
Canary: Fault-Tolerant FaaS for Stateful
Time-Sensitive Applications

Moiz Arif
Department of Computer Science
Rochester Institute of Technology

Rochester, NY, USA
ma3890@cs.rit.edu

Kevin Assogba
Department of Computer Science
Rochester Institute of Technology

Rochester, NY, USA
kta7930@cs.rit.edu

M. Mustafa Rafique
Department of Computer Science
Rochester Institute of Technology

Rochester, NY, USA
mrafique@cs.rit.edu

Abstract—Function-as-a-Service (FaaS) platforms have re-
cently gained rapid popularity. Many stateful applications have
been migrated to FaaS platforms due to their ease of deploy-
ment, scalability, and minimal management overhead. However,
failures in FaaS have not been thoroughly investigated, thus
making these desirable platforms unreliable for guaranteeing
function execution and ensuring performance requirements. In
this paper, we propose Canary, a highly resilient and fault-
tolerant framework for FaaS that mitigates the impact of failures
and reduces the overhead of function restart. Canary utilizes
replicated container runtimes and application-level checkpoints
to reduce application recovery time over FaaS platforms. Our
evaluations using representative stateful FaaS applications show
that Canary reduces the application recovery time and dollar cost
by up to 83% and 12%, respectively over the default retry-based
strategy. Moreover, it improves application availability with an
additional average execution time and cost overhead of 14% and
8%, respectively, as compared to the ideal failure-free execution.

Index Terms—Data-intensive Computing, Serverless Comput-
ing, Deep Learning, Data Parallelism, OpenWhisk, TensorFlow

I. INTRODUCTION

Function-as-a-Service (FaaS) is a computing paradigm that
allows building, executing, and managing applications as func-
tions without having to deploy and manage the underlying
infrastructure. FaaS is a popular way to implement serverless
computing which abstracts away infrastructure management
such as managing or provisioning servers and resource alloca-
tion from developers, thus enabling them to focus on applica-
tion development and delivering business value. FaaS follows
an event-driven execution model that runs functions specifying
the server-side application logic in stateless containers. FaaS
platforms have pre-built runtime [1] images to support the exe-
cution of functions written in various programming languages.
A runtime is a container image that contains the application’s
source code or executables, libraries, and the required software
packages for deploying and executing application functions.
Runtime images alleviate users to install the required libraries
and software packages for executing their applications.

Modern applications are composed of complex workflows
where different components depend on and interact with other
components to work as a single unit by relying on the timely
completion of each sub-component. The functioning of each

component requires information about the executions of previ-
ous components. This information is passed on as the applica-
tion states throughout the application workflow. Similarly, iter-
ative and stateful applications maintain application information
and states for executing the current iteration or to service
the next user requests. FaaS platforms support such stateful
workloads by enabling application functions to store data and
state information on ephemeral storage. The overall execution
workflow is divided into several loosely-coupled independent
small functions that must reliably interact with each other. For
stateful application, each function starts its execution using
triggers that are invoked after the successful completion of the
previous function. For example, a MapReduce [2] workload
launches mappers that process the input data and produce
intermediate data. The reducers are launched after successful
mapper execution and consume mappers output to produce the
final result. Similarly, deep learning (DL) workloads consist
of various execution stages [3] including data pre-processing,
model training, weight aggregation, and inference. Each stage
is managed by a set of stateful functions that work with
the state and data produced by previous functions in FaaS
platforms [4]–[6].

An increasing number of High-Performance Comput-
ing (HPC) applications [7], [8], such as DL jobs [9], [10],
leverage FaaS platforms to increase parallelism and scalabil-
ity. However, existing public [11]–[14] and on-premise [15],
[16] FaaS offerings have resource limitations for function
execution, such as memory allocation and network timeouts,
that negatively impact the performance of function execu-
tions. Failures in FaaS platforms are common [17] and are
broadly classified as hardware, software, runtime, network,
and application level failures, e.g., function failures [18],
permission or resource limitation failures [19], [20], run-
time failures [21], invocation failures [22], and bugs in the
application code [23]. FaaS platforms sustain these failures
by using retry-based strategies to restart the failed functions
until their execution is successful. The retry-based approach
significantly increases the application execution time and is
particularly impractical for time-sensitive workloads with strict
performance requirements. Similarly, a failure during stateful
function execution results in loss of computation, inconsistent
application state, and potential loss of critical data. These
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challenges only exacerbate in large-scale HPC systems where

60% and 20% of failures are attributed to hardware and

software, respectively [24], [25]. Therefore, it is crucial to

reduce the recovery time of these serverless applications for

meeting their performance requirements and service level

agreements (SLAs).
Modern data centers consist of heterogeneous computing

resources with unique performance profiles [26]. In such

setups, the performance of applications depend on the avail-

ability of resources on the underlying servers. Particularly, the

resource heterogeneity results in unpredictable application per-

formance [27] and function recovery time after failures [28].

Older hardware is more prone to failure as compared to

relatively newer hardware [29], [30]. Similarly, slower com-

puting devices and storage systems can significantly increase

application recovery time as compared to the faster data center

resources. Moreover, in case of failures, the function recovery

time on heterogeneous resources is non-deterministic and

results in variations that affect application performance. There-

fore, FaaS platforms must incorporate resource heterogeneity

while providing a low recovery time for failed functions.
In this paper, we develop a framework, called Canary,

that enables FaaS platforms to tolerate failures over het-

erogeneous resources and minimize the impact of failures

on application performance. We achieve this by proposing

checkpointing mechanisms and runtime replication for faster

function recovery from a failure. Canary is composed of

four key components, namely, Core Module, Checkpointing
Module, Replication Module, and a Runtime Manager Module.
The Core Module orchestrates the detection and recovery of
the failed functions and handles coordination between all the

components. The Checkpointing Module handles checkpoint-
ing of data and application states, and the Replication Module
handles the replication of runtime and data. The Runtime
Manager Module manages the life cycle of the deployed

runtimes and their replicated runtimes that are deployed in

the cluster. Canary tracks the current state of each function
execution, adjusts the checkpointing frequency, and uses state

information to restore stateful functions from their most recent

checkpoints. Our proposed Canary framework makes FaaS
platforms reliable and fault-tolerant, and reduces the overall

recovery time of functions.
Specifically, we make the following contributions:

• We propose Canary which improves the reliability of
FaaS platforms and provides fault tolerance to applica-

tions with minimal application-level changes.

• We provide a prototype implementation of Canary and
integrate it with a popular open-source FaaS platform,

Apache OpenWhisk [15], to demonstrate its effectiveness.

• We conduct a thorough performance evaluation of Ca-
nary and compare it with the state-of-the-art reliability
approach in FaaS platforms. Our evaluation shows that

Canary reduces the application recovery time and dollar
cost by up to 83% and 12%, respectively, over the

default retry-based strategy, and improves application

availability with an additional average execution time and

Fig. 1: Execution flow of a function in FaaS.

cost overhead of 14% and 8%, respectively, as compared

to the ideal failure-free execution.

