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ABSTRACT

We developed and applied a novel approach for shape agnostic detection of multiscale flaws in
laser powder bed fusion (LPBF) additive manufacturing using heterogenous in-situ sensor data.
Flaws in LPBF range from porosity at the micro-scale (< 100 µm), layer related inconsistencies at
the meso-scale (100 µm to 1 mm) and geometry-related flaws at the macroscale (> 1 mm).
Existing data-driven models are primarily focused on detecting a specific type of LPBF flaw
using signals from one type of sensor. Such approaches, which are trained on data from simple
cuboid and cylindrical-shaped coupons, have met limited success when used for detecting
multiscale flaws in complex LPBF parts. The objective of this work is to develop a heterogenous
sensor data fusion approach capable of detecting multiscale flaws across different LPBF part
geometries and build conditions. Accordingly, data from an infrared camera, spatter imaging
camera, and optical powder bed imaging camera were acquired across separate builds with
differing part geometries and orientations (Inconel 718). Spectral graph-based process
signatures were extracted from this heterogeneous thermo-optical sensor data and used as
inputs to simple machine learning models. The approach detected porosity, layer-level
distortion, and geometry-related flaws with statistical fidelity exceeding 93% (F-score).
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1. Introduction

1.1. Goal and motivation

In the laser powder bed fusion (LPBF) additive manufac-

turing (AM) process, metal powder is raked or spread on

a substrate (build plate), and selectively melted using

energy from a laser, as shown in Figure 1 (Sames et al.

2016). LPBF is emerging as a process of choice for man-

ufacturing high-value, geometrically complex and high-

performance parts (Blakey-Milner et al. 2021). It is par-

ticularly favoured in industries, such as automotive,

aerospace, energy and biomedical due to its ability to

create intricate features to enhance functionality, elimin-

ate sub-components, reduce lead time and mitigate

weight (Blakey-Milner et al. 2021; Kumar et al. 2022;

Sames et al. 2016).

Despite (Mostafaei et al. 2022) its demonstrated

ability in reducing the time-to-market and cost, the

use of LPBF parts in safety-critical industries is con-

strained due to the tendency of the process to generate

flaws, such as porosity and distortion in shape, and

large part-to-part variation in critical features (Gordon

et al. 2020; Gradl et al. 2021; Mostafaei et al. 2022;

Snow, Nassar, and Reutzel 2020). Currently, LPBF parts

are inspected through cumbersome and expensive

non-destructive X-ray computed tomography (X-ray

CT) which takes hours, if not days, for examining

large parts (Blakey-Milner et al. 2021; Du Plessis et al.

2019).

To ensure the industrial-scale viability of the process

and mitigate the need for extensive post-process inspec-

tion, the goal of this work is to detect multiscale flaw for-

mation in LPBF parts as they are being printed using

data from a heterogeneous in-process sensor array

(Everton et al. 2016; Spears and Gold 2016). Data from

multiple sensors is essential for effective process moni-

toring because, as shown by some representative flaws

exemplified in Figure 2, flaw formation in LPBF is a

result of complex, multiscale phenomena (Gordon

et al. 2020; Mostafaei et al. 2022).
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Referring to Figure 2, causal phenomena leading to

flaw formation in LPBF span three length scales,

ranging from the micro-scale (< 100 µm), meso-scale

(100 µm to 1 mm) and macro-scale (> 1 mm) (DebRoy

et al. 2018). At the micro-scale level the melting of the

powder particles by the laser creates a pool of molten

material of diameter ∼100 μm, called meltpool, whose

dynamics is governed by heat and mass transfer

phenomena, such as Marangoni convection, Plateau-

Rayleigh effect, wetting and surface tension aspects

(Khairallah et al. 2016). The shape, size, temperature

and spatter created by the meltpool have a causal

impact on flaws, such as porosity formation, microstruc-

ture heterogeneity and mechanical properties (Chen

et al. 2022; Li et al. 2022).

There are six primary mechanisms in which porosity, a

primary focus of this work, is formed. These are: (i)

incomplete melting of the material due to inadequate

energy inputted by the laser, called lack-of-fusion poros-

ity. Such pores are acicular and manifest a jagged irregu-

lar shape and typically exceed 50 µm in diameter. (ii)

Vaporisation of material, and gasses, dissolved in the

meltpool to create gas porosity, or pinhole porosity.

Such pores are circular in shape and rarely exceed

30 µm in diameter. (iii) Excessive inputted energy by

the laser that causes the laser to operate in the

keyhole penetration mode. Such keyhole pores form

deep within the meltpool and is roughly circular with a

diameter less than 50 µm. (iv) Ejected spatter and

debris interfering with the laser melting the material

and the subsequent solidification. (v) Machine-related

flaws, such as soot agglomeration on the f-θ lens of

the machine affecting the amount of inputted energy.

(vi) Any form of contaminants in the powder material

that will interfere with the melting and solidification

process of the powder (Gaikwad et al. 2022; Liu and

Wen 2022; Montazeri et al. 2018; Mostafaei et al. 2022;

Nassar et al. 2019; Snow, Nassar, and Reutzel 2020;

Yakout et al. 2021).

Moving to the meso-scale (layer-level), the integrity of

a layer is influenced by the several thousand individual

laser stripes (hatches) that are fused together – in a

LPBF part measuring 1 cm3 there are typically 125,000

individual hatches over 625 layers (Polonsky and

Pollock 2020). Improper melting of a hatch, leading to

poor consolidation of a layer, will cascade across mul-

tiple layers, and is liable to cause flaws, such as layer

delamination, and inter-hatch voids among others

(Imani et al. 2018; Scime and Beuth 2018a).

Next, at the macro-scale part-level (> 1 mm) the

shape and orientation of the part impacts the spatiotem-

poral distribution of temperature within it during the

process (Yavari et al. 2021b). The temperature distri-

bution, also called the thermal history, in turn influences

residual stresses, leading to deformation, which in

extreme cases results in a build failure due to recoater

crash or macro-cracking of the part (Kobir et al. 2022;

Takezawa, Chen, and To 2021). Additionally, residual

stresses generated during the build can cause distortion

and cracking in parts post-removal from the substrate,

thereby deleteriously effecting the geometric integrity

(Yakout and Elbestawi 2020).

Further, these multiscale phenomena interact

amongst each other, and are amplified by variation

between machine-to-machine, resulting in flaws, such

as scan path errors and lens aberrations (Gaikwad et al.

2022, 2020b; Yavari et al. 2021a). Consequently, to

reliably detect flaw formation in LPBF parts it is necess-

ary to simultaneously monitor the multiscale process

phenomena ranging from the meltpool-level to the

part-level. In other words, a single type of sensor may

not be able to capture multiscale flaws with adequate

fidelity and statistical consistency.

1.2. Objective, hypothesis and approach

The objective of this work is to monitor and detect multi-

scale flaw formation in LPBF parts encompassing three

scales: porosity, warpage, and laser scanning errors as

shown in Figure 3, using data from heterogenous

sensors. The hypothesis is that flaw detection is enhanced

when heterogeneous sensing modalities and subsequent

analyses are matched to the scale of flaw formation. The

premise being – finer scale flaws, such as porosity, require

Figure 1. Schematic of the laser powder bed fusion (LPBF) addi-
tive manufacturing process. Metal material in the form of
powder is raked, or rolled, on to a substrate (build plate) and
melted layer-by-layer using energy from a laser (Gaikwad
et al. 2022).
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multiple, high-resolution sensing modalities, while larger

scale flaws, e.g. warpage and scanning errors, require

fewer, low-resolution sensing modalities.

