

1 **Pregnancy and Lactation Impair Subchondral Bone Leading to Reduced Rat Supraspinatus Tendon-to-Bone**

2 **Insertion Site Failure Properties**

3 Running title: Effects of Pregnancy on Supraspinatus Tendon and Proximal Humerus

4 Ashley K. Fung¹, Snehal S. Shetye¹, Yihan Li¹, Yilu Zhou¹, X. Sherry Liu¹, Louis J. Soslowsky¹

5 ¹McKay Orthopaedic Laboratory, University of Pennsylvania, Philadelphia, PA, USA

6 **Submitted to:** J Biomech Eng

7 **Study approved by:** University of Pennsylvania IACUC.

8 **Author Contributions:** All authors were fully involved in the study and preparation of the manuscript. The
9 manuscript has been read and approved by all of the authors.

10 **Grant Support:** This study was supported by NSF #1653216, NIH/NIAMS R03AR065145, R01AR071718,
11 T32AR007132 and Penn Center for Musculoskeletal Disorders (P30 AR069619).

12 **Keywords:** Tendon, Mechanics, Pregnancy, Lactation, Shoulder, Supraspinatus, Rotator Cuff, Subchondral Bone,
13 Mineralization, Humerus, Orthopaedics

14 **Corresponding Author:**

15 Louis J. Soslowsky, PhD

16 McKay Orthopaedic Research Laboratory

17 University of Pennsylvania

18 Stemmler Hall; 3450 Hamilton Walk

19 Philadelphia, PA 19104-6081

20 T: 215-898-8653; F: 215-573-2133

21 E-mail: soslowsk@upenn.edu

22 **ABSTRACT**

23 Pregnant women experience weight gain, gait changes, and biochemical fluctuations that impair joint function and
24 alter the maternal skeleton. Hormonal changes increase pelvic ligament laxity in preparation for childbirth and affect
25 peripheral joint laxity. Calcium demands also rise during pregnancy and lactation, resulting in reduced bone mineral
26 density and maternal bone loss. Altered tendon properties and bone loss during pregnancy and lactation may impact
27 tendon insertion sites, such as rotator cuff tendons where insertion site ruptures are common. However, the effects of
28 pregnancy and lactation at the tendon-to-bone interface have not been investigated. Therefore, the objective of this
29 study was to evaluate supraspinatus tendon mechanical properties and insertion site microstructure during pregnancy,
30 lactation, and post-weaning recovery in female rats. We hypothesized that pregnancy and lactation would compromise
31 supraspinatus tendon mechanical properties and subchondral bone microstructure. Female rats were divided into
32 virgin, pregnancy, lactation, and recovery groups, and supraspinatus tendons were mechanically evaluated.
33 Surprisingly, tendon mechanics were unaffected by pregnancy and lactation. However, tendon modulus decreased two-
34 weeks post-weaning. Additionally, tendons failed by bony avulsion at the insertion site, and the lactation group
35 exhibited reduced failure properties corresponding to decreased subchondral bone mineralization. Lactation also
36 resulted in dramatic bone loss at the epiphysis, but trabecular bone microarchitecture recovered post-weaning. In
37 conclusion, lactation following pregnancy impaired trabecular bone microstructure and subchondral bone
38 mineralization, leading to reduced supraspinatus tendon-to-bone insertion site failure properties. These findings will
39 contribute towards understanding the pathogenesis of tendon-to-bone disorders.

40

41 **INTRODUCTION**

42 Musculoskeletal disorders such as shoulder, lower back, and knee pain affect 25% of all pregnant women [1,2].
43 Though pregnancy-related musculoskeletal injuries are often attributed to biomechanical and gait alterations that occur
44 with fetal weight gain, pregnant and postpartum women also experience substantial biochemical fluctuations that
45 impair joint function and alter the maternal skeleton [3,4]. Rising estrogen and relaxin levels during pregnancy
46 increase pelvic ligament laxity necessary for parturition [5]. These hormonal changes also have significant effects on
47 peripheral joints with clinical data demonstrating increased laxity in the knee, fingers, and wrist [6–8]. The individual
48 factors contributing to joint laxity are difficult to isolate, but decreased tendon and ligament stiffness [9] as well as
49 increased tissue length [10] have been proposed as possible causes. Additionally, calcium demands from fetal growth

50 increase during pregnancy [11] with increased demands during lactation, resulting in bone resorption, reduced bone
51 mineral density, and substantial maternal bone loss. Despite a dramatic return to pre-pregnancy hormone levels
52 postpartum, alterations in joint laxity and maternal bone properties persist [12].

53 Persistent joint laxity is a risk factor for joint dislocation [13–15], and the shoulder is the most frequently
54 dislocated major joint in the body. Recurrent shoulder dislocations subject the rotator cuff to adverse loading
55 conditions, impairing motion and predisposing tendons to degeneration and injury [16–18]. The supraspinatus tendon
56 is of particular interest because it is the most frequently torn rotator cuff tendon, accounting for a significant
57 percentage of shoulder pain complaints. Ruptures commonly occur at the tendon-to-bone insertion site, which is
58 characterized by a critical mineralization gradient that transitions from tendon to regions of unmineralized and
59 mineralized fibrocartilage before attaching to bone. Given that pregnancy and lactation are known to substantially
60 affect calcium homeostasis, the interface between tendon and bone may also be affected.

61 Our previous work showed that rats with a history of two reproductive cycles exhibited reduced supraspinatus
62 tendon insertion site modulus despite a sustained high calcium diet and a lengthy recovery period [19]. These results
63 were accompanied by inferior trabecular bone microstructure in the humeral head, including reduced bone volume
64 fraction, reduced trabecular number, and increased trabecular separation. These findings suggest that pregnancy and
65 lactation may also compromise the microstructure at the tendon-to-bone insertion site. However, bone microstructural
66 properties of insertion site region have not yet been investigated, and the transient effects of pregnancy and lactation
67 on the rotator cuff are still unknown. Changes in this region in response to pregnancy and lactation may affect tendon
68 mechanical properties and therefore alter shoulder function. Therefore, the objective of this study was to evaluate
69 changes in supraspinatus tendon mechanical properties and microstructure of the bony insertion site during pregnancy,
70 lactation, and post-weaning recovery in female rats. We hypothesized that pregnancy and lactation would compromise
71 the subchondral bone microstructure and lead to reduced supraspinatus tendon mechanical properties.

72

73 **METHODS**

74 This study was approved by the University of Pennsylvania Institutional Animal Care and Use Committee. 52
75 Sprague-Dawley female rats were divided across four groups: virgin (n=14), pregnancy (n=14), lactation (n=12), and
76 recovery (n=12). All rats were fed a high calcium diet throughout the study. Rats in the pregnancy group were
77 sacrificed at parturition, while the lactation group underwent pregnancy and two weeks of lactation. Rats in the

78 recovery group underwent pregnancy, three weeks of lactation, and two weeks of post-weaning recovery (Figure 1).
79 Taking into account a three-week lactation period, two-weeks post-weaning is five weeks after pregnancy, and this
80 represents approximately three years post-partum on a human timeline [20]. Pregnancies were timed such that all rats
81 were sacrificed at 7 months of age, and shoulders were harvested for supraspinatus tendon mechanical testing (n=12-
82 14/group) as well as subchondral and trabecular bone analysis (n=12-14/group).

