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ABSTRACT
Deep learning (DL) is being widely used to solve complex problems
in scientific applications from diverse domains, such as weather
forecasting, medical diagnostics, and fluid dynamics simulation.
DL applications consume a large amount of data using large-scale
high-performance computing (HPC) systems to train a given model.
These workloads have large memory and storage requirements that
typically go beyond the limited amount of main memory available
on an HPC server. This significantly increases the overall training
time as the input training data and model parameters are frequently
swapped to slower storage tiers during the training process. In this
paper, we use the latest advancements in the memory subsystem,
specifically Compute Express Link (CXL), to provide additional
memory and fast scratch space for DL workloads to reduce the
overall training time while enabling DL jobs to efficiently train
models using data that is much larger than the installed system
memory.We propose a framework, calledDeepMemoryDL, thatman-
ages the allocation of additional CXL-based memory, introduces a
fast intermediate storage tier, and provides intelligent prefetching
and caching mechanisms for DL workloads. We implement and
integrate DeepMemoryDL with a popular DL platform, TensorFlow,
to show that our approach reduces read and write latencies, im-
proves the overall I/O throughput, and reduces the training time.
Our evaluation shows a performance improvement of up to 34% and
27% compared to the default TensorFlow platform and CXL-based
memory expansion approaches, respectively.
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1 INTRODUCTION
Modern enterprise, scientific, and high-performance computing
(HPC) applications [14] are distributed, highly scalable, and con-
sume huge amount of data during execution. Many of these appli-
cations run deep learning (DL) models to bring innovations in the
fields of healthcare [38], finance [28], autonomous vehicles [45], etc.
Hardware technologies are continuously bringing innovations to
support the compute and complex I/O requirements of DL applica-
tions. Therefore, the execution runtime of DL workloads must also
evolve to support and leverage advancements in the underlying
hardware and data center infrastructure not only to reduce the
time-to-answer of time-sensitive applications but also to improve
the utilization of available data center resources.

The latest data centers and HPC servers are equipped with large
memory and storage resources to meet the ever-increasing require-
ments of DL applications. To improve application performance and
reduce the training time, these servers should have enough mem-
ory to fit the entire model and training data in the main memory.
However, for complex models and large datasets [13], the mem-
ory footprint of DL jobs [9] exceeds the available system memory
leading to undesirable swapping of excessive application data to
local disks. This leads to reduced performance of DL jobs and in-
creased training time as the I/O operations can take up to 85% of
the total training time for large input datasets [15]. To address this
challenge, high-capacity memory modules are installed that even-
tually lead to occupying all available memory slots on a server [11].
This increases the overall cost of each server to the extent that
the main memory account for about 50% of the total acquisition
cost in leading HPC centers. Therefore, investigating solutions to
augment the direct-attached memory with PCIe-based memory and
storage solutions can reduce the total cost of ownership (TCO) [5].
However, the amount of training data continues to outgrow the
available system memory [44] requiring the underlying storage
subsystem to develop efficient data management techniques to load
data from the I/O subsystem to the main memory.

Several new interconnect technologies, such as Compute Express
Link (CXL) [41] and Gen-Z [2], have been developed to sustain
higher I/O and network throughput. CXL is a cache-coherent inter-
connect for processors, memory expansion, and accelerators that
run over the PCIe interface [41]. It maintains memory coherency
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between the main memory space and CXL attached memory to
achieve higher performance and lower overall system cost. While
there are no production CXL devices available yet, the emulation
of CXL-based storage devices has shown promising performance
improvements over the standard PCIe-based devices [39]. The CXL
devices can be used in a variety of configurations, e.g., memory
caching, pooling, and expansion, to provide high-speed memory
access [39]. However, it is not clear how these configurations can
be used to improve the performance of DL workloads.

In this paper, we explore the use of CXL-based memory and stor-
age to improve the performance of DL workloads. Specifically, we
analyze data staging and placement in the popular TensorFlow [7]
platform and enable the use of CXL-based memory and storage to
improve its data flow path. We address the following limitations
in the data flow path of the TensorFlow platform: (i) TensorFlow
is unaware of heterogeneity in the underlying memory and stor-
age subsystems [22]; (ii) TensorFlow does not leverage additional
memory and storage tiers to optimize data input pipelines [8]; and
(iii) the default caching and prefetching mechanisms of TensorFlow
are insufficient for processing large datasets on servers with limited
memory and storage resources [29]. These limitations increase the
training time of DL jobs as they lead to I/O stalls and sub-optimal
utilization of data center resources. Several techniques, such as
informed prefetching and caching [37], look ahead buffers [17], and
data sharding [34], have been explored to address these limitations
and bridge the performance gap between computation and I/O
resources. However, these techniques must be adapted for using
CXL-based memory devices in the TensorFlow platform.

We propose a framework, called DeepMemoryDL, to address the
challenges of data staging and placement in the TensorFlow plat-
form for distributed settings. The key idea behind DeepMemoryDL
is to enable TensorFlow to identify and leverage various available
tiers of memory and storage devices and develop proactive prefetch-
ing and caching techniques to avoid I/O stalls by exploiting the I/O
access patterns of DL workloads. This reduces I/O wait time and the
overall training time of DL jobs. DeepMemoryDL minimize the la-
tency to access the training data by ensuring that the required data
is already available for the compute threads in the fastest storage
tier. To achieve this, we first classify different available memory and
storage devices into tiers based on their performance profiles and
then prefetch and cache the required data at the appropriate tier on
each worker node. To the best of our knowledge, our work is the
first to explore how CXL can be effectively and seamlessly used to
improve the performance of DL jobs while reducing the complexity
in the I/O subsystem and storage configurations. Specifically, we
make the following contributions in this paper.

