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1 Introduction

Tunneling effects are relevant in oscillating universe models obtained by recasting Friedmann
dynamics in terms of the motion of the scale factor in a potential [1, 2]. Classical oscillations
may then become unstable in quantum cosmology if at least one of the relevant potential
barriers around the oscillation region are of finite height and width. Such instabilities have
been studied in [3, 4] and, with an emphasis on tunneling, in [5-7].

Here, we demonstrate that not only the traditional tunneling probability familiar from
stationary problems in standard quantum mechanics is of interest and computable, but also
a more detailed picture of time-dependent tunneling dynamics. The methods we use, given
by canonical effective descriptions of evolving quantum states based on the non-adiabatic
dynamics of moments, have already proven useful in other fields, for instance by shedding
light on the question of tunneling or traversal times [8-10] in atomic physics.

The quasiclassical method we apply here reformulates quantum dynamics of states as
a coupled system of ordinary differential equations for expectation values of a basic set of
operators together with higher moments. Such extended systems of equations could also be
obtained classically if a distribution of like objects is considered instead of a single point
particle [11, 12]. Quantum dynamics, however, not only introduces additional corrections in
these equations for non-zero A, it also gives the statistical degrees of freedom described by
moments of a state a more fundamental role because they are then unavoidable. In general,
the quantum state space is infinite-dimensional and hard to parameterize completely, but
we will see that a single additional quantum parameter, identified with the size of quantum
fluctuations and also used to parameterize higher moments in a suitable way, is sufficient to
reveal interesting new features, in particular of the tunneling dynamics.

Even this restriced extension to one additional quantum degree of freedom and its
canonically conjugate momentum reveals a quantum dynamics that is much more complicated
than the regular classical one, and possibly chaotic. The classical dynamics of an isotropic
universe as formulated in [1, 2] makes use of a 1-dimensional potential and is therefore
guaranteed to be integrable.

Our extension by a single quantum parameter suffices to complicate the dynamics and
possibly introduce chaotic features. We only provide circumstantial evidence for chaos in this
paper and focus on a qualitative description of generic features of the extended dynamics. In
particular, the additional parameter, compared with the classical formulation, implies that
the universe, generically, enters different cycles of expansion and collapse with different initial



values of the quantum parameter. Since this parameter couples to the evolution of the scale
factor, the latter reaches different maximum values in different cycles. Properties of cycles
may therefore vary even if the matter ingredients and their parameters remain the same. In
this way, a single model can give rise to a larger variety of universe cycles and more easily
accomodate properties of a single observed universe.

2 Oscillating model

We start with the specific potential derived from an oscillating universe model introduced
in [2]. The model is spatially isotropic, has positive spatial curvature, and an energy density
given by
o
pla) = A+ 2+ p, (2.1)

including a negative cosmological constant, A < 0, a matter density contribution ¢/a with a
positive constant o > 0, as well as the energy density py of a scalar field ¢. The Friedmann

equation therefore reads ,
a k 8¢ o

As described in [7] for this model, the inclusion of a free, massless scalar field ¢ is
useful because it implies two degrees of freedom, a and ¢, that can evolve with respect to
each other. Thus avoiding any reference to a time coordinate, which would not be subject
to quantization, the scalar degree of freedom will help with the interpretation of dynamics
in quantum cosmology following [13]. Note, however, that this relational evolution by itself
does not solve the problem of time in quantum cosmology [14-16] because it requires a
specific choice of time degree of freedom, ¢, and is not guaranteed to provide quantum
results independent of the choice of time [17-23].

The scalar being free of self-interactions and massless, its energy contribution is
_ 7
"~ 248
with the momentum pg of ¢. Since there is no explicit ¢-dependence, the scalar evolution
equations imply that pg is a conserved quantity and that ¢ is monotonic with respect to
any time coordinate as long as pg # 0. Therefore, ¢ itself may be used as a global time
coordinate to formulate quantum evolution of wave functions. Our methods will, however,
be quasiclassical, as described in more detail below, and do not require the choice of a matter
degree of freedom as time. Nevertheless, we keep the scalar energy density because it affects
the dynamics of the scale factor through its appearance in the Friedmann equation. It may
be considered a simple version of matter contributions not included in A and o/a. Our
specific results will only depend on the general feature that such energy contributions should
be positive.