The rest of this paper is organized as follows. In Section II,

we discuss the motivation and background of various failure

types and the current fault tolerance mechanism of FaaS plat-

forms. In Section III, we formulate the problem of providing

fault tolerance in FaaS platforms. In Section IV, we explain

the design of our proposed framework Canary and explain
the functionality of each module. In Section V, we present

the implementation details of Canary along with a detailed
comparison of our approach with alternate approaches. In

Section VI, we summarize the existing efforts along with their

limitations that are related to Canary. Finally, in Section VII,
we conclude the paper.

II. BACKGROUND AND MOTIVATION

A. FaaS Execution and Failure Types
The execution workflow of a function is shown in Figure 1.

Serverless functions are small and modular pieces of code that

typically perform a single function in response to an event. In a

FaaS platform, functions are created by providing application

code, its runtime, memory allocation, trigger, and a unique

name. Triggers invoke functions that subsequently execute the

provided application code in the specified runtime. A function

can consume input data and process the data in a single or

multiple phases called states. These states are referred to as

the current state of function variables and data structures.

Functions produce intermediate data and final data that is

stored in a storage system ready to be consumed by other

functions. Once the processing is complete, a function can

invoke other functions which work on the data produced by

the previous functions.
The FaaS platform can experience failure at each phase of

the function execution. These failures are mainly classified

under four categories, i.e., request, concurrency, function, and

runtime. Request failures are related to the resources requested

for a function that exceed the limits associated with a particular

account. Concurrency failures are related to the number of

concurrent executions requested by the application and the

maximum concurrent invocations allowed by the FaaS plat-

form. Function failures that stem from the application code and

runtime failures are related to the preparation and setting up of

the runtime required for the function’s execution. Function and

runtime failures are important from a FaaS perspective since

they cause stateful applications to lose data, computation, and

money on public FaaS platforms. These failures must be either

handled proactively or their recovery time must be minimal to

meet application SLAs.



B. Reliability and Fault Tolerance in FaaS Platforms

Failures occur at various levels such as hardware [29]–[31],
platform [32], [33], software stack [34], [35], and applica-
tion [36], [37]. However, the reliability of FaaS platforms are
based on best effort approaches. Function failures result in
requests to be dropped or executed multiple times, thus requir-
ing applications to implement stronger reliability guarantees.
Current approaches for providing stronger semantics, such as
exactly once guarantees, can be integrated into FaaS platforms
at a high cost for both latency and resource consumption.
Different types of failures, e.g., server, network links, and
software processes can result in a loss of data and inconsistent
stream processing across the data center. Therefore, providing
fault tolerance and reliability to stateful applications in FaaS
platforms is critical yet a largely unexplored area.

The adoption of serverless computing continues to rise
with more than 200% [38] increase in the average weekly
invocations over the past years. Meanwhile, the number of
failures in function execution has increased from 1% for
highly maintained runtimes to about 25% for deprecated
runtimes [38]. Therefore, there is a need to mitigate FaaS
failures and reduce the recovery time of failed functions to im-
prove application reliability and response time. FaaS platforms
deployed on HPC infrastructure are directly impacted by HPC
failures [39]. The state-of-the-art fault tolerance techniques,
e.g., checkpointing [40], [41] and replication [42], [43], to
mitigate HPC failures cannot be directly applied to FaaS
platforms [44], [45] because of their unique characteristics,
e.g., the massive scale and short lifespan of invoked functions.

C. Stateless and Stateful Functions

Stateless functions execute in isolation with no prior in-
formation or inputs from previous function executions. On
the other hand, stateful functions are frequently accessed and
referred to over time. They have information on previous
function execution, and the current execution may be affected
by the status of previous executions. If a stateful function
is interrupted, terminates prematurely, then the context and
execution progress of an application is lost, making it impos-
sible to return and resume from the previous state. Moreover,
modern data center applications, e.g., iterative applications,
are stateful and depend on application data and results from
previous executions. The challenge of maintaining states ex-
acerbates for FaaS platforms, which use containers that are
designed to be stateless, portable, and flexible, for executing
the given function. Because of the popularity and ease of use of
FaaS computing, existing applications are being migrated [4]
to FaaS platforms, while new stateful applications are being
developed using FaaS platforms.

To support stateful functions, one approach is to make
the FaaS execution model stateful by default. However,
this violates the basic design concepts of short-running and
lightweight functions because persisting data to provide state-
ful capabilities would significantly increase function execution
time. Nevertheless, migration of stateful applications to FaaS
computing is inevitable, therefore, FaaS platforms must adapt

to support both stateless and stateful applications. Due to the
ephemeral nature of data in FaaS computing, the impact of
a function failure would be significant as all progress of the
failed function will be lost. Typically, stateful applications rely
on independent fault tolerance approaches, e.g., replication to
external storage, for reliably maintaining their states, which
may not work in FaaS computing because of the limited
resource allocation, both in time and space, for each func-
tion. Simple retry-based approaches do not address failure
challenges for stateful functions because the failed application
would experience loss of computation and inconsistencies in
critical data. To the best of our knowledge, there is no end-to-
end fault tolerance mechanism that adapts to both stateless and
stateful FaaS applications. In this paper, we propose an end-
to-end framework, called Canary, that enables FaaS platforms
to provide fault tolerance for stateless and stateful functions.

III. PROBLEM FORMULATION

The execution of a workload on FaaS platforms is marked
by distinct events including job launch, container launch,
container initialization, execution startup, state updates, func-
tion completion, and job completion. With a given function
failure rate on the FaaS platform, one or more containers
are subject to fail, thus increasing the total execution time,
Ttot, of applications. To minimize the total execution time,
we include checkpoint-restore and runtime replication mech-
anisms. Canary reduces the overhead of a failure by loading
the latest checkpoint onto a replicated runtime. By restoring
from the latest checkpoint, Canary eliminates the container
launch and initialization overhead, and the duration between
the function start and the latest checkpoint. To simplify the
target optimization problem, we define the total execution time
of a function f in Equation 1 as the sum of the function
launch time lchf , initialization time inif , workload execution
time execf , and the remainder of the execution finf from
the last state update to function completion. To model the
impact of checkpoint-restore and replication, we define two
binary variables αf and αi where αf equals 0 if a replicated
container is used by a function and 1 otherwise. Similarly, αi

is set to 0 for all the states that were collected during the failed
execution and 1 otherwise.

min
F∑

f=1

αf (lchf + inif ) + execf + finf (1)

We incorporate the overhead of checkpoint-restore by in-
cluding the time taken for checkpoint collection and restora-
tion in the workload execution time as defined in Equation 2.
The workload execution time is comprised of the duration
stij(i < j) between updates of states i and j, the overhead
ckpi of checkpointing state i, and the additional time tres to
restore the latest checkpoint. Thus, the optimization problem
can be formulated using the following equations:

such that, execf = tres +
S∑

i=1

αi (ckpi + stij) ,∀i < j (2)



Fig. 2: High-level architecture of Canary.