83 Mechanics: Musculature and non-tendinous connective tissue were removed from supraspinatus tendon-humerus
84 complexes. Supraspinatus tendons were then marked with stain lines for optical strain tracking at 0, 2, 4, and 8mm
85 along the tendon length to demarcate the insertion (0-2mm), midsubstance (2-4mm), and 8mm gauge length (Figure
86 2A). Cross-sectional area was measured using a custom laser device [21], humeri were secured in polymethyl
87 methacrylate, and the tendinous ends were sandwiched between sandpaper tabs with cyanoacrylate glue at the 8mm
88 gauge length mark. Tendons were submerged in a phosphate buffered saline bath maintained at 37°C and underwent
89 either a viscoelastic or fatigue testing protocol (Instron Electropuls E3000, Instron Inc., Norwood, Massachusetts).
90 Right supraspinatus tendons were subjected to viscoelastic tensile testing, consisting of a 0.05N preload, pre-
91 conditioning (0.5-1.5% strain at 0.25 Hz for 10 cycles), stress relaxation at a 5% strain hold for 600s, a dynamic
92 frequency sweep at 5% strain (0.125% strain amplitude at 0.1, 1, 2, 10Hz), and a quasi-static strain-rate controlled
93 ramp to failure at 0.3%/s (Figure 2B). Left supraspinatus tendons underwent load-controlled fatigue testing, consisting
94 of pre-conditioning and fatigue loading until failure at 2Hz between loads corresponding to 7% and 40% maximum
95 stress, as determined from quasi-static testing [22]. Fatigue parameters, including peak cyclic strain, secant modulus,
96 tangent modulus, hysteresis, and laxity were recorded at two breakpoints marking the ends of the primary (BP1) and
97 secondary (BP2) phases of a triphasic fatigue life curve (Figure 2C).

98 Trabecular and subchondral bone analysis: Prior to mechanical testing, left proximal humeri were scanned by
99 microcomputed tomography (μ CT35, Scanco Medical, Brüttisellen, Switzerland) at 6 μ m isotropic voxel size (145 μ A
100 current, 55 kVp energy, 600ms integration time). Trabecular bone within the proximal humerus epiphysis was
101 analyzed for bone volume fraction (BV/TV), trabecular number (Tb.N), trabecular thickness (Tb.Th), trabecular
102 separation (Tb.Sp), connectivity density (Conn.D), and structure model index (SMI). Additionally, the subchondral
103 plate, defined as the mineralized fibrocartilage layer of the supraspinatus tendon enthesis and underlying subchondral
104 bone (Figure 3A), was analyzed to calculate average thickness and the mineralization gradient (Amira 6.7). A
105 600x720 μ m area was identified in the greater tuberosity at the supraspinatus tendon insertion site (Figure 3B). After

106 global thresholding, the innermost boundary of the subchondral bone was manually defined to exclude trabecular bone.
107 Average thickness was calculated by dividing the volume of this region by the prescribed area. Individual layers were
108 subsequently defined outwards towards the mineralized fibrocartilage boundary (Figure 3C). Layer intensity values
109 were averaged to construct a mineralization gradient, normalized to the total subchondral plate thickness. Bone mineral
110 density (BMD) was compared at 0, 0.5, and 1.0, marking the approximate boundaries between trabecular bone,
111 subchondral bone, mineralized fibrocartilage, and tendon.

112 Statistics: All data were presented as mean \pm standard deviation. Comparisons across groups were made using one-
113 way ANOVAs with Tukey post-hoc tests to compare all groups to each other. Significance was set at $p \leq 0.05$.

114

115 RESULTS

116 Structural properties remained unchanged in all groups with no differences in cross-sectional area (Figure 4A) or
117 stiffness (Table 1). Percent relaxation was greater in the recovery group compared to pregnancy (Figure 4B), but there
118 were no differences in other viscoelastic parameters including dynamic modulus and phase shift, at any frequency
119 (Table 1). Interestingly, insertion site modulus (Figure 4C) was not different across groups, while midsubstance
120 modulus was significantly decreased in the recovery group (Figure 4D). Some changes in fatigue properties were
121 observed with decreased tangent stiffness at BP1 for both lactation and recovery groups when compared to pregnancy
122 and remained lower in the lactation group at BP2 (Figure 5A). Further, tangent modulus (Figure 5B), secant stiffness
123 (Figure 5C), and secant modulus (Figure 5D) at BP1 were decreased during lactation compared to virgin. Secant
124 stiffness and modulus at BP1 were also decreased in the recovery group relative to virgin. However, there were no
125 differences in cycles to failure, peak cyclic strain, hysteresis, or laxity (Table 2).

126 Since the predominant failure mode during quasi-static tendon testing was bony avulsion, failure properties reflect
127 that of the supraspinatus tendon-to-bone insertion site and underlying subchondral bone. Failure stress (Figure 6A) and
128 failure strain (Figure 6B) were significantly decreased during lactation compared to virgin and pregnancy groups but
129 recovered after weaning. A similar trend was observed in subchondral plate thickness (Figure 6C). The bone mineral
130 density gradient between trabecular bone and the supraspinatus tendon was different during lactation and recovery
131 (Figure 6D). At the trabecular bone-subchondral bone boundary (normalized thickness = 0.00), bone mineral density
132 (BMD) was significantly lower during lactation compared to virgin and pregnancy groups. During recovery, BMD
133 remained significantly lower compared to virgin. Reduced BMD in lactation and recovery groups persisted at the

134 subchondral bone-mineralized fibrocartilage interface (normalized thickness = 0.50), while there were no differences
135 between groups at the mineralized fibrocartilage-tendon boundary ((normalized thickness = 1.00, Figure 6E).

136 BV/TV (Fig 7A) and Tb.N (Figure 7B) were significantly lower while Tb.Sp (Figure 7C) was significantly greater
137 during lactation compared to virgin, pregnancy, and recovery groups. However, there were no differences in Tb.Th
138 (Figure 7D). Conn.D (Figure 7E) was greater during recovery, while SMI (Figure 7F) increased during pregnancy and
139 lactation but later recovered.

140

141 DISCUSSION

142 This study investigated the transient effects of pregnancy and lactation on the supraspinatus tendon, tendon-to-
143 bone insertion site, and underlying trabecular bone. Contrary to our hypothesis, tendon mechanical properties were
144 largely unaffected at the end of pregnancy and during lactation. However, tendon mechanical properties were altered
145 during recovery, with a substantial reduction in both midsubstance and secant modulus compared to the virgin group as
146 well as an increase in percent relaxation compared to the pregnancy group. This suggests that the physiological
147 processes of pregnancy and lactation have delayed effects on tendon. Intriguingly, previous studies in the rabbit
148 showed significantly decreased collagen I mRNA expression in the anterior cruciate ligament (ACL) and medial
149 collateral ligament (MCL) during pregnancy, increased dramatically 7-days post-partum, but then decreased again 18-
150 days post-partum to levels below non-pregnant values [23,24]. A similar trend was observed in the ACL for fibroblast
151 growth factor (FGF) and transforming growth factor- β (TGF β), key factors that regulate scleraxis expression [25,26]
152 and collagen matrix production [27,28]. Whether lactation occurred in these studies is unclear; however, there may be
153 physiological changes in the postpartum period separate from the effects of pregnancy that lead to reduced tendon
154 mechanical properties. Further studies are required to determine the biological and structural factors driving changes in
155 tendon modulus and viscoelasticity.

