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Abstract

The Za domain of ADARp150 is critical for proper Z-RNA substrate binding and is a key factor in the type-|
interferon response pathway. Two point-mutations in this domain (N173S and P193A), which cause neu-
rodegenerative disorders, are linked to decreased A-to-1 editing in disease models. To understand this
phenomenon at the molecular level, we biophysically and structurally characterized these two mutated
domains, revealing that they bind Z-RNA with a decreased affinity. Less efficient binding to Z-RNA can
be explained by structural changes in beta-wing, part of the Z-RNA-protein interface, and alteration of con-

formational dynamics of the proteins.
© 2023 Elsevier Ltd. All rights reserved.

Main

A well-functioning immune system can
distinguish non-self from self RNA. This task is in
part carried out by the adenosine deaminase
acting on RNA (ADAR1), which catalyzes the
conversion of some adenosines in self RNA to
inosines.’ In humans, this ‘A-to-I’ editing is aug-
mented upon infection, primarily through the
interferon-induced longer isoform of ADAR1
(p150)."? p150 contains a ~65-amino acid long Z-
RNA binding domain (Za) at its N-terminus (Figure 1
(A)). Zo enhances substrate specificity and enzy-
matic activity in vitro,® and acts synergistically with
the downstream Zp domain.*®> The mechanism that
enables ADAR1p150 to achieve this level of speci-
ficity in vivo remains unknown.

0022-2836/© 2023 Elsevier Ltd. All rights reserved.

Inheritable mutations within Za highlight its
importance for self-RNA editing. In particular, the
point mutants Asn173Ser (Zoni7zs) and
Pro193Ala (Zuapi93p) decrease editing levels,
causing autoimmune diseases.®® Both mutations
are frequently found in patients suffering from
Aicardi-Goutieres syndrome (AGS) and Bilateral
Striatal Necrosis/Dystonia (BSN).”*'° AGS is a
Mendelian genetic disorder primarily affecting the
nervous system in children, leading to continual
activation of the innate immunity response in the
absence of a viral infection.””'" BSN is an early-
onset disease characterized by developmental
regression, dystonia, and cerebral calcification.®
Currently, therapies to treat AGS and BSN are of
limited efficacy, "' although small-molecule modu-
lators could be therapeutically useful."®
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The P193A ADAR1p150 mutant results in
decreased A-to-l editing as measured through
transcriptome sequencing,® likely due to decreased
affinity for substrate dsRNA. Similar studies have
not been undertaken for the ZozNﬂ%S mutant, though
the effects are likely analogous.” Because N173
and P193 in Za are involved in the recognition of
Z-form nucleic acids,'*'® we sought to investigate
the effect of the AGS- and BSN-related N173S
and P193A mutations on the three-dimensional
structure of the Za domain and its ability to bind
RNA, the former a critical binding residue while
the latter is involved in binding as well as the conver-
sion to Z-form.'® Therefore, we aimed to under-
stand structurally if this loss of binding was simply
a result of the loss of key binding residues or if there
are unforeseen consequences of these mutations.

Previous in vivo analyses of AGS-causing
mutants ADAR1 isoforms suggest many of the
identified mutations within the binding domains
result in a decrease or loss of binding affinity to
substrate dsRNA,'” though many of these mutants
lack robust biophysical or biochemical characteriza-
tion. However, limited biophysical data has shown a
loss or decrease in binding as measured by CD or
NMR of the Za double mutant N173A, Y177A'® as
well as K169A, K170A, and R174A'® mutants.
Because studies of N173A (not the clinically
observed mutation) and P193A suggest a perturba-
tion to Z-form RNA binding as the means by which
these two mutants result in disease, we sought to
biophysically characterize dsBRNA binding to
Zoiny73s and Zopqgaa. Circular dichroism (CD) pro-
vides a spectral evaluation of A-form and Z-form
character of RNA. We used this method to evaluate
the ability of Za to induce the conversion from A-
form unbound RNA to bound Z-form. Using CD,
we are also able to discriminate the ability of the
mutant Zo domains to bind an idealized substrate
dsRNA. By measuring the CD spectra of an RNA
hexamer (CpG); dimer in the presence of Zoyyt or
the mutants, we determined that Zoyt can induce
Z-form, as noted by a decrease in the peak at
266 nm, the presence of a peak at 285 nm, and
the 295 nm peak changing from negative to posi-
tive. However, neither of the mutants were able to
induce Z-form in the RNA, retaining their character-
istic A-form peaks (Figure 1(B)).