• We propose a novel framework, called DeepMemoryDL, that
utilizes fast memory and storage tiers to prefetch and cache
data to ensure deterministic performance of DL workloads
while minimizing I/O stalls.

• We develop a prototype implementation of DeepMemoryDL
for data center environments and integrate it with the Ten-
sorFlow platform to demonstrate its effectiveness.

• We evaluate and compare the performance of DeepMemo-
ryDLwith the default TensorFlow platform using representa-
tive DL workloads. Our evaluation shows that our proposed
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Figure 1: Impact of increasing Socket 0 thread count on near
and far memory bandwidth.

DeepMemoryDL framework achieves up to 34% performance
improvement as compared to the default TensorFlow plat-
form and up to 27% as compared to the CXL-based memory
expansion approaches.

2 CHALLENGES AND MOTIVATION
2.1 Slow Storage Tiers and DL Workloads
Heterogeneity is inevitable in modern data centers due to continu-
ous upgrades and advancements in compute, memory, storage, and
network technologies. Each memory and storage tier has a distinct
throughput and access latency resulting in unpredictable applica-
tion performance. Distributed DL workloads, which require fast
memory, low-latency I/O pipelines, and a large storage medium
to store huge datasets, are executed over multiple servers with
varying memory and storage capacity and performance. The large
input dataset is divided into shards and each shard is divided into
small batches [26] and each batch is sent to the computing unit
to train the given model. Therefore, the performance of DL work-
loads heavily depends on data transfer speed and how quickly the
required data is made available to the processing threads. Typically,
the processing threads process the data at a much higher rate than
staging the data into the system memory. We observe that as the
memory allocation moves farther away, e.g., to other NUMA nodes,
from the compute threads, the performance starts to drop due to
the impact of latency associated with accessing memory and stor-
age resources over the respective interconnections. The result is
shown in Figure 1. We ran STREAM Triad [31] and observe that
the memory bandwidth is maximum when the data is accessed on
the same node as the compute threads. Efforts have been made
to predict both optimal core allocation and memory bandwidth
usage with high accuracy and low overhead for memory-intensive
multi-threaded applications on large-scale clusters [43]. However,
such optimizations do not directly apply to distributed DL jobs over
heterogeneous memory and storage resources.

The memory footprint of DL workloads increases over time [30],
which leads to excessive swapping for servers with limited memory.
The swap space is configured over the local storage, e.g., a solid-state
disk (SSD), and access to which is significantly slower than the main
memory. For a dual-socket system, a thread on socket 0 can access
memory on socket 1 at the cost of additional latency. However, this
additional latency is significantly less than the swap space. The idle
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Figure 2: Impact of available systemmemory onDLworkload
performance with MobileNetv2 and ImageNet dataset with
batch size of 64 and 3 epochs.

or unloaded latency is the latency when the memory subsystem
is idle and represents the best case latency, whereas, the loaded
latency is the latencywhen thememory subsystem is saturated with
memory requests and represents a more realistic measurement for
applications. For the thread on socket 0, we observe an idle latency
of 70 𝑛s for local memory access and 134.5 𝑛s for accessing memory
on socket 1 for an Intel processor. Similarly, the loaded latency for
such a system is 228.59 𝑛s for read-only traffic. Meanwhile, the read
latency to swap space is 305.5 𝜇s.

The memory access patterns of a workload determine the im-
pact of using swap space on its performance. Most modern DL
applications are read-intensive and perform write operations at
regular intervals. The performance of a DL application drops when
the memory footprint involves swap storage resulting in increased
time per epoch and causing an increase in overall training time as
shown in Figure 2. The memory footprint of the DL job is about
166 GB and fits entirely into the memory when 100% memory is
available to the DL workload. The configured system swap space is
200 GB and the increased execution time is attributed to increased
reads and write to swap. To mitigate the impact of using swap space,
it is critical to explore the use of high-capacity and low-latency
alternatives, such as CXL-based memory modules.

2.2 I/O Challenges in DL Data Pipelines
Executing a DL workload requires processing large datasets to
achieve the desired training accuracy of the given DL model. The
growing size of datasets emphasizes the importance of designing
highly efficient I/O pipelines, especially in distributed DL environ-
ments where the dataset is distributed across multiple workers
for processing. DL workloads contain various I/O stages, e.g., data
loading, caching, prefetching, model fitting, and checkpointing. DL
platforms provide methods and APIs to perform parallel I/O opera-
tions and improve the performance of data staging and placement.
For example, TensorFlow provides tf.data [33] whereas PyTorch
provides DataLoader [36] APIs to improve the performance of data
staging. However, these built-in methods and APIs for data staging
do not incorporate different memory tiers for storing large datasets.

During model training, the collection of data samples called
batches is shuffled randomly [27] before each epoch for model con-
vergence and to prevent overfitting. Typically, the input data is
cached into memory during the first epoch to speed up the read

operations in subsequent epochs. However, the cache hit rate is
severely impacted when the entire dataset cannot fit into the avail-
able memory. The cached data is evicted after being processed
during an epoch to load new batches into the main memory, caus-
ing thrashing and forcing the workers to fetch data from slower
storage devices. Prefetching reduces I/O stalls by bringing data to a
lower storage tier and moving the next batch into the main mem-
ory before the next iteration. This becomes challenging for large
datasets as prefetching the next batch takes longer than processing
the current batch [15]. Therefore, a data staging strategy is required
to incorporate the heterogeneity of underlying memory and storage
tiers to orchestrate the data pipeline and reduce I/O stalls.