156 Despite the well-documented consequences of pregnancy on joint laxity, studies are conflicting and
157 inconclusive, and the field lacks a fundamental understanding on the hormonal regulation of tendons and ligaments.
158 Estrogen and relaxin are hormones that have been implicated in joint laxity through regulation of collagen metabolism.
159 Estrogen is linked to increased collagen synthesis [29–31] but also to reduced collagen cross-linking and mechanical
160 function [32]. Relaxin has been shown to increase tendon creep [33], possibly through increased expression of matrix
161 metalloproteinases [34] and decreased collagen synthesis [35], leading to increased collagen fiber sliding. Estrogen-

162 deficient rats exhibited reduced expression of *Pcna* and *Timp1* [36], suggesting that estrogen also regulates cell
163 proliferation and metalloproteinase activity, respectively. Therefore, fluctuations in estrogen and relaxin levels during
164 and following pregnancy may lead to reduced collagen synthesis and cross-linking. Clinical studies in pregnant women
165 have demonstrated associations between increased joint laxity and serum relaxin [37,38] in the pelvis and hip, while
166 estradiol levels [39] also correlated in the ACL. Other studies, however, have also shown increased estradiol, relaxin,
167 progesterone, and cortisol levels as well as joint laxity in the knee, elbow, wrist, and finger but with no correlation [6–
168 8]. These studies support that pregnancy has site-specific effects, and animal studies investigating the individual tissue
169 contributions are vital for understanding hormonal regulation during pregnancy. However, animal studies investigating
170 the effect of pregnancy on tendons and ligaments are limited. Pregnancy induced gene expression changes in rabbit
171 knee ligaments [23,24] and Achilles tendon [40], while no differences were observed in MCL mechanical properties
172 between non-pregnant and pregnant rabbits, similar to our findings in the supraspinatus tendon. Therefore, mechanical
173 changes in tendons and ligaments may not be the predominant driver of altered joint laxity during pregnancy. Instead,
174 the complex interactions between estrogen and relaxin could impact other factors contributing to joint laxity such as
175 increased tissue length [10] and inflammation of the surrounding synovial sheath [41].

176 Interestingly, we observed that the primary mode for supraspinatus tendon failure was by bony avulsion at the
177 supraspinatus tendon-to-bone insertion site, and reduced failure properties during lactation corresponded with
178 decreased thickness and mineralization of the subchondral plate. Reduced overall thickness and bone mineral density
179 during lactation suggest that independent mechanisms modulated by osteoblast-osteoclast coupling regulation and
180 osteocyte perilacuna-canalicular remodeling [42], respectively, may be active. Our preliminary results found that
181 changes in bone mineral density during lactation may be associated with TRAP-expressing osteocytes localized to the
182 subchondral bone region. The number of TRAP-expressing osteocytes later decreased during recovery [43]; however,
183 the mineralization gradient in the subchondral plate showed a sustained reduction after two weeks of post-weaning
184 recovery compared to virgin rats. Evaluation of a longer recovery period will determine whether this change is fully
185 recoverable. Previous animal studies have correlated bone mineral density and failure strength at the tendon enthesis
186 using ovariectomy models of estrogen deficiency [44,45], noting a thinner tendon-to-bone interface with a less
187 apparent tidemark at the enthesis. Although our results also show that reduced bone mineral density leads to impaired
188 failure strength, the sex and calcitropic hormone fluctuations that drive lactation-induced bone loss are different from
189 the physiological changes in an estrogen-deficient model. Further exploration into the mechanisms that govern these

190 two different processes can have important implications for understanding how low mineral density during processes
191 such as aging or menopause may impair the tendon-to-bone insertion site.

192 Our previous studies have shown that effects of reproduction on trabecular bone microarchitecture are not only
193 tissue-specific but also skeletal site specific [46]. For instance, the proximal tibia and lumbar vertebra have different
194 skeletal roles: trabecular bone at the proximal tibia has a greater metabolic function and serves as a mineral reservoir to
195 support homeostasis, while the lumbar vertebra primarily provides mechanical support. During pregnancy and
196 lactation, the proximal tibia and lumbar vertebra showed similar trends of trabecular bone loss followed by recovery
197 post-weaning. However, trabecular bone at the proximal tibia exhibited greater deterioration during lactation and did
198 not fully recover post-weaning in contrast to the lumbar vertebra. In the humeral head epiphysis, lactation also resulted
199 in dramatic bone loss, but a two-week recovery was sufficient to restore trabecular bone properties to pre-pregnancy
200 levels. Taken together, the epiphysis, where four tendons converge to form the rotator cuff, serves a large mechanical
201 role and exhibits reproduction-induced bone loss and recovery similar to the load-bearing lumbar vertebra.

202 Overall, this study provides novel insight into how pregnancy and lactation affect the interface between tendon
203 and bone. However, there are several limitations to this study. First, we did not assess overall shoulder joint laxity, and
204 evaluation of other connective tissues and joint mechanics is necessary to determine if pregnancy and lactation affect
205 overall shoulder function. An additional limitation is that our results may not directly translate to humans because
206 quadrupedal motion in rats would elicit differences in forelimb weight bearing, particularly in response to pregnancy-
207 related weight gain. Nevertheless, these findings motivate investigation into the entheses of the weight-bearing lower
208 extremities and may be translatable to other quadrupedal animals. Finally, a two-week post-weaning recovery period
209 may not be sufficient for tendon and subchondral plate properties to recover fully despite this time period representing
210 about three years post-partum on a human timeline [20]. Future studies will address these limitations by investigating
211 the biological mechanisms underlying transient changes in tendon and bone properties, evaluating lower extremity
212 tendons and ligaments, and determining the long-term effects of pregnancy and lactation.

213 In conclusion, lactation following pregnancy induced changes in bone microstructure and mineralization,
214 leading to reduced supraspinatus tendon-to-bone insertion site failure properties. Combined with further investigation
215 into the cellular and structural processes that drive these changes, these findings will contribute towards understanding
216 the pathogenesis of tendon-to-bone disorders.

217

218 **REFERENCES**

219 [1] Kesikburun, S., Güzelkçük, Ü., Fidan, U., Demir, Y., Ergün, A., and Tan, A. K., 2018, "Musculoskeletal Pain and
220 Symptoms in Pregnancy: A Descriptive Study," *Ther. Adv. Musculoskelet. Dis.*, **10**(12), pp. 229–234.

221 [2] Young, J., 1940, "Relaxation of the Pelvic Joints in Pregnancy: Pelvic Arthropathy of Pregnancy," *BJOG An Int. J.*
222 *Obstet. Gynaecol.*, **47**(5), pp. 493–524.

223 [3] Smith, M. W., Marcus, P. S., and Wurtz, L. D., 2008, "Orthopedic Issues in Pregnancy," *Obstet. Gynecol. Surv.*,
224 **63**(2), pp. 103–111.

225 [4] Ireland, M. L., and Ott, S. M., 2000, "The Effects of Pregnancy on the Musculoskeletal System," *Clinical*
226 *Orthopaedics and Related Research*, Lippincott Williams and Wilkins, pp. 169–179.

227 [5] Thoms, H., 1936, "Relaxation of the Symphysis Pubis in Pregnancy," *J. Am. Med. Assoc.*, **106**(16), pp. 1364–1366.

228 [6] Schuberger, C. W., Rooney, B. L., Goldsmith, L., Shenton, D., Silva, P. D., and Schaper, A., 1996, "Peripheral
229 Joint Laxity Increases in Pregnancy but Does Not Correlate with Serum Relaxin Levels," *Am. J. Obstet. Gynecol.*

230 [7] Dumas, G. A., and Reid, J. G., 1997, "Laxity of Knee Cruciate Ligaments during Pregnancy," *J. Orthop. Sports*
231 *Phys. Ther.*, **26**(1), pp. 2–6.

232 [8] Marnach, M. L., Ramin, K. D., Ramsey, P. S., Song, S. W., Stensland, J. J., and An, K. N., 2003, "Characterization
233 of the Relationship between Joint Laxity and Maternal Hormones in Pregnancy," *Obstet. Gynecol.*, **101**(2), pp.
234 331–335.