As an orthogonal method to quantitatively probe
the mutant Zoo domains’ dsRNA binding, we used
isothermal titration calorimetry (ITC) to determine
binding affinities for Zawt and the two AGS
mutants. Zowt, When challenged with a (CpG)s
homodimer, yielded a Ky of 240 nM with a
stoichiometry of 0.4 (Figure 1(C)), indicating the
binding of two Za proteins per (CpG)s dimer (as
observed in the crystal structure'?). Conversely,
both mutants demonstrated increased Ky values,
thus decreased substrate affinity, 3.1 pM for
Zoiny73s and 2.4 pM for Zap493a With stoichiometries
of 0.7 and 0.9 respectively (Figure 1(C)). This

observed decrease in substrate affinity is consistent
with the CD measurements and potentially explains
the decreased A-to-l editing observed in Zapqgza Of
ADAR1p150,° as well as suggesting a decrease in
editing would also be observed for Zoyq7ss.
Because the mutations causing this decreased
affinity occur outside of the catalytic deaminase
domain, we speculate that while the k., may be
unchanged, the weaker binding affinity mandates
a faster ko, slower kqpn, Or a combination. The result
of this would be relatively elevated Ky, and
decreased catalytic efficiency, though further exper-
iments are needed to confirm this. Interestingly,
while both Zawt and Zoy173s demonstrated nega-
tive -TAS terms, the Zop193a mutant yielded a pos-
itve term. This may reflect an increase of
microstates that Zoap193a Mmay occupy, though addi-
tional work is required to confirm this.

We then purified human '°N/'*C-labeled proteins
from Escherichia coli and characterized them by
NMR. Chemical shift perturbations (CSP) derived
from the Zo mutants in reference to the wild type
spectrum reveal two different patterns of
perturbations. While chemical shifts within Zon73s
are distributed throughout the domain, for Zopgza
they localize to the mutation-containing binding
loop and the N-terminal region of helix 2 (Figure 2
(A), S1, S2).

To better assess local single residue and global
alterations of protein dynamics for the Zoy73s and
Zopigan, We measured NMR  relaxation
experiments sensitive to different time scales.
Both local and global dynamics can be assessed
by various NMR relaxation experiments at various
timescales. Picosecond to nanosecond dynamics
can be probed by R; and cross-correlation
relaxation (CCR) experiments, while pus to ms
dynamics, often indicative of domain motion, are
probed bg Ri, relaxation experiments. The
average N-R; relaxation rate was essentially
unaltered between the two Za mutants (1.7 s~ for
Zoni7as, 1.6 7' for Zopiesa), compared to Zowyt
(1.5 s~ ; Figure S3). ®N CSA/'H-"°N dipole CCR
is also similar for the two mutants (4.8 s~ and
3.8 s for Zoni7as and Zopigsa, respectively;
Figure S4). Because both R; and CCR probe
molecular tumbling on the fast timescale (ps to
ns), these data imply little change to molecular
tumbling. However, average R, relaxation rates
that are also sensitive to ps to low ms dynamics,
were faster than expected for Zoni7as (11.4 s7)
than for Zop1gsa (7.8 s 1), which is similar to Zowt
(7.6 s7'; Figure S4, S5). Based on the slightly
elevated Ry and CCR values for Zoy473s, only half
of the difference in the R4, relaxation rates can be
explained by dynamics faster than ~10 ns. In
support of these findings, analytical
ultracentrifugation and size exclusion experiments
yielded results consistent with a monomeric state,
thus excluding the possibility of substantial
dimerization (data not shown). Comparing the
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Figure 1. Both AGS mutants of Z« have decreased binding affinity for substrate dsRNA and fail to convert it
to the Z-form. (A) Domain schematic of human ADAR1p150 showing known AGS associated mutations’ (B) Circular
dichroism spectra of a (CpG)3 dimer in the presence and absence of wild type and mutant Za. NaClO, is used to have
a reference Z-form. (C) Binding isotherms derived from ITC of (CpG)s dimer and wild type or mutant Zo and extracted

biophysical values.