To realise this objective, and test the foregoing

hypothesis, we installed a thermo-optical sensing array

consisting of three types of sensors in an open architec-

ture LPBF system. These three sensors are: (i) a spatter

imaging camera to measure the dynamics of the melt-

pool; (ii) a near infrared tomography camera with layer

and hatch-level fidelity and (iii) an optical camera to

image the powder bed. Shape agnostic features

(process signatures) are subsequently extracted from

the sensor data and used as inputs to machine learning

models trained to detect flaws that occur at multiple

levels.

1.3. Prior work and novelty

Recent review articles provide insights into approaches

for in-process sensing and monitoring in LPBF (Everton

et al. 2016; Grasso et al. 2021; Grasso and Colosimo

2017; Mani et al. 2017; Spears and Gold 2016). A concur-

rent research thrust area is in the analysis of the large

amount of data acquired by in-process sensors, and

the subsequent correlation of the signatures extracted

from the sensor data to specific flaws using machine

Figure 2. Schematic showing the multiscale nature of flaw formation in LPBF ranging from micro-scale (< 100 µm) flaws, such as
porosity and microstructure heterogeneity, meso-scale cracking and layer delamination flaws, to part-level (> 1 mm) flaws, e.g.
warpage and incorrect scanning.
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learning techniques (Jin et al. 2020; Mahmoud et al.

2021; Meng et al. 2020; Wang et al. 2020). Representative

literature concerning the type of sensors used, signa-

tures (features) extracted, data analytics approach devel-

oped and the type of flaw detected are summarised in

Table 1.

Gaikwad et al. (2022) monitored the meltpool using a

system of coaxial high-speed cameras. They

subsequently extracted physically intuitive shape,

spatter and temperature distribution characteristics of

the meltpool and correlated these sensor signatures to

the type and severity of pore formation. They used

simple machine learning approaches, such as k-nearest

neighbours (KNN) and support vector machine (SVM)

to make these signature-porosity correlations. They

further compared the prediction fidelity of such simple

Figure 3. Three types of flaws were observed and studied in this work: micro-sale porosity, layer-level warpage and part-level scan
errors.

Table 1. Summary of literature comparing various sensing modalities, signal analysis algorithms and various types of flaws. K-nearest
neighbours (KNN), support vector machine (SVM), neural network (NN), convolutional neural network (CNN), gaussian mixture
modelling (GMM), Decision Tree (CART), Random Forest (RF), XGBoost(XGB), Generative Adversarial Network (GAN).

Ref Sensor Used Signatures Extracted
Analytics
Methods Detected Flaws Flaw Level

Gaikwad et al.
(2022)

Two high-speed cameras Meltpool shapes &
temperature distribution

KNN, SVM, CNN Porosity type and lensing
artefacts

Micro-scale

Smoqi et al. (2022) Imaging pyrometer Meltpool shape &
temperature distribution

KNN, SVM Porosity Micro-scale

Petrich et al. (2021) Electro-optical, acoustic
emissions

Raw images, hatch angle,
contour distance

Shallow NN Porosity Micro-scale

Scime and Beuth
(2019)

High-speed camera Meltpool gradient SVM, NN Meltpool stability Micro-scale

Nguyen et al. (2023) Optical camera Raw images of powder bed Deep NN Porosity, overheating, &
warpage

Micro- &
Meso-level

Scime and Beuth
(2018b)

Optical camera Raw images of powder bed CNN Recoater effects, warpage, &
debris

Meso-scale

Xiao, Lu, and
Huang (2020)

Optical camera Raw images of powder bed CNN, SVM Warpage, part shifting, short
feed

Meso-scale

Land et al. (2015) Three optical cameras & a
digital projector

Image projection phase &
intensity

Topography
Analysis

Distortion in powder bed Meso-scale

Pandiyan et al.
(2021)

Acoustic sensor Raw signal GAN Anomalies Meso-scale

Li et al. (2018) Two cameras & projector Layer height map Topography
Analysis

Deviation in powder bed &
contour deviation

Meso- & Part-
level

Okaro et al. (2019) Two photodiodes Signal Basis GMM Poor tensile strength. Part-level
Huang and Li (2021) Pressure sensors &

thermocouples
Chamber and build
environment status

CART, RF, XGB Poor yield & tensile strength Part-level

Gaikwad et al.
(2019)

Optical camera Raw images of powder bed CNN Geometric integrity Part-level
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machine learning techniques to complex black-box

deep machine learning algorithms. Gaikwad et al.

(2022) reported that a set of physically intuitive

process signatures, when combined with simple

machine learning models, were found to outperform

complex deep learning models that directly used the

sensor data without decomposing the sensor signals

into process signatures. Similar results affirming the

effectiveness of leveraging low-level, yet physically inter-

pretable, process signatures with simple machine learn-

ing models are evident in recent works by other

researchers (Gaikwad et al. 2020a; Smoqi et al. 2022).

Huang and Li (2021) used global monitoring statistics,

such as: build chamber temperature and pressure,

powder flowability and part geometry features to

predict percentage elongation, yield and tensile

strength via simple supervised regression machine

learning models. No active meltpool or part level moni-

toring was performed in their work.

Petrich et al. (2021) used a sensor fusion approach

combining in-situ electro-optical images, acoustic and

multi-spectral emissions sensing to determine the sever-

ity of porosity in the samples. Petrich et al. (2021) organ-

ised the data into a 3D voxel space and correlated the

raw data in those voxels to porosity found using

neural networks.

Pandiyan et al. (2021) used an acoustic sensor to con-

tinuously collect data at 1 MHz. This data set was then

used to train semi-supervised machine learning

models, specifically a generative adversarial network

(GAN), to detect if a layer was free of any form of

anomaly (flaw). The authors’ approach detected the

presence of a flaw in a part with a fidelity of ∼96%,

however, the specific flaw generated could not be dis-

cerned from the developed models.

Scime and Beuth (2018b) used raw images acquired

after recoating of a layer to detect varying types of

recoater effects, warpage and debris on the powder

bed using a deep learning convolutional neural

network. Similarly, Li et al. (2018), used two optical

cameras and fringe projection to perform topography

analysis. This provides a height map of the powder

bed after recoating, allowing for the detection of

warpage and recoater effects.

Nguyen et al. (2023) also used an optical layer wise

imaging camera to detect the presence of flaw for-

mation. In this work, Matlab-generated deep learning

neural networks were trained to monitor the surface

morphology of each part, after the deposition of a

layer, to detect the existence of lack-of-fusion porosity,

overheating and warpage.

The following two gaps in the current literature are

revealed from this review.

(1) Most data-driven models have been demonstrated

in the context of one type of part shape, typically

a simple cube or cylinder (Imani et al. 2018; Monta-

zeri et al. 2020; Smoqi et al. 2022). Moreover, the

data originates from one build plate. Approaches

that use data from different builds, with varying

part shapes made under different locations and

orientations remains to be demonstrated. In other

words, the scalability and transferability of the

approach across different part shapes, orientations

and over multiple builds is yet to be ascertained

(Mahmoud et al. 2021).

(2) Machine learning models have been trained to

detect one type of flaw, such as porosity or distor-

tion, based on input data from one type of sensor.

Detection of multiple different types of flaws

based on data acquired from a heterogeneous

sensing array remains an open challenge (Grasso

et al. 2021; Mani et al. 2017).

This work addresses the foregoing gaps – it uses mul-

tiple heterogenous sensors to detect multiscale flaws in

different part geometries, and further, validates the

approach across different build plates, part locations

and orientations. Indeed, it is one of the first works

that detects three types of trans-scale flaws based on

data from three different types of sensors: porosity,

recoater crash and geometric variation due to scanning

errors.