The saved checkpoints denote various function states

throughout their execution and enable the restoration of a

previous state whenever a function fails. Consequently, we

compute the total execution time of an application by including

the execution time of functions that used replicated runtime

based on Equation 3.

αf ∈ {0, 1}, αi ∈ {0, 1}, ∀f ∈ F , ∀i ∈ S (3)

IV. SYSTEM DESIGN

We now present the objectives and details of Canary design.

A. Design Objectives

The main objective of the Canary framework is to improve
the fault tolerance and reliability of FaaS platforms and pro-

vide execution and SLA-level guarantees for stateful functions.

The key objectives of the proposed framework are as follows:

1) Make FaaS platforms tolerate faults in function execu-

tion and invocation. This will enable them to execute

functions exactly once and reduce the total recovery time
for the failed functions.

2) Enable faster recovery of serverless applications from

faults by using intelligent and dynamic checkpointing

and replication techniques.

3) Replicate container runtime to ensure faster function

execution after a failure by restoring the saved state and

data in the replicated runtimes.

B. High-level System Overview

Canary ensures that functions execute exactly once on FaaS
platforms for achieving minimal application execution time.

Canary achieves this by proposing a modular architecture,
which is shown in Figure 2. Canary consists of a Core
Module that handles end-to-end job execution, failure recovery,
and coordination between various components. The Request
Validator Module is used by the Core Module to avoid fail-
ures regarding the submitted job request. The Checkpointing
Module handles the state and critical data checkpointing. The
Runtime Manager Module keeps track of all the function
runtimes deployed and the runtime replicas for the jobs created

by the Replication Module. Finally, the database stores the
function states and the checkpoints.

Fig. 3: High-level orchestration of Canary modules.

C. System Design

In this section, we describe the details of the new software

modules added in Canary to reduce the total execution and
recovery time with checkpointing and replication techniques.

1) Core Module: The Core Module in Canary orchestrates
execution between its various components and modules, as

shown in Figure 3. It exposes a lightweight listener interface

that receives incoming user requests and forwards them to the

Request Validator Module for validation. It generates a set of
unique IDs for the submitted jobs functions, checkpoints, and

replicas used to identify functions, corresponding applications,

location of functions, identification of the failed functions, and

the associated checkpoints.

The Core Module handles the creation and maintenance of
the required database tables. The five main tables created in

the database are worker info, job info, function info, check-
point info, and replication info. The worker info table stores
information about the platform, including the number of nodes

in the cluster. It also stores worker-specific information, i.e.,

assigned roles and system specifications. The job info table
stores information about the submitted job, its unique ID, the

number of functions launched for each job, and other critical

information required by the Core Module. The function info
table stores information about all the functions launched for

the submitted jobs, their unique IDs, the job ID to which

they belong, runtime for each function, and the worker on

which the function is deployed. The checkpoint info table

stores information about the checkpoints of each function,

its unique ID, job ID, function ID, and the state information

related to the checkpoint. Finally, the replication info table
stores information about the replicated runtimes deployed on

the FaaS platform. It also includes the runtime information, job

ID, and the worker information where the replicated runtime

is deployed.

The Core Module forwards the validated requests for

scheduling and creates database entries based on the type of

job, its runtime, number of scheduled functions, checkpoint-

ing frequency, and the replication factor. The Core Module
forwards the information to the Checkpointing Module, which
stores the checkpoint metadata in the database. It coordinates

between different components of Canary’s runtime, which
includes scheduling of function runtimes, usage details, and

the entire life cycle, through the Runtime Manager Module. It
also keeps track of all scheduled functions and their current

states. Upon function failure, the Core Module detects the
failure, identifies the function runtime, gathers checkpoint

information, and initiates the recovery process. The recovery



Algorithm 1: State and Critical Data Checkpointing.
Input: Func. ID fid, Job ID jid, State st, Checkpoint ckpt

1 begin
2 for each st do
3 if user ckpt then
4 get ckptdata, ckptname, ckptloc
5 if ckptdata > dblimit then
6 ckptdata → disk
7 ckpt← {ckptname, ckptloc}
8 else
9 ckpt← {ckptdata}

10 end
11 else
12 ckpt← {st, datacric}
13 end
14 if ckptcur > ckptthresh then
15 remove ckptoldest from db
16 end
17 push {jid, fid, ckptid, ckpt} to db
18 end
19 end

process restores the function from its latest checkpoint avail-
able on the runtime associated with the failed function.

2) Request Validation Module: The main function of the
Request Validator Module is to prevent request failures be-
fore Canary starts processing the request. It accepts requests
from the Core Module and uses the job information and the
resources requested from the FaaS platform for validating
the job request. The Request Validator Module verifies if
the requested resources are within the resource limits of the
FaaS platform, and the user has not reached the associated
maximum concurrent function limit. For example, if invoking
a new function would result in a concurrency failure because
the requested functions, if launched, will exceed the maximum
limit, the Request Validator Module notifies the Core Module
which queues the job until there is enough limit available to
launch new functions.

3) Runtime Manager Module: The Runtime Manager Mod-
ule keeps track of all runtimes used by the running functions
in the cluster. It works alongside the Replication Module to
replicate the runtimes being used in the cluster. It maintains
information about the used runtimes and their corresponding
replicated runtimes and enables the Core Module to map the
failed functions to the replicated runtimes in the event of
a function failure. Moreover, the Runtime Manager Module
stores the location information of replicated runtimes that are
deployed in the cluster.

4) Checkpointing Module: Stateful functions produce data
that must be stored and persisted during and after the function
execution along with the state information. Functions that
belong to the same application require the state information
and data from the previous functions for their successful
execution. Canary supports fault-tolerant stateful function by
maintaining the state information of all functions along with
the application data.

a) State Management: The Checkpointing Module ex-
poses its core functionality via an API that interacts with other

modules to monitor and record the state of running functions.
Application states can be defined in the application code that
will be used by the Checkpointing Module for checkpointing.
With minimum modification to the function code, application
states are registered by calling the Canary APIs. The specified
states are stored throughout application execution and are used
to recover a failed function.

The Checkpointing Module exposes the functionality to
define critical data within the application code that should be
replicated and persisted after the successful function execution.
This functionality is critical when an application must store its
critical data structures along with the function state. This data
is added to the state information. We show Canary’s approach
of checkpointing application states and critical data in Algo-
rithm 1. The location for storing critical datasets is determined
by the total size of the dataset. Checkpoints in Canary are
primarily maintained in an in-memory key-value (KV) data
store. We use Apache Ignite [46] as the KV store for storing
the state information. However, in-memory databases limit
the size of data stored per key. The Checkpointing Module
transfers the checkpoint data to a faster storage tier available in
the system such as persistent memory, Ramdisk, or to a shared
storage accessible to all cluster nodes. The storage hierarchy
is determined at the deployment phase of the FaaS platform
and can be overwritten by a custom storage endpoint, such as
an S3 bucket. The Checkpointing Module executes in a linear
time to checkpoint the state of each function in a given job.
Algorithm 1 yields O(S) complexity, where S denotes the
number of states within a function.

b) Checkpoints: Canary records a series of state check-
points throughout the function execution and stores the latest
n checkpoints in an in-memory data store. The initial value
of n is set to 3, which is dynamically adjusted throughout the
execution based on the application data to be checkpointed and
the frequency of states produced during function execution. An
application state is comprised of current values of its critical
data structures that are registered with the Checkpointing
Module. The critical data remains available in the persistent
storage or a KV store and is used to restore the corresponding
failed function. For enabling quick lookup, application states
are stored in a KV store where the key corresponds to the
function ID and the value corresponds to its states. When
a new function is assigned the task of a failed one, the
Checkpointing Module issues a query to the KV store to
retrieve the state of the given function ID. When the size of the
checkpoint and the data exceed the database limits, the data
is then stored in a fast storage tier or external storage, e.g.,
an in-memory storage or a distributed persistent memory, and
the location of the checkpoint is pushed to the database along
with the state information. For a DL workload, the checkpoint
also includes a copy of pre-processed data, model weights,
and other data required to resume the training process from
the failed epoch.

