
Towards Data Gravity and Compliance Aware
Distributed Deep Learning on Hybrid Clouds

Avinash Maurya, Jaiaid Mobin, M. Mustafa Rafique
High Performance Distributed Systems Laboratory (HPDSL), Rochester Institute of Technology, New York, USA

Email: {am6429, jm5071, mrafique}@cs.rit.edu

Abstract—To store large volumes of data concurrently from a
diverse set of sources, data stores such as data silos, lakes, and
warehouses, have been widely embraced by various organizations.
Thanks to data fabric architectures, such scattered data (both
structurally and geographically), can be accessed transparently
at scale while adhering to various administrative regulations (e.g.
governance, privacy, compliance, etc.). However, modern work-
load schedulers and distributed deep learning (DDL) runtimes
are oblivious to the uneven data distribution across different
storage services and compliance regulations, leading to sub-
optimal resource utilization and training completion times. Al-
though state-of-art workflow schedulers such as Apache Hadoop
Yarn, Horovod, etc. exploit data locality, they require application
developers to explicitly map data and resources available across
various cloud services during job submission. These approaches
are redundant and counterproductive for next-generation data
fabric architectures that feature automated transparency and
compliance abstractions for accessing disparate data sources with
uneven data distribution. To this end, we propose an algorithm
based on greedy programming that leverages the meta-data
catalog of data fabric to efficiently determine training schedules
based on data gravity, compliance, and resource availability. Our
simulations based on synthetic data and resource distribution
profiles demonstrate significant improvements in execution times
and resource utilization compared to traditional DDL scheduling
approaches in hybrid multi-cloud environments.

Index Terms—Data Fabric, Heterogeneous Data Distribution,
Workflow Scheduling, Data-intensive Workloads

I. INTRODUCTION

Modern enterprises and research organizations have demon-
strated rapid adoption of data-driven services, such as deep
learning (DL) based recommendations, scientific exploration
and experimentation, web and business-intelligence services,
big-data analytics-based revenue projection and medical sur-
veys, etc. The importance of DL can be characterized by the
numerous breakthroughs it has achieved in a wide variety
of domains, ranging from DL-based drug discovery and cli-
mate modeling, to stock volatility prediction and autonomous
androids [1]. Such DL-based workloads use huge amounts
of data, collected through various primary (e.g. IoT or edge
devices, experimental equipment, etc.) and derived (e.g. trans-
formed, pre-processed, extrapolated, etc.) data sources. The
unprecedented pace and scale of data management required to
fuel such DL workloads is a high-priority challenge for the
systems research community.

Data stores (e.g. cloud-based file and object storage) have
been extensively explored and optimized to manage large-
volumes of data. However, efficient data management on such
hybrid multi-cloud data store services entails challenges as-

sociated with data gravity, governance, compliance, discovery,
provenance, and security [2]. The data fabric architecture aims
to mitigate, and potentially eliminate these issues through a
series of modular data management components. In this con-
text, data virtualization is a key component for transparent and
real-time access of data scattered across various data sources,
i.e., different storage services (e.g. object stores, key-value, file
storage, etc.) and cloud providers [3]. Apart from minimizing
data engineering efforts, such as integration across different
storage services, data movement, and enforcing compliance
regulations, data fabric has led to faster, robust, and high-
quality discovery services [3], [4].

Although in nascent stages of development, data fabric has
powered large-scale enterprise and research explorations (e.g.
Dow Jones, DreamWorks, AstraZeneca, etc.) [5], demonstrat-
ing a promising potential for rapid adoption. While the data
virtualization in data fabric allows seamless processing of low-
frequency small-sized data (e.g. distributed query processing),
data-intensive workloads (e.g. scientific experiments, image
classification based on DL, etc.), typically require access to
large input datasets at sub-second intervals. In this context,
distributed deep learning (DDL) workloads trained on datasets
scattered across various storage services, consume data at
high-frequency. Further exacerbating this issue are accelerators
(e.g. Graphic Processing Units (GPUs)) optimized for DL exe-
cution and fast-track data consumption. Therefore, consuming
data through the virtualization layer of data fabrics imposes
application overheads, escalating the training time. Even if the
data could be moved across datacenters transparently behind
the virtualization layer, the compliance policies on data fabric
may restrict such data movement.