dynamic trends for residue 173 shows similar '°N-
R+ values $1.6 for N173; 1.7 for S173; Figure S3)
while the '°N-R1, value was elevated for S173
(9.2 for N173; 14.0 for S173; Figure S5). This
disparity between the Zawt domain and Zoy17as is
a reflection of altered global dynamics of Zoy73s,
arising from a single solvent facing residue.
Overall, our findings suggest that Zopigsa has
similar dynamics to Zowrt while Zani7zs has
altered domain dynamics.

To gain further insight, we calculated the
complete structure of the mutant Zo domains
using exact NOEs (eNOE) derived from NOESY
spectra (Figure 2(IB,C), S6). This recently
described method®®?" makes use of NOESY spec-
tra with increasingly longer mixing times to extract
high precision proton pair distances to yield precise
structures. In accordance with the CSP and relax-
ation data, Zopig3a demonstrates overall minimal
deviation from Zoyyt (heavy atom RMSD = 1.1 A).
Similarly, Zan173s overlays well with Zowyt (heavy
atom RMSD = 1.3 A) as compared to the structure
of the Zani7aavioza double mutant'® relative to
Zowt (heavy atom RMSD = 0.6 A).

In Zop1gaa, the binding loop containing the point
mutation undergoes a structural displacement of
5.8 A away at its apex from its position in Zowt
(Figure 2(C)), similar to MD simulations of this
mutant.?®> An overlay with dsRNA-bound Zowr
reveals that this loop reorganization displaces sev-
eral nucleic acid binding residues from the RNA
binding interface which normally make key hydro-
gen bonding and Van der Waals contacts with Z-
RNA and Z-DNA, specifically; Trp191, Pro192,
Pro193, and Trp195. Similarly, the structural disrup-
tion of the beta-wing likely compounds the mutant’s
failure to properly bind substrate. This disruption of
the beta-wing also likely impacts proper Z-form con-
version as this motif has been shown to be impor-
tant for this role in other Za domains.'®

Although Zoy¢735 overlays with the Zaywt crystal
structure, one feature of note is a minor
perturbation in the beta-wing which shows small
structural perturbations from the known crystal
structure (backbone RMSD 1.9 A) (Figure 2(B),
S7). This is interesting, as the structure ensemble
for the Zoint73a v197a double mutant shows similar
displacements, © suggesting that mutations within
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Figure 2. The structures of two Aicardi-Goutieres Syndrome mutants of the ADARp150 Za domain. (A)
Chemical shift perturbations (CSP) of both AGS mutants of the Zo domain in reference to the wild type mapped onto
the crystal structure of Zo (PDB 1QGP?®). The site of the mutation is colored in green and the CSP average is denoted
with a dashed line. (B) Superposition of the twenty lowest energy structures of Zoy 735 and the crystal structure of Za.
(C) Superposition of the twenty lowest energy structures of Zapi93a and the crystal structure of Za.

helix 3 may affect beta wing dynamics. However,
the loops may also adopt different conformations
because the structures are not in complex with Z-
form nucleic acids, as reported before for Za of
PKZ.?® Quite possibly, differences in loop confor-
mations may be due to the more sparce eNOEs
observed in this region of the spectra (Figure S6).
In any case, our analysis reveals that a loss of con-
tacts at position 173 is not the sole reason why
Zoiny73s Shows decreased binding to RNA. Replac-
ing the asparagine at position 173 with a serine
leads to a global perturbation of the domain dynam-
ics while the global structure remains largely unal-
tered. The observed effect is thus different from

that seen in Zap4g3a, in which the change of amino
acid at position 193 leads to disruption of protein-
RNA contacts through the reorganization of the
beta-wing motif rather than altered dynamics.

