2022 9th International Conference on Dependable Systems and Their Applications (DSA) | 978-1-6654-8877-8/22/$31.00 ©2022 IEEE | DOI: 10.1109/DSA56465.2022.00047

2022 9th International Conference on Dependable Systems and Their Applications (DSA)

Improving Search-based Test Case Generation with Local Search using Adaptive
Simulated Annealing and Dynamic Symbolic Execution

Dongcheng Li', W. Eric. Wong'*, Shenglong Li?, and Matthew Chau'
'Department of Computer Science, University of Texas at Dallas, Richardson, Texas, USA
2School of Computer Science, China University of Geosciences, Wuhan, China
*corresponding author

Abstract—DynaMOSA is an effective search-based test
case generation algorithm. However, it uses an
alternating variable method for local search. This method
follows a greedy strategy that considers each input
variable of an optimization function independently and
attempts to optimize it. Some problems with this kind of
search are that it can easily become stuck in the local
optimal solution and its search capability becomes
inadequate in the late stage of the search. Such
constraints may lead to a dramatic drop in search
performance. To solve these problems, this study
proposed a local search algorithm based on adaptive
simulated annealing and symbolic path constraints to
generate test cases with high coverage for multiple testing
criteria within a limited time budget. On the one hand,
the simulated annealing algorithm was selected to explore
the neighborhood of candidate solutions during the
search. On the other hand, various simulated annealing
operators were designed for the search of each statement
to enhance the applicability of the algorithm in various
programs. Additionally, symbolic execution was
introduced as a supplement to the simulated annealing
algorithm for local search to generate test cases for inputs
with complex structures. Furthermore, the proposed
algorithm was implemented in EvoSuite framework.
From an SF110 open-source benchmarking dataset, 49
projects or 110 classes were selected according to the
complexity and number of objectives of each class under
test to conduct the experiments. The proposed algorithm
outperformed the original algorithm in generating high
coverage test cases on most projects in terms of line,
mutation, and multicriteria coverage as well as search
efficiency.

Keywords-automated test case generation; local search;
adaptive simulated annealing algorithm; dynamic symbolic
execution; EvoSuite

I. INTRODUCTION

Software testing is a critical means to ensure the quality
and reliability of a software system [1], especially in safety-
critical systems. Test case generation is the foundation of
software testing and test cases are used to comprehensively
cover software functions. A complete test case should cover
situations in a software program and code as many as possible
[2, 3]. Thus, software functions can be sufficiently validated.

However, a global search may struggle to generate the
specific values necessary for covering challenging parts of
the program, while a local search that uses the alternating
variable method (AVM) [4] with a greedy strategy can easily
cause the algorithm to become stuck in a local optimal
solution. Therefore, this study proposed a local search
algorithm that combines adaptive simulated annealing and
symbolic path constraints to perform the neighborhood
search of optimal solutions. In an automatic test case
generation problem, an optimal solution contains test cases
that achieve high code coverage, and a test case consists of
many test statements. Therefore, it may be beneficial to
search for individual test statements. To avoid falling into
local optimal solutions, an adaptive simulated annealing
algorithm was proposed to explore the parameters of each
statement effectively. In addition, a local search based on
symbolic path constraints worked through the constraints
encountered during the execution of test cases, thus achieving
high code coverage. In this study, the solution space of test
case generation was effectively searched through a trade-off
of resource consumption between global and local search.
Moreover, the proposed algorithm was compared with the
state-of-the-art test case generation algorithm and tested on
SF110 [5] open-source benchmarking datasets. Thus, the
effectiveness of the proposed algorithm was verified.

The remainder of the paper is organized as follows.
Section 2 presents related studies; Section 3 describes the
proposed local search for the automatic generation of test
cases; and Section 4 describes the experimental setup and
analyzes the results. Finally, Section 5 presents the
conclusions.

II. RELATED STUDIES
A. Test Case Generation based on Local Search

Local search is a supplement to global search. A heuristic
search algorithm conducts a constant search in global space;
however, it is difficult for a global search algorithm with a
large step size in search and a random mutation method to
step out of the current local optimal solution. The key idea
behind local search is not to focus the search in the entire
space of all candidate solutions, but rather on a set of feasible
solutions obtained by the global search algorithm. It
emphasizes the process of performing a local search in the
neighborhood of current solutions to produce new feasible
solutions [6]. Popular local search algorithms include hill
climbing, simulated annealing, tabu search, and variable
neighborhood search [7].

2767-6684/22/$31.00 ©2022 IEEE 290
DOI 10.1109/DSA56465.2022.00047

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on April 18,2023 at 15:53:12 UTC from IEEE Xplore. Restrictions apply.

As a local search algorithm is only concerned with the
neighborhood of feasible solutions, it is incapable of
searching the global space. By contrast, the global search
algorithm’s capability to search the neighborhood of feasible
solutions is insufficient as it needs to search the entire global
space. Therefore, a memetic algorithm is created by
combining global and local search algorithms [8-10].

In automatic test case generation, the memetic algorithm
was used to generate test data [11]. Sharifipour et al. [11]
introduce a memetic ant colony optimization algorithm for
generating structural test data. Wang [12] combined a genetic
algorithm with hill climbing and applied in test case
generation. Through experiments, the effects of the memetic
algorithm were proven to be superior to those of the hill
climbing or genetic algorithm alone. Liaskos and Roper [13]
proposed another memetic algorithm that combined the
genetic algorithm and artificial-immune-system algorithm
with clonal selection for test case generation. The results of
the experiments indicated that the proposed algorithm
significantly improved the coverage of the generated test
cases for the projects under test.

Fraser et al. [14] combined the genetic algorithm with the
AVM for test case generation. The AVM was selected as the
local search algorithm to perform a local search for different
types of data in a class under test, including strings, arrays,
etc. Through combining the global and local search
algorithms, the coverage of the test cases was significantly
improved. In a genetic algorithm, the reproduction operation
in the search process is based on chromosomes. Although
such a coarse-grained search contributes to the search in the
global space, it is difficult to effectively search the
neighborhood of optimal solutions. In this respect, the AVM
alleviates the deficiencies of genetic algorithms.

Reinforcement learning has also been introduced to the
local search for automatic test case generation. Esnaashari
and Damia [15] proposed a memetic algorithm that uses
reinforcement learning to perform a local search. The
reinforcement learning module receives all optimal test cases,
which are generated through the genetic algorithm, and
attempts to generate new and improved test cases. The
experimental results demonstrated that the proposed method
can generate more quality test cases faster than many existing
heuristic algorithms.

Moreover, studies have indicated that local search is still
a direction worth studying. The most popular search-based
automatic test case generation framework is EvoSuite [16],
the local search strategy of which is the AVM. Although such
a memetic algorithm has a stronger search capability
compared with the global search algorithm alone, it is less
likely to eliminate the limitations of current solutions and
avoid stuck into a local optimal solution. In this case, local
search may be ineffective.

B. Test Case Generation based on Symbolic Execution

Ramamoorthy et al. [17] was the first to propose an
automated test case generation technique based on symbolic
execution (SE). According to SE, each branch is seen as a
path condition for passing that branch. The results returned
are a set of equality and inequality constraints over input

291

variables of the program, which define a subset in the search
space and execute the selected path. In this case, a test data
generator attempts to identify a test input from the subset
space that meets all constraints [18]. If no such input can be
confirmed, the corresponding path is infeasible. Then, a set
of inputs that satisfy various path constraints is obtained to
generate test cases. Moreover, solving the elements in a path
constraint set is a complicated mathematical constraint
satisfaction problem. At present, common constraint solvers
include Z3, SMT, and CVC3 [19]. These SE methods would
not execute the program under test; instead, the program
undergoes simulated execution with symbolic values
obtained after resolving. Therefore, this type of SE is also
referred to as static SE. As the program size becomes larger,
path constraints sent back by SE may become gradually
longer. In this case, the solving time of the constraint solver
may increase, making it difficult to determine solutions that
satisfy such constraints from a subset space, further leading
to a decline in test case generation efficiency [20, 21].