The rest of this paper is organised as follows. In

Section 2 we describe the setup, sensing system and

experiments conducted. Section 3 details the signal

analysis and machine learning approach used for moni-

toring of multiscale flaws. Section 4, details the results

and the statistical fidelity of the devised approach in

detecting multiscale flaws. Finally, conclusions are sum-

marised in Section5.

2. Experiments

2.1. Apparatus and sensing setup

Parts were manufactured on the PANDA LPBF

machine by Open Additive. This system allows an

operator the freedom to change processing par-

ameters between layers of the same part and

between parts on the same build plate. In-process

data was acquired using Open Additive’s proprietary

AMSENSE™ sensor suite which includes three

thermo-optical imaging sensors. Schematic of the

sensing system are shown in Figure 4, and manufac-

turer set sensor specifications are summarised in

Table 2 (O. Additive 2021).

VIRTUAL AND PHYSICAL PROTOTYPING 5



The three sensors were installed and calibrated by the

manufacturer (Open Additive) on an optical table on the

top of the LPBF machine and are on an off-axis (staring)

configuration inclined at 83° to the build plate. The

entire build plate is captured within the field-of-view

of the sensor array. The sensing system is designed

with the intent to observe multiple phenomena across

different length scales. The three sensors are as

follows: (1) a near infrared (NIR) thermal imaging

camera with wavelengths of 700–1000 nm, also referred

to as a tomography sensor; (2) a high-speed imaging

camera to capture meltpool spatter; and (3) an optical

powder bed imaging camera.

Example data from the sensing system are shown in

Figure 4. The NIR camera observes the layer-level

surface temperature distribution. To explain further, the

NIR thermal imaging camera is set with a long 250 ms

exposure time, sampling at four frames per second, and

is used to capture the thermal intensity of the meltpool

upon laser strike. The thermal intensity of the meltpool

is subsequently consolidated for an entire layer to esti-

mate the layer-level part surface temperature.

Figure 4. Schematic of the sensor location and orientation in the Panda Open Additive LPBF machine. Three types of sensors are
installed on an optical table on top of the machine near the laser source: a near-infrared thermal imaging camera, a powder bed
imaging camera and a high-speed meltpool spatter dynamics imaging camera.

Table 2. Specifications of the three sensors used in these experiments: NIR Tomography, optical powder bed imaging and high-speed
spatter imaging.

Type of Sensor Phenomena Measured Make and Model Sampling Rate Resolution

Optical Powder Bed Imaging Meso-scale recoater and layer-
level flaws.

Basler acA4024-29um 2 images/layer
post lasing & recoat

12 megapixels

Near Infrared Tomography (NIR) Intensity at the instance of laser
strike.

Basler acA4024-29um with
NIR filter

4 Frames per Second
250 millisecond exposure

12 megapixels

High-Speed Spatter Dynamics
Imaging

Meltpool dynamics. Basler acA1920-155um 150 frames per second 500 µs
exposure

2.3 megapixels

6 B. BEVANS ET AL.



With the meltpool spatter imaging camera, images

of the meltpool were captured with a relatively high

sampling rate of 150 frames per second. This camera

thus observes the micro-scale meltpool-level phenom-

ena, specifically the spatter dynamics. The lowest res-

olution sensor is the optical imaging (recoater)

camera which captures two images per layer, one

post-recoat and one post-sintering. In this work, only

the post-recoat images from the recoater camera

were analysed to visualise flaws associated with the

recoating process.

2.2. Build plate and part geometry

Three build plates were manufactured to test the effec-

tiveness of the approach across multiple processing con-

ditions. Each build plate has four different part shapes

(geometries) for a total of 22 parts per build plate –

thus there are a total of 66 parts. The powder material

for the build is Nickel Alloy 718 (Inconel 718, UNS

N07718) and has a mean and standard deviation particle

size of 45 and 15 µm, respectively. Nickel Alloy 718 is

favoured by the aerospace engine industry for its high-

temperature properties (Sanchez et al. 2021). The build

plate (low carbon steel) measures 152 mm× 152 mm×

25 mm (thick). The builds were conducted in a Nitrogen

environment.

The build plate layout and geometries for a repre-

sentative case are shown in Figure 5. The four types

of geometries are: (i) overhang geometries (×14); (ii)

cones (×4); (iii) lattice-shapes (×2) and (iv) and thin-

wall structures (×2). This work does not analyse data

from the thin-wall parts owing to the difficulty in

obtaining the X-ray computed tomography (X-ray CT)

characterisation of these parts due to their large

volume. The build consists of 733 layers and required

∼18 h to complete.

Parts were manufactured under different process

conditions. Eleven parts near the top half of each build

plate, closer to the gas flow as shown in Figure 5, were

manufactured under fixed processing parameters.

These parameters were determined based on extensive

a priori optimisation studies. Fixed processing implies

that all processing parameters, such as laser power

and velocity, reported in Table 3, remain constant

throughout the build. The bottom half of the build

plate (Figure 5), farther from the gas flow (11 parts), is

a mirror image of the top half. The parts farther from

the gas flaw were processed under dynamic processing

conditions by varying the laser power between layers.

The aim of dynamic processing was to deliberately

induce flaw formation. The processing conditions are

summarised in Figure 6, and discussed herewith.

(a) Overhang

As shown in Figure 5, 14 total overhang geometries

are created on each build plate. These parts are 22 mm

tall and consist of 733 layers (Figure 6). These overhang

geometries are built with variation in processing par-

ameters, shape, location on the build plate, and orien-

tation with respect to the recoater direction.

Seven overhang parts located at the top of the build

plate were manufactured with fixed (nominal) proces-

sing parameters that remained constant throughout

the overhang section of the geometry (laser power).

These nominal processing parameters are reported in

Table 3.

The nominal processing parameters used in this work

are the default settings for a specific material that are

provided to the user by the machine manufacturer

(Open Additive). These parameters for Nickel Alloy 718

were obtained via an extensive parameter study which

involved building cuboid shapes under various laser

power, velocity, hatch spacing, layer height, gas flow

conditions, among others. The parameters that result

in a maximally dense part with no detectable porosity

were chosen. The efficacy of these parameter settings

is also verified in the current work via the parameter

study in this work in reference to the overhang parts

(see Figure 6).

The key nominal processing parameters provided by

the manufacturer are: laser power P = 230 W, velocity

V = 1200 mm·s−1, hatch spacing h = 70 µm and layer

height H = 30 µm. These processing parameters result

in a volumetric energy density, Ev = P/(V × H × T) = 91

J·mm−3.

Furthermore, in Figure 5(a), the cuboid-shaped base

of the fixed overhang geometries located on the top

of the build plate (fixed parameters), were processed

under varying laser power conditions to study the

effect of processing parameters and to validate the man-

ufactures recommended nominal processing par-

ameters. These laser power conditions are summarised

in Figure 6.

The seven overhang parts located at the bottom of

the build plate, farther from the gas flow, were made

under processing parameters that were varied during

the build, specifically in the overhang section of the

geometry. As summarised in Figure 6, these overhang

parts built under varying laser power setting are

termed dynamic processing. The overhang angle (θ)

was also varied at three levels from θ = 50°, 45° and

VIRTUAL AND PHYSICAL PROTOTYPING 7



30°. Six of the fourteen parts with θ = 50° are located

nearer to the recoater start position on the right-hand

side of the build plate. Next, to account for the effects

of orientation of the part relative recoater blade, the

angle of rotation (α) of these parts, with reference to

the direction of the recoater blade, is varied from α =

0°, 45° and 90°.

Three replicate overhang geometries with θ = 50°, α

= 0° and P = 230 W were printed on both sides of the

build plate, demarcated with a yellow star in Figure 5.

(b) Cone

Four cone geometries were created per build plate.