A key observation in the context of data fabrics running
on hybrid-cloud environments is that the amount of data and
available computational resources (workers) on each cloud
can be variable. For instance, an organization capturing the
urbanization (using high-resolution drone imaging) of various
geographies to determine strategic advertisement locations
would have a higher number of images in metropolitan-dense
continents. Similarly, scientific expeditions to find atmospheric
oceans through DL-based image processing may feature high
data accumulation in cloud-storage repositories that are closer
to the regions of interest (e.g. hurricane-prone areas). Fur-
thermore, the resource availability on each cloud may be
limited either by (1) total compute machines available or (2)
operational costs on each cloud service. A naive approach to
address the contrasting objectives of data-consumption rate

53

2022 IEEE 29th International Conference on High Performance Computing, Data and Analytics Workshop (HiPCW)

979-8-3503-3388-6/22/$31.00 ©2022 IEEE
DOI 10.1109/HiPCW57629.2022.00012

20
22

 IE
EE

 2
9t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 H
ig

h
Pe

rf
or

m
an

ce
 C

om
pu

tin
g,

 D
at

a
an

d
An

al
yt

ic
s W

or
ks

ho
p

(H
iP

CW
) |

 9
79

-8
-3

50
3-

33
88

-6
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
HI

PC
W

57
62

9.
20

22
.0

00
12

Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on April 17,2023 at 15:58:01 UTC from IEEE Xplore. Restrictions apply.

of DL workloads and compliance would be to migrate all
data from various storage services to a central compliance-
abiding processing location, e.g. in-house cloud center. While
this approach respects the compliance policies, it suffers from
two performance limitations that can potentially violate the
service-level agreement (SLA) requirements of the workload:
(1) the DDL training execution time would be inhibited by
the limited number of processing units available at the central
processing location, and (2) the I/O overhead (both in terms
of time and cost ($)) to transfer data to a central location.

State-of-the-art data-locality-based workflow schedulers,
such as Yarn [6] and Horovod [7], eliminate the transfer
and compliance challenges by placing compute close to data
sources. However, these approaches require specialized Devel-
opment and Operations (DevOps) teams to map the workflow
based on data size and resource availability on each cloud
service. While currently used in practice, it obliterates the
transparency and meta-data semantics of data virtualization
provided by data-fabric, compelling application developers to
deal with the complexity of data distribution, access control,
and compliance. Therefore, existing DDL scheduling tech-
niques are not optimized for transparent, compliance-aware,
and resource-restricted data access through data fabric.

To address the limitations of existing DDL schedulers, we
propose a set of design principles and algorithms for data
fabric architectures based on hybrid multi-cloud environments.
We summarize our contributions as follows:

1) We formulate the problem of compliance-aware,
resource-constrained, data distribution-aware training of
DDL workloads on data fabric architectures (§ II).

2) We propose a set of design principles and algorithms
to optimize resource consumption and DDL training
time which optimizes scheduling based on data fabric
features such as transparent data access, data gravity,
and compliance. Specifically, we propose a greedy-
programming-based algorithm that leverages meta-data
catalog to transparently and efficiently schedule DDL
training on hybrid multi-cloud setups (§ IV).

3) We evaluate our approach using simulations on a series
of synthetic traces and demonstrate performance and
operational improvements introduced by our proposed
approach as compared to the existing techniques (§ V).