To improve the performance of SE-based automated test
case generation, dynamic SE (DSE) was proposed [22]. In
contrast to static SE, DSE selects specific values as the input
and uses a program executor to execute the tested program.
From the current running status, DSE also collects decision
statements that cannot pass the corresponding branch, namely
path constraints. Ultimately, DSE aims to solve such path
constraints with the help of a path constraint solver and
generate new concrete input. This operation is repeated to
continuously execute programs [23].

Furthermore, compared with static SE, DSE does not use
symbolic values as input, but rather executes specific input
values in the program. Thus, it can reduce both time costs and
computing resources during each execution, leading to a
rather high performance. However, the set of paths eventually
generated is smaller than that of all paths because DSE
continually searches program paths thoroughly [24]. Popular
SE-based automatic test case generation frameworks include
Java Bytecode Symbolic Executor (JBSE) [25], SUSHI [26],
and TARDIS [27], which have all been developed based on SE.

More specifically, JBSE is the first symbolic executor
especially designed for processing programs executed on
complex heap inputs. This is an advanced method that
implements novel heap exploration logic and handles data
structure constraints. Through this method, incremental
checks of constraints over complex heap inputs has been
proven effective [25].

SUSHI, applicable to programs with complicated
structured inputs, is a test case generator for generating high-
coverage test cases. [t uses SE to generate path conditions that
accurately represent the relationship between the program
path and the input data structure. Moreover, the path
condition is transformed into the fitness function for the
search. Through combining it with an appropriate search
algorithm, the test case generation performance can be
improved.

TARDIS combines DSE, search-based testing, and
machine learning and is capable of efficiently generating a
complete test suite at a class level. The main idea behind this
method is to explore the path space of the objective program

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on April 18,2023 at 15:53:12 UTC from IEEE Xplore. Restrictions apply.

by DSE, and to search and generate complete test cases
through a genetic search algorithm guided by fitness
functions that satisfy symbolic path conditions. Additionally,
classification algorithms are also adopted to prioritize symbol
equations that are more likely to correspond to feasible
program paths. Through a path selection strategy based on the
classification algorithm, the number of feasible paths of
analytical procedures is increased, thus further increasing the
number of test cases generated. Therefore, TARDIS has been
proven to be a valid approach.

As JBSE, SUSHI, and TARDIS indicate, automatic test
case generation technology based on SE is advancing rapidly.
However, SE still faces certain challenges, which are
described as follows [28]: (1) path selection: when the
program complexity increases, the number of execution paths
that SE explores exponentially increases as the number of
program branches increases, which may lead to the problem
of exponential path explosion; (2) constraint solving: this
restricts the efficiency of SE to some extent; and (3) memory
modeling: how program statements are precisely translated
into symbolic constraints has a large impact on the coverage
of test cases generated through SE.

III. LOCAL SEARCH ALGORITHM FOR TEST CASE GENERATION

As search algorithms are continuously optimized, a
population may consist of many similar individuals in later
phases. In this case, all individuals in the population will
begin to evolve in the direction of optimization, and the
search performance of such a genetic operation will
significantly decline. To specifically address this problem,
the present study designed a local search algorithm for test
case generation which plays a major role in the neighborhood
search of feasible solutions, preventing the algorithm from
falling into a local optimum, improving the convergence of
optimal solutions, and eventually enhancing search
efficiency. Through local search, new solutions available for
search can be generated randomly in the neighborhood of
feasible solutions. If new solutions outperform preceding
solutions, the algorithm continues to search in the
neighborhood of new solutions; otherwise, it returns to the
previous solution. Such a search strategy is capable of rapidly
approaching the optimal solution.

In the EvoSuite framework, the AVM was applied in the
local search of test cases, producing rather strong results. A
key advantage of DynaMOSA [29] is that it is a novel many-
objective search method based on preference ordering and the
dynamic selection of optimization objectives. Presently,
DynaMOSA is one of the most advanced search-based
algorithms for test case generation, achieving excellent
results in international search-based software testing tool
competitions each year [30]. However, it still has an
inadequate local search capability, performs reproduction
operation on chromosomes, and does not search individual
genes. Furthermore, the difficulty in effectively and
extensively exploring neighborhoods of superior individuals
makes the search falling into a local optimum much more
likely.

292

A. Local Search based on the Alternating Variable Method

The AVM [31], proposed by Korel, is a local search
algorithm similar to hill climbing and adopts a greedy
strategy. If a local search is conducted for a given integer, the
AVM will select the current integer as the starting point to
make exploratory movements, in which case the step size will
increase by 1. If the corresponding fitness value increases, the
step size will increase by 2, and if the fitness continues to rise,
the step size will increase by 4. Moreover, the doubling of the
step size will not stop until the fitness function stops
increasing. If a “hill” is found, which signifies the existence
of a peak value in the neighborhood, the growth of the
previous step size (e.g., +1, +2, or +4) is adopted by the AVM
as its new starting point to make exploratory movements
again. If explorations that start from a starting point under a
condition of a step size growth of 1 do not cause the fitness
function to increase in the process of such a search, the same
operation will be conducted in the negative direction of the
current search at this point. In this case, the step size will
increase by —1, —2, or —4 and so forth. When the fitness
function that corresponds to a step size of —1 of the starting
point no longer increases, the operation is performed against
the abovementioned negative direction. This process is
referred to as the alternating variable. During exploratory
movements, the search by the algorithm stops once fitness
functions corresponding to step size increases of +1 or —1 of
a starting point are not elevated, as illustrated in Figure 1.

S

B D
A
x

[
|

Figure 1. Schematicodiagram of the alternating variable method
Because of the greedy strategy, the traditional AVM can
easily fall into a local optimum. Once the first peak value is
searched, it will be reported back and the search will thus end.
However, this peak value may not be the global maximum. If
the first starting point is point C in Figure 1, the algorithm
will directly converge and not perform a local search.

B. Adaptive Simulated Annealing Based Local Search for
Test Case Generation

The simulated annealing algorithm [7] inspired by the
following physical law: The motion state of molecules
changes along with temperature variations. Under an ultra-
high temperature, matter molecules move fiercely. As the
temperature drops, the molecular movement slows and the
structure of the corresponding matter is inclined to be stable.
Accordingly, molecular kinetic energy in the matter tends to
decline. However, an excessively sharp temperature drop
may sometimes incur condensation of matter molecules.
Molecules in fierce motion may suddenly condense, which is
deemed a pseudo stable state. In this context, the inter-
molecular distance can be found. To sufficiently reduce such
distance, the temperature of the matter should be raised so
that the matter cannot condense. Subsequently, temperature
reduction is conducted to generate a stabler matter state. The

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on April 18,2023 at 15:53:12 UTC from IEEE Xplore. Restrictions apply.

simulated annealing algorithm deals with the condensation
state of matter. As the stable state cannot be directly
identified as true or false, the Metropolis criterion was
proposed by physicists, which uses a probability calculation
formula to determine whether the stable state can be accepted.