Each cone geometry is 15 mm in height and contains

500 layers. The cone parts were built with varying incli-

nation angles (θ = 35°, 40°) and processing conditions.

These severe inclination angles are liable to cause defor-

mation and recoater crashes (Diegel, Nordin, and Motte

2019; Kobir et al. 2022). Hence, a soft rubber recoater

material was used to avoid stopping the build due to

part distortion-induced recoater crashes.

Two cones were placed near to the gas flow at the top

of the build plate, built under fixed processing par-

ameters, and two cones are located on the far side of

Figure 5. Build layout and dimensions of printed parts across two build plate designs. The build plate design shown in (a) is repeated
twice; there are total of three build plates. A total of 22 parts are processed per build plate. These 22 parts encompass variation in
geometry, location and processing parameters to ensure shape agnosticism. For the build plate shown in (a) parts made under fixed
laser power condition of P = 230 W are located on the top half of the build plate. Parts on the bottom half, farther from the gas flow
vents are built with varying processing parameters, called dynamic processing. The build plate in (b) is a mirror image (180° rotation)
of (a), it is called the validation build plate and has identical parts, but different layout and processing condition.
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the gas flow under dynamic processing parameters, i.e.

the laser power was changed layer-by-layer, as detailed

in Figure 6.

(c) Lattice

Two lattice structures were processed per build plate.

Lattices are complex, intricate geometries that are apt

candidates for LPBF, but often fail due to scanning

errors (Ibrahim et al. 2020). The lattice geometry is

based on a body-centred cubic structure and repeats

four times in the Z direction (build height). Each lattice

is 12.5 mm in height and consists of 416 layers. As

detailed in Figure 6, one lattice shape was produced

under fixed processing parameters and the other

lattice was produced under dynamic processing con-

ditions, with laser power changes.

2.3. Validation build plate

To validate the transferability, and shape and location

agnostic characteristics of the approach, a third build

plate was manufactured (Figure 5(b)). The intent is to

quantify the Type I (false positive), and Type II (false

negative) error rates of the approach. The validation

build plate contains identical parts as the two build

plates described before in Section 2.2, however, the

locations of the samples were rotated by 180°. In the

context of Figure 5(b), in the validation build plate

parts produced under fixed processing parameters

were located farther from the gas flow, and the

dynamic-processed parts are at the top of the build

plate near the gas inlet.

Further, to rigorously test the fidelity of the detection

algorithm given changes in the process conditions, the

two dynamic-processed cones had a different laser

power change from layer-to-layer. The laser power was

maintained at a nominal level of 230 W up to 8 mm

(layer 267) build height and then reduced to 160 W to

prevent the warpage found in the fixed cone geome-

tries. The rest of the samples on the validation build

plate are identical with respect to their processing par-

ameters as summarised in Figures 5 and 6.

2.4. Post-process characterisation

The 14 overhang geometries, 4 cones, and 2 lattice struc-

tures were examined with X-ray computed tomography

(X-ray CT). The overhang and lattice geometries were

scanned at a resolution of 15 µm per voxel while the

inverted cone geometries were scanned at 25 µm per

voxel (NorthStar Imaging Model X3000). The lower

scan resolution for the inverted cone geometry is due

to the relatively larger size of the sample.

Porosity is characterised as: (i) pore severity in terms of

percent volume porosity per layer, called defect volume

ratio (DVR); and (ii) pore size (diameter) in micro-meters

(µm). These measurements were obtained using Volume

Graphics software native to the X-ray CT machine.

To characterise porosity type and size the cone-shaped

parts were examined with optical microscopy. For this

purpose, the parts were cross-sectioned using electro-dis-

charge machine and polished to Ra ∼ 50 nm surface finish

in progressive steps using an alumina abrasive-based slurry.

3. Signal analysis, data fusion and machine

learning

3.1. Overview

As summarised in Figure 7, the objective of this work is

to detect multiscale flaw formation in LPBF by combin-

ing (fusing) data from the three thermo-optical sensors

within simple machine learning models. In this work,

flaw detection is performed on a layer-by-layer basis;

this includes the porosity, warpage and geometric integ-

rity flaw detection.

There are three machine learning tasks. Task 1: (A)

detect severity and (B) size of porosity; Task 2: detect

part deformation (warpage) and Task 3: detect geome-

try-level flaws resulting from laser scanning errors.

Each of these tasks requires the following three steps

described in depth in the following sections:

(Step 1) – Data Consolidation: Representing temporal

images into a layer-wise form.

Table 3. Nominal parameters used in the Open Additive PANDA
LPBF machine.

Process Parameter [Units] Values

Laser type and wavelength. Ytterbium fibre, wavelength 1070 nm
continuous mode, 500 W max power

Nominal Laser Power (P0)
[W]

230

Scanning Speed (V)
[mm·s−1]

1200

Hatch spacing (H) [mm] 0.07
Layer thickness (T) [mm] 0.03
Volumetric global energy
density Ev [W/mm3]

91

Laser spot size [μm] 50
Scanning strategy Meander-type scanning strategy with 66-

degree rotation of scan path between
layers.

Build atmosphere Argon
Powder Material Properties
Material type Nickel Alloy 718 (Inconel 718);

corresponding to UNS N07718 (sourced
from Praxair)

Particle size range [μm] 15–45 (D10 – D90)
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(Step 2) – Dimension Reduction and Feature Extraction:

Deriving low level spectral signatures from each

layer-wise-image.

(Step 3) – Data Fusion: Synthesising data across layers

and different sensors.

3.2. Step 1 – data consolidation

In this step temporal data for a particular layer from each

sensor is consolidated as a 2D image of a layer. For each

geometry a single image of the powder bed imaging,

NIR tomography and spatter cameras were extracted

for every layer. Sample data for layer 400 is shown in

Figure 7.

For example, the NIR tomography camera in Figure 7

(a2) depicts uneven heat distribution on the edges of the

cone, indicating the causal thermal phenomena that

lead to warpage and distortion. Likewise, an individual

frame of the meltpool captured by the spatter imaging

camera is shown in Figure 7(c1). Consolidating all such

Figure 6. Processing plan for each geometry of interest and purpose for changes. The fixed overhang geometries contained a par-
ameter cube experiment in the base to validate processing parameters. However, all other geometries printed under fixed processing
parameters used the nominal processing condition.
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frames for a layer results in the relative spatter intensity

image shown in Figure 7(c2). Visual observation of the

meltpool spatter pattern captured by the spatter

camera in Figure 7(c2) reveals the presence of extreme

spatter events. Simultaneously the NIR tomography

camera detects uneven heat distribution.

3.3. Step 2 – dimension reduction and feature

extraction

In the feature extraction step, depicted in Figure 9, the

layer-by-layer data from each type of sensor image con-

solidated in Step 1, is quantified in terms of a single

feature called the graph Laplacian spectral radius (λN)

(Shi 2007). The spectral radius (λN) ranges between 1

and 2 and thus provides a means to reduce the high

dimensional information contained in an image to a

single number (Chung 1997).

The spectral radius is obtained in three phases. First in

phase 1, visualised in Figure 8, a layer image from

each type of sensor is discretised into m × n pixel

grids, herein m = 15, n = 10, resulting in a 15 × 10

matrix. The rows of this so-called patch matrix P are

subsequently reshaped to obtain a column vector �p of

size 150 × 1.

We note that each imaging sensor has a different

spatial and temporal resolution. Hence, the size of the

patch matrix P must be calibrated to the resolution of

each sensor. This was done through extensive offline

optimisation not discussed in this paper. The recoater

camera had a patch size of 30 × 20 pixels, for the

tomography and spatter images the patch size was

ideal at 3 × 5 pixels. This finer scale for the tomography

and spatter images is due to these sensors observing the

finer scale meltpool and temperature dynamics. In con-

trast, the recoater camera only observes warpage and

other powder bed flaws at a relatively low resolution.