The data presented here provide structural insight
into how these AGS mutants potentially result in
diseases which have remained poorly understood.
In the case of Zony7zs, the globally altered
dynamics we observe may explain the disease
phenotype observed resulting from this mutation.
This result expands upon the previous postulate
that the loss of function is solely the result of the
disruption of a single binding residue. Additionally,
our findings reinforce the idea that in some cases
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the observed dysfunction of protein resulting from a
point mutation cannot be explained by the loss of an
important hydrogen bond or ionic interaction, but
rather there may be unforeseen consequences of
these mutations, as is seen here where structure
predictions of the Zopigza domain fail to
recapitulate the local structural perturbation
(Figure S8). Our findings serve as a reminder of
the work of Brian Matthews, who was among the
first to reveal how point mutations within proteins
lead to conformation variability.”* Systematically
studying the structures of proteins with point muta-
tions causing disorders provides a more robust
molecular understanding of the associated dysfunc-
tions, while ultimately also helping to improve our
tools for predicting the effect of mutations on protein
structures.®

Methods

Expression of unlabeled human ADAR1p150’s
Zo domain

The Zo domain of hADAR1p150 (residues 140-
202) (UniProt ID: P55265) cloned in the pET28a
(+) plasmid (N-terminal 6x His-tag and thrombin
cleavage site between His-tag and the Zao
sequence) was a gift from Drs. Peter Drége and
Alekos Athanasiadis. The Zoni7zs and Zopigaa
mutants were synthesized and cloned into
pET28a(+) vectors by Genscript and confirmed
through sequencing. Different Zo constructs were
expressed and purified similarly as described
in.*'® The proteins were recombinantly expressed
in BL21(DE3) E.coli cells. Cells were grown in LB
to an ODggg of 0.6 and then induced with 0.5 mM
isopropyl B-D-1-thiogalactopyranoside (IPTG) over-
night at 18 °C. After pelleted cells were resus-
pended in lysis buffer containing 50 mM Tris-HCI
(pH 8.0), 300 mM NaCl, 10 mM imidazole, and
5 mM B-mercaptoethanol (BME), they were chemi-
cally lysed by deoxycholic acid at 2 mg mL~" for 30
minutes on ice. The cell lysate was then sonicated
for 15 rounds of 15 seconds on, 30 seconds off at
50 W onice. The cell lysate was clarified by centrifu-
gation at 30,000xg for 30 minutes. The soluble frac-
tion was purified by nickel affinity chromatography
(Histrap column) using a wash buffer containing
1 M NaCl, 50 mM Tris (pH 8.0), 10 mM imidazole,
and 5 mM B-mercaptoethanol, followed by elution
in 300 mM NaCl, 50 mM Tris (pH 8.0), 500 mM imi-
dazole, and 1 mM BME. To further purify the pro-
teins, size exclusion chromatography was
performed using a Sepax 300 SEC column (GE Life
Sciences) in 100 mM NaCl and 50 mM sodium
phosphate (pH 6.4). Protein stocks were stored at
—80 °C.

Expression of '3C and '°N labeled human
ADAR1p150’'s Za domain

Proteins were prepared as described above with
the following modifications to the protocol. Cell

growth was carried out in M9 minimal media
containing the following components: 100 mL of
10x M9 salts (60 g/L NayHPO,4, 30 g/L KHoPOy,
5 g/L NaCl, pH 7.4), 10 mL of 100 g/L ">NH,CI
ng 7.4), 2 mL 1 M MgSQO,, 12.5 mL 20% (w/v)
3C-glucose, 0.2 mL 0.5 M CaCl,, 1 mg biotin,
0.5 mL 2 mg/mL thiamine hydrochloride, 1 mL
15 mg/mL FeCl, in 1 M HCI, 1 mL 15 mg/mL
ZnCly, 2 mL 10% (w/v) yeast extract. The media
was brought to 1 L with autoclaved milli-Q filtered
water and then passed through a 0.22 uM filter.
Cells were grown to an ODgg of 0.4 and induced
with 0.5 mM isopropy! B-D-1-
thiogalactopyranoside (IPTG) for 3 hours at 37 °C.