Objective optimization frequently involves feasible
solutions that may fall into a local optimum. For example, the
AVM may quit the search once a peak value appears. Such a
problem can be avoided by the simulated annealing algorithm,
which defines both the initial temperature and the rate at
which the temperature falls. The algorithm selects poor
solutions surrounding the peak value at a certain probability.
Thus, feasible solutions can be prevented from falling into a
local optimum. Moreover, the probability may decline as the
temperature drops, which ensures the convergence of the
algorithm.

1) Simulated Annealing Algorithm Applied in the Local
Search of Statements
The simulated annealing algorithm was adopted to
perform a neighborhood search. Specific procedures for
applying the algorithm in the local search of statements are
presented in Figure 2.

Start

!

Ohtain statement p
and oldValue

|

Search ™
No ~_ termination?

\J

Foward search

—

Revert forward

.
Fitness

Te_improves? -7

Decrease the
temperature

i a

search

Backward search
\J

+ Update original
test cases

- End
Compare forward and backward k
search results to determine a new
starting point

Figure 2. Simulated annealing -based search of statement values

In this algorithm, poor search results are received at a
probability based on the current temperature. The forward
search and backward search refer to a search at incremental
and descending step sizes, respectively. Moreover, the
temperature of the current iteration serves as the initial
temperature of the forward and backward search to perform
a simulated annealing-based search.

Through forward and backward search, optimal values in
forward positive and backward negative neighborhoods were
acquired under the circumstance of the current value serving
as the starting point. Then, the optimal point with a greater
value between the two was selected as the new starting point
to search again. A cooling operation also existed in an
iteration of the same level, which ensured the final
convergence of the search.

293

2) Adaptive Annealing Operator

A test suite usually contains statements of various
datatypes. Because of the influence of internal codes,
different programs under test exhibit different sensitivities to
a local search for such statements. For example, a local search
of floating point data is invalid for some programs but
effective for integer data. Moreover, as the objectives are
covered, previous local searches of strings may produce good
results. However, the local search of strings in this case is
ineffective. For the traditional simulated annealing algorithm,
all local searches are treated equally and relevant search
resources are allocated equally. Apparently, this is unsuitable
for test case generation. Therefore, an adaptive parameter
should be defined for statements of each datatype. Then, the
adaptive parameters are used to adaptively adjust resource
allocation for a local search of such statements. In the
simulated annealing algorithm, the annealing parameter is the
most effective parameter for controlling the search resource.
For this reason, adaptive cooling operators are designed for
statements in most datatypes to control resource allocation
for a local search of test case generation; thus, the search
performance of the algorithm can be improved. The specific
implementation process is presented in Figure 3.

Start

|
'

Obtain statement p ‘

|
v

Obtain cooling rate of
the algrithm rare

" L 2
Caleulate the cooling operator
of data type of siatement p
pRate = aRate * rate

Cooling operator ratio aRate

i ("Float”, 1.0)

("Swing", 1.0)
[
> i
Simulated annealing search far
statement p

v Decrease ratio Increase ratio

I

No

Adjust the rativ of the

ind
Es data type of the statement

b

Local searchi™
" Yes
successful? _

f
Figure 3. Implementation of the adaptive annealing operator

C. Local Search of Basic Datatypes

EvoSuite, a test case generation framework, uses many-
objective search to simultaneously optimize the entire test
suite. Each individual in a population is a test suite and a gene
is a line of code statement. In this study, local search was
conducted for statements of basic datatypes, including string,
integer, short, long, byte, character, float, double, boolean,
and enum. Simulated annealing was selected as the local
search algorithm to prevent it from falling into a local
optimum. Given that different programs under test exhibit
different sensitivities to local search as a whole or the local
search of diverse statements, adaptive annealing parameters
were designed for various statement types to control

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on April 18,2023 at 15:53:12 UTC from IEEE Xplore. Restrictions apply.

applications of local search and properly allocate various
computing resources.

In this study, basic datatypes were divided into four
categories, namely string, integer (e.g., integer, short, long,
byte, and character), floating point (e.g., float and double),
and iterating (e.g., Boolean and Enum). Different local search
methods were designed for each category.

1) Local Search for Strings

Data structures of strings are not as complicated as those
of other datatypes. A string is composed of a set of
unconstrained characters, but it has the most diversified
components and is also the most unordered. To improve the
string search efficiency of the algorithm, we needed to clarify
whether changes in string values affect the fitness of the
current individual before local search. If an impact exists, a
local search of strings would be conducted, followed by
character removal, character addition, and character deletion.

Character removal: After characters traversed (or
iterated) and removed from the original string, the fitness
function of the current individual is calculated. If the fitness
is improved, the local search of the string should be ended
and the modified string returned.

Character addition: To ensure the search performance
of the algorithm, characters should be added to both the head
and tail of the string. Starting from valid characters 9 to 127
of the ASCII table, the characters are constantly added to the
string. After each addition operation, the fitness of the current
individual is calculated and, if it is improved, the local search
of the string should be ended and the modified string value
returned.

Character substitution: In the event that all characters
of an entire string are traversed, the simulated annealing
algorithm is adopted to perform a local search of each
character, and since the local search has been performed for
all characters, the algorithm ends.

2) Local Search of the Integer

The easiest implementation of local search is fulfilled for
data in the integer category. The simulated annealing
algorithm directly performs a local search for integer.

3) Local Search of the Floating Point Data Category

Floating point data should be divided into two parts for
optimization, namely integers and fractions. The search for
integers is conducted by following the abovementioned
procedure. As for fractions, the simulated annealing
algorithm is selected to search fractions of the corresponding
precision (i.e., single or double precision).

3) Local Search of Iterating Datatypes

Data in the iterating category are a set of enumerable data
with a limited number of classes. Therefore, the fitness of the
current individuals is calculated after substitution of the data
in a statement through traversing or iterating. If the fitness is
improved, the current local search is ended and current values
are reserved. For example, “true” is replaced with “false” in
a Boolean statement, or “male” is substituted by “female” in
an enumeration type.

294

D. Local Search for Test Case Generation based on
Symbolic Path Constraints

SE lays an essential foundation for automated test case
generation. However, it is generally not used in test case
search alone as it requires massive computing resources. In
the TARDIS framework, EvoSuite is adopted to execute test
cases, thus obtaining path constraints of the corresponding
program to depict a conditional tree of paths. Then, test cases
are generated with the help of such a conditional tree. In
EvoSuite, DSE was also used to improve the mutation
operation of the genetic algorithm.

In this study, JBSE was used as the medium to acquire
and traverse or iterate a constraint path set of current test
cases. Then, the Z3 constraint solver was adopted and
attempted to solve constraint paths of the current test cases
and generate new ones. Only if the fitness of newly generated
test cases is superior to the preceding fitness, can novel test
cases be accepted; otherwise, they will be abandoned. For the
specific implementation process, please refer to Figure 4.

Start

L]
Run symiolic execution to collect
path constraint branches

]
Deduplicate empty
operations on branches

!

Traverse the branches set ‘..

Solve path constraints
generale new test cases

Adjust the ratio of the
data type of the siatement

!

Improved? >

End

Figure 4. Implementation of symbolic execution -based local search

SE is capable of effectively generating test cases with a
complex structure, although its constraint-solving efficiency
is rather low and may lead to the problem of path explosion.
DSE, selected for local search in the proposed method, is a
supplement to the simulated annealing algorithm and only
conducts a local search targeted at a few individuals each
time. Thus, the problem of resource consumption can be
eased.