Next in phase 2, an adjacency matrix W = [wi,j] is

created from the patch vector �p using the following

relationship.

wi,j = �pi − �pj2 (1)

Where �pi is the ith patch vector originating from the

ith patch matrix Pi in the patch-by-patch image. In

other words, the patch matrix is an area-wise restruc-

turing of the raw image in matrix form, that is then

Figure 7. Output from each type of sensor for layer 400 of the cone shaped part with θ = 35° when warpage is observed. (a1–c1) are
the raw data acquired from layer 400, (a2–c2) is data acquired for the region of interest.
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converted into a vector to calculate the adjacency

matrix W. The element wi,j of the adjacency matrix

W is the Euclidean distance (L2 norm) between the

ith and jth patch vector in the image. Thus, a relative

relationship is established between the pixel intensity

of one patch to every other patch in the image. The

size of the patch matrix Pi influences the compu-

tational time. As the size of the patch matrix decreases

the resolution of the resulting adjacency matrix W

increases at the expense of computation time.

In phase 3, the diagonal degree matrix D is derived

from the adjacency matrix as follows:

di =
∑j=N

j=1

wi,j (2)

Subsequently, the weighted Laplacian matrix (L) is

calculated using the following equation:

L = D− W (3)

The eigenvalues (l) and eigenvectors (n) of each layer-

wise consolidated image data can then be extracted

from the Laplacian matrix:

Lv = lv (4)

The largest eigenvalue, called the spectral radius (lN),

is selected as the monitoring statistic (Chung 1997). The

result of phase 3 is visualised in Figure 9. The rationale

for using the Laplacian eigenvalues as a monitoring stat-

istic has been studied extensively in our previous work

(Montazeri and Rao 2018; Tootooni et al. 2018). The

spectral radius captures the degree of inhomogeneity

in an image. The more inhomogeneous an image, the

closer the value of lN is to 1. Conversely, the more hom-

ogenous an image, lN approaches 2. Moreover, the

spectral radius is independent of image scale and size

(Shi 2007).

3.4. Step 3 – incorporation of process history and

layer-by-Layer data fusion

A drawback of the spectral radius (lN) statistic is that it

does not incorporate layer-by-layer evolution of the

process – each layer is treated independent of the pre-

ceding and subsequent layers. For example, previous

research in the literature affirms a correlation of melt-

pool behaviour across layers (Ulbricht et al. 2021). To

account for this temporal dependency, the spectral

radius from the NIR tomography (lN,T), spatter (lN,S)

and recoater (lN,R) cameras are further processed

through an exponentially weighted moving average

(EWMA) filter (Ramirez and Ramírez 2018). The filter is

mathematically expressed as follows:

LL = 1l
L
N + (1− 1)LL−1 (5)

Where l
L
N is the spectral radius at layer L. This recursive

function applies a weight (1) to the spectral radius

obtained from the previous layers. Using a weight of 1

= 0.1, implies that the previous four layers are weighted

at 65%, which corresponds to meltpool penetration

depths of 2–4 layers typically observed in LPBF

(Schwerz and Nyborg 2021).

The result of applying this exponentially weighted

moving average filter from all three sensors for the

cone geometry, that showed severe warpage (see

Figure 5), is presented in Figure 10. The function LL for

the tomography (LT
L) and spatter (LS

L) sensors show a

prominent decreasing trend which correlates to the

warpage in the sample. This is because, as heat begins

to accumulate on the edges and the meltpool

becomes unstable, the layer-wise image data becomes

less homogeneous. This leads to a decrease in connec-

tivity in the graph-based representation of the image,

and consequently, a decrease in lN.

Figure 8. Vectorised each patch in an image in order to cluster multiple pixels together. The adjacency matrix is obtained by calculat-
ing the Euclidian distance from one patch to another patch.
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However, the LL for the recoater camera (LR
L )

increases with incipient warpage. This is caused

because, unlike the tomography and spatter cameras,

the natural state (nominal condition) of the recoater

image data is inhomogeneous, leading to a low

spectral radius number. The image data collected

for the raw powder bed (no warpage state) has

relatively extreme variation in pixel values that lead

to this inhomogeneity. When the sample begins to

warp above the powder bed, the image becomes

homogeneously dark. Thus, the spectral radius

number for the powder bed optical imaging (recoater)

sensor increases in value when the sample begins to

warp.

3.5. Machine learning – model training, testing

and validation

3.5.1. Model structure

Figure 11 summarises the approach in terms of

process signatures and detection algorithms used in

this work. The aim of machine learning is to determine

multiscale flaw formation at the porosity-, warpage-

and geometry-levels. For this purpose, a total of four

features were extracted. The three EWMA-filtered spec-

tral radii from the recoater (LR
L ), NIR tomography (LT

L)

and spatter (LS
L) sensors, and the mean meltpool inten-

sity (IL) for each layer (L) extracted from the NIR tomogra-

phy camera. Meltpool intensity was found to be

Figure 9. The spectral radius (lN) is extracted for each layer of data obtained from each sensor. Depending on the sensor, different
patch size & criteria were chosen.

Figure 10. Behaviour of spectral radius as a function of layers for warpage flaws. Warpage is observed after layer 350. There is a sharp
change in the spectral radius for various sensors due to the onset of warpage.
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consequential in porosity detection in our prior works

(Gaikwad et al. 2022).

The four features were used as inputs to simple

machine learning models, such as K-nearest neighbours

(KNN) and support vector machine (SVM) for detecting

porosity severity, pore size and warpage. A statistical

process control chart was used to detect the geometric

level of flaws of incorrect scan paths.

The prediction fidelity for classifications level and

type of porosity is quantified in terms of the F-score

(Smoqi et al. 2022). The level of porosity is stratified

into four levels, and the type of porosity is categorised

into three levels.

Referring to Figure 11, data from all three sensors

were used for detecting micro-scale porosity; data

from only two sensors, recoater and spatter camera,

were sufficient when detecting layer level warpage;

and data from only the tomography sensor was

needed for detecting geometric deviations. In this

work, all flaw detection was performed on a layer-by-

layer basis for each part. The specific X-Y region on a

layer in which the flaw occurred was not detected,

only that a specific layer on a part contains the detected

flaw.

To attain prediction fidelity F-score > 90%, porosity

prediction required all four features; layer-level

warpage flaw detection required two features (recoater

L
R
L and spatter imaging L

S
L); and geometry-level scan-

ning errors required only one feature (NIR meltpool

intensity, IL). In other words, the number and resolution

of sensors required is inversely proportional to the scale

of flaw formation to be detected.

3.5.2. Model training, testing and validation

After materials characterisation, an equal number of

each of the three types of flaws (porosity, warpage and

geometric) were selected for model training and

testing to avoid bias due to an imbalanced data set.

Machine learning models are trained to classify porosity

into four levels based on X-ray CT defect volume ratio

(DVR): nominal with < 0.1% DVR; low porosity with

0.1% < DVR < 0.5%; medium porosity with 0.5% < DVR

< 1.0%; and high porosity with DVR > 1.0%.

Likewise, pore size is classified into three levels based

on pore diameter (d): d < 150 µm; 150 µm < d < 250 µm

and d > 250 µm. The smallest pore size of 150 µm is in

accordance with the resolution of the X-ray CT per-

formed which had a voxel size of 25 µm. Warpage and

geometry-level flaws are both treated as a binary classifi-

cation problem, i.e. warpage vs. no warpage.