2.3 Limitations of Data Pre-processing in DL
Platforms

DL platforms provide APIs to load datasets into the main mem-
ory of workers for training. The most common approach involves
reading individual data samples recursively from the raw data files.
TensorFlow provides a high-level data abstraction in the form of
wrapped data sequences known as TFRecords. TFRecords are stored
in a sequential layout to speed up the process of loading the dataset
into the main memory. This abstraction is tightly integrated with
TensorFlow’s data pre-processing stage to provide efficient batch
processing while maximizing the use of available system memory.

The size and location of the dataset govern the creation of the
data pipeline, pre-processing, and data loading into the main mem-
ory. Typically, large datasets cannot fit into the memory subsystem
of a single worker due to limited memory and storage on each
worker. A DL job fails to execute when available system memory is
not enough to hold the entire training dataset. To avoid such failures
due to limited resources, data is placed into pipelines and prefetch-
ing and caching techniques are used to efficiently manage memory
and storage resources. TensorFlow caches the dataset in memory
for improving I/O, however, its caching mechanism becomes inef-
fective if the memory is not large enough to host the entire dataset
and it does not yield any performance benefit because the dataset
cannot be cached in memory. TensorFlow also allows caching to
disk, which becomes beneficial when caching to local NVMe devices
as compared to reading the batch from network-attached storage.
Another important factor that improves performance is prefetch,
which ensures that the dataset is loaded in the main memory before
the training job has finished processing the previous batch of data.

We analyze the impact of caching and prefetching techniques for
two scenarios. First, the training data is greater than the available
system memory resulting in excessive swapping, and second, the
training data is smaller than the available system memory and it
can fit entirely into the memory without swap utilization. We used
TensorFlow’s optimized data pipelines with limited memory and
observed performance degradation due to frequent disk accesses.
Figure 3 shows the results. We observe that prefetching and caching
into memory yield better performance as compared to using the
swap storage. Moreover, the impact of data prefetching reduces
when the available system memory is less than the dataset size.
With limited memory available, disk I/O becomes a bottleneck as
compute units consume data at a much higher rate. We observe
this during data loading, pre-processing, and training by analyzing
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Figure 3: Impact of caching and prefetching on DL workload

performance with MobileNetv2 and a subset of ImageNet

with batch size of 64 and 3 epochs.

the DL job’s footprint, available system memory, and disk utiliza-
tion with the help of PCM and SYSSTAT monitoring tools. We ran
several experiments and observe that the data loading throughput
is ∼320 MB/s when loaded from the SSD in our evaluation setup.
Prefetching consumes additional memory to store data batches
and speeds up the training process. Therefore, less available mem-
ory significantly increases application execution times and reduces
throughput. This impact is amplified with large batch sizes despite
TensorFlow’s caching and prefetching mechanisms. For a worker
where less amount of memory is available, caching to the local
storage is useful since it reduces access latency as compared to
the network storage to fetch the same data for subsequent epochs.
Moreover, caching to the local storage is beneficial if faster storage,
such as NVMe [23] and CXL devices are available at the worker
nodes. Our experiments show a throughput of ∼5284 MB/s when
reading data from CXL-based storage which is ∼16.5× higher than
the throughput observed when reading from the local storage.

3 DeepMemoryDL DESIGN

3.1 Design Objectives

The main goal of DeepMemoryDL framework is to improve the
performance of DL applications by leveraging CXL-based memory
devices to proactively stage the training data at the worker node
and reduce I/O stalls. The key objectives of DeepMemoryDL are:

(1) Enable access to the additional memory space over the CXL
interface for DL workloads. This will allow the DL appli-
cations to train the given model using a large dataset and
reduce the training time.

(2) Avoid throughput bottlenecks in the I/O pipelines and ensure
minimal I/O response time by intelligently prefetching the
data required by the DL workloads and placing it close to
the processing threads.

(3) Provide fast CXL-based scratch space to store the training
data, thus enabling high bandwidth access to data and elimi-
nating I/O access to slower storage tiers.

3.2 Design Overview

In this paper, we extend the popular TensorFlow platform to ensure
that the training data is available for the processing threads in the

Figure 4: Proposed architecture of DeepMemoryDL.

fastest storage tier by enabling TensorFlow to request additional
memory resources using DeepMemoryDL. Figure 4 shows the high-
level architecture of the DeepMemoryDL framework. We develop a
lightweight Resource Gatherer Module that collects compute, mem-
ory, network, and storage resources of all servers included in the
cluster. We implement aWorkload Analyzer Module that analyzes
the submitted DL workload and breaks down the job in I/O and
compute phases. Moreover, we develop a Prefetcher Module that
prefetches data and loads it in the main memory before it is required
by the processing thread to minimize I/O stalls.

3.3 DeepMemoryDL Architecture

3.3.1 Resource Gatherer Module. The Resource Gatherer Module

captures information about compute, memory, network, and storage
resources of all servers in the cluster. This module is responsible
for the following tasks:

• Maintain System Specifications: The Resource Gatherer
Module maintains a list of hardware specifications of the
system including CPU make, model, caches, UPI/IF, installed
memory, memory channels, memory controllers, supported
memory speeds, local storage, and system mount points.

• MaintainAvailable SystemResources:The Resource Gath-
erer Module maintains up-to-date information about the
available system resources on all servers in the cluster.

• Memory and Storage Classification: The Resource Gath-
erer Module uses the system specifications on each server to
classify them into tiers based on their performance statis-
tics, i.e., the total achievable bandwidth, IOPS, and latency.
This is obtained by running a set of micro-benchmarks, i.e.,
LMBench [32], FIO [1], and STREAM [31], to classify the
available servers into tiered memory and storage subsystem
that is used for prefetching and caching the training data.