Nucleic acid constructs

(CpG)s RNA oligo constructs were purchased
from Dharmacon.

RNA circular dichroism

All CD experiments were performed at 100 uM
duplex oligo (0.38 mg/mL) and 600 puM protein
(5.4 mg/mL) in a buffer containing 25 mM NaCl
and 20 mM sodium phosphate (pH 6.4) unless
otherwise indicated. Oligoribonucleotides were
briefly heated to 90 °C and cooled to room
temperature. Spectra were acquired in a JASCO
J-815CD spectrometer using a 1 mm quartz
cuvette. Spectra were an average of two scans
measured from 320 to 220 nm with a 1 nm step
using a scanning speed of 50 nm/min and a digital
integration time of 4 seconds. Then protein was
added to the indicated concentration and
incubated at room temperature for 10 min.

Isothermal titration calorimetry

Nucleic acid oligoribonucleotides and protein for
ITC were dialyzed overnight at 4 °C in the same
beaker against a buffer containing 25 mM NaCl
and 20 mM sodium phosphate (pH 6.4). Binding
heat was measured using a Malvern ITC200
calorimeter at 25 °C and mixing speed of 750
RPM, with 180 s injection delays and a reference
power of 10 pcals™'. For Zowr, the titration was
measured with twenty 2 pL consecutive injections
of 500 uM r(CpG)s RNA into 50 uM protein.
Titrations with Zoyn173s and Zopigza mutants were
measured with twenty 2 pL consecutive injections
of 500 uM RNA into 50 uM protein followed by an
additional twenty 2 pL consecutive injections of
500 uM RNA into the cell and concatenation of the
two datasets using MicroCal Concat ITC version 1
(Malvern). All ITC thermograms were analyzed
and fit using Microcal Analysis version 7 SR4
(Origin).

AlphaFold2 structure prediction

The sequence of either mutant domain was
submitted to the ColabFold*® server running Alpha-
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Fold2 for structure prediction. The primary
sequence of each mutant domain was input and
run using MMseqs2 and AlphaFold2-ptm mode.
The top 5 confidence models were returned and
the highest scoring model was used for comparison
with the experimentally recovered structures.

NMR Spectroscopy

AllNMR experiments were carried out on a Varian
900 MHz (run using VNMRJ version 4.2 Revision A
gAgiIent?g equipped with a 5 mm triple resonance

H/'3C/"°N cold probe with a Z-axis gradient and a
Bruker 600 MHz spectrometers (run using
TopSpin version 7 (Bruker)) equipped with a 5/3
mm triple resonance 'H/"™C/'>N/'°F cryoprobe
(CP2.1 TCI) in 100 mM NaCl and 20 mM
potassium phosphate (pH 6.4) with 5% D,O. For
all non-uniformly sampled (NUS) experiments,
schedules were generated using Poisson-Gap
sampling from Gerhard Wagner's lab website:
http://gwagner.med.harvard.edu/intranet/
hmsIST/gensched_new.html.%’

Wild-type Z». The NMR resonance assignment
and structure calculation of wild-type Zo have
been carried out previously*® and backbone chem-
ical shifts can be found under BMRB accession
code 50714.°