235 [9] Pearson, S. J., Burgess, K. E., and Onambélé, G. L., 2011, "Serum Relaxin Levels Affect Thein Vivoproperties of
236 Some but Not All Tendons in Normally Menstruating Young Women," *Exp. Physiol.*, **96**(7), pp. 681–688.

237 [10] Bey, M. E., Marzilger, R., Hinkson, L., Arampatzis, A., and Legerlotz, K., 2019, "Patellar Tendon Stiffness Is
238 Not Reduced during Pregnancy," *Front. Physiol.*, **10**.

239 [11] Kovacs, C. S., 2016, "Maternal Mineral and Bone Metabolism During Pregnancy, Lactation, and Post-Weaning
240 Recovery," *Physiol. Rev.*, **96**(2), pp. 449–547.

241 [12] Chu, S. R., Boyer, E. H., Beynnon, B., and Segal, N. A., 2019, "Pregnancy Results in Lasting Changes in Knee
242 Joint Laxity," *PM R.*

243 [13] Chahal, J., Leiter, J., McKee, M. D., and Whelan, D. B., 2010, "Generalized Ligamentous Laxity as a
244 Predisposing Factor for Primary Traumatic Anterior Shoulder Dislocation," *J. Shoulder Elb. Surg.*, **19**(8), pp.
245 1238–1242.

246 [14] Cameron, K. L., Duffey, M. L., Deberardino, T. M., Stoneman, P. D., Jones, C. J., and Owens, B. D., 2010,
247 “Association of Generalized Joint Hypermobility with a History of Glenohumeral Joint Instability,” *J. Athl.*
248 *Train.*, **45**(3), pp. 253–258.

249 [15] Caplan, J., Julien, T. P., Michelson, J., and Neviaser, R. J., 2007, “Multidirectional Instability of the Shoulder in
250 Elite Female Gymnasts.,” *Am. J. Orthop. (Belle Mead. NJ.)*, **36**(12), pp. 660–665.

251 [16] Simank, H.-G., Dauer, G., Schneider, S., and Loew, M., 2006, “Incidence of Rotator Cuff Tears in Shoulder
252 Dislocations and Results of Therapy in Older Patients.,” *Arch. Orthop. Trauma Surg.*, **126**(4), pp. 235–40.

253 [17] Porcellini, G., Paladini, P., Campi, F., and Paganelli, M., 2006, “Shoulder Instability and Related Rotator Cuff
254 Tears: Arthroscopic Findings and Treatment in Patients Aged 40 to 60 Years,” *Arthrosc. - J. Arthrosc. Relat.*
255 *Surg.*, **22**(3), pp. 270–276.

256 [18] Berbig, R., Weishaupt, D., Prim, J., and Shahin, O., 1999, “Primary Anterior Shoulder Dislocation and Rotator
257 Cuff Tears,” *J. Shoulder Elb. Surg.*, **8**(3), pp. 220–225.

258 [19] Fung, A. K., Li, Y., Leahy, T. P., Shetye, S. S., Liu, X. S., and Soslowsky, L. J., 2019, “Reproduction and
259 Lactation Lead to Long-Term Changes in Supraspinatus Tendon and Humeral Trabecular Bone Properties in a
260 Rat Model,” *Trans Orthop Res Soc*, Austin, Texas.

261 [20] Pallav Sengupta, 2013, “The Laboratory Rat : Relating Its Age with Human’s,” *Int. J. Prev. Med.*, **4**(6), pp. 624–
262 630.

263 [21] Favata, M., 2006, “Scarless Healing in the Fetus: Implications and Strategies for Postnatal Tendon Repair,” *Diss.*
264 available from ProQuest.

265 [22] Bonilla, K. A., Pardes, A. M., Freedman, B. R., and Soslowsky, L. J., 2019, “Supraspinatus Tendons Have
266 Different Mechanical Properties Across Sex,” *J. Biomech. Eng.*, **141**(1).

267 [23] Hart, D. A., Boykiw, R., Sciore, P., and Reno, C., 1998, “Complex Alterations in Gene Expression Occur in the
268 Knee Ligaments of the Skeletally Mature Multiparous Rabbit during Pregnancy,” *Biochim. Biophys. Acta - Gene*
269 *Struct. Expr.*

270 [24] Hart, D. A., Sciore, P., Boykiw, R., and Reno, C., 1998, “Pregnancy Induces Complex Changes in the Pattern of
271 mRNA Expression in Knee Ligaments of the Adolescent Rabbit,” *Matrix Biol.*

272 [25] Brent, A. E., and Tabin, C. J., 2004, “FGF Acts Directly on the Somitic Tendon Progenitors through the Ets
273 Transcription Factors Pea3 and Erm to Regulate Scleraxis Expression,” *Development*, **131**(16), pp. 3885–3896.

274 [26] Tokunaga, T., Shukunami, C., Okamoto, N., Taniwaki, T., Oka, K., Sakamoto, H., Ide, J., Mizuta, H., and Hiraki,
275 Y., 2015, "FGF-2 Stimulates the Growth of Tenogenic Progenitor Cells to Facilitate the Generation of
276 Tenomodulin -Positive Tenocytes in a Rat Rotator Cuff Healing Model," *Am. J. Sports Med.*, **43**(10), pp. 2411–
277 2422.

278 [27] Arimura, H., Shukunami, C., Tokunaga, T., Karasugi, T., Okamoto, N., Taniwaki, T., Sakamoto, H., Mizuta, H.,
279 and Hiraki, Y., 2017, "TGF-B1 Improves Biomechanical Strength by Extracellular Matrix Accumulation Without
280 Increasing the Number of Tenogenic Lineage Cells in a Rat Rotator Cuff Repair Model," *Am. J. Sports Med.*,
281 **45**(10), pp. 2394–2404.

282 [28] Subramanian, A., Kanzaki, L. F., Galloway, J. L., and Schilling, T. F., 2018, "Mechanical Force Regulates
283 Tendon Extracellular Matrix Organization and Tenocyte Morphogenesis through TGFbeta Signaling," *Elife*, **7**.

284 [29] Hansen, M., and Kjaer, M., 2014, "Influence of Sex and Estrogen on Musculotendinous Protein Turnover at Rest
285 and after Exercise," *Exerc. Sport Sci. Rev.*, **42**(4), pp. 183–192.

286 [30] Torricelli, P., Veronesi, F., Pagani, S., Maffulli, N., Masiero, S., Frizziero, A., and Fini, M., 2013, "In Vitro
287 Tenocyte Metabolism in Aging and Oestrogen Deficiency," *Age (Omaha)*, **35**(6), pp. 2125–2136.

288 [31] Lee, C. Y., Liu, X., Smith, C. L., Zhang, X., Hsu, H. C., Wang, D. Y., and Luo, Z. P., 2004, "The Combined
289 Regulation of Estrogen and Cyclic Tension on Fibroblast Biosynthesis Derived from Anterior Cruciate
290 Ligament," *Matrix Biol.*, **23**(5), pp. 323–329.

291 [32] Lee, C. A., Lee-Barthel, A., Marquino, L., Sandoval, N., Marcotte, G. R., and Baar, K., 2015, "Estrogen Inhibits
292 Lysyl Oxidase and Decreases Mechanical Function in Engineered Ligaments," *J. Appl. Physiol.*, **118**(10), pp.
293 1250–1257.

294 [33] Wood, M. L., Luthin, W. N., Lester, G. E., and Dahmers, L. E., 2003, "Tendon Creep Is Potentiated by NKISK
295 and Relaxin Which Produce Collagen Fiber Sliding," *Iowa Orthop. J.*, **23**, pp. 75–9.