3.3.2 Workload Analyzer Module. TheWorkload Analyzer Module

analyzes the submitted DL jobs to isolate the I/O operations from
the computation phases. It is responsible for the following tasks:

• Analyze DL Job: TheWorkload Analyzer Module analyzes
the submitted DL job to capture model-specific information,
i.e., the DL model, parameters, dataset, epochs, batch size,
data pre-processing stage, and model training steps. It also
identifies if TensorFlow’s native checkpoint or data caching
option is enabled for the submitted job.

4



Figure 5: Control flow between DeepMemoryDL components.

• Separate Data Processing from Execution: The Work-
load Analyzer Module divides the submitted DL job into two
main phases namely data processing and model execution.
The data processing phase includes dataset loading and pre-
processing operations. The model execution phase consists
of the model training, validation, and evaluation phases.

• Analyze Dataset and Batches: The Workload Analyzer
Module tracks dataset shards assigned to each TensorFlow
worker at the start of the training process. This data is used
to estimate the memory and storage allocations on each
worker and to accurately determine the completion time for
prefetching the required data in memory tiers.

3.3.3 Core Module. The Core Module is the main component of
DeepMemoryDL. It is divided into two parts, i.e., manager and work-
ers. The manager resides on the same node as the master node
in TensorFlow and supervises all operations of DeepMemoryDL.
Its main responsibilities are: 1) compute the batching schedule for
each worker; 2) share the batching schedule with each worker along
with metadata that specifies the location of each batch for the cor-
responding epoch; 3) inform each worker about when to launch the
prefetching threads; and 4) inform each worker about the storage
tier where a particular batch should be prefetched based on the
memory and storage tiers available at a worker node. This informa-
tion is sent to each worker along with the prefetching schedule so
that the Prefetcher Module can proactively prefetch the batches and
load them in the memory tiers. The workers reside at the worker
nodes and perform tasks such as monitoring local buffers, prefetch-
ing and caching the required data as specified by the manager. The
Core Module uses the information provided by other modules to
issue control instructions to the workers. The Core Module exposes
an API that can be used by the DL workloads to request memory
space. Once a request is received, DeepMemoryDL fetches the latest
resource availability data, computes the ideal execution strategy,
and services the request. Figure 5 shows the interactions between
different components of DeepMemoryDL and is explained as follows.
1○ A DL job is submitted by the user to the Core Module. 2○ The
Core Module collects the details about the existing memory and stor-
age tiers from the Resource Gatherer Module. 3○ Concurrently, the
Workload Analyzer Module analyzes the submitted DL workload to
identify the operations involved in the data processing and training
phases. 4○ The Core Module forwards all the information on the DL
job to the prefetcher module to create a prefetching and caching
schedule. 5○ The Prefetcher Module executes the schedule on the
manager node which resides alongside the TensorFlowmaster node.
6○ The Prefetcher Module module executes the schedule on all the

Algorithm 1: Data prefetching and caching scheduling.

1: for each worker in cluster do
2: determine location for 𝑛 batches
3: if tier 𝑡 avail. buffer space ≥ space for 𝑛 batches then
4: prefetch 𝑛 batches from location 𝑥 to tier 𝑡
5: else
6: prefetch (𝑛 − 𝑘) batches from location 𝑥 to tier 𝑡
7: prefetch 𝑘 batches from location 𝑥 to tier 𝑡 − 1
8: end if
9: if buffer space in tier 𝑡 ≥ util. threshold at tier 𝑡 then
10: if batch 𝑏 is needed in upcoming 𝑖 iterations then
11: cache batch 𝑏 to tier 𝑡 − 1
12: else
13: evict batch 𝑏
14: end if
15: end if
16: end for

worker nodes and ensures that the data is available on the fastest
memory and storage tiers for I/O optimization. 7○ The Core Module
forwards the DL job to the manager for execution. 8○ The manager
shares the batching schedule with the workers and coordinates the
execution of the DL job with all the worker nodes.

The Core Module defines prefetching and caching buffer sizes at
each memory and storage tier on the worker nodes. The allocated
buffers are adaptive to handle batches with varying sizes depending
on the available system resources. A training batch contains 𝑛
elements of width 𝑥𝑖 , height 𝑦𝑖 , and depth 𝑧𝑖 stored in memory
as arrays of 𝑑𝑖 bytes objects. The memory size in bytes of one
element is the product of the width, height, depth, and the number
of bytes consumed per pixel. Therefore, the size 𝑆𝑏 of a batch 𝑏

is computed as 𝑆𝑏 =
∑𝑛
𝑖=1 𝑥𝑖 × 𝑦𝑖 × 𝑧𝑖 × 𝑑𝑖 . The manager works

closely with the Prefetcher Module on all the workers to ensure
that appropriate buffers are allocated. DeepMemoryDL starts with a
reservation of 20% of the available space at the memory or storage
tier. The Core Module adjusts the allocation of buffer 𝑆𝑡 based on the
available space at tier 𝑡 and the total number of batches 𝐵 scheduled
to be loaded onto 𝑡 such that the total number of elements at the
memory or storage tier does not exceed the space allocated to the
buffer (𝐵 × 𝑆𝑏 ≤ 𝑆𝑡 ). It is important to note that the size of buffers
increases as we traverse from the fastest to the slowest tier based
on the assumption that the fastest tier is the most expensive storage
with less amount of available storage space.