The ®N-HSQC spectrum of wild-type Za was
collected on the Varian 900 MHz spectrometer
with 1048 ('H) x 120 (*°N) complex points, a 2 s
recycle delay, 8 scans, and spectral widths of 16
and 35 ppm for the 'H and "N dimensions,
respectively. The >N CSA/'*N-'H dipole—dipole
cross-correlated relaxation (CCR) experiment®
was run on the Varian 900 MHz spectrometer with
1024 ('H) x 96 (*°*N) complex points, a 1.7s recycle
delay, 20 scans, and spectral widths of 15.6 and
35 ppm for the "H and "°N dimensions, respectively.
The effective periods during which CCR was active
were 0, 20, 40, 60, 80, 100, 120, and 150 ms. The
SN R; relaxation experiment was collected on the
900 MHz Varian spectrometer and run with 1048
("H) x 80 ("°N) complex points, a recycle delay of
2 s, 8 scans, and sg)ectral widths of 16 and
35 ppm for the 'H and "°N dimensions, respectively.
The relaxation delays were 0, 100, 200, 300, 400,
500, 600, 700, 800, and 900 ms. The "°N Ry, relax-
ation experiment was run with 1048 ("H) x 80 (*°N)
complex points, a recycle delay of 2 s, 8 scans, and
spectral widths of 16 and 35 ppm for the 'H and '°N
dimensions, respectively. The relaxation delays
under a spin-locking field strength of 1500 Hz were
0, 20, 40, 60, 80, 100, 120, 140, 160, and 180 ms.

Zan173s mutant. The ®N-HSQC spectrum of the
Zoani7zs mutant was collected on the Bruker
600 MHz spectrometer with 1024 (*H) x 160 ('°N)
complex points, a 1.6 s recycle delay, 32 scans,
and spectral widths were 16 and 35 ppm for the

"M and '*N dimensions, respectively. The
constant time '3C-HSQC spectrum was collected
on the Bruker 600 MHz spectrometer with 1024
("H) x 128 ("3C) complex points, a 1.6 s recycle
delay, 32 scans, and spectral widths of 16 and
80 ppm for the 'H and '°C dimensions,
respectively. The ['°N,'®C]-HNCACB  was
collected on the Bruker 600 MHz spectrometer
with 1024 ('H) x 40 ("®N) x 64 ('°C) complex
points (1268 of the total 2560 indirect points were
collected following a 50% NUS sampling scheme),
a 1 s recycle delag, 16 scans, and spectral widths
of 13.6 ("H), 35 ("°N), and 80 ('C) ppm. The '°N-
HBHANH experiment was collected on the Bruker
600 MHz spectrometer with 1024 ("H) x 50
("®N) x 64 (*H) complex points (1275 of the total
3200 points were collected following a 40% NUS
sampling scheme), a 1 s recycle delag, 6 scans,
and spectral widths of 16 ('H), 35 ('°N), and 16
("H) ppm. The ['®C]-HCCH TOCSY was collected
on the Bruker 600 MHz spectrometer with 1024
("H) x 40 ("3C) x 120 ('H) complex points (1905
of the total 4800 points were collected following a
40% NUS sampling scheme), a 1 s recycle delay,
16 scans, and spectral widths of 13.6 ('H), 80
(**C), and 13.6 ('H) pem. A uniformly-sampled 3D
simultaneously ['°N,'®C]-resolved ['H,"H,X3C- 15N}
NOESY?° was collected on the Varian 900 MHz
spectrometer with 1024 ('H) x 160 ('H) x 50
(X'3C:15N) complex points, a recycle delay of 1.2 s,
4 scans, spectral widths of spectral widths 15.6
("H), 15.6 ('H), 34/30 ppm ('°N/°C), and a
NOESY mixing time of 60 ms. The NUS NOESY
buildup series with NOESY mixing times of 20, 30,
40, 50, and 60 ms was collected in the same
manner as the uniformly-sampled case but
following a 50% NUS sampling scheme (4010 out
of the total 8000 points were collected)®'. The '°N
CSA/N-"H  dipole—dipole  cross-correlated
relaxation (CCR) experiment®' was run on the
Varian 900 MHz spectrometer with 1024
(*H) x 96 ("°N) complex points, a 1.7 s recycle
delay, 20 scans, and spectral widths of 15.6 and
35 ppm for the 'H and '°N dimensions,
respectively. The effective periods during which
CCR was active were 0, 20, 40, 60, 80, 100, 120,
and 150 ms. The '°N R; relaxation experiment
was run on the Varian 900 MHz spectrometer with
1048 ('H) x 32 ("*N) complex points, a recycle
delay of 2 s, 8 scans, spectral widths of 16 and
35 ppm for the ™M and '°N dimensions,
respectively, and relaxation delays of 0, 100, 200,
300, 400, 500, 600, 700, 800, and 900 ms. The
>N Ry, relaxation experiment was run on the
Varian 900 MHz spectrometer with 1048
("H) x 32 ("°N) complex points, a recycle delay of
2 s, 8 scans, spectral widths of 16 and 35 ppm for
the 'H and ™N dimensions, respectively, and
relaxation delays of 0, 20, 40, 60, 80, 100, 120,
140, 160, and 180 ms under a spin-locking field
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strength of 1500 Hz. The ['H-'°N]-heteronuclear
NOE enhancement experiment was run on the
Varian 900 MHz spectrometer with 1024
("H) x 80 ("®N) complex points, a 1 s recycle
delay, 20 scans, and spectral widths of 15.6 and
33 ppm for the 'H and SN dimensions,
respectively. Spectra in the presence and
absence of 'H saturation were recorded in an
interleaved manner.