By default, Canary implements an implicit checkpointing
strategy, which has coarse-grained control over checkpoint
intervals, location of stored checkpoints, and restoring function



Algorithm 2: Runtime Replication at Job Submission
Input: Act. funcs. (funcact), Act. repl. (repact), Repl. loc.

(reploc), Sched. funcs. (funcsch), Sched. runt.
(runsch)

Output: Req. repl. (repreq), Repl. loc. (reploc), Repl.
thresh. repth

1 begin
2 compute functot given (funcact, funcsch)
3 for each runsch do
4 compute repreq
5 if repreq ≥ 1 then
6 compute cur repfactor given (funcact, repact)
7 compute new repfactor given (functot,

repact)
8 if cur repfactor < new repfactor then
9 determine reploc

10 launch repreq at reploc
11 end
12 end
13 end
14 end

state from the stored checkpoint in the event of a failure.
Canary also supports explicit checkpointing where the appli-
cation can specify its state and data for creating checkpoints,
thus reducing the checkpoint size and the associated overhead
while increasing the programming complexity. In both of these
approaches, checkpoints are first stored in either the KV-store
or written in-memory and then flushed asynchronously to the
shared storage that is available to all nodes in the cluster.

c) State Recovery: The Checkpointing Module handles
the recovery of failed functions by restoring the function
state and data to a new function. Checkpointing provides the
record of previous states of the function to avoid restarting the
function from the beginning. The Core Module detects failed
functions in the cluster and handles the end-to-end recovery
process. It identifies the execution runtime required by the
failed function, the latest checkpoint available, and the location
of the checkpoint data. The Core Module ensures that the
best possible replicated runtime is selected to minimize the
recovery time. Once the replicated runtime is located, the
function is deployed on it along with the checkpointed function
state and data. The Core Module notifies the Runtime Manager
Module about the runtime utilized during the recovery process.
Once the function state has been recovered, the function
resumes normal execution and continues execution from its
previous state. In the event of multiple function failures,
the default retry-based strategy concurrently restarts all the
failed functions which leads to resource contention and further
increases the recovery time.

5) Replication Module: To ensure that Core Module
quickly recovers failed functions, the Replication Module
replicates the runtimes used for launching functions of the
scheduled jobs. The runtimes used at any given point are
replicated throughout the cluster to enable faster recovery by
reducing initialization and cold-start latencies by providing
warm function runtime. Instead of creating a replica of each

running function’s runtime, the Runtime Manager Module
detects the runtime of an invoked function and verifies whether
a corresponding replica is active. The Runtime Manager Mod-
ule only triggers the replication when a function is created
with a runtime that is not already replicated in the cluster.
Once a replica is assigned to a failed function, the Runtime
Manager Module creates a new replica if an active function is
deployed with the same runtime to replace the existing replica.
Therefore, throughout the execution of a function, an active
replicated runtime is available to use for failure recovery.

Algorithm 2 explains the runtime replication workflow in
Canary. Once a new job is submitted to the FaaS platform,
the Core Module determines the number of functions funcsch
to launch for the job and the function runtimes runsch to
schedule. The replication module uses a linear-time method
to compute the total number of functions functotal, including
active functions funcact, and iterate through the scheduled
runtimes for replication. For each runsch, the replication
module computes the required number of replicas repreq
for a given job. The current replication factor cur repfactor
is the ratio of funcact and repact and the new replication
factor new repfactor includes the functotal and repact. The
replication factors determine if enough runtime replicas are
available for all running functions. The runtime replication
module keeps the current and new replication factors consis-
tent and if the cur repfactor is less than the new repfactor, a
new runtime replica is launched at the replica location reploc
which is determined to avoid a single point of failure for the
submitted job as well as for the FaaS platform. The reploc
is crucial to recover failed functions as it provides enough
replicas to the Core Module to select a suitable replica to
ensure minimal recovery time on heterogeneous resources.

a) Runtime Replication Factor: The runtime replication
factor maps running functions to the replicated runtimes. A
higher factor value shows that the number of replicated run-
times for each runtime is higher. This provides redundancy and
allows faster recovery for large function failures but results in
higher operating costs. A lower value of the replication factor
means that less number of replicated runtimes are launched.
This results in lower cost, but, in the event of large function
failures, the initialization time of Canary for launching new
functions becomes the same as the default retry-based strategy.
The Replication Module dynamically adjusts the replication
factor to achieve an optimal operating point which results in
less frequent restarts and lower operating costs.

b) Replica Placement: The Replication Module handles
the placement of runtime replicas in the cluster. The replica
placement follows a set of rules that determines the ideal
location for a replica based on the location of the running
functions. The first replica is placed on any worker that hosts
the job function. Further replicas are placed away from the
worker hosting the first replica to avoid a single point of
failure for the replicated runtimes. The placement decisions
are locality aware and take into account the location of worker
nodes in the data center.



V. PERFORMANCE EVALUATION

In this section, we present the evaluation of the proposed
Canary framework. We explain our evaluation methodology
and testbed, workloads used in evaluating Canary, and the
performance metrics that are used to analyze and compare the
effectiveness of Canary with alternative approaches.

A. Implementation

We implemented Canary using approximately 1300 lines of
python code to demonstrate its effectiveness using the open-
source Apache OpenWhisk [15] serverless platform. However,
Canary can be integrated with other serverless platforms,
e.g., AWS Lambda [12], Azure Functions [14], and Google
Cloud Function [13]. Our hand-tuned implementation auto-
mates launching functions by integrating with the OpenWhisk
controller. In our implementation, we launch one container per
function and leave consolidating multiple functions in a single
container to reduce the cold start latency for future work.

B. Evaluation Methodology

We compare Canary with the baseline that represents an
ideal scenario where there are no function failures during
workload execution. We also compare the performance of
Canary with a more realistic scenario where the FaaS platform
experiences failures and relaunches the failed functions to
restart their execution from the start. In our evaluation, we
measure and compare the recovery time of the failed functions
and the total application or job execution time. We run
each experiment 10 times and report the average for each
experiment. Overall, we observe a negligible variance, i.e., less
than 5% between different executions of the same experiment.
We define error rate as the percentage of the failed functions
for a given workload. We simulate failures by randomly killing
containers that host functions based on the defined error rate,
and vary the error rate from 1% to 50% to analyze Canary in
a variety of execution environments.