Proactive Data Prefetching and Scheduling. Themanager is tightly
integrated with TensorFlow’s core and coordinates the dataset
preparation and pre-processing, and ensures that each training
batch is loaded into the memory before the next iteration is ready
for execution. The manager gets information about the DL job
from theWorkload Analyzer Module and determines a schedule and
deadlines for I/O operations to stage the required data in the main
memory of the worker nodes. Initially, the dataset resides in a cold
storage tier, e.g., network-attached storage which is mounted at
each server. The manager locates the dataset and creates a schedule
to ensure that the initial dataset for pre-processing phase is loaded
into the main memory to minimize I/O stalls. The data prefetching
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Figure 6: Dataflow for prefetching and caching in DeepMem-

oryDL using CXL-based memory and storage subsystem.

and caching approach in DeepMemoryDL is shown in Algorithm 1.
Given the dataset, the target batch size, and available memory and
storage space at each tier, it determines the initial location of each
data batch and defines a prefetching and caching schedule. The
schedule includes instructions to stage the pre-processed data in
the memory subsystem. If the pre-processed data is larger than
the available system memory, the additional data is cached in the
CXL-based memory instead of slower local storage.
Figure 6 shows the flow of data to the prefetching and caching

buffers. The prefetching schedule follows priority rules for storing
the prefetched data. The priority is: 1) main memory; 2) CXL-based
memory; 3) storage tier 0, i.e., CXL scratch storage; and 4) storage
tier 1. The prefetching priority starts from the fastest storage tier
andmoves through the slower tiers. The prefetching scheduleworks
in conjunction with the caching mechanism to coordinate data
evictions to slower memory and storage tiers. The caching priority
traverses the prefetching priority in reverse order to ensure that
the required data is always available in the main memory. In the
cases where the dataset, shard, or even a batch is much larger than
the main memory, then the eviction coordination is halted and only
prefetching buffers consume the entire memory and storage tiers.
DL jobs can access the CXL-based memory directly to improve I/O
performance despite the additional latency, which is lower than the
latency to prefetch the data from local storage.

Allocation of CXL-based Memory. The manager is responsible
for keeping track of CXL-based memory allocations on all worker
nodes. The manager increases the memory allocation of a workload
in chunks of 512 MB when a request for additional memory is
received. This memory is allocated from the CXL-based memory
space and allows the workload to avoid using the swap space after
consuming the entire systemmemory. During the training phase, all
worker nodes allocate memory to store the given model parameters
and the training dataset. The available system memory on each
worker varies depending upon the number of jobs running at a
particular instance. This leads to memory starvation for DL jobs
and slows down the training process. The manager ensures that
enoughmemory is available for themodel to grow over the specified
training epochs.

Allocation of Fast Scratch Storage. The manager handles the allo-
cation of fast scratch storage space over CXL-based storage. This is
particularly critical for reducing the I/O wait due to slower storage
tiers in the data processing workflow. Workloads can also benefit
from using CXL-based storage for storing intermediate data when
enough memory is not available to store the cached data. This is
beneficial for typical DL workloads where the dataset is much larger

than the available system memory and also when the processed
data must be written back to the local storage.

3.3.4 Prefetcher Module. The Prefetcher Module is a part of the
manager and worker components. It takes instructions from the
Core Module and ensures that the data is prefetched and made
available to the DL workloads before their execution. The schedule
contains information about the worker nodes, assigned chunks of
the dataset, memory and scratch space allocation, and a resource
map for data placement. For extremely large datasets, the size of a
single batch becomes substantially large causing the Core Module to
define large buffer sizes and launch the prefetching threads ahead of
schedule. The Prefetcher Module executes the prefetching schedule
and reports the prefetching latency back to the Core Module. This
information is used to dynamically adjust prefetching buffer sizes
and the number of prefetching threads to further improve the I/O
throughput. The Prefetcher Module tracks the memory footprint of
each sample and the size of the entire training batch. This gives the
Prefetcher Module the total size of a single prefetch block which is
used to estimate the time it takes to prefetch a batch. For data trans-
ferred over the network, DeepMemoryDL incorporates the available
link bandwidth and the latency to compute an estimated time to
prefetch a given batch. This information is subsequently used to
launch the prefetching threads and execute the prefetching sched-
ule. The prefetching threads execute the schedule concurrently
with the DL training job to ensure that the batch required in the
next iteration is prefetched in the main memory.

The manager also defines a caching policy that is followed by all
worker nodes to ensure quick access to the training data that is not
available in the main memory. Figure 7 illustrates the caching policy
of DeepMemoryDL. The policy uses the resource map provided by
the Prefetcher Module. Once the main memory is fully used, the
workers run the eviction policy to free up space from the main
memory. The I/O buffers at each memory and storage tier hold the
prefetched data. The size of I/O buffers are dynamic to incorporate
the variations in the size of each batch. The manager defines and
uses an eviction strategy to evict data from these buffers to make
space for new data for the next iterations. The eviction strategy
in DeepMemoryDL works closely with the TensorFlow training
schedule and the Prefetcher Module. The policy is based on the
following rules: 1) data is evicted in FIFO order; and 2) samples
within a batch that are marked for prefetching will be cached to a
lower memory tier. The eviction policy in DeepMemoryDL ensures
that enough space remains available in the buffers of each tier
and unnecessary expansion of a buffer is avoided at each tier. The
worker nodes cache the evicted data to a lower memory and storage
tier if the data is required by subsequent training iterations. The
caching policy of DeepMemoryDL ensures that: 1) data is cached
until the buffers are full; 2) the cached data is evicted in the first-in-
first-out (FIFO) order; 3) data is always cached from a higher (faster)
tier to a lower (slower) tier based on the prefetching schedule. The
data that is needed first by the Prefetcher Module is kept in the
CXL-based memory. Once the buffers in the CXL-based memory
are full, the lower priority batches are cached into the storage tiers.
DeepMemoryDL is more effective for workloads with high data re-
use, such as DL jobs, due to prefetching and caching policies that
ensure data to be prefetched is available in the fastest tier. However,
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Figure 7: Caching workflow in DeepMemoryDL.

for workloads with low data re-use, the prefetcher ensures that
the required data is available in local/CXL-based memory before it
is required for processing. For such workloads, DeepMemoryDL’s
caching policy will avoid aggressive caching to lower memory and
storage tiers because data is not re-used by the workload.