296 [34] Qin, X., Garibay-Tupas, J., Chua, P. K., Cachola, L., and Bryant-Greenwood, G. D., 1997, "An
297 Autocrine/Paracrine Role of Human Decidual Relaxin. I. Interstitial Collagenase (Matrix Metalloproteinase-1)
298 and Tissue Plasminogen Activator1," *Biol. Reprod.*, **56**(4), pp. 800–811.

299 [35] Konopka, J. A., Debaun, M. R., Chang, W., and Dragoo, J. L., 2016, "The Intracellular Effect of Relaxin on
300 Female Anterior Cruciate Ligament Cells," *Am. J. Sports Med.*, **44**(9), pp. 2384–2392.

301 [36] Carroll, C. C., Patel, S. H., Simmons, J., Gordon, B. D., Olson, J. F., Chemelewski, K., Saw, S., Hale, T. M.,

302 Howden, R., and Sabbaghi, A., 2020, "The Impact of Genistein Supplementation on Tendon Functional
303 Properties and Gene Expression in Estrogen-Deficient Rats," *J. Med. Food*, p. jmf.2019.0293.

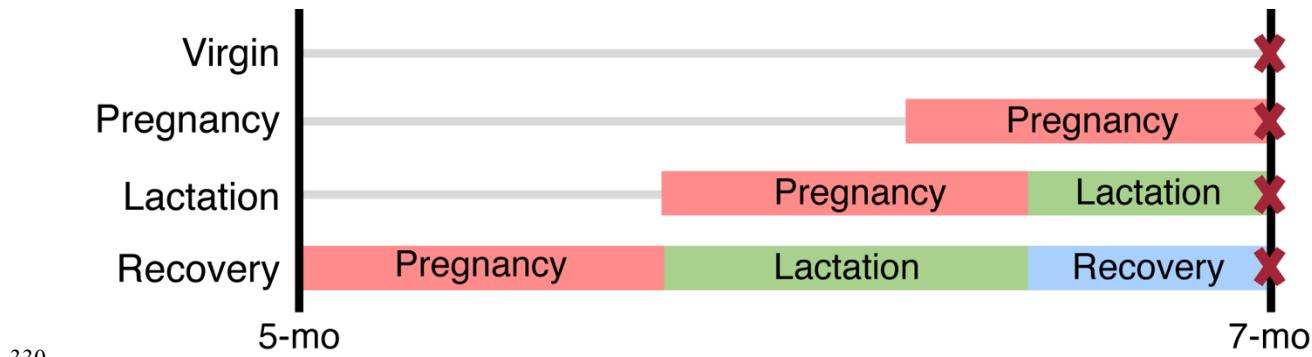
304 [37] MacLennan, A. H., Nicolson, R., Green, R. C., and Bath, M., 1986, "Serum Relaxin and Pelvic Pain of
305 Pregnancy," *Lancet (London, England)*, **2**(8501), pp. 243–5.

306 [38] Vøllestad, N. K., Torjesen, P. A., and Robinson, H. S., 2012, "Association between the Serum Levels of Relaxin
307 and Responses to the Active Straight Leg Raise Test in Pregnancy," *Man. Ther.*, **17**(3), pp. 225–230.

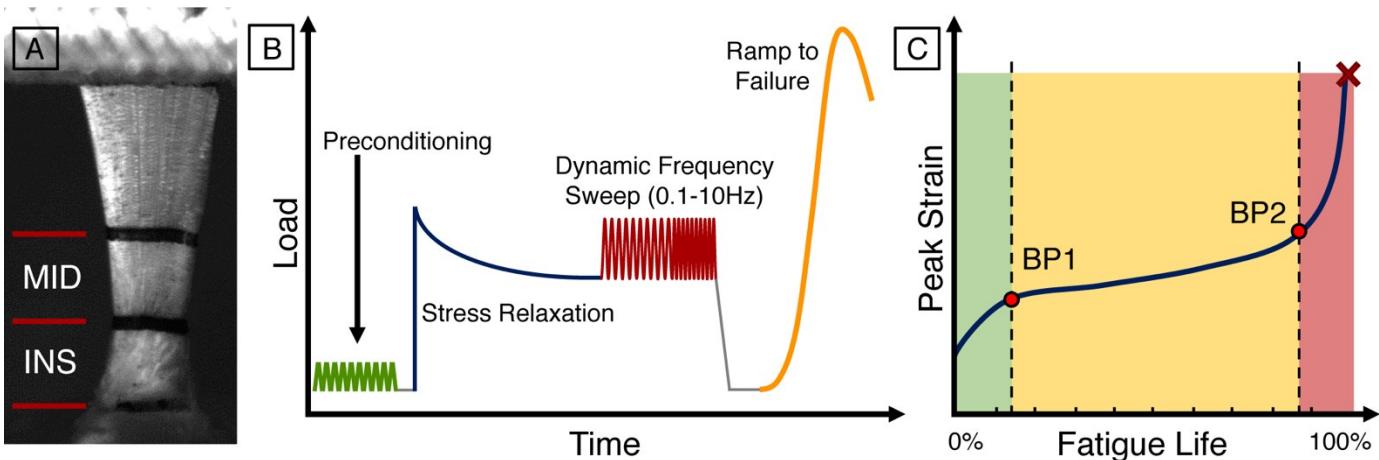
308 [39] Charlton, W. P. H., Coslett-Charlton, L. M., and Ciccotti, M. G., 2001, "Correlation of Estradiol in Pregnancy
309 and Anterior Cruciate Ligament Laxity," *Clin. Orthop. Relat. Res.*, (387), pp. 165–170.

310 [40] Hart, D. A., Kydd, A., and Reno, C., 1999, "Gender and Pregnancy Affect Neuropeptide Responses of the Rabbit
311 Achilles Tendon," *Clin. Orthop. Relat. Res.*, (365), pp. 237–246.