C. Evaluation Setup

1) Evaluation Testbed: Our testbed consists of a cluster of
16 bare-metal servers from the Chameleon Cloud testbed [47]
that are connected using 10G Ethernet. Each server has two In-
tel Xeon Gold 6126/6240R/6242 processors, contains 192 GB
of main memory, and runs Ubuntu 20.04 LTS server operating
system. We deploy OpenWhisk [15] on a Kubernetes [48]
cluster along with Docker [49], OpenWhisk CLI (wsk), and
CouchDB [50]. We deploy Apache Ignite [46] to store data in
the highly scalable distributed cluster using replicated caching
mode which ensures that the data is available in the entire
cluster. We also enable Ignite native persistence to provide
data persistence. The underlying storage for storing large files
is shared over NFS [51] across the cluster nodes. We also
enable the option to use Intel Optane persistent memory [52]
in AppDirect mode [53] or Ramdisk [54] for storing large files
and to avoid I/O bottlenecks.

2) Workloads: To evaluate Canary, we use five classes
of application workloads: deep learning (DL), web service,
Spark [55] data mining, data compression, and graph search.
These applications are developed using Python, Node.js, and
Java programming languages and use their corresponding
execution runtimes. We used these workloads as these are
the most widely used function runtimes in FaaS based on the
current FaaS adoption trends [38], and include representative
serverless HPC applications from the SeBS [56] benchmark.
The DL workload is a TensorFlow [57] application that trains
ResNet50 [58] model on the MNIST [59] dataset over 50
epochs. Checkpoint data for a DL application include weights
and biases collected after every successful completion of an
epoch. Web service workload is composed of responding
to 50 requests from a web front-end to a database, i.e.,
PostgreSQL [60]. Each request is composed of five queries and
checkpoints include queries and responses after each request.
Spark data mining workload entails extracting, transforming,
loading, and analyzing the given dataset to get meaningful
insights, where each part of the computation is implemented
as serverless functions. Specifically, it computes the diversity
index at the local and national levels over the US census
data [61]. A checkpoint is collected when the output for
each location is computed and aggregated with the existing
results. Data compression workload is a modified version
of the SeBS 311.compression benchmark that performs zip
compression [62] on 50 input files (∼1 GB each). The input
and output files are stored in the local storage instead of S3.
Each function processes multiple input files and a checkpoint
is performed after compressing an input file. Finally, the
Graph search workload is based on the SeBS 501.graph-bfs
benchmark which performs Breadth-First Search (BFS) using
igraph [63] in a binary tree with 50 million vertices. Each
function is checkpointed after 1 million vertices have been
traversed. Depending upon the experiment, these workloads
require invoking one or more functions where each function
is invoked in a separate container.

3) Performance Metrics: In our evaluation, we consider the
total execution time, i.e., the time required to complete the
submitted application including the time consumed in recov-
ering from failures to study the effectiveness of the studied
approaches. We also measure the failure recovery time and
perform a cost-benefit analysis of Canary in terms of dollar
cost incurred to quickly recover from failures by leveraging
additional resources, e.g., for function runtime replication.

D. Performance Results

1) Impact of Runtime Replication on Recovery Time: We
run the workloads as functions on OpenWhisk and report the
impact of replicated runtimes on the failure recovery time
for the given workload runtimes. Figure 4 shows the impact
of replicated runtimes on the workload execution time with
varying failure rates for 100 invocations of Python, Node.js,
and Java container runtimes. We observe that the replicated
runtimes reduce the recovery time by up to 81% as compared
to the default retry-based recovery strategy. Moreover, we
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Fig. 4: Impact of replicated runtimes on recovery time for 100
function invocations.
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Fig. 5: Impact of replicated runtimes on recovery time with a failure
rate of 15%.

observe that as the failure rate increases, the recovery time of
the default retry-based strategy increases almost linearly due
to the increasing number of failed functions. However, due
to the replicated runtimes, Canary keeps the recovery time
fairly constant and stays close to the ideal scenario where
there are no function failures. Similarly, the replica placement
also incorporates resource heterogeneity to mitigate the impact
of variation in recovery time on application performance. As
more functions fail, the replicated runtimes are utilized effec-
tively and Canary dynamically increases the replication factor
to cope with the failures and reduces function initialization
time. Overall, Canary reduces the recovery time by 76%, 81%,
78%, 79%, and 80% on average as compared to the default
retry-based approach for DL, web service, Spark data mining,
data compression, and graph search workloads, respectively.

We also run experiments to observe the performance of
replicated runtimes for a large number of function invocations
in a cluster setup with a fixed failure rate of 15%. The
functions fail at random intervals during function execution.
The results are shown in Figure 5. We observe that the
runtime replication strategy performs better than the default
retry-based strategy by up to 82%. The recovery time of
Canary remains close to the ideal scenario where there are no
failed functions. The additional time as compared to the ideal
scenario is due to the time required to migrate the function to
the replicated runtime and includes cases where the platform
has to wait for the replicated runtimes to be ready where large
numbers of functions fail simultaneously and there are not
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Fig. 6: Impact of checkpoints on recovery time for 100 function
invocations.

enough replicated runtime to host the failed functions. Canary
strategically places the replicated runtimes based on the job,
locations of the functions, types of runtime containers used by
the failed functions, and the current resource availability in the
cluster. Overall, we observe that for this experiment, Canary
reduces the recovery time by 63%, 82%, 80%, 70%, and 71%
on average as compared to the default retry-based approach
for DL, web service, Spark data mining, data compression,
and graph search workloads, respectively.

2) Impact of Checkpointing on Recovery Time: We study
the impact of checkpoints in recovering from function failures
by increasing the failure rate for a fixed number of function
invocations. To simulate failures at the given failure rate, the
functions are killed at random times during the job execution.
The result is shown in Figure 6. We observe that the recovery
time depends on the function failure rate and the time at which
the failure occurs during the function execution. The recovery
time for the retry-based strategy is large when a failure occurs
close to the function completion. Moreover, we observe that
the total execution time of a failed job remains close to the
ideal execution scenario of failure-free execution specifically
when the failure rate is low. Canary reduces the recovery time
of the failed function by up to 83% as compared to the default
retry-based recovery strategy. Overall, we observe that for this
experiment Canary reduces the recovery time by 82%, 81%,
79%, 83%, and 82% on average as compared to the default
retry-based approach for DL, web service, Spark data mining,
data compression, and graph search workloads, respectively.
Canary ensures that the function is recovered from the latest
checkpoint, thus reducing the recovery time and keeping it
consistent regardless of when the failure occurs during the
function execution.