1) Test Case Generation by Local Search Combining
Adaptive Simulated Annealing and Symbolic Execution
Local search is a supplement to global search. Only

through the reasonable allocation of search resources and

balancing of the trade-off between local and global search can
the search performance of the algorithms be effectively
improved and test case generation efficiency increased.

Otherwise, adverse effects may be produced.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on April 18,2023 at 15:53:12 UTC from IEEE Xplore. Restrictions apply.

Start

’.

The conditions for

No— = local search using simulated

annealing are satisfied

L) P
Yes
L]
Select the individual for |
simulated annealing local search ‘

" The candition for
< local using symbalic execution ™
E are met?

¥

- Lraverse test case

-
1 statements for local search
Select the individual for symbalic
-

execution local search
L]
Compute the adapiive

- ‘
- | cooling operator of statement
Execute symbolic Executor 1o ¥

collect constraint path
i) No
Perform a local search to

A s
generate new Individuals

Solve path constraints to
generate new rest cases

A\

No Y

No Lowest temperature ™,
y reached?
Fitness improved? > L s

Yes
Yes b8

- e
Al required

individuals complete

Update individual
. thesearch? -

v

Al required
individuals complete ™
the search?

Figure 5. Flow diagram of proposed local search

To measure global and local search for test cases, critical
parameters were defined in this study (as shown in Table 5).
Where, the running time of the local search ensures that the
corresponding resource consumption is within the established
constraint. The interval algebra of simulated annealing or SE-
based local search is designed to guarantee differences in
individuals of each local search and reduce the possibility of
repeated local searches of the same individual. The number
of individuals in simulated annealing and SE-based local
search is established to ensure that the algorithm only
performs a local search of individuals that exhibit the optimal
performance after ordering in the current population. The
local search probability of the simulated annealing algorithm
represents the probability of the adaptive simulated annealing
algorithm being used for local search. Each time the
simulated annealing algorithm is applied, it is adjusted
according to its variation rate. Once values of those
parameters are set, whether the local search algorithm is
executed in each iteration is determined. The specific flow of
this local search algorithm is presented in Figure 5.

IV.EXPERIMENTAL DESIGN AND RESULT ANALYSIS

To evaluate the actual performance of the improved
algorithm, various experiments were designed and conducted

295

on SF110 dataset. The experimental results of the proposed
method were analyzed in comparison with those produced by
the AVM in EvoSuite. In this study, DynaMOSA served as
the global search algorithm and, based on this, the proposed
improved local search algorithm based on adaptive simulated
annealing was named SA-DynaMOSA. The original local
search algorithm based on the AVM was therefore called
AVM-DynaMOSA.

The experiments designed and conducted in this study
were primarily aimed at answering the following research
questions (RQs) for multi-criteria many-objective test case
generation with local search:

¢ RQ 1: How does SA-DynaMOSA perform compared

with AVM-DynaMOSA from the perspectives of line,
branch, and mutation coverage of the generated test
cases?

¢ RQ 2: How does SA-DYNAMOSA perform compared

with AVM-DynaMOSA from the perspectives of the
multicriteria total coverage of the generated test cases
and the search efficiency of the algorithm?

A. Experimental Design

1) Evaluation Metrics

To compare the test case search capabilities of relevant
test case generation algorithms, the following evaluation
metrics were selected to test and compare both the original
and improved algorithms.

Testing coverage: This metric represents the adequacy of
the final test suite in testing the program, including line,
branch, mutation, and multi-criteria coverage [29]. Multi-
criteria coverage refers to the coverage of all objectives (the
aggregation of all branches, lines, and mutants) for test case
generation. The metrics for calculating those types of
coverage are as follows:

Number of covered statements
statement _coverage = x100%
Total number of statements to be covered
Number of covered branches
branch _coverage = x100%
Total number of branches to be covered
. Number of killed mutants
mutation _coverage = - x100% (1)
- Total number of mutants to be killed
Number of covered objectives
multicriteria _coverage = — d x100%
Total number of objectives to be covered

Search efficiency: By using the coverage percentage
collected every second throughout the entire duration of test
case generation, the search efficiency of an algorithm can be

calculated using the following equation:
120

Z[covﬁ cov,,]*ATime
AUC ==

: @
2*TotalTime
where cov; refers to the percentage of coverage at time 7, and
cov;+; refers to the percentage of coverage at time i+1; ATime
represents the time interval, which was one second in this
study; and TotalTime is the total running time of an algorithm,
which was 120 seconds.
The rate of increase for different testing coverages of the
improved algorithm from the original algorithm was
calculated based on the following equation:

Value,fier — Valuey, e <100%
4

Increase _rate =

3

Value brfore

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on April 18,2023 at 15:53:12 UTC from IEEE Xplore. Restrictions apply.

In this study, a proportional change of no more than 0.5%
was considered a nonsignificant change or no change.
Therefore, projects or classes with an increase rate above or
below 0.5% were removed when comparing the coverage and
search efficiency of the algorithms.

2) Experimental Setup
The proposed algorithm was implemented in the
EvoSuite framework and compared with DynaMOSA.
Experiments were conducted on the Windows platform. The
setup for the experimental environment is presented in Table 1.
Table 1. Experimental environment

Intel(R) Core(TM) i5-6500 CPU@, 3.20GHz
Hardware RAM 12GB

Windows10
Software Tava 18

1) Datasets
In this study, CKIM was first used to analyze the
complexity of all projects in the SF110 dataset. Then, projects
with high complexity were selected to verify the performance
of the proposed test case generation algorithm.
Table 2. List of projects and classes under test

Project name | Classes Project name Classes
gaj 1 biff 1
sfmis 1 lavalamp 2
imsmart 2 jhandballmoves 3
jdbacl 1 hft-bomberman 2
omjstate 1 dom4j 5
beanbin 1 openjms 2
inspirento 3 gae-app-manager 1
jsecurity 5 biblestudy 1
nekomud 1 lhamacaw 5
geo-google 3 extdj 1
jni-inchi 1 fim1 2
gangup 4 fixsuite 1
apbsmem 7 twibplayer 2
bpmail 1 wheelwebtool 7
xisemele 1 javathena 1
corina 5 xbus 2
schemaspy 3 ifx-framework 1
petsoar 1 classviewer 2
diffi 2 quickserver 1
glengineer 6 heal 3
follow 2 feudalismgame 1
lilith 3 liferay 2
lotus 1 pdfsam 1
resources4j 1 firebird 3
diebierse 1 - -
The SF110 datasets contain 110 statistically

representative open-source Java projects collected from
SourceForge. SourceForge is a popular open-source
repository with over 300,000 projects and more than
2,000,000 registered users. It includes all types of projects
with diversified functions. Thus, SF110 was appropriate for
testing the performance of test case generation algorithms
and frameworks. However, because of the massive number
of projects and classes in the dataset, experiments using all

classes in the dataset may take much time and incur high costs.

More than 50% of classes in the SF110 dataset had low
program complexity, which means that a simple method call
is capable of covering most of the objectives in such classes.
Therefore, CKJM, a program that calculates several object-
oriented metrics (e.g., weighted methods per class, depth of

296

Inheritance Tree, coupling between object classes, lack of
cohesion in methods, response for a class, and number of
children) by processing the bytecode of compiled Java files,
was adopted to analyze the complexity of all classes in the
SF110 dataset.

Specifically, the data sets used in the experiments was
selected using the following procedure. First, the code
complexity of all classes in the SF110 dataset was calculated
using CKJM and the total number of objectives covered in
each class was obtained using EvoSuite framework. Next,
classes under test were sorted according to their complexity
and number of objectives covered; projects containing more
complex classes with a greater number of objectives were
selected and included in the final test data sets. Considering
that very few projects or classes behaved abnormally during the
experiment, such projects or classes were excluded from the
experiment. The projects and the number of classes selected
from each one are presented in Table 2.