The curvature parameter k is positive by assumption and would equal k¥ = 1 in the stan-
dard normalization of a if one assumes that all of isotropic space at any given time can be
described as a complete 3-sphere. More generally, one may assume 0 < k < 1 if the isotropic
dynamics is interpreted as describing a collection of independent isotropic patches, approxi-
mating an inhomogeneous universe (as per [4], there are certain string effects that could also
reduce the value of an effective k to be below one). According to the Belinskii-Khalatnikov-
Lifshitz (BKL) scenario [24], the generic cosmological dynamics close to a spacelike singularity
may indeed be approximated by a collection of independent homogeneous patches, although

Pe (2.3)



the generic dynamics would suggest a certain anisotropic geometry for each patch. As usual,
the isotropic Friedmann equation serves as a simple first approximation to anisotropic but
still homogeneous collapse or expansion. The value of k then determines the coordinate size
of each patch as a fraction k%/2 of the unit 3-sphere volume. Details of the BKL scenario show
that, classically, homogeneous spatial patches close to a spacelike singularity are asymptot-
ically small without a non-zero lower bound. The near-big bang behavior should therefore
be described by small k. Since small k& correspond to microscopic patches, their dynamics is
usually more sensitive to various quantum effects than the dynamics of a single macroscopic
space with k =1 [25].

The patch model is particularly relevant for tunneling questions because it provides
meaning to a tunneling probability, or to our description below in terms of expectation
values and moments of a state. These statistical concepts require an ensemble of universe
models, which in the patch picture can be individual constituents of the single universe that
we are able to observe.

2.1 Potential

Given the sign choice of the cosmological constant, the Friedmann equation can be rewritten
as the zero-energy condition

=2 =2

. b . p
0= CL2 + w2(a - 7/w)2 +k— ’YQ - g = Cl2 + Uharmonic(a) - g (24)
where
Uharmonic(a) = Wz(a - ’V/W)2 +k— 'Y2 (25)

is, up to constant shifts, a standard harmonic-oscillator potential with

8rGA | 27Go?
w=1""3 and vy =1{/— T (2.6)

The scalar density provides an anharmonic contribution determined by the constant

. [4n G
P=A\ "3 Pe- (2.7)

The canonical formulation of the model does not look quite the same as the standard
harmonic oscillator because the canonical momentum of a, according to general relativity, is
not simply a constant times @ but rather given by

Pa = —73 aa . (2.8)

(Heuristically, as explained in more detail in [26], since the universe has no matter-independent
mass that could be used to form a momentum from @, an additional factor of @ in combina-
tion with Newton’s constant G is required.) Upon replacing @ in (2.4) with p,, the w-term
in the canonical potential of

1
0= §W2G2pz + a*Unarmonic (@) — P (2.9)

is therefore quartic in a.



The scale factor in a strict sense takes values in a semi-bounded range, given by positive
numbers. Its canonical quantization therefore requires a suitable treatment of a phase space
with a boundary, as undertaken for instance in [27-30] by applying methods from affine
quantum gravity [31, 32]. Alternatively, one may first perform a canonical transformation
from (a,p,) to a canonical pair, (a,p, ), suitable for a logarithmic scale factor . As in [7],
we use the logarithmic scale factor

a = In(wvya), (2.10)
employing the two parameters (2.6) that characterize the harmonic potential (2.5). The
definition (2.10) is turned into a canonical transformation if it is accompanied by

3 .
Do = APq = —Raza. (2.11)
The canonical energy equation for (a, p,) therefore reads
16 1 -
0= §w2G2p§ + W64O‘Uharmonic(a(a)) — P2, (2.12)
Defining
47TG 2 92 3 ~
- d p=—"_ 2.13
f=—5-wy" and p=_—=p, (2.13)
we finally obtain the basic dynamical equation
0=p2 + Up(a) (2.14)
with the potential
64@ 6204 5
Up(a) = 7 (/c —2e% + 72) —p°. (2.15)

This potential is illustrated in figures 1 and 2 for different values of v and k&, respectively
(the influence of 8 on the potential is easy to see because this parameter simply appears in
a multiplier of the potential, except for the constant shift by —p?). The dependence on both
parameters is rather sensitive and determines the width and depth of the regions of classical
oscillations. Moreover, choosing smaller k£ at fixed v reduces the height of the barrier and
can, for non-zero p, reduce the maximum to a value below zero, making it possible for the
classical universe to collapse into a singularity (o — —o0). The BKL-type fragmentation of
space modeled by homogeneous patches close to a spacelike singularity, which requires smaller
and smaller k as the universe collapses in order to maintain the homogeneous approximation,
is therefore a new source of instability of oscillating universe models. Since we are mainly
interested in analyzing the dynamics of quantum tunneling, assuming that it is relevant for
the instability because the classical model would be stable, we will work with the value k =1
in what follows.