3) Impact of Using Canary on the Workload’s Makespan:
We study the impact of Canary on the total execution time
of the studied workloads. Figure 7 shows the result of the
total execution time of Canary with the default retry-based
approach for various failure rates using the studied DL work-
load. The replicated runtimes provide a quick way to restore
the latest checkpoints of the failed functions. We observe that
Canary is more effective than the retry-based approach as the
failure rate increases and when a failure occurs towards the
end of workload execution. We also compare the execution
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Fig. 7: Execution makespan of 100 function invocations for the DL
workload with replication and checkpointing.

time with the ideal scenario where there is no function failure.
The retry-based strategy diverges from the ideal execution
time as the failure rate increases, however, we observe that
the execution time using Canary is comparable to the ideal
execution time. Overall, Canary increases the execution time
by 14% on average as compared to the ideal scenario without
any failure. The overhead associated with Canary is because of
the worst case scenario where the function fails right before
a checkpoint is taken and recovers from the previous saved
checkpoint. The retry-based recovery strategy performs the
worse because of the loss of the entire computation of the
failed function and restarting of the execution from the start
upon failure. Our evaluation shows that Canary reduces the
total execution time by up to 83% with a failure rate of 50%
over the default retry-based recovery strategy. We observe
similar performance trends in terms of the execution time for
the web service and Spark data mining applications.

4) Impact of Using Canary on Dollar Cost: We perform a
dollar cost analysis of using Canary by calculating the total
cost of the launched functions and the replicated runtimes.
We consider the pricing model of $0.000017 per second of
execution, per GB of memory allocated from IBM Cloud
Functions [11] as it is based on Apache OpenWhisk which
we use for prototyping Canary. However, the pricing model
of AWS Lambda [64] is comparable, i.e., ∼$0.0000167 per
second of execution, per GB of memory allocated. We corre-
late the cost with the total job execution time. For our analysis,
we consider the total execution time as the time from the
first launched function to the completion of the last function.
Moreover, the cost of concurrent functions is aggregated to
represent the overall dollar value of a workload’s execution.

Figure 8 shows the cost and execution time of Canary as
compared to the retry-based recovery strategy. We observe that
as the failure rate increases, the total cost for both Canary
and the default strategy increases proportionally. Moreover,
the difference between the cost of the retry-based strategy
and Canary becomes larger with the increase in error rate.
Canary has a lower cost by up to 12% as compared to the
default retry-based strategy due to the replicated runtimes and
checkpointing strategy. Overall, Canary improves application
availability at an average additional cost of 8% as compared to
the ideal scenario without any failure. We also observed that
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Fig. 9: Impact of replication on cost and time of training ResNet50
on CIFAR10 over 50 epochs with aggressive replication (AR), lenient
replication (LR), and dynamic replication (DR).

the cost of the retry-based strategy is much higher as compared
to Canary for high failure rates. For the retry-based recovery
strategy, functions failing close to the end of their execution
incur much higher costs as they have to redo the entire execu-
tion from the beginning. In the case of Canary, the function is
recovered from the latest available checkpoint and completes
the remaining execution. We observe that the execution time
for Canary is 43% less on average as compared to the retry-
based technique demonstrating the benefits of Canary at a
reduced cost even with the additional overhead of replicating
the runtimes. The overhead of function checkpointing and data
replication in Canary results in an additional cost that depends
on the error rate, checkpoint location, network congestion, and
the number of replicated runtimes.

We also evaluate the impact of replication on the cost
and execution time of functions. We evaluate three replica-
tion strategies: dynamic, aggressive, and lenient replication.
Dynamic replication (DR) is the default strategy of Canary
in which the replication factor is dynamic and adjusted
based on the failure rate. Aggressive replication (AR) uses
a higher replication factor for each running job. Lenient
replication (LR) maintains one active replica throughout the
execution of each job. The results of this experiment are shown
in Figure 9. We observe that when Canary increases the
replication factor, the associated cost also increases because
of concurrently running the additional runtimes with the
application functions. LR strategy results in slightly lower cost
as compared to the DR strategy, however, the job execution
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Fig. 10: Comparison of Canary with active-standby (AS) and request
replication (RR).

time with LR increases at a higher rate with the increase in
the failure rate. Moreover, we observe a slower increase in
the execution time using AR as compared to LR and DR.
This trend shows that dynamic replication used by Canary
scales better and provides better reliability as compared to
the LR approach. AR yields a higher overall cost but has the
lowest execution time. As more functions fail, the number of
deployed replicas under the AR approach increasingly matches
the number of failed functions. This trend results in fewer
unused instances and a lower cost per replica. Overall, the
DR approach outperforms AR and LR approaches by 25%
and 2% on-average dollar cost savings, respectively.

5) Comparison of Canary with State-of-the-Art Fault Tol-
erance Techniques: We compare the performance of Ca-
nary with state-of-the-art fault tolerance techniques i.e., re-
quest replication (RR) [65] and active-standby (AS) [66]. RR
launches multiple replicated functions for each given function
based on the given replication factor. Similarly, AS creates
two function instances; one for serving all requests and the
other as standby. In our evaluation, we launch one replica per
request. The incoming requests are forwarded to all functions
and the first successful response is accepted and the rest are
discarded. Figure 10 shows the comparison of Canary with RR
and AS approaches. We observe that both RR and AS result
in higher costs than Canary by up to 2.7× and 2.8×, respec-
tively, because of launching additional functions as replicas
or standby. As the error rate increases, the probability of
active, standby, and replicas functions being killed at the same
time increases, thus increasing the overall execution time and
cost as failed functions must be restarted from the beginning.
Similarly, we observed that the standby function stays dormant
while replicas process incoming requests, hence, consuming
additional system resources, resulting in resource contention,
and increasing the resource requirements for functions execu-
tion. We observe that as the error rate increases, the execution
time of Canary increases by 5% on average as compared to
RR due to the checkpoint restore approach of Canary. The
execution time of AS increases with the error rate because an
increased number of failed functions are redeployed on the
standby instances. Overall, the execution time of AS is up to
34% higher than Canary. This is because stateful functions
depend on previous states for correct operation and functions
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Fig. 11: Impact of Canary on recovery time with a cluster size of
16 and increased function invocations.

are restarted as there is no checkpoint in the AS technique.
6) Impact of Scaling on Canary Performance: We increase

the size of the computing cluster and the number of submitted
jobs to observe the performance of Canary. We concurrently
launch several hundred, i.e., 200, 400, 800, and 1000, functions
and randomly kill the running functions that belong to various
FaaS jobs and observe the total execution time of the submitted
jobs. We also increase the failure rate proportional to the
number of functions launched. Figure 11 shows the results of
this experiment. We observe that as the number of functions
increases, the total recovery time of the submitted batch of
FaaS jobs remains fairly constant as compared to the default
retry-based approach. The recovery time of Canary stays
close to zero which matches the optimal failure-free scenario.
However, with increased failure rates Canary experiences a
slight increase in the recovery time due to recovery overhead.
Our experiments include cases with node-level failures that
lead to total loss of computation for the jobs scheduled on
the failed node. For large function invocations, the retry-based
strategy shows an interesting behavior, i.e., the recovery time
depends on the time at which the function fails and if there is
any node-level failure. For node-level failures, a large number
of functions are restarted at the same time, hence, the recovery
time for these functions overlap and is equal to the longest
recovery time of any single failed function. Node-level failures
in Canary are treated differently due to the availability of
checkpoints in the shared storage system that is accessible
throughout the cluster. Overall, in this experiment, we observe
that Canary reduces the average recovery time by up to 80%
as compared to the retry-based approach.