In this work, 267 data points per pore severity level

were randomly selected (1064 data points). Of these

data sets, 80% of the data (213 data points per level)

were used to train the machine learning models and

the remaining 20% (54 data points per level) were

used for testing. The results were subsequently validated

with data obtained from a separate build plate (Figure 5

(b)) which had identical geometries and similar laser

powers, but with part location rotated 180° to account

for potential positional affects. Results from the porosity

prediction model are described in Section 4.1.

Similarly, the warpage model was trained on the 500

layers (500 data points) of the cone geometry θ = 35°, as

this was the geometry with the most observable

warpage. The warpage model was then tested and

Figure 11. Schematic of the approached used in this work to detect micro-, layer- and geometry-level flaws. The three spectral radii
(LR

L
, L

T

L
, L

S

L
), along with the meltpool intensity (IL) are used as inputs to simple machine learning models to detect porosity,

warpage and scan-path errors.
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validated on all the cone, overhang and lattice structures

from all three build plates. Finally, the scan path error

EWMA control chart was designed on the nominal geo-

metries with no errors and then tested on all other geo-

metries. We note that only the lattice structure

contained this scan path errors. Results from the

warpage and scan path error models are described in

detail in Sections 4.2 and 4.3 respectively.

4. Results

4.1. Porosity prediction

4.1.1. Porosity measurements

(a) Cone

For cone-shaped parts processed under fixed conditions,

i.e. with a nominal laser power P = 230 W, the porosity

was less than 0.01% (defect volume ratio, DVR). The por-

osity type and distribution observed using optical

microscopy and X-ray CT for the dynamic-processed

cone-shaped parts is shown in Figure 12. In contrast to

the fixed processed cone, the dynamic-processed cone

with a θ = 35° inclination angle has a DVR greater than

1.0%.

Porosity increases substantially when the laser power

was reduced to P = 160 W. For the dynamic-processed

cone with a θ = 40° the DVR is ∼0.6%. Optical microgra-

phy reveals that porosity in the dynamic-processed cone

is of the lack-of-fusion type (Snow, Nassar, and Reutzel

2020). Lack-of-fusion porosity results from insufficient

consolidation of molten powder material owing to low

energy input.

In this work, no keyhole porosity was observed with

X-ray CT or optical microscopy in either the dynamic-

or fixed-processed geometries. Indeed, the variation

in pore diameter observed in this work is too large

to be considered keyhole porosity. It is therefore

reasonable to assume lack-of-fusion at low laser

power, and spatter-induced porosity at high laser

power (230 W).

Continuing with the analysis, the layer-by-layer

mapping of porosity for the dynamic-processed cones

is shown in Figure 13(a, b). The severity of porosity

increases significantly in excess of 0.5% DVR when the

power is reduced to 160 W, and is exacerbated when

the power is further reduced to 120 W.

From this porosity data, we stratified the severity of

porosity into four categories as follows, nominal por-

osity < 0.1% DVR per layer; low porosity 0.1%–0.5%

DVR per layer; medium porosity 0.5%–1.0% DVR per

layer; and high porosity > 1.0% DVR per layer. From

Figure 13(a, b) we observe that the pore severity is

a function of geometry as well as energy density.

The cone with θ = 35° cone has significantly more por-

osity at P = 120 W compared to the θ = 40°

counterpart.

The pore size is mapped as a function of layer

height for the dynamic cones in Figure 13(c, d) for θ

= 35° and θ = 40°, respectively. The pore diameter

increases in size when the power is decreased. This is

because, as the laser power decreases, the overall

energy density (Ev) decreases as well. At low energy

densities, Ev < 63 J·mm−3, the powder particles are

unable to fully fuse, forming the lack-of-fusion porosity

observed in these samples (Snow, Nassar, and Reutzel

2020).

Figure 12. Porosity analysis for the dynamic-processed cone parts. (middle) X-ray CT shows that porosity increases significantly when
the laser power is reduced to 160 and 130 W from the nominal 230 W. Further, optical micrographs reveal that the porosity is of the
lack-of-fusion type.
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(b) Overhang

Consistent with the observation for the cone-shaped

parts, lack-of-fusion porosity was also observed in the

overhang parts when the laser power was reduced

below P = 230 W to P = 130 W. Shown in Figure 14(a)

are the X-ray CT results for the only overhang part

with detectable levels of porosity. The porosity in this

sample occurs in the first 10 mm when P = 130 W.

The layer-by-layer analysis of the porosity is shown in

Figure 14(b) in terms of DVR. Note that relative to the

cone, low levels of porosity (DVR < 1%) were observed

in the overhang sample. Shown in Figure 14(c) is the

visualisation of pore diameter observed in the overhang

Figure 13. (a) and (b) Percent porosity (DVR) per layer observed for the two dynamic cone parts, θ = 35° and θ = 40° respectively. The
corresponding levels of classification are annotated. Note the significant increase in percent porosity (DVR) when the laser power is
reduced to P = 160 W and further to P = 120 W. Further the cone with θ = 35° has significantly more porosity at P = 120 W compared
to θ = 40°. (c) and (d) Pore diameter as a function of layer number. Porosity of the lack-of fusion type with diameter ranging from d <
100 µm to d > 300 µm are observed.

Figure 14. (a) Visual of the X-ray CT results done in this work for this overhang part. (b) Percent porosity per layer observed for the
fixed overhang geometry. The corresponding levels of classification are annotated. Note the significant increase in percent porosity in
the lower cuboid section where the laser power was set to 130 W. (c) Pore diameter as a function of layer number. Porosity of the lack-
of fusion type with diameter less than 150 µm is observed.
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sample. All pores observed were lack-of-fusion pores

with d < 150 µm.

4.1.2. Correlation of sensor signatures to porosity

severity and pore size

Next, in Figure 15, we correlated the four sensor signa-

tures to the level of porosity severity and size. The four

features are: spectral radius of the spatter camera

images (LS
L); spectral radius from the recoater camera

images (LR
L ); spectral radius from the tomography

camera images (LT
L); and relative meltpool intensity

from the tomography camera (IL).

From Figure 15, it is observed that the spectral radius

for the spatter (LS
L) and tomography (LT

L) camera image

decreases as the porosity level increases. This is because

as lack-of-fusion porosity forms, the image data

becomes less homogenous, which causes the spectral

radius number to decrease. Likewise, the normalised

meltpool intensity (IL) decreases with increase in poros-

ity level (severity) as the incident energy density

decreases due to the reduction in laser power.

The interaction amongst sensor signatures for the

four levels of porosity is visualised in the form of a

scatter plot shown in Figure 16. In all plots, there is a

clear correlation between lower spectral radii and

higher levels of porosity severity. However, there is sig-

nificant overlap in the data, thus necessitating the use

of machine learning to predict the porosity severity.

The interaction amongst sensor signatures to pore

size is visualised in the form of four scatter plots

shown in Figure 17. In all scatter plots in Figure 17, pro-

minent clustering of features relative to the pore diam-

eter is evident, and the overlap is not as considerable

as that observed in the context of porosity severity

(Figure 16). Accordingly, simple logistic regression

would perform at par with machine learning for classify-

ing pore size.

4.1.3. Machine learning

Next, the four features: LT
L , L

S
L , L

R
L and IL were used as

inputs to a logistical regression model, and three simple

machine learning models – k-nearest neighbours (KNN),

support vector machine (SVM) and shallow artificial

neural networks (ANN). The statistical regression model

is used as a baseline as it does not involve an active

learning step (Dreiseitl and Ohno-Machado 2002).