II. PROBLEM FORMULATION

We consider the case of a distributed deep learning (DDL)
training workload, such that the training data is distributed in a
hybrid multi-cloud setup across C different private and public
cloud providers, and accessed concurrently during training.
Each cloud consists of a variable number of worker resources.
Using a series of transformations (e.g. image rotation, deci-
mation, cropping, etc.), defined by the application developer,
the data to be used during training is pre-processed during
data ingestion, such that is available in readily consumable
formats (e.g. tensor vector) on each cloud before the training
starts. Furthermore, conforming to network and I/O SLAs

provided by cloud vendors, we assume that the average la-
tency and throughput across different clouds remain consistent
throughout application execution, and is not shared by other
workloads.

For the scope of this work, we limit the compliance char-
acteristics only to motility, i.e., the data on a given cloud is
either movable (motile) or non-movable (non-motile). During
training, the DDL workload accesses data from both motile
and non-motile cloud sources (e.g. data is motile on some
geographic locations, whereas it is strictly non-movable on
others). As opposed to micro-scale compliance management
(e.g. selective redaction of personal information, homomorphic
encryption based training, etc.) to make the dataset eligible
for movement, we assume extreme inflexibility by marking
entire data on given a cloud as either movable or non-movable.
Such simplification of extensive compliance guidelines (e.g.
GDPR [8]) to a single binary valued attribute, motility, allows
us to study the performance implications on DDL workloads
under exceptionally conservative compliance requirements.

To simplify the scope of this paper and emphasize the
impact of our proposal, we make the following assumptions:

• All cloud providers consist of homogeneous worker
nodes/resources, i.e. the compute, I/O, and memory ca-
pacity of all workers are identical.

• We assume that the DDL training time is significantly
higher than the synchronization overhead after every
epoch (e.g. using O(log(N)) all-reduce for N work-
ers [9])

• Compliance only corresponds to the motility of data, i.e.
the data on a cloud is either motile (1) or non-motile (0).

• We assume that all clouds perform local storage-only
shuffling, i.e., each cloud only shuffles the data that it
had ingested and the data that was outsourced to it at
the beginning of the execution from the overloaded peer
clouds. Therefore, data is not shuffled across different
clouds during training.

• Other applications do not inhibit the latency or throughput
of any given cloud storage throughout execution.

• Each cloud service already contains the pre-processed
data in ready-to-consume format on the fastest available
storage service, such that the access latency of the local
data across all clouds by each worker is identical.

Our goal is to efficiently schedule DDL training workloads
on next-generation data fabric architectures comprising hybrid
multi-cloud storage services. The key novelty of our proposal
is the efficient and transparent scheduling of data-intensive
DDL workloads in compliance-enforced, resource-constrained,
and variable data distribution-based data fabric environments.
Note that our proposed design principles can be easily ex-
tended to other data-intensive workloads running on hybrid-
cloud setups.

III. RELATED WORKS

A. Data Fabric Architecture
Data fabric aims to address the challenges in hybrid multi-

cloud data landscape [4]. Based on the reference data fabric

254

Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on April 17,2023 at 15:58:01 UTC from IEEE Xplore. Restrictions apply.

architecture provided by IBM [2] (described by Forrester Re-
search, Inc.), the data fabric consists of six major components
working in tandem to perform efficient data management. The
Open Data Fabric [3] implements a prototype for big-data
processing. On an orthogonal trajectory, the M-Data-Fabric [4]
optimizes knowledge map creation in the data fabric. However,
none of these approaches study the impact of processing
large-scale data and I/O-intensive workloads on data fabric
architectures.

B. Data Compliance and Privacy

Various government, enterprises, and research agencies de-
tail extensive guidelines for managing data life-cycle during
storage, transfer, and processing. Compliance policies (e.g.
GDPR [8]) impact a wide range of organizations operating
world-wide across different application domains. This has
compelled organizations to adopt smart data management
solutions such as data fabric to provide self-managed universal
compliance administration. However, current workflow sched-
ulers and distributed runtime do not leverage the optimizations
and abstractions provided by data fabric.