Next, we study the scalability of the studied approaches
by increasing the cluster size from 1 to 16 nodes. In this
experiment, we use a failure rate of 15% and a fixed num-
ber of function invocations, i.e., 5000. Figure 12 shows the
results. We observe that as the cluster size increases, the total
execution time of batch jobs decreases for all three execution
scenarios. The performance of Canary is close to the ideal
case, with an average increase of 2.75% in the execution
time, when increasing the number of nodes from 1 to 16.
However, Canary reduces the overall execution time by up
to 17% as compared to the retry-based approach. Overall, we
observe the scalability of 1.2×, 1.18×, and 1.10× for the ideal,
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Fig. 12: Impact of Canary on recovery time with 5000 function
invocation with a failure rate of 15%.

Canary, and the default retry-based approach, respectively,
when increasing the number of nodes from 1 to 16.

E. Discussion

Existing FaaS platforms implement a retry-based recovery
strategy for all failed functions which may not guarantee
successful function execution. Moreover, using a retry-based
approach re-executes the failed functions multiple times lead-
ing to significantly higher execution time and associated
cost as compared to the proposed Canary framework. The
performance of retry-based failure recovery is worse when
functions fail frequently and towards the end of a function’s
execution. In this section, we discuss the implications of the
replication and checkpointing techniques on the performance
of Canary and analyze its potential benefits for both cloud and
FaaS service providers.

1) Replicating Function Runtimes: Our evaluation shows
that replicating execution runtime and critical application
data significantly improves the recovery time of serverless
functions. Replication provides warm containers to resume
the execution of the failed functions. However, the bene-
fits of replication are influenced by the number of replicas
maintained per job. Our analysis of dynamic, aggressive, and
lenient replication strategies shows that Canary achieves better
performance by determining the number of replicas based
on the error rate. Consequently, Canary yields a trade-off
between time and cost of execution. Lenient replication incurs
less computation overhead for the same cost as compared
to the dynamic replication approach when the failure rate
is low. This performance gap reduces as the number of
failed functions increases because a workload with the lenient
function replication strategy spends more time on starting the
new replicas of function runtimes. The aggressive replication
strategy spends slightly higher time for a significantly higher
cost as compared to dynamic replication. Therefore, dynamic
replication with Canary performs better than the aggressive
and lenient replication strategies.

2) Checkpointing Function States and Data: The retry-
based fault tolerance strategy forces re-executing a function
from its first instruction. The use of checkpoints to store
function states and critical data significantly reduces the job
execution time in case of function failures. The frequency of

checkpoints adds overhead to FaaS computing, however, it ad-
dresses the challenges of unpredictable system failures, such as
network failures. The ideal scenario is to checkpoint function
states and data right before a failure or state completion, and
restart the failed function using the latest checkpoint. However,
it is challenging to accurately predict these events. Canary
maintains up-to-date checkpoints after successful completion
of function states to ensure quick recovery of failed functions.

3) Benefits of Canary for FaaS Platforms: Fault tolerance
and resiliency are key features for measuring the quality of
services provided by the cloud platforms. Canary integrates
replication and checkpointing techniques to ensure a reduced
execution time. The traditional retry-based approach employed
by the existing FaaS platforms leads to a higher job execution
time, which negatively impacts time-sensitive applications and
may violate their SLAs. Moreover, longer function execution
requires occupying the same resources for the same job for
a longer period of time. Canary addresses these issues and
alleviates the challenges of resource scheduling of incoming
jobs by significantly reducing the impact of failures thus
freeing up expensive data center resources.

4) Benefits of Canary for FaaS Users: FaaS offers an
attractive computing model for reducing the cost of using
cloud resources without negatively impacting application per-
formance. However, the cost benefits of deploying application
on FaaS platforms is undermined by unexpected failures. The
default retry-based strategies used at large by cloud providers
significantly increase FaaS costs. Canary alleviates the burden
of extending the expected duration of a job and enables FaaS
users to reduce the function completion time as compared
to the retry-based approach. Specifically, Canary improves
the reliability of time-sensitive applications by reducing their
failure recovery time.

VI. RELATED WORK

In this section, we provide an overview of the existing
efforts that are closely related to the contributions of this paper.

A. Stateful FaaS

Modern FaaS applications are composed of several closely
connected components launched as functions. These compo-
nents communicate and share states through an additional
storage layer that requires fine-grained state management at
a low cost [22]. A well-orchestrated state-sharing technique is
required to avoid issues with non-atomic updates, concurrency
control, duplication, etc. [67]. Existing research has addressed
the design of such a data layer for stateful FaaS in three main
directions, i.e., function composition, external storage, and
low latency shared memory layer. State sharing between FaaS
functions is achieved through function composition when two
consecutive functions are executed such that the output of the
first function is the input of the second function. This sharing
technique is solely applicable when the output size remains
within the quotas of the FaaS platform. When a large data
transfer is required between functions, FaaS applications rely
on external storage systems, such as AWS S3 [68], Google



Cloud Storage [69], and IBM Cloud Object Storage [70].
Despite their high data access latency, these solutions are
used to facilitate the design of stateful applications and en-
sure data persistence in FaaS. In-memory KV stores, such
as Redis [71] and MemcacheDB [72], are used to provide
low latency and high bandwidth, but enabling persistent data
storage in KV stores significantly increases access latency
and reduces bandwidth. To facilitate function auto-scaling,
FaaS platforms, such as Cloudburst [73], maintain states in
auto-scaling and fault tolerant KV stores, e.g., Anna [74].
Using a distributed shared memory storage system provides
a trade-off between latency and data size while improving
state management [22], [75]. However, concerns regarding
memory address space isolation [76] are not addressed in such
approaches. Similarly, Faaslets [76] employs a WebAssembly
software-fault isolation tool to provide isolation while sharing
memory regions between serverless functions.

B. Fault Tolerance Approaches in Cloud Computing

Failures are addressed in cloud computing using approaches
such as replication [77], checkpoint [78], checksum [79],
self-healing [80], retry [81], safety-bag checks [82], task re-
submission [83], etc. Fault tolerance techniques are grouped
into two categories, i.e., proactive and reactive. Proactive
fault tolerance [84] involves preemption and migration [85],
self-healing [80], periodically reboot with a clean copy [86],
or load balance when the resource utilization threshold is
reached [87]. Reactive fault tolerance [88] includes techniques,
such as, retries [81], task resubmission to the same or a
different node [83], and reconfiguration [82]. Proactive and
reactive fault tolerance techniques are often used in combina-
tion with each other to improve system reliability [89]. Canary
combines both of these techniques by maintaining runtime
replicas and preemptively saving checkpoints during FaaS
job execution, and completing the remainder of the workload
execution in a replica in case of failures.