By default, Linux operating system caches application data that
is read from the local storage by assuming that the accessed data
will soon be read again. The subsequent reads are served from
the buffer cache instead of the disk to reduce I/O times. Once the
memory footprint of a DL job grows and more memory is required,
data from the buffer cache is evicted to fetch the required data. Thus,
DeepMemoryDL’s caching policy is critical for keeping the required
data in main memory as Linux caching policy will evict the data
that is required in the next training iterations. DeepMemoryDL’s
caching policies minimize reading the training batches from cold
storage and improve the I/O throughput.

4 PERFORMANCE EVALUATION

In this section, we present the evaluation of DeepMemoryDL frame-
work. We explain our experimental setup, the performance metrics,
and the representative DL models that we use to evaluate the effec-
tiveness of the proposed framework.

4.1 Evaluation Setup

Our evaluation setup consists of eight servers running Ubuntu
20.04 LTS server operating systems. Each server has two 2.40 GHz
Intel Xeon Gold 6240R processors, with 192 GB main memory,
out of which 96 GB of the main memory is reserved for emulat-
ing CXL-based memory and CXL-based storage scenarios, and 10
Gbps Ethernet between servers. We emulate the provisioning of
CXL-based memory by allocating memory from the remote NUMA
domain and CXL-based storage devices by creating a RAMDisk [16]
on the remote NUMA domain.

In our evaluation, we stress the memory and storage subsystem
with large datasets. Smaller batch sizes andmodels can be fit into the
server’s memory, however, our evaluation focuses on realistic sce-
narios where HPC servers have less memory available to store the
entire dataset. To evaluate DeepMemoryDL, we use ImageNet [13]
dataset and ResNet50 [20], Inception-V3 [40], andMobileNetV2 [21]
models. We use Intel PCM [3], and sysstat [6] to monitor the mem-
ory, disk, swap, NUMA domains, and network activity during the
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Figure 8: Total execution time of DL job with batch size of 64

and 3 epochs.

execution of DL workloads. We develop a memory hogger to hog
systemmemory on the worker nodes to mimic the behavior of back-
ground jobs in production data centers.We investigate the impact of
limited system memory, the availability of CXL-based memory and
storage tiers, and the impact of proactive prefetching and caching
on the performance of DL jobs. Existing state-of-the-art prefetching
and caching approaches [15, 29] are either developed for a single
server or do not incorporate the characteristics of additional mem-
ory and storage tiers, specifically, CXL-based devices. Therefore,
we analyze the performance of DeepMemoryDL using five realistic
TensorFlow environments depending on the availability of memory
and storage subsystems. These environments are:

(1) Unconstrained Baseline Environment: This environment
represents an ideal scenario with no resource constraints or
sharing between DL jobs.

(2) Constrained Baseline Environment: This environment
represents a realistic scenario where resources are shared
and limited memory is available for DL jobs.

(3) CXL-based Storage Environment: This environment has
CXL-based storage available with limited system memory.

(4) CXL-based Memory Environment: This environment has
CXL-based memory available with limited system memory.

(5) CXL-based Memory and Storage Environment: This en-
vironment has CXL-based memory and CXL-based storage
available with limited system memory.

(6) DeepMemoryDL: This environment has our proposed frame-
work, DeepMemoryDL, integrated with TensorFlow, which
manages system resources including CXL-based memory
and CXL-based storage to run DL jobs.

4.2 Performance Results

In this section, we execute DL workloads on the studied execution
environments and compare their performance. We repeat each
experiment five times and report the average execution time for
each experiment. Overall, we experience negligible variance, i.e.,
less than 2%, between different executions of the same experiment.

4.2.1 Total Execution Time of the DL Job. We evaluate the effec-
tiveness of DeepMemoryDL in reducing the overall training time
and compare it with the studied environments. Figure 8 shows the
performance comparison of Unconstrained Baseline Environment,
Constrained Baseline Environment, CXL-based Memory Environment,
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Figure 9: Data pre-processing time for ImageNet dataset with
limited main memory.

CXL-based Storage Environment, andDeepMemoryDLwhen training
a DL job over 3 epochs with a batch size of 64. For all models, we
observe that Constrained Baseline Environment takes the longest
time due to limited memory availability on worker nodes and exces-
sive swapping of pages to the underlying SSD-based storage. The
CXL-based Memory Environment enables DL jobs to train using a
larger working set by allowing access to CXL-based memory, how-
ever, the additional latency of the CXL-based memory increases the
training time by 14% on average as compared to the Unconstrained
Baseline Environment. The CXL-based Storage Environment provides
fast storage space to DL jobs to read the input data from CXL-based
storage which increases the performance significantly over reading
data from the SSD. However, due to the limited system memory, it
increases the training time by 10% on average as compared to the
Unconstrained Baseline Environment but reduces the training time
by 9% as compared to the Constrained Baseline Environment. Overall,
we observe that DeepMemoryDL reduces the training time by up to
20%, 34%, 27%, and 25% as compared to the Unconstrained Baseline
Environment, Constrained Baseline Environment, CXL-based Mem-
ory Environment, and CXL-based Storage Environment, respectively.
The performance improvement of DeepMemoryDL is attributed to
the allocation of CXL-based resources, prefetching of data batches
tomainmemory, caching data into CXL-based storage instead of the
underlying SSD-based storage, and tailored data eviction policies.