C. Workflow Scheduling on Distributed Resources

Workflow scheduling has been extensively studied across
the systems research community [10]. Scheduling frameworks,
such as Horovod [7], Yarn [6], etc. have been widely operated
across organizations with multi-cloud setups [11], but lack
automated data compliance and data gravity integrations. How-
ever, none of these frameworks leverage meta-data catalog of
data fabric to efficiently schedule workflows across distributed
resources.

To the best of our knowledge, we are the first to consider
the problem of data gravity and compliance aware DDL
training on resource constrained next-generation data fabric
architectures running on hybrid multi-cloud environments.

IV. PROPOSED SYSTEM DESIGN

In this section, we propose the key design principles and
algorithms to optimize DDL scheduling on hybrid multi-cloud
setups constrained by compliance and resource limitations.

A. Dynamic Discovery of Data Sources using Meta-data

Existing DDL frameworks impose the burden of statically
passing the data-sources during job execution on application-
developers. To accomplish this, application-developers need to
be aware of the underlying data distribution across various
sources, and different data access mechanisms (e.g. cloud
toolkit interface, authentication and authorization APIs, to-
kens, etc.). Further aggravating the developer burden are mod-
ification of data sources and access mechanisms, i.e. adding,
removing, or modifying controls (change ownership, access
method, etc.), which requires remapping of data sources and
their corresponding control mechanisms before submitting the
workload for execution. Although specialized development
and operations (devops) team assist developers in solving
these issues, the manual approach is still error-prone, complex

and time-consuming. To solve these challenges, we propose
a dynamic discovery abstraction that leverages the meta-data
catalog of data fabric to adaptively map data source across
hybrid multi-cloud setups. Our approach allows the application
developer to provide a set of unique labels to describe the
data required during training of their DDL workload. Labels
are identifiers that get assigned to the data records during
their ingestion process and are captured in the meta-data
catalog. These labels can be queried during application runtime
to discover the location and size of data residing across
various cloud sources. In addition to aligning with transparent
data access abstractions, this approach also allows dynamic
modifications to data sources, resulting in simpler and faster
application deployment times on data fabric.

B. Compliance and Gravity Aware Workload Distribution

Tightly coupled applications, such as DDL, that perform
synchronization after every epoch, are constrained by the slow-
est worker process in a distributed training setup. For typical
DDL training having uniform data distribution, determining
and optimizing slow workers (stragglers) based on resource
profiles (e.g. processing capability, memory, etc.) has been
extensively studied [12]. However, on data fabric architec-
tures, the uneven data distribution coupled with compliance
regulations and limited resource availability necessitates a new
workflow scheduling paradigm that leverages various compo-
nents of the data fabric to optimize both job completion times
and resource utilization. To this end, based on compliance
requirements, resource profile, and data size, we determine the
straggler worker using the metric maximum batches processed
per worker. The clouds comprising of non-motile data compels
the locally available workers to compute all available batches,
i.e. the data on a given cloud is evenly distributed across the
workers available on that cloud. On the other hand, motile data
based cloud providers can move data to resource-rich clouds,
i.e. clouds having spare workers, to complete training faster.

Once we compute the maximum data-load per worker, we
attempt to employ limited resources, such that every worker
processes exactly maximum batches processed per worker (last
worker may be underutilized when data cannot be split into
equal batches). Lastly, the data from overloaded motile cloud
servers can be transferred to under-loaded motile cloud servers
considering that DDL training time is higher than the data
transfer time. We detail this approach in § IV-C.

C. Greedy-Programming Based Compliance Aware Workload
Distribution Strategy

In this subsection, we zoom on our greedy-programming
based algorithm that leverages data fabric meta-data to effi-
ciently schedule workloads across hybrid multi-cloud setups.