Figure 15. The behaviour of the four process signatures as a function of porosity level. (a-c): The recoater spectral radius (LR

L
) does not

change significantly with pore level, however, the spectral radii for both the spatter camera (LS

L
) and tomography camera (LT

L
)

decreases significantly as the level of porosity increases. (d) Meltpool intensity (IL) decreases with increasing porosity severity.
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Figure 16. Visualisation of interaction between sensor signatures for various levels of porosity severity. In the visualisation there is a
large overlap in the high and medium levels of porosity sensor signatures.

Figure 17. Visualisation of interaction between sensor signatures for various levels of pore diameter. In the visualisation, no singular
2D scatter plot has a perfect separation of the data.
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The ANN used in this work was a shallow multi-layer

perceptron (MLP) with only two hidden layers, each layer

containing 15 neurons using the tangent sigmoid acti-

vation function. We acknowledge that performance of

the ANN could be enhanced by adding more hidden

layers, at the risk of losing model interpretability and

potential overfitting. All models were trained and

tested using the 80–20 schema described previously in

Section 3.5 with 10-fold cross validation and Bayesian

hyperparameter tuning.

The model results are reported in terms of the F-score,

false positive rates and false negative rates (Table 4). The

number in the parenthesis in Table 4 is the standard devi-

ation over the ten trials. The SVMmodel predicts the level

of porosity with ∼93% fidelity (F-score) with false positive

and false negative rates of 1.6% and 4.8% respectively

using a radial basis kernel function. In comparison the

statistical logistic regression model could only classify

the level of porosity at 77.4% fidelity, justifying the

need for machine learning. A representative confusion

matrix from the SVM model is shown in Table 5. We

note that from the total of 234 data points used for

testing there were only 13 misclassifications.

A visualisation of SVM model performance in the

context of level of porosity severity is presented in

Figure 18(a) and (b) for the overhang geometry and

cone geometry with θ = 35°. For the two different geo-

metry types, the SVM model successfully predicts the

change in level of porosity due to change in laser power.

In addition to the prediction of the level of porosity

(porosity severity), the size of pore, in terms of pore

diameter, for these samples was also performed. The

size of pore was classified between 3 different sizes, in

layers that contained porosity: small diameter (d <

150 µm), medium diameter (150 < d < 250 µm) and

large diameter (d > 250 µm). The results are summarised

in Table 4 and Table 6.

The prediction of pore diameter was performed using

the previously described 80–20 train-test strategy. The

SVM model predicted the pore size with an F-score of

98.64% (0.46%). We also note that statistical logistic

regression has an appreciable score of 92.65% (1.70%)

Table 4. The performance of the four models used in the work for prediction of porosity level and size, along with the false positive
and false negative rates. A total of 1068 data points were used for training and 234 data points were used for testing. The number in
the parenthesis is the standard deviation (STD) over 10 train/test iterations.

Model Logistic Regression KNN SVM ANN

F-Score (STD) Pore Severity 77.3% (2.48%) 92.3% (1.75%) 93.5% (1.68%) 91.4% (2.44%)
Pore Size 92.6% (1.70%) 98.8% (0.60%) 98.6% (0.46%). 99.6% (0.3%)

False Positive Rate Pore Severity 7.8% 2.6% 1.6% 2.8%
Pore Size 2.4% 0.3% 0.6% 0.3%

False Negative Rate Pore Severity 22.7% 7.8% 4.8% 8.5%
Pore Size 7.8% 0.9% 1.7% 0.9%

Table 5. The confusion matrix for pore severity classification from the SVM model resulting in F-score > 93%. Out of 234 data points
there were only 13 misclassifications.

Predicted Porosity Severity Values

Actual Severity Values
Nominal Porosity
(DVR <0.1%)

Low Porosity
(0.1< DVR < 0.5%)

Medium Porosity
(0.5< DVR < 1%)

High Porosity
(DVR >1%)

Nominal Porosity
(DVR <0.1%)

61 2 1 0

Low Porosity
(0.1< DVR < 0.5%)

1 58 3 0

Medium Porosity (0.5< DVR < 1%) 0 2 51 0
High Porosity (DVR >1%) 0 2 2 51

Table 6. The confusion matrix for pore diameter classification from the SVM model resulting in F-score > 98%. Out of the 240 data
points there was only 1 misclassification.

Predicted Porosity Severity Values

Actual Severity Values No Pores
Small Pores
(d < 150 µm)

Medium Pores
(150 < d < 250 µm)

Large Pores
(d > 250 µm)

No Pores 60 1 0 0
Small Pores
(d < 150 µm)

0 66 0 0

Medium Pores (150 < d < 250 µm) 0 0 53 0
Large Pores
(d > 250 µm)

0 0 0 60
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for predicting pore size, which implies that the classifi-

cation of pore size is a simpler problem, when using

the proposed feature set, compared to level of porosity

(pore severity). As noted in the context of Figure 17, the

four features cluster in a prominent matter contingent

on the size of pore.

Thus, simple machine learning models are capable of

linking the extracted sensor signatures, discussed in

Figures 16 and 17, to both pore size and severity. In

other words, pragmatic, physically intuitive process sig-

natures, when coupled with simple machine learning

models are capable of detecting flaw formation with

high levels of statistical fidelity (F-score > 93%).

4.2. Warpage prediction

As observed in Figure 19(a, b), respectively, both the

cone with angle of inclination θ = 35° and the

Figure 18. Visualisation of the SVM model’s porosity severity prediction for the overhang (a) and cone geometry θ = 35° (b). The
model successfully predicts the porosity in both of these samples.

Figure 19. Both an inverted cone (a) and an overhang geometry (b) had produced under constant power P-230 W depicted significant
warpage. Thermal simulation of the cone geometry at an inclination of 35° (c) and the overhang geometry at 30° (d) show heat
accumulation at the top of the part that could lead to thermal distortion.
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overhang (θ = 30°) processed under fixed laser power

of 230 W, were afflicted with significant warpage. We

note that the dynamic-processed cones did not warp.

This warpage is on account of excessive heat accumu-

lation leading to the thermal distortion of the parts

built under fixed processing parameters. Indeed, a

thermal simulation using our previously published

thermal models shown in Figure 19(c, d) predicted

heat build-up (accumulation) in these parts (Yavari

et al. 2021b).

Another SVM model using the radial basis kernel

function, similar to the one used to for the prediction

of porosity in Section 4.1, was deployed for prediction

of warpage. Noting that this is a two-fold classification

problem – warpage vs. no warpage. During analysis it

was observed that only two spectral radii, LS
L and L

R
L

from the spatter and recoater cameras respectively,

were sufficient to detect warpage. Since warpage is

a considerably larger scale phenomena than porosity

formation, a few process signatures are sufficient.

These process signatures (LS
L and L

R
L ) are correlated

with warpage shown in Figure 20; we note that the

data encompasses both overhang and cone geome-

tries. From Figure 20, for parts with significant

warpage, the L
S
L is generally below 1.45 and the L

R
L

is generally greater than 1.03. However, there is con-

siderable overlap between the two monitoring fea-

tures that require simple machine learning models

to precisely ascertain the regions of warpage.

Further to test model transferability, only data from

the cone was leveraged for training the SVM model

and subsequently used as-is for predicting warpage in

the more complex overhang part, Figure 21. The SVM

model successfully captured the relatively subtle

warpage at the top few layers of the overhang part.

We note that sporadic appearance of warpage at the

top layers is due to the self-healing nature of the LPBF

process (Ulbricht et al. 2021). Further, the apparent

false detection in the first few layers is associated with

poor recoating. The recoater blade is not level with the

build plate for the first 5–10 layers – a common

problem in LPBF.

Continuing with the analysis, the warpage detec-

tion model was extended beyond the cone and over-

hang geometries to the complex lattice structure,

shown in Figure 22. The lattice structure had multiple

instances of warpage wherein warpage exceeded the

layer height (T = 30 µm) and the part surface was

raised above the freshly raked powder (super

elevation).