4.2.2 Data Pre-Processing Phase. Optimizing the performance of
the input data pipeline is crucial to the performance of DL jobs.
In this section, we evaluate the impact of DeepMemoryDL on pre-
processing stage by pre-processing 40 GB of images from the Ima-
geNet dataset. The pre-processing phase consisted of downloading,
extracting, generating training and validation data, shuffling, and
reshaping images. Figure 9 shows the results. Before pre-processing,
DeepMemoryDL proactively prefetches the input dataset to CXL-
based storage to significantly reduce loading time and then caches
the data in CXL-based memory to move data closer to compute
threads allowing for faster prefetching onto main memory. These
policies defined by the Core Module of DeepMemoryDL yield better
I/O performance as compared to Constrained Baseline Environment
and reduce overall data pre-processing time by 56%, 43%, and 23%
as compared to Constrained Baseline Environment, CXL-based Mem-
ory Environment, and CXL-based Memory and Storage Environment,
respectively. The impact of DeepMemoryDL is further observed
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Figure 11: Impact of CXL-based memory on total execution
time of DL job with 3 epochs.

while training a model with the pre-processed data as discussed in
Section 4.2.1 as data batches are prefetched to reduce the training
time for subsequent iterations. We note that the experiment results
shown in Figure 9 only involve data pre-processing, therefore, the
change in the batch size does not impact pre-processing time.

4.2.3 Impact of Using CXL-basedmemory onDL Job. Largememory
systems allow DL jobs to train large models and datasets without
running out of system resources. The scarcity of available memory
leads to premature termination of DL job resulting in loss of com-
putation. In such a scenario, a DL job is either restarted or resumed
from the last checkpoint. We conduct experiments with varying
CXL-based memory allocated to the DL job to study the impact on
the execution time for the studied models using a batch size of 64.
Figure 10 shows the results. As the memory footprint of DL jobs
increases, DeepMemoryDL allocates CXL-based memory to expand
its working set size to the CXL-based memory. We observe that
as the CXL-based memory footprint of a DL job grows, the total
training time is reduced due to the usage of a faster memory tier as
compared to the SSD-based swap storage.

We evaluated the impact of available CXL-based memory and
dynamic buffer sizes on the total execution time of DL jobs. Figure 11
shows that as the buffer size increases, the execution time reduces
due to the increased prefetching and caching capacity at the CXL-
based memory tier. We observe that as the batch size increases the
execution time increases proportionally, however, DeepMemoryDL
adjusts the I/O buffer sizes based on the footprint of a data batch
for prefetching and caching. DeepMemoryDL mitigates the impact
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Figure 12: Impact of data staging storage onDL jobwith batch
size of 64 and 3 epochs.
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Figure 13: Impact of proactive prefetching and caching on
DL job with batch size of 64 and 3 epochs.

of using large batch sizes on the execution time of a DL job and
also enables TensorFlow to manage a much larger working set size.

4.2.4 Impact for Using CXL-based Storage for Staging Data on DL
Job. Staging data in a fast storage tier improves I/O performance
for DL jobs that read and write data to local storage devices, e.g.,
HDD or SSD. We conduct experiments to study the impact of us-
ing CXL-based storage on read and write operations for staging
large datasets. Figure 12 shows the results. We observe that CXL-
based Storage Environment reduces the execution time by up to
30% as compared to the Constrained Baseline Environment due to
the improved I/O performance of the CXL-based storage. Overall,
DeepMemoryDL reduces the execution time by up to 20%, 32%, and
24% as compared to the Unconstrained Baseline Environment, Con-
strained Baseline Environment, and CXL-based Storage Environment,
respectively. DeepMemoryDL stages data in the CXL-based storage
resulting in improved performance as compared to the other exe-
cution environments since storing the entire dataset in the staging
area ideally yields higher read bandwidth and IOPS.

4.2.5 Impact of Proactive Data Prefetching and Caching on DL Job.
Proactive prefetching of data minimizes I/O wait during model
training. We study the impact of proactive data prefetching and
caching on the execution time of DL jobs with a batch size of 64 and
compare the results of DeepMemoryDL with the other execution
environments. Figure 13 shows the performance variation while
training MobileNetV2, InceptionV3, and ResNet50 models using
the ImageNet dataset over 3 epochs. We observe that by effectively
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Figure 14: Scalability analysis on total execution time of DL
job with batch size of 64 and 3 epochs.

managing the CXL-based memory, DeepMemoryDL reduces the
execution time of DL jobs by 15%, 30%, 25% as compared to the
Unconstrained Baseline Environment, Constrained Baseline Environ-
ment, and CXL-based Memory Environment, respectively. Moreover,
the Unconstrained Baseline Environment performs better than the
CXL-based Memory Environment when enough space is available
in the main memory by an average overhead of up to 10%. The
CXL-based Memory Environment provides additional CXL-based
memory to DL jobs that reduces the execution time by up to 17% as
compared to the Constrained Baseline Environment. Data eviction
contributed to theworst performance of theConstrained Baseline En-
vironment. The manager in DeepMemoryDL optimizes the caching
mechanism by preparing a caching policy that is implemented on
all worker nodes running the training job. Additional memory is
pooled from CXL-based memory to cache processed data to ensure
that the required data is always available in the faster available tier.
In tandem with prefetching, caching improved the performance of
DeepMemoryDL and optimized memory resource utilization.