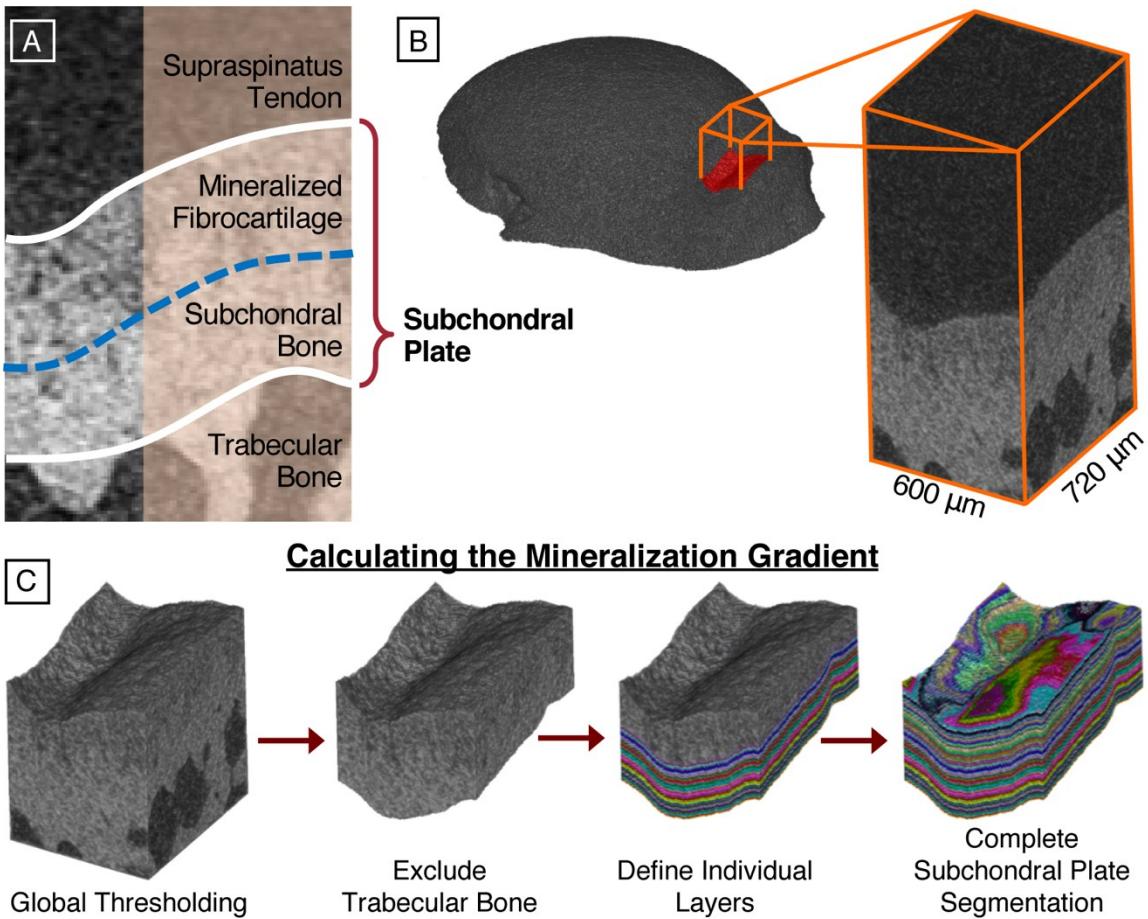
312 [41] Shen, P.-C., Wang, P.-H., Wu, P.-T., Wu, K.-C., Hsieh, J.-L., and Jou, I.-M., 2015, "The Estrogen Receptor- β
313 Expression in De Quervain's Disease," *Int. J. Mol. Sci.*, **16**(11), pp. 26452–62.


314 [42] Qing, H., Ardestirpour, L., Divieti Pajevic, P., Dusevich, V., Jähn, K., Kato, S., Wysolmerski, J., and Bonewald,
315 L. F., 2012, "Demonstration of Osteocytic Perilacunar/Canalicular Remodeling in Mice during Lactation," *J.
316 Bone Miner. Res.*, **27**(5), pp. 1018–1029.

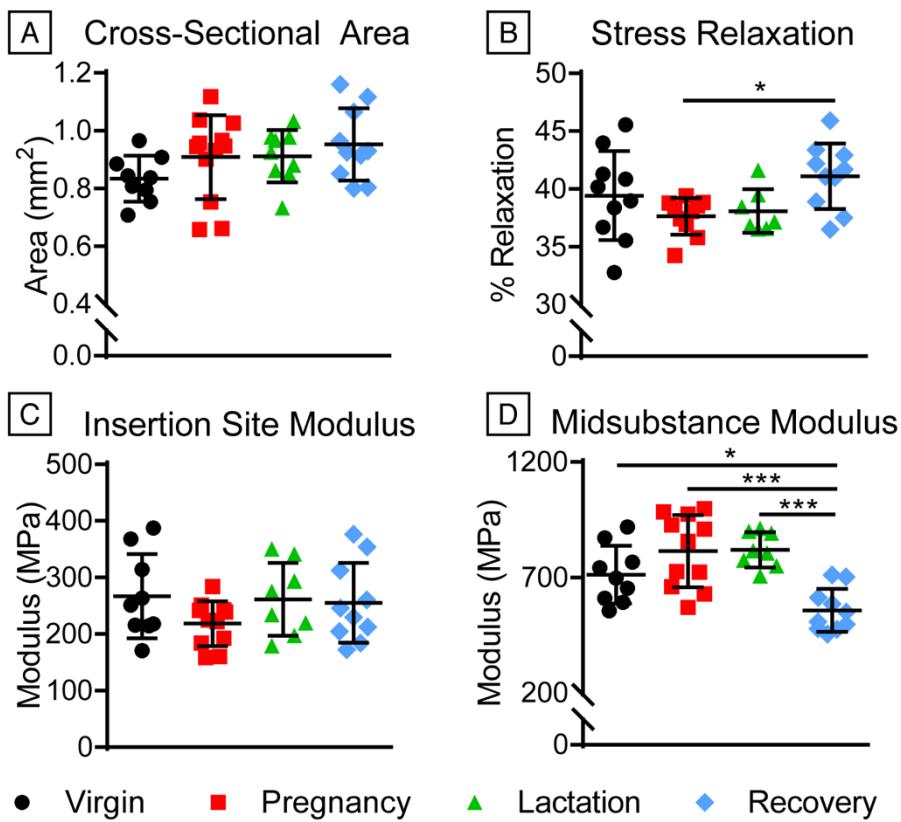
317 [43] Zhou, Y., Li, Y., Davis, Z., Wang, W., Fung, A. K., Shetye, S. S., Jiang, X., Kuntz, A. F., Dyment, N. A.,
318 Soslowsky, L. J., and Liu, X. S., 2020, "Structural and Cellular Responses of Supraspinatus Tendon Enthesis and
319 Subchondral Bone to Pregnancy, Lactation, and Post-Weaning Recovery," *Trans Orthop Res Soc*, Phoenix,
320 Arizona.


321 [44] Chen, X., Giambini, H., Ben-Abraham, E., An, K. N., Nassr, A., and Zhao, C., 2015, "Effect of Bone Mineral
322 Density on Rotator Cuff Tear: An Osteoporotic Rabbit Model," *PLoS One*, **10**(10).

323 [45] Cadet, E. R., Vorys, G. C., Rahman, R., Park, S. H., Gardner, T. R., Lee, F. Y., Levine, W. N., Bigliani, L. U.,
324 and Ahmad, C. S., 2010, "Improving Bone Density at the Rotator Cuff Footprint Increases Supraspinatus Tendon
325 Failure Stress in a Rat Model," *J. Orthop. Res.*, **28**(3), pp. 308–314.


326 [46] De Bakker, C. M. J., Tseng, W. J., Li, Y., Zhao, H., Altman-Singles, A. R., Jeong, Y., Robberts, J., Han, L., Kim,
327 D. G., and Sherry Liu, X., 2017, "Reproduction Differentially Affects Trabecular Bone Depending on Its
328 Mechanical Versus Metabolic Role," *J. Biomech. Eng.*, **139**(11).

331 **Figure 1: Study design.** Female rats were divided into four groups: virgin, pregnancy, lactation, and recovery. Rats in
332 the pregnancy group were sacrificed at parturition, the lactation group underwent pregnancy and 2 weeks of lactation,
333 and the recovery group underwent pregnancy, 3-weeks of lactation, and 2-weeks of post-weaning recovery.
334 Pregnancies were timed such that all rats were sacrificed at 7 months of age.



