallow learning algorithms, approx. 8% for SVM and approx. 7% using random forest. Besides, STAR-
Lite shows a 6% boost in accuracy for deep learning. We believe that both shallow and deep learning algorithms showed
improvement because of the following reasons: (1) the dataset was captured from 4 users only, (2) the dataset comprised
of numerous features (77 attributes as discussed earlier) (3) the dataset was captured in a lab environment due to which
there is less intra-class variability.

7. Resource constrained devices feasibility study

Finally, we evaluated STAR-Lite on the SenseBox testbed on a server for two major aspects: Model Size and Model
Execution time. The inference was executed on a single core of Intel i7-6850K processor on the remote server of the
SenseBox testbed. The model needs to be loaded onto the random access memory (RAM) for execution; it is imperative
to benchmark the model size and execution time.
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Table 4
Comparison of trained model sizes (in MBytes).
Original Pruning Static Dynamic Pruning +
quantization quantization Dynamic
quantization
Without self-taught learning 7.9 6.9 7.81 3.35 6.7
Using self-taught learning 12.98 11.05 12.87 4.90 11.02
Table 5
Average model execution time (in milli-seconds) for Server (CPU).
Original Pruning Static Dynamic Pruning +
quantization quantization Dynamic
quantization
Without self-taught learning 12.59 7.83 14.22 10.07 7.85
Using self-taught learning 17.95 12.82 17.06 16.00 14.42
Table 6
Average model execution time (in milli-seconds) for Jetson Nano.
Original Pruning Static Dynamic Pruning +
quantization quantization Dynamic
quantization
Without self-taught learning 328.99 314.46 309.84 310.07 319.90
Using self-taught learning 399.43 381.58 378.34 396.04 393.66

7.1. Model size

The comparison of model sizes for original STAR-Lite model, pruned, quantized, and pruned + quantized models are
listed in Table 4. Irrespective of the model compression technique used, we observe that the model size of the STAR-Lite
is greater than the baseline model. This is because the STAR-Lite model has more features (raw features + self-taught
features), which increases the number of model parameters, resulting in higher model size. Next, the pruned self-taught
model size was 11.05 MBytes compared to the original 12.08 MBytes model and observed only a marginal improvement.
The proposed layer-wise pruning technique assumes that the model performance remains the same. Thus, we believe that
only the most unimportant and small network connections were pruned, resulting in a small decrease in the model size.
Next, we observe that the model size remains almost the same for static quantization. This is because static quantization
quantizes the model parameters and involves fusing activations with preceding layers. Therefore, no change in model
size suggests that the fusing of the layers did not occur with static quantization. On the other hand, we observe a drastic
decrease in model size (12.98 MBytes to 4.90 MBytes) for dynamic quantization while preserving the model performance.
Finally, when we combine pruning and quantization, we observe that the model size is reduced by 1.96 MBytes, which
is not drastic compared to dynamic quantization but quite modest compared to the base model. As pruning removes
the connections in the network and quantization reduces the bitwidth of the network parameters, quantizing pruned
networks requires a higher number of network parameters to retain model performance.

7.2. Model inference time

The model inference times for all the models are shown in Table 5. Similar to model sizes, we observe that the inference
time of the STAR-Lite model irrespective of model compression used is higher compared to the baseline due to the higher
number of computations involved with the increased feature size. In the case of model inference, both static and dynamic
quantized model inference times were comparable to that of the baseline. On the other hand, the pruned model provided
the best inference time by improving it by 28%. This improvement can be attributed to the pruned model reducing the
number of computations resulting in faster inference times. In the pruned and quantized model, we observe a decrease
of 3.53 ms, which is higher than the pruned model, as quantization prevented some network connections from being
pruned to retain the model performance.

The model execution time observed while executing the various models on a Jetson Nano is shown in Table 6. We
observe that the execution time is much higher compared to that of a server. This mammoth difference is expected due
to the availability of enhanced resources such as CPU, RAM, and power available to a server. Similar to our observation
of executing the models on the server, we observe a decrease in execution time after compressing the model using
pruning, quantization, and pruning+quantization. However, the model execution time decrease is much prominent on
resource-constrained devices (e.g., 20 s reduction after static quantization).

The above comparisons conclude that pruning the STAR-Lite model provided the best inference time on a server, while
static quantization performs better on a resource-constrained Jetson Nano. On the other hand, dynamically quantizing
the model provided the least model size. The choice of a specific compressed model can be determined based on the
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requirements of the application scenario. For instance, detecting activities from older adults in real-time would require
near-real detection, however, such a system can accept a small latency (around 0.5 s or 500 ms). In such a scenario,
we could choose the dynamically quantized model for a resource-constrained device due to its smallest model size and
relatively better execution time compared to the original model.

8. Discussion
8.1. Computational overhead of pre-training phase

The pre-training phase that involves learning the new representation space from unlabeled data is achieved at the cost
of an additional computation overhead. As discussed in Section 3.1.3, the computational complexity was determined as
O(i* j* k + exp(i +j + k)) for the pre-training phase. However, during the inference stage, the computational complexity
reduces to O(i*j* k) due to the absence of the weight updation step. Due to the greedy nature of the pre-training phase,
the choice of the stopping criteria is critical in making the algorithm feasible. We defined a threshold of 0.05 for the
reconstruction mean-squared loss for each RBM as the stopping criteria. Another aspect that allowed the pre-training
phase feasible was the usage of GPU during training. The average time taken to train the DBN for a batch of unlabeled
data on a GPU was 0.003 ms. During the inference on the CPU, the execution time to process a batch (batch size — 32)
of data was 0.065 ms.

8.2. Scaling STAR-Lite for new dataset/population

We believe that STAR-Lite can readily be scaled to a new dataset characterized by a population of a different age group,
underlying health conditions, and so on. To adapt to a new dataset, labeled data from the new dataset will first be passed
into the pre-trained (on an existing dataset) to learn the representations of the new dataset with respect to the label
space of the existing dataset. As these representations inherently optimize inter-class and intra-class variations, exposing
these representations to the supervised learning phase would provide us with an enhanced classification performance.

9. Conclusion

In this paper, we have demonstrated that the challenging problem of AR for older adults can be boosted using
self-taught learning, especially leveraging abundant unlabeled data to aid the downstream classification task. We have
presented self-taught learning-based activity recognition that has achieved approx. 36% increase in informedness and
markedness; and outperforms the state-of-the-art research. We have also demonstrated that the proposed method, STAR-
Lite is scalable to other populations as well by evaluating on a publicly available dataset obtained for a different population.
We further explored various model compression techniques, performed a feasibility study of its adaptability in a real-life
scenario, and obtained a 62% reduction in model size and a 28% reduction in average execution time. Besides, we have
deployed our data collection system, SenseBox, in the real world (in a retirement community) and collected 25 participants’
data envisioned to study the relationship between activities and underlying functional and behavioral health. We believe
STAR-Lite could be scaled to other data sources, such as sports analytics, fitness applications where capturing labeled
sensory data is challenging and acquiring abundant unlabeled data is plausible.
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