As Table 2 indicates, 49 of the 110 projects were selected
from the SF110 dataset. In total, 110 classes served as the
fundamental test data for the experiments conducted in this study.

To compare the performance of SA-DynaMOSA with
AVM-DynaMOSA, experiments were conducted and
repeated 10 times for each test class in the selected data sets.
The running results were averaged for comparison and analysis.

4) Experiment Setup

a) Parameter Settings for the Proposed Algorithm
The default parameters established for the DynaMOSA
algorithm in EvoSuite have rather good performance, as
empirically validated by other scholars. Therefore, to
preserve the high quality of DynaMOSA and ensure that the
experiments were conducted in a controlled setting, the same
parameter settings (presented in Table 3) for global search
were adopted in the proposed algorithm.
Table 3. Parameter settings for the global optimization algorithm

Parameter name Value
Population size 100
Search time 120000 seconds (2 minutes)
Total number of lines, branches, and mutants to
be covered
Crossover rate 0.75
Table 4. Parameter settings for AVM-DynaMOSA
Parameter name Value
Initial local search probability 1
Local search probability change rate 2

Table 5. Parameter settings for SA-DynaMOSA

Covering objectives

Parameter name Value
Simulated annealing local search interval 3
Simulated annealing local search individual number 5

Simulated annealing local search initial probability 1
Simulated annealing local search probability change rate
Simulated annealing local search initial temperature

Simulated annealing local search lowest temperature 1

Initial cooling rate of each type of statement 0.9
Change rate of cooling rate of various types of statements 0.8
Symbolic execution local search interval 5
Symbolic execution local search individual number 5

Parameter Settings for Local Search Algorithms

b)
The specific parameter settings of AVM-DynaMOSA and
SA-DynaMOSA are listed in Tables 4 and 5, respectively.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on April 18,2023 at 15:53:12 UTC from IEEE Xplore. Restrictions apply.

B. Experimental Results and Analyses for Test Case
Generation based on Local Search
1) Different Coverage Achieved for Each Project (RQ1)
a) Line Coverage Achieved for Each Project

The line coverage of AVM-DynaMOSA and SA-
DynaMOSA is presented in Table 6.
b) Branch Coverage Achieved for Each Project

The branch coverage of AVM-DynaMOSA and SA-
DynaMOSA is presented in Table 7.
¢) Mutation Coverage Achieved for Each Project

The mutation coverage of AVM-DynaMOSA and SA-
DynaMOSA is presented in Table 8:

Figure 6 presents the number of projects with superior and

inferior results according to the line, branch, and mutation
coverage of SA-DynaMOSA and AVM-DynaMOSA.

18
16
14

bt
o

17
14 e
12
10 ||| ||| |||

Line coverage

oN A O @0

Branch coverage Mutation coverage

1 AVM-DynaMOSA ® SA-DynaMOSA

Figure 6. Number of projects with superior and inferior results in multiple
coverage criteria

Table 6. Mean line coverage achieved for each project

Statement Coverage Statistics
Project Name Classes AVM-DYNAMOSA | SA-DYNAMOSA Increase-rate SA-D:(NAMOSA versus AVM-DYNAMOSA
%>0.50 %<-0.50
gfarcegestionfa 2 73.59% 78.79% 7.07% 100.00%
imsmart 2 84.14% 90.67% 7.75% 50.00%
beanbin 1 85.25% 90.16% 5.77% 100.00%
inspirento 3 90.71% 92.61% 2.10% 33.33%
byuic 2 47.14% 47.56% 0.89% 50.00%
gangup 4 95.17% 95.82% 0.69% 25.00%
apbsmem 7 87.84% 91.56% 4.23% 28.57%
diffi 2 92.07% 92.98% 0.99% 50.00%
lilith 3 82.02% 81.49% -0.65% 33.33%
resources4j 1 75.76% 86.36% 14.00% 100.00%
hft-bomberman 2 92.92% 95.01% 2.24% 50.00%
dom4j 5 86.57% 85.01% -1.79% 80.00%
lhamacaw 5 63.77% 65.26% 2.34% 40.00%
battlecry 2 91.55% 89.59% -2.14% 50.00%
wheelwebtool 7 57.61% 56.13% -2.56% 57.14%
xbus 2 83.04% 80.86% -2.62% 50.00%
at-robots2-j 2 83.90% 84.50% 0.71% 50.00%
jiggler 5 63.90% 94.11% 47.28% 80.00%
dcparseargs 1 100.00% 90.36% -9.64% 100.00%
jcvi-javacommon 6 65.28% 65.86% 0.89% 50.00%
quickserver 1 96.53% 95.14% 1.44% 100.00%
weka 3 66.38% 55.89% -15.81% 100.00%
liferay 2 74.52% 73.14% -1.86% 50.00%
firebird 3 94.06% 92.73% -1.41% 66.67%
Mean over all projects 84.29% 84.84%
No. cases SA-DYNAMOSA significantly better than AVM-DYNAMOSA 14 (20.59%)
No. cases SA-DYNAMOSA significantly worse than AVM-DYNAMOSA 10 (14.71%)

From Tables 6-8 and Figure 6, compared with AVM-
DynaMOSA, the mean coverage of SA-DynaMOSA
increased by 0.55%, 0.69%, and 0.94% in terms of line,
branch, and mutation coverage, respectively. SA-DynaMOSA
achieved equivalent or higher coverage on most projects in
terms of line and mutation coverage; only a few projects
exhibited lower coverage. More specifically, compared with
AVM-DynaMOSA, the coverage achieved through our
approach on average was significantly higher in 20.59% of'the
classes tested for line, 20.59% for branch, and 25.00% for
mutation. The improvement in mutation coverage was
greatest among three coverage criteria. Among the projects
with superior coverage achieved by our proposed algorithm,
Jiggler exhibited the most significant increases, of 63.61% on
average, in line, branch, and mutation coverage; by contrast,

297

weka exhibited the greatest decreases, of 16.16% on average,
in line, branch, and mutation coverage. However, the
performance of AVM-DynaMOSA and SA-DynaMOSA
exhibited small differences in terms of branch coverage. That
is, among 49 projects, SA-DynaMOSA outperformed AVM-
DynaMOSA on 14 projects, but it was inferior to AVM-
DynaMOSA on 15 projects. The rest of the projects achieved
equivalent coverage using both algorithms. Moreover, the
mean coverage achieved by SA-DynaMOSA still surpassed
that of AVM-DynaMOSA. From the aforementioned results,
this study concluded that the SA-DynaMOSA algorithm has
the potential to effectively improve line, branch, and mutation
coverage for multi-criteria test case generation.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on April 18,2023 at 15:53:12 UTC from IEEE Xplore. Restrictions apply.