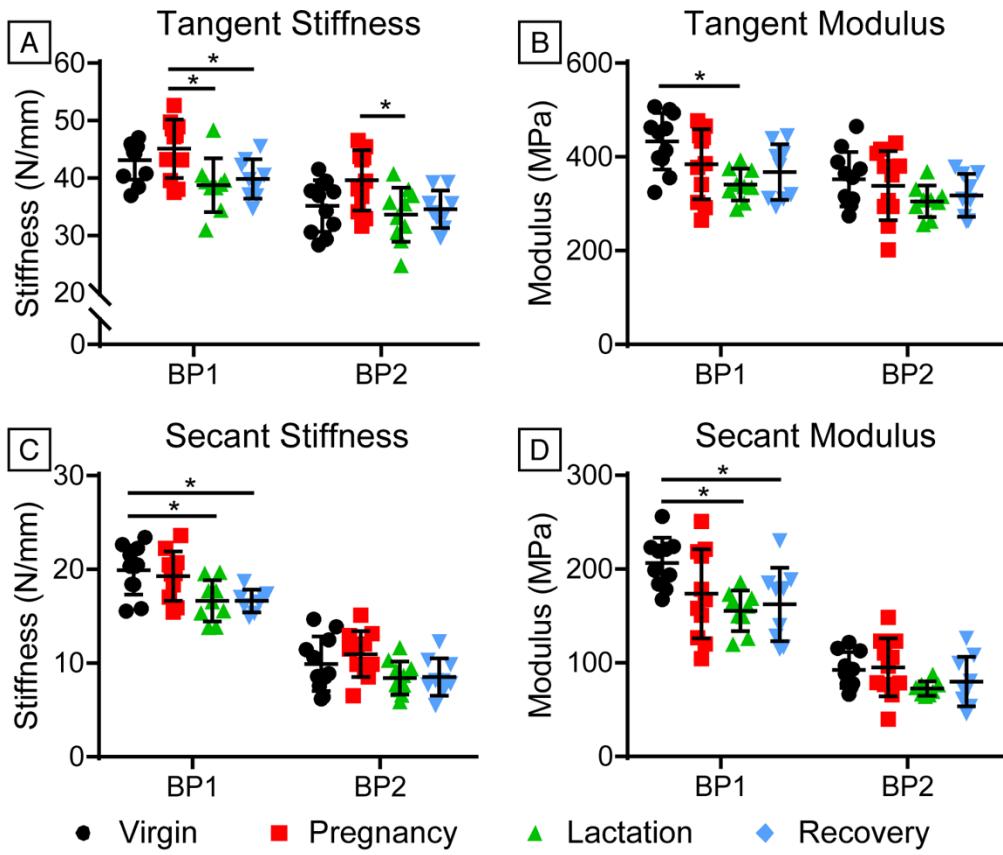
337 **Figure 2: Tendon mechanical testing.** (A) Supraspinatus tendons were marked with stain lines to identify the
338 insertion site (INS) and midsubstance (MID) for mechanical testing. (B) Right tendons then underwent a testing
339 protocol consisting of preconditioning, a stress relaxation at 5% strain hold, a dynamic frequency sweep (0.1-10Hz)
340 and a quasi-static ramp to failure. Left tendons were subjected to fatigue testing, where the (C) peak strain curve
341 exhibits a triphasic response. Fatigue parameters were reported at two breakpoints marking the ends of the primary
342 (BP1) and secondary (BP2) phases.

343

344 **Figure 3: Subchondral plate mineralization.** (A) The subchondral plate is comprised of the layers of mineralized
 345 fibrocartilage and subchondral bone underlying the supraspinatus tendon enthesis. To evaluate the mineralization
 346 gradient within this region, (B) a 600x720μm area was identified in the greater tuberosity at the supraspinatus tendon
 347 insertion site. (C) After global thresholding, the innermost boundary of the subchondral bone was manually defined to
 348 exclude trabecular bone. Individual layers were subsequently defined outwards towards the mineralized fibrocartilage
 349 boundary. Intensity values within each layer were averaged to construct a mineralization gradient.

350

351


352

353

354

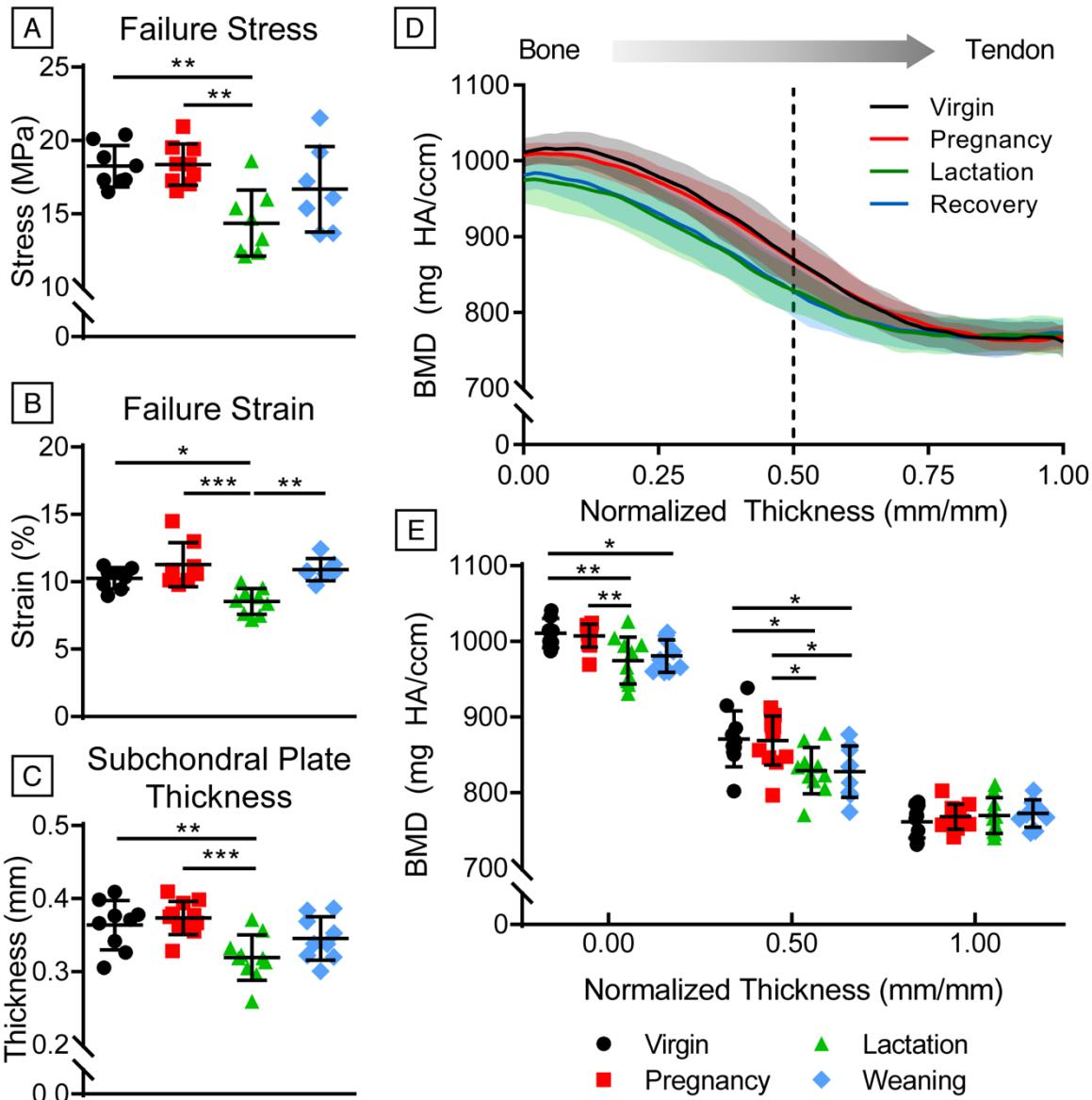
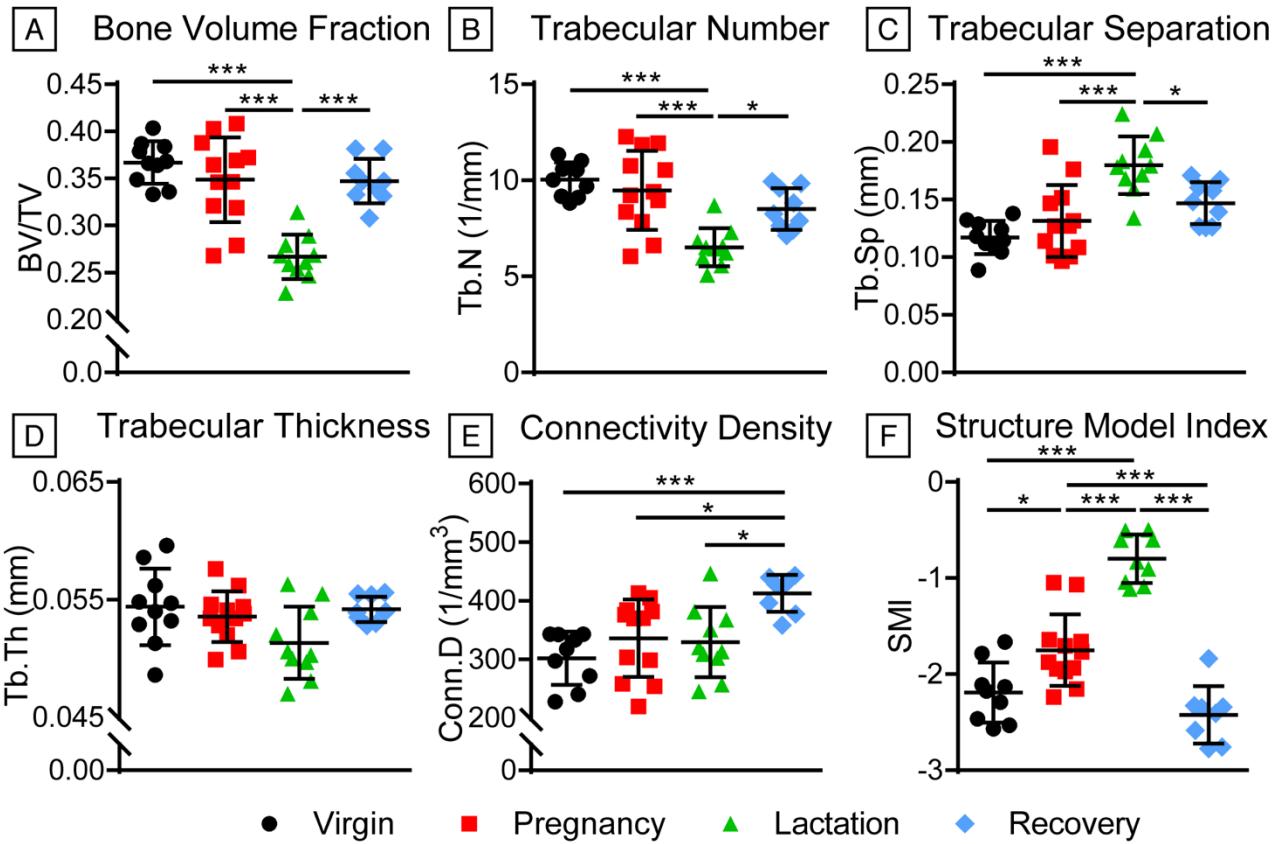