Our algorithm is based on the intuition that all the workers
distributed across different clouds should be equally engaged
even if the data distribution is uneven. This ensures that
all the workers perform synchronization at epoch boundaries
simultaneously and underutilized workers do not wait for
stragglers after every epoch. Using a consistent number of

355

Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on April 17,2023 at 15:58:01 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: Greedy-programming based compliance
aware workload distribution strategy in resource con-
strained hybrid multi-cloud environments

Input : list of cloud meta-data C containing tuples
⟨b,m,w, T ⟩, each representing total batches b,
motility m (0 or 1), max. available workers w, and
list of transfer rates to remote clouds T ; per batch
execution time per worker tb

Output: list of workload distribution plan P with tuples
⟨src, dest, workers, train time, transfer time⟩

// Helper to filter motile/non-motile from C

1 Function filter(motile):
2 return c ∈ C | c.m == motile

3 non motile bpw ← maxfilter(false)(c.b/c.w)
4 motile batches←

∑
filter(true) c.b

5 motile workers←
∑

filter(true) c.w
6 motile bpw ← motile batches/motile workers
// compute maximum batches processed per worker

7 bpw ← max(non motile bpw,motile bpw)
// assign maximum required local workers

8 for c ∈ C do
9 workers← min(c.w, c.b/bpw)

10 c.w ← c.w − workers
11 c.b← c.b− bpw · workers
12 P ← P ∪ {(i, i, workers, bpw · tb, 0)}

// greedily transfer and schedule from heavily
overloaded cloud to fastest peer cloud

13 while ∃i = argmax(C[i].b | C[i].b > 0) do
14 while ∃j = argmax(C[j].w ∗ C[i].T [j]) and

C[i].b > 0 do
15 workers← min(C[j].w, C[i].b/bpw)
16 C[i].b← C[i].b− bpw · workers
17 C[j].w ← C[j].w − workers
18 P ← P∪{(i, j, workers, bpw·tb, C[j].b/C[i].T [j])}

19 return P

batches per worker achieves better (§ V) resource utilization
and minimum training time.

As described in the design principles, we exploit the data
fabric meta-data to generate an optimal transfer and training
schedule. To this end, during the workload submission, the
application developer simply provides the training script (that
can adapt to scheduled number of workers and inputs, e.g.
using lambda functions), the data labels, the batch size bs,
and total number of epochs epochs as input to our scheduler.
After querying the data sources through meta-data catalog, we
compute the number of batches on each cloud by dividing the
input data into b groups of bs pre-processed data items each
(§ II assumes that data is pre-processing during ingestion).
Based on the number of epochs, batch size bs, and the profile
of available workers (§ II assumes homogeneous workers
across all clouds), we estimate the execution time per batch
per worker tb. To estimate tb we can make a short run of the
workload in one worker, as all workers are homogeneous it
should be good enough.

Next, for each cloud we derive the motility, number of
workers available, and transfer throughput to peer clouds
by using the meta-data, and/or real-time querying of work-

ers/throughput across different clouds. We consider batch as
the standard unit in our approach, i.e., the transfer rate and
training rate are expressed in batches/second. Note that
the application simply provides the application attributes as
input, and the training schedule is dynamically determined by
our meta-data discovery and compliance-aware techniques.

In our design, we consider two categories of clouds, based
on the binary value of the motility attribute to enforce compli-
ance (as described in § II). As outlined in Algorithm 1, we first
determine the maximum batches processed per worker (bpw)
to identify the workers tasked with processing the largest
amount of data, i.e. straggler workers. Since the job comple-
tion time would be determined by these straggler workers, we
employ the bpw heuristic to minimize resource utilization.

We first compute the bpw for non-motile cloud servers
which cannot move their data to other clouds. The
non_motile_bpw is dictated by the non-motile cloud which
has the highest batches to worker proportion (Line 3 of
Algorithm 1). However, since data can be moved in the case of
motile clouds, the maximum load per worker motile_bpw is
determined by evenly distributing the total data across motile
clouds amongst the workers (Line 6). Finally, we determine
the maximum bpw based on the maximum load across motile
or non-motile cloud providers (Line 7).