Figure 21. In the overhang part, white regions demarcate layers of predicted warpage. The warpage detection model trained on the
cone geometry was successfully as-is to the overhang geometry. The spectral radius signatures from the recoater (LR

L
) and spatter (LS

L
)

imaging sensors were sufficient for detection of warpage.

Figure 20. Visualisation of the warpage and non-warpage states
are interpreted by the high-speed and recoater sensor. Both
sensors are needed to see separation in the data.
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4.3. Geometry error detection

X-ray CT analysis showed that the lattice structure con-

tained flaws due to scanning errors. As depicted in

Figure 23, these scanning errors cause significant devi-

ation in the part geometry from the CAD design. Incor-

rect scanning was observed in the lattice structure

when the body-centered lattice structure was repeated

in the build direction. In practice, laser scanning errors

may occur for a variety of reasons, including improper

slicing of the CAD model resulting in poor resolution,

errors in the scan path generation software, and lens

aberrations (Gaikwad et al. 2022; Yavari et al. 2021a).

In this work, regions of improper scanning resulted in

excess melting of material that covered the gaps

between the lattice edges. These regions of scanning

errors were correlated with prominent variation in the

meltpool intensity (IL). Shown in Figure 23 is the layer-

by-layer gradient (
d

dt
IL) compared to the layers in

which improper scanning occurred.

The gradient of the mean meltpool intensity (
d

dt
IL)

was monitored in an exponentially weighted moving

Figure 22. The SVMmodel when transferred successfully detects warpage in the complex lattice structure at layers demarcated by the
white stripes.

Figure 23. Both lattice structures depicted scan path-related
errors that causes additional material to be melted that covers
the gaps in the lattice structure (overmelting). These scan
path-related errors are correlated to spikes in the gradient of

the meltpool intensity (
d

dt
IL) obtained from the tomography

sensor.
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average (EWMA) statistical control chart, described in

Section 3.4 Equation (5) (Ramirez and Ramírez 2018).

The control limits were set to ± 3 deviations obtained

from the flaw-free overhang parts.

As observed in Figure 24, when there is a geometric

related error the gradient of the meanmeltpool intensity

(
d

dt
IL) exceeds the upper control limit of the EWMA

control chart. This is affirmed in the case of both the

fixed and dynamic-processed lattice structures. Inciden-

tally, both type of lattice processing resulted in flaws on

the same layers, layer 110, 197 and 272.

This scanning errorwas traced to an inherent deficiency

in the slicing software, which could not accommodate the

computational complexity associated with a lattice struc-

ture. The slicing error further created scan path inconsis-

tencies that caused the laser to melt the powder in the

gaps in the lattice structure. The scan path errors are

observed on the layers where the base lattice structure

repeated. There are four replications of the base lattice

structure, hence there are three layers where scan path

errors were observed in the X-ray CT data.

4.4. Model transferability

A third build plate (Figure 5(b), Section 2.2) was manu-

factured to ascertain the transferability of the proposed

approach to a different build plate with varying part

locations, and further quantify the Type I (false positive

rate) error.

To test the robustness of the approach to changes in

process conditions, the dynamic-processed cone was

reduced to 160 W at 8 mm build height, instead of at

Figure 24. Detection of geometry errors due to scan path errors using the EWMA control chart. The white shaded layers indicate
points at which the sensor signatures cross the control limits due to inaccurate scan paths.

Figure 25.Model performance for the validation build. White demarcates layers of warpage found on this overhang part. The steepest
overhang sample warps for about 50 layers near the top of the part and then self-heals in the last few layers.
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5 mm in the first build plate design (Figure 6). In

addition, to affirm the robustness of the approach to

variation in part location, the part locations on the

build plate were rotated by 180°, as shown and dis-

cussed in Figure 5(b).

No perceivable flaw formation was observed in the

build plate in terms of porosity and warpage errors dis-

covered in the first two build plates. This is because the

change in the direction of the gas flaw relative to the

parts significantly influenced their cooling behaviour

(Wirth et al. 2021). In other words, even a slight

change in processing conditions may significantly

affect part quality, thus affirming the need for continu-

ous in-process monitoring.

We noted minor warpage in only one overhang

shape. The layer-level warpage model created for the

first build plate was deployed on this overhang

sample. The model successfully detected the layers at

which incipient warpage occurs in the overhang part

at layer 600. Figure 25 shows the resultant warpage pre-

diction for the overhang sample from the SVM model.

The noticeable amount of warpage in the vicinity of

layer 600 was successfully detected.

Additionally, the SVM-based porosity prediction

model (Section 4.1) was implemented on the overhang

and cone geometries on the validation build plate to

measure the Type I (false positive rate) of the trained

models. The false positive rate for the porosity predic-

tion model was less than 1.5% when the prior SVM

model was implemented on the validation build plate.

This false alarm rate, which is similar to the false alarm

rate found during training and testing on the first

build plate (1.6%), indicates that the model can be suc-

cessfully transferred to a different build plate under

different processing conditions without loss of model

fidelity. We acknowledge that the model would need

further testing under build conditions resulting in exces-

sive porosity to measure the false negative rate and F-

score.

5. Conclusions

Process monitoring in laser powder bed fusion (LPBF) is

currently limited to the detection and identification of

one type of flaw with data acquired from only one

type of sensor. For practical viability, a monitoring sol-

ution must be capable of detecting multi-level flaws

transcending micro-scale, meso-scale and macro-scale.

Furthermore, the monitoring performance of the

approach should not degrade when transferred across

builds, part shapes, orientations and locations.

Accordingly, this work extends the status quo of

process monitoring and flaw detection in LPBF to a

more practical level with an approach that can

combine (fuse) data from multiple, heterogeneous

sensing modalities to detect multiscale flaw formation.

Based on data from three builds consisting of 66 total

parts (Nickel Alloy 718) we demonstrate that the pro-

posed approach is capable of detecting multiscale

flaws ranging from porosity at the micro-scale,

warpage at the meso-scale, and geometry-related

errors at the macro-scale. Further, the approach is

agnostic to different part shapes, locations and orien-

tations (build layout).

Specific conclusions are as follows:

(1) Data from three types of thermo-optical imaging

sensors, a spatter imaging camera, near infrared

tomographic camera, and a recoater camera were

acquired during the LPBF of three build plates con-

sisting of 22 parts each (Nickel Alloy 718), encom-

passing four different types of geometries.

(2) A spectral graph signal analysis approach was devel-

oped and applied to extract signatures from the

three imaging sensors. The approach reduces the

high dimensional data from the imaging sensors

into a single scalar number called the Laplacian

graph spectral radius. As few as four process signa-

tures resulting from the signal analysis approach

were used as inputs to simple machine learning

algorithms, such as k-nearest neighbours, support

vector machine, and (shallow) artificial neural

networks.

(3) The proposed approach successfully detected flaws

across three scales – porosity, warpage and part geo-

metry in different part shapes and build layouts. For

example, the statistical fidelity of porosity detection

exceeded 93% (F-score); the false positive rate was

less than 1.6% and the false negative rate was less

than 4.8%.

(4) The number of features required for effective

process monitoring depends on the scale of flaws.

Detection of micro-scale porosity required all four

features, whereas, detection of mesoscale warpage

and geometry-related error was accomplished with

two features and one feature, respectively. In other

words, the resolution and type of sensor data is

matched to the scale of flaw formation.

This work thus takes the first step towards shape

agnostic detection of multiscale flaws in LPBF using het-

erogenous sensor data. Our future works will explore not

only detection but also closed-loop correction of flaws in

LPBF.
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