Table 7. Branch coverage achieved for each project

Branch coverage Statistics
Project Name Classes AVM-DYNAMOSA | SA-DYNAMOSA Increase-rate SA-D:(NAMOSA versus AVM-DYNAMOSA
%>0.50 %<-0.50
gfarcegestionfa 2 67.59% 79.55% 17.70% 100.00%
imsmart 2 76.11% 86.11% 13.14% 50.00%
beanbin 1 78.72% 82.98% 5.41% 100.00%
byuic 2 40.08% 40.81% 1.82% 50.00%
apbsmem 7 88.35% 92.29% 4.45% 28.57%
schemaspy 3 68.65% 69.35% 1.03% 66.67%
diffi 2 90.23% 91.43% 1.33% 50.00%
lilith 3 80.91% 79.90% -1.24% 33.33%
resources4j 1 70.27% 81.08% 15.38% 100.00%
jhandballmoves 3 96.53% 100.00% 3.60% 33.33%
hft-bomberman 2 94.68% 94.12% -0.59% 50.00%
dom4j 5 83.93% 81.70% -2.66% 80.00%
openjms 2 73.61% 72.76% -1.15% 50.00%
lhamacaw 5 78.01% 78.91% 1.15% 20.00%
echodep 2 83.33% 81.41% -2.31% 50.00%
battlecry 2 84.70% 80.15% -5.37% 50.00%
openhre 3 92.96% 92.35% -0.65% 33.33%
twfbplayer 2 91.09% 90.32% -0.84% 50.00%
wheelwebtool 7 66.90% 65.76% -1.72% 71.43%
xbus 2 81.32% 79.28% -2.51% 50.00%
at-robots2-j 2 82.86% 83.36% 0.60% 50.00%
jiggler 5 55.30% 92.80% 67.81% 80.00%
dcparseargs 1 96.25% 91.25% -5.19% 100.00%
jcvi-javacommon 6 64.16% 64.97% 1.27% 50.00%
quickserver 1 95.00% 91.67% -3.51% 100.00%
heal 3 80.59% 78.83% -2.18% 66.67%
weka 3 62.44% 51.25% -17.91% 100.00%
liferay 2 69.99% 68.24% -2.50% 50.00%
firebird 3 82.89% 83.83% 1.13% 66.67%
Mean over all projects 81.96% 82.65%
No. cases SA-DYNAMOSA significantly better than AVM-DYNAMOSA 14 (20.59%)
No. cases SA-DYNAMOSA significantly worse than AVM-DYNAMOSA 15 (22.61%)
Table 8. Mutation coverage achieved for each project
Mutation Coverage Statistics
Project Name Classes AVM-DYNAMOSA | SA-DYNAMOSA Increase-rate SA-D‘}{NAMOSA versus AVM-DYNAMOSA
%>0.50 %<-0.50
gfarcegestionfa 2 70.67% 81.48% 15.29% 100.00%
water-simulator 2 91.16% 91.71% 0.61% 50.00%
imsmart 2 73.33% 90.00% 22.73% 50.00%
jdbacl 1 94.17% 97.50% 3.54% 100.00%
beanbin 1 91.24% 93.43% 2.40% 100.00%
inspirento 3 90.82% 91.98% 1.28% 33.33%
byuic 2 39.42% 40.01% 1.50% 50.00%
gangup 4 98.13% 97.54% -0.60% 25.00%
apbsmem 7 94.14% 96.47% 2.48% 14.29%
bpmail 1 96.25% 97.50% 1.30% 100.00%
corina 5 75.46% 74.85% -0.81% 60.00%
diffi 2 86.94% 89.65% 3.11% 50.00%
lilith 3 76.69% 75.57% -1.45% 66.67%
lotus 1 98.79% 97.18% -1.63% 100.00%
diebierse 1 99.47% 100.00% 0.53% 100.00%
jhandballmoves 3 98.30% 99.05% 0.76% 33.33%
dom4;j 5 80.88% 80.05% -1.02% 60.00%
openjms 2 81.42% 80.04% -1.70% 50.00%
lhamacaw 5 61.15% 62.63% 2.43% 20.00%
battlecry 2 87.49% 85.04% -2.80% 50.00%
fiml 2 54.93% 54.49% -0.81% 50.00%
wheelwebtool 7 61.17% 60.67% -0.82% 42.86%
javathena 1 93.42% 94.74% 1.41% 100.00%
xbus 2 78.89% 77.47% -1.80% 50.00%
jiggler 5 49.11% 88.76% 80.73% 80.00%
jevi-javacommon 6 56.45% 56.77% 0.57% 33.33%
quickserver 1 88.30% 86.91% -1.58% 100.00%
heal 3 81.22% 82.69% 1.81% 33.33%
weka 3 69.33% 59.08% -14.77% 66.67%
Mean over all projects 82.68% 83.62%
No. cases SA-DYNAMOSA significantly better than AVM-DYNAMOSA 17 (25.00%)
No. cases SA-DYNAMOSA significantly worse than AVM-DYNAMOSA 12 (17.65%)
298

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on April 18,2023 at 15:53:12 UTC from IEEE Xplore. Restrictions apply.

2) Multi-Criteria Coverage and Search Performance
Achieved by the Algorithm (RQ2)
a) Multi-Criteria Coverage Results

The multi-criteria coverage results are compared between
AVM-DynaMOSA and SA-DynaMOSA in Table 9. As Table 9
indicates, the multi-criteria coverage achieved by SA-
DynaMOSA was improved compared with that achieved by
DynaMOSA. The proposed algorithm achieved higher
coverage on 19 (33.93%) of the projects under test, with 12
(21.43%) projects exhibiting lower coverage. Among the
projects with superior coverage achieved by the proposed
algorithm, beanbin exhibited the most significant increases

(21.13%), whereas weka exhibited the most significant
decreases (17.76%) for multi-criteria coverage. For the
remaining projects, the multi-criteria coverage achieved by
the proposed algorithm was the same as that achieved by
AVM-DynaMOSA. Moreover, the mean multi-criteria
coverage of SA-DynaMOSA increased by 0.52% compared
with that of AVM-DynaMOSA. From the aforementioned
results, this study concluded that for multi-criteria coverage,
the proposed local search algorithm had a positive effect on
improving the efficiency of many-objective search-based test
case generation; furthermore, it did not cause the search
performance of the algorithm to decline significantly.

Table 9. Comparison of multi-criteria coverage between AVM-DynaMOSA and SA-DynaMOSA

Multi-Criteria Coverage Statistics
Project Name Classes AVM-DYNAMOSA | SA-DYNAMOSA Increase-rate SA-D:/(IEE;AI;’(I)OSA versus AVI};—E;(I;J;)&MOSA
0 . 0=V,
templateit 1 72.22% 74.31% 2.88% 100.00%
gfarcegestionfa 2 77.57% 79.76% 2.82% 50.00%
imsmart 2 74.99% 87.11% 16.16% 50.00%
jdbacl 1 96.47% 99.17% 2.80% 100.00%
beanbin 1 69.45% 84.12% 21.13% 100.00%
jsecurity 5 88.35% 88.84% 0.56% 20.00%
byuic 2 41.04% 41.27% 0.56% 50.00%
jni-inchi 1 83.86% 81.30% -3.06% 100.00%
apbsmem 7 90.01% 92.98% 3.30% 28.57%
diffi 2 89.75% 91.35% 1.79% 50.00%
glengineer 6 77.84% 85.41% 9.72% 83.33%
lotus 1 93.47% 92.05% -1.52% 100.00%
resources4j 1 82.01% 89.15% 8.71% 100.00%
jhandballmoves 3 98.28% 99.70% 1.45% 33.33%
hft-bomberman 2 94.04% 93.35% -0.74% 50.00%
dom4j 5 83.52% 82.24% -1.53% 40.00%
openjms 2 76.37% 75.49% -1.15% 50.00%
lhamacaw 5 67.34% 68.71% 2.04% 20.00%
battlecry 2 86.77% 85.46% -1.51% 50.00%
openhre 3 74.34% 83.92% 12.88% 33.33%
twibplayer 2 91.07% 93.19% 2.33% 50.00%
wheelwebtool 7 60.73% 58.65% -3.43% 57.14%
javathena 1 66.30% 69.14% 4.28% 100.00%
xbus 2 80.08% 80.50% 0.52% 50.00%
jiggler 5 86.97% 91.26% 4.93% 100.00%
dcparseargs 1 87.99% 76.68% -12.85% 100.00%
jevi-javacommon 6 61.28% 60.94% -0.55% 50.00%
quickserver 1 93.28% 87.24% -6.47% 100.00%
heal 3 78.83% 79.34% 0.65% 33.33%
weka 3 65.74% 54.07% -17.76% 100.00%
liferay 2 71.74% 70.92% -1.14% 50.00%
Mean over all projects 81.89% 82.41%
No. cases SA-DYNAMOSA significantly better than AVM-DYNAMOSA 19 (33.93%)
No. cases SA-DYNAMOSA significantly worse than AVM-DYNAMOSA 12 (21.43%)