Before we introduce quantum effects, we mention that evolution in proper time is gen-
erated by the constraint via Hamilton’s equations. The relevant Hamilton function, as usual,
is an energy expression, which is not the same as the standard kinetic energy plus an effective
potential (2.15) used to visualize the motion in terms of barriers and allowed regions. The
proper-time Hamiltonian differs from the right-hand side of (2.12) by multiplication with a
suitable power of a or exp(«a), up to constants, because we have been multiplying the matter
energy with several such factors in the process of performing transformations. Tracing back
all these steps, proper-time evolution should be generated by the right-hand side of (2.12)
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Figure 1. The potential (2.15) for different values of v: v = 1.01 (solid), v = 1.03 (dashed), v = 1.05
(dash-dotted) and v = 1.07 (dotted). The dependence on v is rather sensitive and determines the
width and depth of confined regions with classical oscillations. The other parameters used in this plot
arek=1,4=0.1and p=1.
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Figure 2. The potential (2.15) for different values of k: k = 1.0 (solid), k& = 0.95 (dashed), k = 0.9
(dash-dotted) and k = 0.85 (dotted). The other parameters are v = 1.01, = 0.1 and p = 1.

times exp(—3a). Up to constant factors, this multiple turns the p-term into the energy of
a free, massless scalar field and therefore provides the correct generator of evolution. We
may still use the potential landscape according to (2.15) to visualize the dynamics, but for
quantitative estimates of time durations we should keep in mind that proper-time evolution
is slowed down for larger o compared with what the potential would suggest. (We noticed



that including the exponential factor of exp(—3a) for proper-time dynamics complicates the
numerical solution of differential equations because the factor changes quickly in some regions
of the relevant phase space.)

2.2 Canonical effective methods

For a semiclassical description of tunneling dynamics, it is important to use non-adiabatic
methods that allow one to go beyond stationary states. A suitable canonical formulation
can be obtained by writing wave-function dynamics in terms of a dynamical system for
expectation values of basic operators, such as & and p,, in a state coupled to fluctuations
and higher moments, generically

Aaph) = (& — (a))*(Pa — (Pa))?)symm (2.16)

in completely symmetric, or Weyl, ordering. A phase-space structure is obtained for these
variables by defining the Poisson bracket

{(A),(B)} =

and extending it to moments by using the Leibniz rule [33, 34].

While {(«), (Pa)} = 1 according to this definition, the Poisson bracket of moments is
non-canonical. (For instance, {A(a?), A(p2)} = 4A(ap,).) The transformation from the
3-dimensional space of second-order moments to new variables (s, ps, U), defined by

.5 (0.17)

A(a?) = 2 (2.18)
A(apa) = SPs (2.19)
A(pz) = p3 + S% (2.20)

turns out to imply a canonical bracket {s, ps} = 1 while {U, s} =0 = {U, ps} (these canonical
variables have been introduced several times independently for various studies of semiclassical
dynamics [35-40]). The parameter U, which equals the uncertainty expression A(a?)A(py)?—
A(apa)? as a consequence of the mapping (2.18)—(2.20), is therefore a Casimir variable of the
Poisson manifold. That is, it has vanishing Poisson brackets with basic expectation values
and all second-order moments and is conserved by any canonical dynamics of these variables.
Heisenberg’s uncertainty relation implies the lower bound U > A2 /4.

Given a Hamilton operator H, a canonical effective Hamiltonian can be derived by
inserting the mapping (2.18)—(2.20) in the expectation value (H). For us, the relevant ex-
pression is given by the constraint (2.14) with the non-polynomial potential (2.15). A Taylor
expansion of the potential — formally in A& = & — (&), after inserting (&) + Ad in the
quantum operator (Up(&)) — implies the moment-corrected constraint

1 d”U ))

0= (pa)> + AP2) + Up({(&)) + Z — L2 L A(a™) (2.21)

with an infinite series of higher moments. Includlng only moments of second order and
using (2.18)—(2.20) as well as the simplified notation o = (&) and p, = (Pn), we obtain the
canonical expression

U 1
0= pi —i—pg + ) + Up(a) + §U;,’(oz)52 (2.22)

for our semiclassical constraint.



Tunneling processes rely on higher-order moments because wave packets not only spread
out, as described by the variance A(a?), but also split up into reflected and tunneled wave
packets; see also [41]. An extension of the canonical mapping (2.18)—(2.20) to higher orders
is challenging, not the least because the dimension of the Poisson manifold quickly increases
when new moments are included as independent degrees of freedom. For explicit mappings
to canonical variables for moments of third and fourth order, see [8, 9].