Once the maximum batches processed per worker is deter-
mined, we assign each worker an identical number of batches
to processes. Taking into consideration data locality, we first
assign the maximum amount of batches per worker to cloud-
local workers for both motile and non-motile categories (Lines-
8-12 of Algorithm 1). Next, we adopt a greedy approach to
distribute the data from overloaded motile clouds to underuti-
lized peer clouds. We first find the motile clouds with highest
remainder data (Line 13), i.e., workers with more than maxi-
mum bpw share, and transfer it to the peer cloud with highest
processing rate. The peer cloud with highest processing rate is
computed by a combination of two factors, namely, number of
spare workers, and transfer throughput per worker (Line 14).
Note that we consider that each worker from the under-
utilized motile cloud can transfer data from over-utilized
cloud in parallel. Once the most suitable peer cloud has been
determined, we allocate the maximum amount of workload to
the peer motile clouds greedily until there is no residual data
left on the clouds with excess of data (Line 15-18). Once the
plan P is determined (Line 19), we compute the total training
time using maxp∈P (p.train time + p.trf time), i.e., the
maximum time taken by any cloud to perform training and
transfers.

V. EXPERIMENTAL EVALUATIONS

A. Evaluation Methodology

We implement our proposed data gravity and compliance
aware workload scheduler based on the design principles and
algorithm described in section IV in a simulation framework
written in Python. The framework takes as input both the
user and system level attributes of the DDL job, i.e., batch
size and training time per batch per worker, and meta-data

456

Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on April 17,2023 at 15:58:01 UTC from IEEE Xplore. Restrictions apply.

(a) Random amount of data and workers (b) Homogeneous data sizes, random workers (c) Variable amount of motile clouds

Fig. 1: Execution speedup normalized to single client aggregation approach. Higher is better.

(a) Random amount of data and workers (b) Homogeneous data sizes, random workers (c) Variable amount of motile clouds

Fig. 2: Proportion of workers utilized by the three compared approaches for DDL training. Lower is better.

from data fabric which contains batches, available workers

per cloud service, and transfer rate across different clouds.

The output of the simulator is the workflow scheduling plan,

total execution time, and proportion of resources consumed

across hybrid multi-cloud data centers.

B. Compared Approaches

Across all our evaluations, we compare the following ap-

proaches to perform compliance aware data-intensive DDL

training using our DDL schedule simulation framework.

1) Single cloud aggregation (Baseline): This approach im-

plements a naive technique in which the pre-processed

data from across all public clouds are pulled to a

single private (on-premise) cloud, which is compliance

aware. While this defies data-locality based scheduling,

it is relatively simple to implement, deploy, and can be

efficiently used for purposes such as debugging, real-

time analytics, etc., and hence is considered as the

baseline for our evaluations.

2) Data gravity oblivious (Conventional): Complementary

to the previous approach, in this approach, we at-

tempt to launch maximum number of resources avail-

able on each cloud, such that the cloud-local data

is processed by the cloud-local workers. While this

enables faster training by eliminating data transfers,

it also suffers from sub-optimal resource utilization

across various cloud due to variable batches pro-

cessed per worker. However, for data gravity oblivi-

ous developers or DevOps experts, this is a straight-

forward and practical technique, especially when used

with distributed training strategies such as TensorFlow’s

MultiWorkerMirroredStrategy. This approach

utilizes all workers available across all clouds, and

represents the current practices for scheduling DDL

training on multi-cloud environments using state-of-the-

art distributed workflow frameworks.

3) Our approach: This approach implements the workflow

scheduling strategy based on greedy-programming, as

described in Algorithm 1.