355

Figure 4: Tendon structural, quasi-static and viscoelastic properties. There were no differences in (A) tendon cross-sectional area, and (B) percent relaxation increased during recovery compared to the pregnancy group. While there were no differences in (C) insertion site modulus, (D) midsubstance modulus in the recovery group was significantly lower compared to all other group. Data are presented as mean \pm standard deviation. Significant differences are indicated by solid bars ($*p \leq 0.05$, $**p \leq 0.01$, $***p \leq 0.001$).


356

357 **Figure 5: Tendon fatigue properties.** (A) Tangent stiffness was higher in the pregnancy group compared to lactation
 358 at BP1 and BP2, while (B) tangent modulus was greater in virgin rats compared to lactation at BP1. (C) Secant
 359 stiffness and (D) secant modulus were also greater in virgin rats compared to lactation and recovery groups at BP1.
 360 Data are presented as mean \pm standard deviation. Significant differences are indicated by solid bars (* $p\leq 0.05$,
 361 ** $p\leq 0.01$, *** $p\leq 0.001$).

362

363 **Figure 6: Tendon-to-bone failure and subchondral bone properties.** (A) Tendon-to-bone insertion site failure
 364 stress, (B) failure strain, and (C) subchondral plate thickness were significantly lower in the lactation group compared
 365 to virgin and pregnancy rats but recovered post-weaning. (D) The mineralization gradient within the subchondral plate
 366 revealed (E) reduced bone mineral density in the lactation group at the trabecular bone boundary (norm. thickness =
 367 0.00), which persisted at the boundary between mineralized fibrocartilage and subchondral bone (norm. thickness =
 368 0.50). Data are presented as mean \pm standard deviation. Significant differences are indicated by solid bars (*p \leq 0.05,
 369 **p \leq 0.01, ***p \leq 0.001).

370

371 **Figure 7: Humeral epiphysis trabecular bone properties.** The lactation group had significantly lower (A) bone
 372 volume fraction and (B) trabecular number as well as greater (C) trabecular separation, and these properties recovered
 373 post-weaning. However, there were no differences in (D) trabecular thickness. (E) Connectivity density increased in
 374 the recovery group, while structure model index was significantly greater in the lactation group. Data are presented as
 375 mean \pm standard deviation. Significant differences are indicated by solid bars (* $p \leq 0.05$, ** $p \leq 0.01$, *** $p \leq 0.001$).
 376
 377

378 **Table 1: Tendon Structural and Viscoelastic Properties**

		Virgin	Pregnancy	Lactation	Recovery
Stiffness (N/mm)		37.5 (6.3)	39.2 (5.3)	38.4 (5.1)	35.1 (2.9)
Dynamic Modulus (MPa)	0.1Hz	470.3 (80.7)	448.2 (45.0)	469.5 (75.0)	392.3 (84.6)
	1Hz	488.6 (82.7)	464.7 (48.0)	487.1 (79.1)	407.2 (87.1)
	2Hz	493.9 (83.6)	469.4 (47.5)	491.2 (80.4)	410.8 (87.5)
	10Hz	497.8 (84.9)	473.4 (49.0)	494.6 (82.4)	413.5 (88.7)
Phase Shift (tan δ)	0.1Hz	0.041 (0.004)	0.044 (0.005)	0.040 (0.005)	0.0444 (0.006)
	1Hz	0.035 (0.004)	0.035 (0.003)	0.035 (0.003)	0.0369 (0.005)
	2Hz	0.035 (0.003)	0.033 (0.003)	0.033 (0.004)	0.0360 (0.004)
	10Hz	0.036 (0.003)	0.033 (0.003)	0.035 (0.004)	0.0372 (0.005)

380 Table 2: Tendon Fatigue Properties

	Virgin	Pregnancy	Lactation	Recovery
Cycles to Failure (cycles)	8434 (8068)	9416 (6509)	10052 (9849)	5672 (2174)
Peak Strain (%)	BP1	4.08 (0.580)	4.35 (0.841)	4.11 (0.409)
	BP2	8.93 (2.40)	7.90 (1.50)	8.34 (1.48)
Hysteresis (%)	BP1	8.03 (0.84)	7.29 (1.18)	7.26 (1.30)
	BP2	10.16 (0.97)	9.82 (1.22)	10.18 (1.44)
Laxity (%)	BP1	0.608 (0.149)	0.660 (0.221)	0.677 (0.118)
	BP2	5.33 (1.96)	4.15 (1.29)	4.96 (1.16)