b) Search Efficiency Comparison

The search performance results are compared between
AVM-DynaMOSA and SA-DynaMOSA in Table 10.
Although the coverage of testing criteria of the final test suite
was important, the search efficiency of the corresponding
algorithm was also crucial. Therefore, the area under the curve
(AUC), a statistical value representing the search efficiency of
the test case generation algorithm, was also used for
comparison. An algorithm with a high search efficiency (or
AUC value) is preferred because it has the potential to produce
a test suite with high coverage in a short time. As indicated in
Table 10, SA-DynaMOSA achieved a higher AUC value than
AVM-DynaMOSA for most tested projects, with an average

299

improvement of 0.65%. Compared with AVM-DynaMOSA,
the AUC value achieved by SA-DynaMOSA was on average
significantly higher in 38.24% of the tested classes. This
demonstrated that the proposed local search algorithm was
valid. As the efficiency of test case generation algorithm
improved, test cases with high coverage were efficiently
generated in the end.

C. Threats to validity

To reduce the randomness of the results generated by the
improved algorithm, the experiments were repeated 10 times.
The results obtained from the experiments were averaged and
the mean values were selected for analysis and comparison.
However, such repeated experiments only lowered but did

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on April 18,2023 at 15:53:12 UTC from IEEE Xplore. Restrictions apply.

not entirely remove the influence of the randomness of the
improved algorithm. Additionally, a proportional change of
no more than 0.5% was considered a nonsignificant change
or no change. Therefore, projects or classes with an increase
rate of less than 0.5% were removed when the coverage and
search efficiency of the algorithms were compared. Moreover,
many parameters might have affected relevant results during
the experiments. To ensure the validity of the experimental
results, the same parameter settings used in this study were
adopted across all of the algorithms under comparison;
additionally, all algorithms were run in the same framework

for controlled experiments. Furthermore, the data sets
selected for the experiments have been widely applied in
similar studies. However, the selected data sets did not
contain the most recent open-source projects. With the aim of
enhancing the generalizabilty of the research findings, this
study evaluated both algorithms according to the three most
common coverage criteria — namely line, branch, and
mutation. To determine the effectiveness of the proposed
algorithm on other coverage criteria, such as MC/DC,
additional experiments and further analysis are required.

Table 10. Search efficiency of AVM-DynaMOSA and SA-DynaMOSA for each project

Multi-Criteria Coverage Statistics
Project Name Classes Increase-rate | SA-DYNAMOSA versus AVM-DYNAMOSA
AVM-DYNAMOSA | SA-DYNAMOSA %>0.50 %<-0.50
templateit 1 71.62% 73.68% 2.88% 100.00%
gfarcegestionfa 2 74.61% 78.72% 5.51% 50.00%
water-simulator 2 84.25% 86.19% 2.30% 50.00%
imsmart 2 73.64% 76.60% 4.02% 50.00%
jdbacl 1 95.64% 98.23% 2.70% 100.00%
omjstate 1 90.57% 91.21% 0.70% 100.00%
beanbin 1 68.07% 82.00% 20.46% 100.00%
inspirento 3 85.30% 89.84% 5.32% 66.67%
jsecurity 5 86.66% 87.10% 0.51% 20.00%
byuic 2 39.70% 37.87% -4.59% 50.00%
jni-inchi 1 83.11% 80.59% -3.03% 100.00%
apbsmem 7 81.62% 85.16% 4.33% 42.86%
xisemele 1 84.94% 82.42% -2.96% 100.00%
corina 5 71.19% 71.92% 1.02% 80.00%
schemaspy 3 64.16% 65.06% 1.41% 33.33%
diffi 2 85.27% 89.56% 5.04% 50.00%
glengineer 6 74.42% 80.48% 8.15% 83.33%
follow 2 68.77% 67.88% -1.30% 100.00%
lilith 3 77.05% 77.70% 0.84% 33.33%
lotus 1 92.60% 91.27% -1.44% 100.00%
resources4j 1 80.85% 87.18% 7.82% 100.00%
jhandballmoves 3 95.47% 96.60% 1.19% 33.33%
hft-bomberman 2 92.02% 90.25% -1.93% 100.00%
dom4;j 5 78.47% 79.12% 0.83% 40.00%
openjms 2 73.12% 72.66% -0.63% 50.00%
lhamacaw 5 61.33% 62.54% 1.97% 40.00%
echodep 2 71.34% 68.80% -3.57% 50.00%
battlecry 2 66.03% 76.35% 15.63% 50.00%
fiml 2 56.27% 56.93% 1.18% 50.00%
openhre 3 71.35% 81.85% 14.71% 100.00%
twfbplayer 2 87.48% 89.27% 2.04% 50.00%
wheelwebtool 7 55.11% 51.53% -6.49% 71.43%
javathena 1 65.57% 68.11% 3.87% 100.00%
at-robots2-j 2 79.91% 78.72% -1.49% 50.00%
jiggler 5 71.05% 81.41% 14.58% 100.00%
dcparseargs 1 85.52% 72.58% -15.14% 100.00%
classviewer 2 87.90% 86.71% -1.35% 100.00%
jevi-javacommon 6 57.40% 56.54% -1.50% 33.33%
quickserver 1 91.54% 86.11% -5.94% 100.00%
heal 3 76.37% 75.78% -0.76% 33.33%
weka 3 51.52% 49.15% -4.60% 66.67%
liferay 2 66.87% 64.74% -3.19% 50.00%
pdfsam 1 81.70% 83.29% 1.95% 100.00%
firebird 3 85.00% 83.00% -2.35% 66.67%
Mean over all projects 78.80% 79.45%
No. cases SA-DYNAMOSA significantly better than AVM-DYNAMOSA 26 (38.24%)
No. cases SA-DYNAMOSA significantly worse than AVM-DYNAMOSA 18 (26.47%)

300

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on April 18,2023 at 15:53:12 UTC from IEEE Xplore. Restrictions apply.

V. CONCLUSION

Test case generation technology serves as a critical basis
for software testing. How one can obtain test cases accurately
with high coverage in a limited time is always a challenge in
the field of testing. The search-based test case generation
technique has become a heated topic in this field.
DynaMOSA in EvoSuite is the most advanced and effective
search-based test case generation algorithm at present.
However, DynaMOSA uses the AVM for local search, which
follows a greedy strategy that considers each input variable
of an optimization function independently and attempts to
optimize it. Problems with this kind of search are that it can
easily become stuck in a local optimal solution and its search
capability becomes inadequate in the late stage. Such
constraints may lead to a dramatic drop in search
performance. To solve these problems, this study
incorporated an adaptive local search strategy with simulated
annealing. Compared with the AVM, our proposed algorithm
had superior neighborhood searchability for candidate
solutions during test generation. The proposed algorithm was
experimentally validated on selected open-source data sets
from SF110. The results indicated that, compared with AVM-
DynaMOSA, the coverage achieved by our approach on
average was significantly higher in 20.59% of the tested
classes for line, 20.59% for branch, 25.00% for mutation, and
33.93% for multicriteria. The mean coverage for line, branch,
mutation, and multi-criteria of SA-DynaMOSA increased by
0.55%, 0.69%, 0.94%, and 0.52%, respectively, compared
with AVM-DynaMOSA. In terms of the algorithms’ search
efficiency, SA-DynaMOSA also outperformed AVM-
DynaMOSA and produced a higher AUC value.