Note that the data gravity oblivious and our approach do

not employ the workers of private cloud (as done by the single
cloud aggregation approach, and assume that those can be

used for supporting development workloads, or are reserved

for mission-critical latency sensitive workloads.

C. Key Evaluation Metrics and Simulation Traces

For each of the aforementioned approaches compared in our

evaluations, we represent two metrics for evaluation, namely

Execution speedup, and Proportion of resources utilized. The

execution speedup demonstrates the speedup achieved by data
gravity oblivious and our approach as compared to the single
cloud aggregation approach. This metric represents the total

time taken for training and data transfers across all workers

available in multiple hybrid clouds and is representative of

performance gains achieved by our approach. The second

metric Proportion of resources utilized is important from an

operational perspective, both to maximize worker throughput

and minimize training cost ($).

We generate synthetic cloud profiles C for hybrid multi-

cloud setups using Python’s pseudo-random number gener-

ator. For each cloud, the corresponding meta-data catalog

is generated using uniform distribution on the following

ranges: batches (per cloud) [1000, 20000], workers (per cloud)

[10, 200], motility (per cloud) [0, 1], and transfer rate (in

batches transferred per second) to peer clouds [1, 8]. Note that

each attribute is a non-negative integer across the inclusive

data ranges. Due to limited space, we omit fine-grained trace

generation details, our motivation for deriving various config-

urations, and corresponding ablation study of each attribute.

D. Results

1) Normalized Execution Speedup: Our first set of exper-

iments evaluates the execution speedup of our approach as

5

compared to the single cloud aggregation and data gravity
oblivious approaches as a series of scalability analysis for
an increasing number of clouds. As observed in Figure 1a
and Figure 1b, our approach outperforms the two compared
approaches even at scale for the scenarios corresponding to
fully random configuration and homogeneous data distribution.
More specifically, our approach is 12.5× to 2.4× faster than
the baseline for an increasing number of clouds. This is
because our approach employs more number of workers at
scale, increasing the total amount of worker-hours invested,
as opposed to single cloud aggregation based which performs
expensive transfers from various clouds, but operates using
limited on-premise workers, thereby having lower worker-
hours spent on the given DDL workload. As expected, the
data gravity oblivious approach is slower than our approach
since it misses on the opportunity to share data from over-
utilized to under-utilized workers across motile clouds.

2) Proportion of Workers Utilized: Our next set of ex-
periments study the resource efficiency of our scheduling
approach. As depicted in Figure 2a and Figure 2b our approach
utilizes on average 55% of available resources across all
clouds. Since the single cloud aggregation approach only
utilizes on-premise workers, the number of resources used is
consistently low for all configurations across varying number
of clouds. This represents the scenario of resource under-
utilization, since by consuming 20% lesser available resources
as compared to our approach, it results in 12.5× slower
execution (correlating with Figure 1a). On the other end,
the data gravity oblivious approach utilizes all the available
public cloud resources (85% average utilization), but still
delivers about 1.8× slower execution speedup as compared
to our greedy-programming based approach. Therefore, our
approach performs efficient worker utilization while delivering
significant execution speedup at scale.

3) Variable Fraction of Clouds with Motile Data: Lastly,
we study the impact of varying proportion of clouds contain-
ing motile data. In this experiment we use a configuration
consisting of 64 clouds and we incrementally designate 25%
of the available clouds as motile, starting from 0% motile
clouds, i.e., no cloud is eligible to move its data. As seen in
Figure 1c and Figure 2c, with increasing motility our approach
demonstrates an increasing execution speedup and decreasing
worker consumption, respectively. For the case when a low
proportion of clouds contain motile data, i.e. most of the
data is immovable, we have fewer opportunities to perform
load-balancing using greedy approach, and relatively more
workers utilized as compared to the baseline approach due to
which we see execution slowdown for 0% and 25% motile
clouds. Data gravity oblivious approach proves ineffective
throughout different motility configurations for both execution
speedup and percentage of workers utilized due to sub-optimal
workload scheduling.