Zapigza mutant. All experiment run on the
Zoni7as Mutant were repeated for the Zopigza
mutant. Slightly different parameters were used
for the following experiments: The '°N-HSQC
spectrum was collected with 1024 ("H) x 94 (*°N)
complex points. The ["N,'>C]-HNCACB was
collected with 1024 ("H) x 40 ("°N) x 44 ('°C)
complex points (937 of the total 1760 points were
collected following a 50% NUS sampling scheme).
The ['H-'"®N]-heteronuclear NOE enhancement
experiment was run with 48 scans, and spectral
widths of 16 and 33 ppm for the 'H and '°N
dimensions, respectively.

Data processing. All spectra were processed
with the NMRPipe/NMRDraw/NIinLS package.®’
The time-domain data were multiplied with a
squared cosine function in the direct dimension
and cosine functions in the indirect dimensions
and the number of complex points were doubled
by zero-filling once. A polynomial function was used
for solvent suppression. The 3D NUS-spectra were
constructed using the hmsIST software.?’

Resonance assignment. Resonance assignment
was performed using the CCPNmr analysis
software version 2.4.2t.>* Chemical shift assign-
ments for the Zoy173s and Zop193a CONstructs have
been submitted to the Biological Magnetic Reso-
nance Data Bank (BMRB) under entry codes
51833 and 51834, respectively.

Calculation of R, and tc., from R; and Ry,.-
Transverse R, relaxation rates were calculated
from longitudinal Ry and spin-locked longitudinal
R, relaxation rates using the following equation:

R, = Ft'1p + (R1p — H1)tan2(9)

where 0 = tan(ynB1/21Av), Av is the resonance offset, |
vnBi/27l is the strength of the spin-lock field B4, and yy
is the gyromagnetic ratio of the "N spin. Effective
overall tumbling times t.,, were then calculated from
the R./R; ratio.*®

Chemical shift perturbation determina-
tion. Chemical shift perturbations were
determined between the wild type protein and
either mutant protein using the according 'H- and
5N-chemical shifts & in the following equation:

CSP = \/(6mur — dnma)? + 02(omwr — Snma)”

NOESY buildup fitting and extraction of
distance restraints

The uniformly-sampled 3D simultaneously
['®N,'3C]-resolved ['H,"H, X3¢ 15N.NOESY?° spec-
tra measured on Zoyy73s and Zopigaa cONnstructs
with 60 ms mixing times were assigned in
CCPNmr.*> The peaks were then transferred to
the corresponding 60 ms NUS NOESY spectra
and peaks which decreased significantly in quality
due to NUS?" were removed. The peak lists were
then exported to NMRPipe format, and then cross-
and diagonal-peak intensities at all mixing times
(20, 30, 40, 50, and 60 ms mixing times) were
extracted using the NINnLS autofit script in
NMRPipe. Fitted auto-relaxation rate constant (p)
and initial magnetization (Mp) values were used to
determine cross-relaxation rate constants (o) using
the full-matrix approach®* package implemented in
CYANA® version 3.98. Spin-diffusion corrections
were calculated using the previously solved NMR
structure of the wild-type Zo from H. sapiens
ADAR1p150 (PDB ID: 1QGP?®) and applied to the
intensities of the cross-peak buildup curves. We
used the average 1., values calculated from Ry/
R of the respective Zop17as and Zapg3a CONstructs
as inputs for the spin-diffusion corrections. The
quality of the fits was inspected visually, and subpar
buildups were discarded. Previously determined
error tolerances for bi- and uni-directional eNOEs*®
were automatically applied by CYANA.