REFERENCES

M. H. Chen, M. R. Lyu, and W. E. Wong, “An empirical study of the
correlation between code coverage and reliability estimation,”
Proceedings of the 3rd International Software Metrics Symposium, pp.
133-141, March 1996.

A.M.R. Vincenzi, M. E. Delamaro, J. C. Maldonado, and W. E. Wong,
“Establishing structural testing criteria for Java Bytecode,” Software:
Practice and Experience, vol. 36, no. 14, pp. 1513—1541, November
2006.

C. H. Lee and C. Y. Huang, “Applying cluster-based approach to
improve the effectiveness of test suite reduction,” International Journal
of Performability Engineering, vol. 18, no. 1, pp. 1-10, 2022.

J. P. Galeotti, G. Fraser, and A. Arcuri, “Extending a search-based test
generator with adaptive dynamic symbolic execution,” Proceedings of
the 2014 International Symposium on Software Testing and Analysis -
ISSTA 2014, pp. 421-424,2014.

G. Fraser and A. Arcuri, “A large-scale evaluation of Automated Unit
Test Generation using EvoSuite,” ACM Transactions on Software
Engineering and Methodology, vol. 24, no. 2, pp. 1-42, 2014.

H. R. Lourengo, O. C. Martin, and T. Stiitzle, “Iterated local search:
Framework and applications,” International Series in Operations
Research & Management Science, pp. 363-397, 2010.

K. Amine, "Insights into simulated annealing." In Handbook of
Research on Modeling, Analysis, and Application of Nature-Inspired
Metaheuristic Algorithms, IGI Global, pp. 121-139, 2018.

R. A. Khanum, M. A. Jan, W. K. Mashwani, N. M. Tairan, H. U. Khan, and
H. Shah, “On the hybridization of global and local search methods,” Journal
of Intelligent & Fuzzy Systems, vol. 35, no. 3, pp. 3451-3464, 2018.
D.LiuandY. Yang, "Particle Swarm Algorithm based on Chaos Local Search
and Its Application." Computer Technology and Development, 2021.

(1]

(5]

(6]

(7]

(8]

(9]

301

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

B1]

Y. Zhou, L. Kong, L. Yan, S. Liu, and J. Hong, “’A multiobjective memetic
algorithm for multiobjective unconstrained binary quadratic programming
problem,” Lecture Notes in Computer Science, pp. 23-33, 2021.

H. Sharifipour, M. Shakeri, and H. Haghighi, “Structural Test Data Generation
using a memetic ant colony optimization based on Evolution Strategies,”
Swarm and Evolutionary Computation, vol. 40, pp. 76-91, 2018.

H. C. Wang, "A hybrid genetic algorithm for automatic test data
generation." Master's thesis, Sun Yat-sen University (2006).

K. Liaskos, and M. Roper, "Hybridizing evolutionary testing with
artificial immune systems and local search,” In 2008 IEEE
International Conference on Software Testing Verification and
Validation Workshop, pp. 211-220, 2008.

G. Fraser, A. Arcuri, and P. McMinn, “A memetic algorithm for whole test suite
generation,” Journal of Systems and Software, vol. 103, pp. 311-327,2015.

M. Esnaashari and A. H. Damia, “Automation of software test data
generation using genetic algorithm and reinforcement learning,”
Expert Systems with Applications, vol. 183, p. 115446, 2021.

G. Fraser and A. Arcuri, "Evosuite: automatic test suite generation for
object-oriented software." In Proceedings of the 19th ACM SIGSOFT
symposium and the 13th European conference on Foundations of
software engineering, pp. 416-419. 2011.

C. V. Ramamoorthy, S. Ho, and W. T. Chen, "On the automated
generation of program test data." IEEE Transactions on software
engineering, vol. 4, pp. 293-300, 1976.

Cadar, Cristian, and Koushik Sen. "Symbolic execution for software testing:
three decades later." Communications of the ACM 56, no.2 (2013): 82-90.
T. Weber, S. Conchon, D. Déharbe, M. Heizmann, A. Niemetz, and G.
Reger, “The SMT competition 2015-2018,” Journal on Satisfiability,
Boolean Modeling and Computation, vol. 11, no. 1, pp.221-259,2019.
L. Li, "Research and implementation of software automatic test." In
IOP Conference Series: Earth and Environmental Science, vol. 69, no.
1, p. 012159. IOP Publishing, 2017.

H. Y. Chien, C. Y. Huang, and C. C. Fang, “Applying slicing-based
testability transformation to improve test data generation with
symbolic execution,” International Journal of Performability
Engineering, vol. 17, no. 7, pp. 589-599, 2021.

R.Ren, "Research on Automatic Generation of Test Cases Based on Symbolic
Execution." Master's thesis, Xi'an University of Technology, 2018.

M. Irlbeck, "Deconstructing dynamic symbolic execution."
Dependable Software Systems Engineering, vol. 40, p. 26, 2015.

R. Baldoni, E. Coppa, D. C. D’¢elia, C. Demetrescu, and I. Finocchi, “A
survey of symbolic execution techniques,” ACM Computing Surveys,
vol. 51, no. 3, pp. 1-39,2019.

P. Braione, G. Denaro, and M. Pezz¢, “JBSE: A symbolic executor for java
programs with complex heap inputs,” Proceedings of the 2016 24th ACM
SIGSOFT International Symposium on Foundations of Software
Engineering, pp. 1018-1022, 2016.

P. Braione, G. Denaro, A. Mattavelli, and M. Pezz¢. "SUSHI: a test
generator for programs with complex structured inputs." In 2018
IEEE/ACM 40th International Conference on Software Engineering:
Companion (ICSE-Companion), IEEE, pp. 21-24,2018.

M. Modonato, "Combining Dynamic Symbolic Execution, Machine
Learning and Search-Based Testing to Automatically Generate Test Cases
for Classes." arXiv preprint arXiv:2005.09317, 2020.

G. Yang, A. Filieri, M. Borges, D. Clun, and J. Wen, “Advances in
symbolic execution,” Advances in Computers, pp. 225-287,2019.

A. Panichella, F. M. Kifetew, and P. Tonella, “Automated test case
generation as a many-objective optimisation problem with dynamic
selection of the targets,” IEEE Transactions on Software Engineering, vol.
44, no0.2, pp. 122-158,2018.

S. Vogl, S. Schweikl, G. Fraser, A. Arcuri, J. Campos, and A. Panichella,
"EVOSUITE at the SBST 2021 Tool Competition," In 2021 IEEE/ACM
14th International Workshop on Search-Based Software Testing (SBST),
pp- 28-29,2021.

B. Korel, “Automated Test Data Generation for programs with procedures,”
Proceedings of the 1996 international symposium on Software testing and
analysis - ISSTA '96, vol. 21, no. 3, pp. 209-215, 1996.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on April 18,2023 at 15:53:12 UTC from IEEE Xplore. Restrictions apply.