VI. CONCLUSIONS

In this work, we study the problem associated with schedul-
ing data-intensive workloads, in particular distributed deep

learning (DDL) on data fabric architectures. These DDL
training workloads require low-latency access to data residing
across various hybrid multi-cloud environments, while follow-
ing compliance regulations imposed by various agencies and
organizations. While next-generation data fabric architectures
address these limitations, existing DDL and workflow sched-
ulers are not sufficiently optimized to leverage data fabric. To
this end, we propose a greedy-programming based algorithm
to efficiently determine optimal workflow execution plan on a
limited set of resources. We exploit the well-defined pipeline
and meta-data catalog of modern data fabrics to perform
dynamic discovery of data and, compliance and data gravity
aware workload scheduler. Our evaluations based on synthetic
traces demonstrate up to 12.5× and 2.4× faster execution
as compared to aggregation-based and data gravity oblivious
scheduling approaches, respectively.

In the future, we plan to optimize various characteristics
of our proposal, e.g. heterogeneous worker profiles, compre-
hensive criteria for compliance regulations, and optimization
of our greedy-programming based algorithm. We will also
extend our proposal to real-life workload schedulers and
DDL frameworks to empirically determine the impact of our
proposal on data fabric architecture.

ACKNOWLEDGMENT

This work is supported in part by the National Sci-
ence Foundation (NSF) under Awards No. 2106634 and
2106635. Results presented in this paper are obtained using
the Chameleon and CloudLab testbeds supported by the NSF.

REFERENCES

[1] S. Dong, P. Wang, and K. Abbas, “A survey on deep learning and its
applications,” Computer Science Review, vol. 40, 2021.

[2] “What is a data fabric? — IBM.” [Online]. Available: https:
//www.ibm.com/topics/data-fabric

[3] S. Mikhtoniuk and O. N. Yalcin, “Open data fabric: A decentralized data
exchange and transformation protocol with complete reproducibility and
provenance,” arXiv preprint arXiv:2111.06364, 2021.

[4] K. Liu, M. Yang, X. Li, K. Zhang, X. Xia, and H. Yan, “M-data-fabric:
A data fabric system based on metadata,” in International Conference
on Big Data and Artificial Intelligence (BDAI), 2022.

[5] Netapp, “Data fabric - a unified cloud data management solution.”
[Online]. Available: https://www.netapp.com/data-fabric/

[6] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,
R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth et al., “Apache
hadoop yarn: Yet another resource negotiator,” in Symposium on Cloud
Computing (SoCC), 2013.

[7] A. Sergeev and M. Del Balso, “Horovod: fast and easy distributed deep
learning in tensorflow,” arXiv preprint arXiv:1802.05799, 2018.

[8] P. Voigt and A. Von dem Bussche, “The eu general data protection
regulation (gdpr),” A Practical Guide, Cham: Springer International
Publishing, 2017.

[9] Z. Tang, S. Shi, X. Chu, W. Wang, and B. Li, “Communication-efficient
distributed deep learning: A comprehensive survey,” arXiv preprint
arXiv:2003.06307, 2020.

[10] M. Menaka and K. S. Kumar, “Workflow scheduling in cloud
environment–challenges, tools, limitations & methodologies: A review,”
Measurement: Sensors, 2022.

[11] T. Ben-Nun and T. Hoefler, “Demystifying parallel and distributed deep
learning: An in-depth concurrency analysis,” ACM Computing Surveys
(CSUR), 2019.

[12] M. Arif, M. M. Rafique, S.-H. Lim, and Z. Malik, “Infrastructure-aware
tensorflow for heterogeneous datacenters,” in International Symposium
on Modeling, Analysis, and Simulation of Computer and Telecommuni-
cation Systems (MASCOTS), 2020.

658

Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on April 17,2023 at 15:58:01 UTC from IEEE Xplore. Restrictions apply.