C. Fault Tolerance in Stateful FaaS

The most widely-studied failures in serverless computing
are the failures that are related to resource limitations on
FaaS platforms [90]. Existing research addresses hardware
and network issues, however, hardware failures are mainly
explored from the perspective of cloud providers [30]. Server-
less platforms have built-in fault tolerance techniques, such as
checkpointing [91], retries [17], and object replication [92].
However, function failure can still occur due to memory, time-
out, network, concurrency, and user quotas. These failures are
more detrimental to stateful applications due to the cost associ-
ated with the loss of computation. Existing efforts provide fault
tolerance and reliability to stateful applications by integrating
object storage, KV stores, or optimizing file systems [93] to
facilitate function retries or resubmission. Moreover, log-based
techniques that monitor execution logs have been explored
for fault tolerance and data consistency [94]. Monitoring logs
facilitate the detection of function states and the coordina-
tion of chained and stateful FaaS applications. To further

optimize state management for data consistency guarantees,
transaction processing techniques are used to control read and
write operations on intermediate data [95]. These techniques
involve data staging and committing after transaction vali-
dation. Nevertheless, transaction processing techniques add
an overhead to the target system [96]. Similarly, as more
FaaS applications depend on network-based services, node
failures cause requests to be re-executed multiple times [97].
Two strategies, i.e., request replication and active standby
have been proposed [66] to improve fault tolerance. Request
replication involves having multiple replicas to execute the
same request and returning results to the client once results are
returned from any replica. Active standby refers to maintaining
one passive instance whenever there is an active function.
The passive function is activated when the function fails
and triggers the creation of a new passive instance. These
approaches are better than function retries but can yield a
higher cost as more requests are submitted. Request replication
results in multiple unused function instances and one passive
instance may become a bottleneck with multiple consecutive
function failures. The aforementioned shortcomings in the
existing approaches require developing techniques to improve
fault tolerance and reliability in FaaS. The dynamic replication
and checkpointing approaches in Canary adjust the replication
factor and checkpointing frequency to provide improved fault
tolerance and reduced cost as compared to these approaches.

VII. CONCLUSION AND FUTURE WORK

Function-as-a-Service (FaaS) platforms use the retry-based
failure recovery strategy which incurs significant overhead for
executing stateful applications where each application stage
depends upon the output of previous stages. In this paper, we
address this challenge and present a fault-tolerant and resilient
stateful FaaS framework, Canary, that extends the existing
FaaS platforms by adding new software modules for storing
function states, replicating function runtimes, and checkpoint-
ing critical data for faster failure recovery. Our evaluation
using diverse FaaS applications shows that Canary can tolerate
large failures and reduces the recovery time and dollar cost
by up to 83% and 12%, respectively over the default retry-
based recovery strategy. Moreover, Canary provides improved
application availability at the additional average execution time
and cost overhead of 14% and 8%, respectively over the ideal
scenario that does not incur any failure. In our future work, we
will extend the Canary framework to predict and proactively
mitigate failures, and explore advanced techniques, such as
request and function replication, to recover from failures.
Moreover, we plan to incorporate user requirements into the
failure recovery strategy to maximize the performance and cost
benefits of using FaaS platforms.
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Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED
Function-as-a-Service (FaaS) platforms are popular for hosting state-
ful and stateless applications due to their ease of deployment, scal-
ability, and minimal management overhead. However, failures in
FaaS platform make it unreliable for guaranteeing function execu-
tion and ensuring performance requirements. This project aims to
address the reliability of FaaS platforms and develop a framework,
called Canary, that mitigates the impact of failures, improves ap-
plication availability and reduces the overhead of function restart.
Here is a brief description of the testbed used in this work:

(1) The current version of the project is tested on bare-metal
servers and on cloud infrastructure with Ubuntu 18.04 LTS
OS and Apache OpenWhisk as serverless platform. Scalabil-
ity experiments are conducted in clusters of 2, 4, 8 and 16
nodes.

(2) The evaluation testbed deployment is automated along with
installation of all dependencies including Kubernetes (v1.21),
Docker (v20.10.16), Helm (v2.16.1), MongoDB (v5.0.8), and
OpenWhisk CLI (v1.2.0).

(3) FaaS functions are launched onDocker containers that are de-
ployed in Kubernetes pods using the default ‘one-container-
per-pod’ Kubernetes model.

(4) We built Docker images for each workload based on the
dependencies of each application.

(5) We built a custom Docker image ‘hpdsl/canary:dltrain’
for deep learning training by merging Apache Open-
Whisk Python 3 action runtime image with ‘tensor-
flow/tensorflow:2.4.1’ Docker image. Our deep learning work-
load consists of training ResNet50 model with MNIST
dataset.

(6) We built a custom Docker image ‘hpdsl/canary:dbquery’ for
web database query including Apache OpenWhisk and ‘psy-
copg2 v2.9.3’ as PostgreSQL database adapter. We store the
queried data in a MongoDB database. The database is de-
ployed as a docker container launched during the deploy-
ment of the OpenWhisk platform.

(7) We built a customDocker image ‘hpdsl/canary:sparkdiversity’
for US Census data mining including Apache OpenWhisk
and a jar file with Apache Spark v3.0.0.

We consider three scenarios to evaluate the performance of
Canary:

(1) Ideal scenario experiences no function failure in the FaaS
platform and applications execute without function restart.

(2) Default scenario experiences frequent function failures result-
ing in function restarts causing applications to experience
loss of computation, states, and data.

(3) Canary illustrates our framework and mitigates the impact
of functions failures.

We have conducted the following experiments to evaluate Ca-
nary:

(1) We run three stateful applications on FaaS to compare the
recovery time of the three studied scenarios and reported
the averages of ten executions for each experiment.

(2) We evaluated the total execution time of the three studied
scenarios which includes the time taken to recover from
failures.

(3) We evaluated the cost of the three studied scenarios in terms
of dollar cost incurred to recover from failures at various
errors rates.

(4) We evaluated the impact of runtime replication and check-
pointing on the function recovery time for failed functions
at random times during the lifespan of an application.

(5) We evaluated the impact of batch jobs on the total execution
time for the three studied scenarios by varying the total
number of functions invocations.

(6) We conducted several scaling experiments to evaluate the
performance of three studied scenarios by increasing the
number of cluster nodes from two to sixteen.

AUTHOR-CREATED OR MODIFIED
ARTIFACTS:
Artifact 1
Persistent ID: https://github.com/hpdsl/canary
Artifact name: GitHub Repository for Canary

Artifact 2
Persistent ID: https://hub.docker.com/r/hpdsl/canary
Artifact name: Docker Repository for Canary

Reproduction of the artifact with container: The experimental
testbed is based on a distributed Apache OpenWhisk cluster orches-
trated with Kubernetes. The deployment instructions are included
in our GitHub repository. The container images are listed in the
README file which also explains how to execute the workloads
that we have used to evaluate the proposed framework.