4.2.6 Scalability Analysis of DeepMemoryDL on DL Job Perfor-
mance. We ran several experiments using a combination of real-
world use cases by varying the available system resources and
the number of worker nodes to evaluate the performance of Deep-
MemoryDL. Single worker training is resource-intensive since the
entire dataset has to be processed on a single node requiring more
memory and storage resources. Multi-worker training requires the
dataset to be divided between the available worker nodes reduc-
ing the resource requirement on each worker node. However, for
large datasets, memory and I/O remain the bottlenecks. We studied
the impact of increasing the number of workers on DeepMemo-
ryDL by training MobileNetV2 and compare its execution time with
Constrained Baseline Environment. Figure 14 shows the result. We
observe that DeepMemoryDL outperforms the Constrained Baseline
Environment, and the respective performance gap remains similar
as we increase the number of worker nodes. Moreover, we observe
that the performance of a DL job is improved linearly using Deep-
MemoryDL as we increase the number of worker nodes.

5 RELATEDWORK
Many recent efforts have focused on improving the I/O performance
of the TensorFlow platform. In this section, we provide an overview
of efforts that are closely related to the contributions of this paper.
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Several other efforts have been made to optimize the I/O path in
DL, such as, [12] which studies the impact of the BeeGFS filesystem
on DL workload performance. NoPFS [15] predicts data access
patterns and performs prefetching and caching based on these
patterns. It provides a distributed caching policy using local and
distributed memory to improve the I/O performance of DL jobs.
However, NoPFS does not support CXL-based memory or storage
devices that introduce additional tiers in the memory and storage
layer. In [10], the authors study the impact of multi-threading on
the I/O pipelines on improving the performance of DL jobs. Recent
efforts also explore optimizing data loading in the I/O pipelines and
pre-processing to accelerate DL applications by utilizing Nvidia’s
Data Loading Library (DALI) [4]. Prisma [29] decouples storage I/O
optimization using software-defined storage that is composed of
a control plane that maintains user-defined caching policies and a
data plane that implements parallel data prefetching. However, it
does not leverage CXL-based memory and storage devices.

Informed Prefetching Data Loader (IPDL) [37] prefetches data
from remote data stores to reduce the I/O wait times in PyTorch
based DL and edge computing environments. Similarly, in [25] the
authors employ caching and prefetching techniques to improve the
performance of DL training in cloud environments. Quiver [27] is
an informed storage cache designed to improve the performance of
DL jobs on GPU-enabled clusters using secure hash-based address-
ing to reuse cached data across jobs and avoid cache thrashing. The
approaches are tailored for GPUs and cannot be applied to all stages
of DL jobs. Moreover, they do not explore the use of CXL-based
memory and storage tiers. PreFAM [24] improves the performance
of fabric-attached memory architectures by predicting future data
access and prefetching data blocks from fabric-attached memories
to node-local memory resulting in improved access latency. While
this approach is similar to ours in leveraging the latest advance-
ments in memory subsystem to provide additional memory and
optimize data access, however, our approach reduces the uncer-
tainty in predicting future data access and improves the accuracy
of prefetching by integrating with the DL frameworks. We also
propose a caching mechanism to maintain prefetched blocks that
will be accessed in the future in the closest memory tier.

Distributed remote memory accesses can be performed by us-
ing fast low latency networks and protocols involving RDMA,
NVMEoF [19] and SEMERU [42]. Remote memory paging system
over RDMA called Infiniswap [18] that provides memory disaggre-
gation. In [23], the authors use prefetching over NVRAMandDRAM
to bridge the I/O gap between hard disk to RAM. RAMCloud [35]
aggregates server memories into a single coherent key-value store
and provides low-latency access to large-scale datasets enabling
faster access to large datasets for various applications including
DL workloads. Fanstore [46] provides a runtime file system to op-
timize DL I/O on existing hardware and software architecture by
distributing datasets to all compute nodes, and maintains a global
namespace. DLFS [47] provides I/O services on top of an emerging
industrial standard NVMeOF leveraging storage disaggregation.

Previous efforts have explored different aspects of DL I/O to
improve training and optimize input pipelines by introducing mid-
dleware, runtimes, file system abstractions, and utilizing caching
and prefetching techniques. However, these efforts do not holis-
tically incorporate multiple memory and storage tiers and do not

leverage emerging technologies to optimize the data pre-processing
and input pipelines in DL platforms. In this paper, we propose a
holistic framework that improves the performance of DL workloads
by incorporating and utilizing CXL-based memory and storage de-
vices in the TensorFlow platform.

6 CONCLUSION
Modern deep learning (DL) applications are resource-intensive and
have dynamic compute, memory, and storage requirements. The
resource requirements of these workloads typically exceed the hard-
ware resources available on the latest high-performance computing
(HPC) servers. Currently, popular DL platforms do not incorporate
I/O characteristics of the underlying memory and storage subsys-
tems. In this paper, we present a framework, DeepMemoryDL, that
improves the performance of DL workloads by efficiently leverag-
ing storage and memory tiers to proactively prefetch and cache
the training data. We emulate the latest advancement in memory
subsystems, i.e., Compute Express Link (CXL), to provide additional
memory and fast scratch storage space to DL workloads and reduce
the overall training time. Moreover, we integrate DeepMemoryDL
with the popular TensorFlow platform to improve the performance
of its I/O requests for data pre-processing and training stages. Our
evaluation using representative DL workloads shows that Deep-
MemoryDL reduces the overall training time of a DL job by up
to 34% and 27% as compared to the default TensorFlow and CXL-
based memory expansion approaches, respectively. In our future
work, we will extendDeepMemoryDL to support other DL platforms,
specifically the PyTorch platform, to improve its performance by
eliminating I/O stalls. Moreover, we will explore accelerator-based
systems, specifically GPUs, for utilizing their High BandwidthMem-
ory (HBM) interconnects to provide an additional storage tier for
prefetching and caching the training data and improving the per-
formance of DL workloads in distributed settings.
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