Structure calculations

Structure calculations of the Za constructs were
carried out in CYANA 3.98°° using 275 bi-
directional eNOEs, and 489 uni-directional eNOEs
as input for Zop1g93a and 198 bi-direcitonal eNOEs,
and 513 uni-directional eNOEs as input for Zo73s.
The calculations started with 100 initial structures
with random torsion angle values using the stan-
dard simulated annealing protocol with 50,000 tor-
sion angle dynamics steps. The 20 structures with
the lowest target function values were selected for
the ensembles. Distance restraints causing viola-
tions larger than 1 A were discarded and the struc-
tures were re-calculated. Backbone RMSD values
of the two constructs are reported for all residues
excluding the flexible termini (resides: 140-198).
The final structures of Zoint73s and Zopigza Were
deposited in the Protein Data Bank with codes
8GBC and 8GBD, respectively.
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Fig. S2: The superposition of the "*N-HSQC (heteronuclear single-quantum correlation) spectra of Zawr
(green) and Zap1esa (purple).
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Fig. S3: 'N-R relaxation rates of Zawr (grey), Zani7ss (green), and Zap1gsa (blue).
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Fig. S4: SN-"H-dipole/'®N-CSA cross-correlated relaxation rates (nxy) of Zawr (grey), Zani7ss (green), and
Zap1e3a (blue).
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Fig. S5: >N-R1, relaxation rates of Zawr (grey), Zani7ss (green), and Zap1gsa (blue).
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Fig. S6: Representative solution state structure of Zan173s (top left), and Zapigsa (bottom left), and beta-wing
region of Zani7ss (top right), and Zap1g3a (bottom right), with applied eNOE restraints mapped onto the
structure.
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Fig. S7: Overlay of Zan17ss (blue), Zap1e3a (green), Zanssava7a (beige, PDBID:2L54), Zawr (grey, PBDID:
1QBJ) showing beta-wing positioning across the structures determined here and previously determined
structures.
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Fig. S8: Overlay of Zan17ss (blue, top left), Zapieza (green, bottom left) with models generated using
AlphaFold2 showing its inability to recapitulate structural perturbations resulting from the single residue

mutations. Predicted IDDT score of top 5 predicted structures of Zan17ss (blue, top left) and Zap1gsa (green,
bottom left) with the beta wing highlighted.
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NMR distance and angle constraints Zani7as Z0p1gaa
Distance constraints
Total eNOE 711 764
Intraresidue 138 144
Interresidue
Sequential (Ji-j|=1) 99 101
Medium range (1<[i-j|<5) 315 331
Long range (]i-j|>3) 159 188
Total dihedral angle restraints
) 53 54
U] 54 55
Structure statistics
Violations (mean and SD)
Distance constraints (A) 1.38+0.02 1.51+0.10
Dihedral angle constraints (°) 14.5+£0.75 17.4+1.62
Max. dihedral angle violation (°) 15.7 20.0
Max. distance constraint violation (A) 1.43 1.63
Deviation from idealized geometry
Bond lengths (A) 0.001 0.001
Bond angles (°) 0.2 0.2
Average pairwise r.m.s. deviation backbone (20 1.0 1.1
structures) (A)
Average pairwise r.m.s. deviation heavy atom (20 1.7 1.7
structures) (A)
Ramachandran plot, % residues
Most favored regions 83.4% 78.4%
Additional allowed regions 15.5% 20.0%
Generously allowed regions 1.1% 1.6%
Disallowed regions 0.0% 0.0%

Table S1: Experimental restraints and structural statistics.
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