Instead of using a full mapping to higher orders, closure conditions have proven useful
in studies of tunneling. Such conditions present an approximate description of higher-order
moments in terms of lower-order parameters such as s, without including additional degrees
of freedom for them. An example would be a Gaussian closure because for a Gaussian
state, all moments are determined by second-order ones. A slightly different example that is
algebraically simpler in effective potentials is the all-orders closure proposed in [10], where

A(a™) =s" (2.23)

for even n while A(a™) = 0 for odd n. With this closure, the whole series in (2.21) can be
summed explicitly to obtain the simple constraint

0=+ + 5+ 5 (Upla+5) + Uyl =) (224
A similar expression of effective potentials for certain classes of states has also been derived
from Wigner functions [42].

The dynamics generated by the closure (2.24) is described by the same number of
variables as the dynamics generated by the truncation (2.22). A closure condition makes ad-
ditional assumptions about the relationships between higher-order moments and lower-order
ones, while a truncation simply ignores higher-order moments. In general, the specific situa-
tion should determine whether a closure or a truncation is preferred. In tunneling examples,
as in the present case, a truncation is usually harder to control because a potential barrier
(given by a local maximum if the potential is smooth) implies a negative second derivative,
making the last term in (2.22) unbounded from below. The all-orders potential (2.24), by
contrast, is bounded from below provided the classical potential is bounded from below. It
is therefore less likely (although not impossible) that effective trajectories derived from an
all-orders Hamiltonian veer quickly toward larger values of s where the approximation would
no longer be reliable.

We will use the all-orders closure in our analysis, illustrated in figure 3, but will also
see that it is beneficial to include an additional quartic term in s to bring the fourth-order
moment, A(a*), closer to its Gaussian value, A(a*) = 3s* rather than s* (similar parame-
terizations of moments have been used in other cosmological analyses, such as [43, 44]). The
constraint then reads

1mn

LU ats) +Uya—s) + —U" (a)s*. (2.25)

U
O=ratvit 5+ 127

(The last term equals 20U, s* /4!, which increases the fourth-order term U)"s*/4! contained
in the all-orders contribution to the Gaussian value of 3U;"s*/4!.) Additional amendments
at higher moment orders may also be considered, but they will not play a large role in the
first analysis presented here because the main new effects we will point out are realized
at small values of s where polynomial contributions to the potential of higher degree in s
are suppressed. We will, in fact, discard parts of solutions that reach larger values of s,



Figure 3. Logarithmic plot of the quantum potential in (2.24) for v = 1.05, 5 = 0.1, p = 1.0 and
4U = 1072. The classical barrier around a = —0.5 is reduced in the s-direction while it moves to
smaller a. Around s = 0.5 at a = —1, the barrier height falls below zero, such that the left-most
region connects with a channel of negative potential that ends at the classically confined region.
Tunneling out of the classically confined region can therefore be described quasi-classically by motion
in an extended phase-space, by-passing the classical barrier while maintaining energy conservation.
The quantum variable s has to grow sufficiently large during tunneling in order to bypass the classical
barrier, which physically corresponds to the increase of the variance of a state as it splits up into
reflected and tunneled wave packets. The color scale is logarithmic with greens for negative values of
the potential and blues for positive values.

considering them unreliable within the current approximation. Nevertheless, specific forms
of closure conditions (or truncations) may have an effect on the resulting dynamics if the
latter may be chaotic and therefore depend sensitively on small changes. This is indeed one
of the properties indicated by our analysis. Further studies with different or more general
closure conditions are therefore needed to understand the full dynamics. However, since the
main purpose of the present paper is to show the possibility of chaos and related qualitative
features, we are confident that these conclusions will not be removed when other closures
are considered. It should also be kept in mind that different closures do not only constitute
different approximations to the dynamics, but also describe physically distinct classes of
states.

2.3 Approximations

A characteristic qualitative feature of the effective potential §(Up(a + s) + Up(ar — s)) is
an extension of the classical confined region to a channel that reaches smaller « for larger
s; see figure 3: if the local minimum of the potential in the confined region is located at
ap, the extended potential at (o, s(a)) along the line s(a) &~ ap — « is much smaller than
the classical potential Up,(«) because U,(a + s(a)) = Up(ayp) is much smaller than Up(«) as
well as Up(av — s). The classical confined region is therefore extended into a channel along



s(a) = ap — a in the (a, s)-plane. The additional quartic contribution in (2.25) preserves the
channel and only modifies its width for small s (see figure 10 below).

Properties of the channel are important for tunneling dynamics. The channel tends to
guide trajectories toward larger values of s. On one hand, this behavior seems qualitatively
correct in a tunneling process during which wave packets are expected to split up. However,
moving too far along the channel makes a trajectory unreliable or increases its sensitivity to
different closure conditions. As we will discuss in more detail, we will therefore be interested
in solutions that eventually leave the channel rather than getting stuck in it for a long time.
A mathematical characterization of the channel, given in this subsection, will support such
an analysis.

Characteristic channel features are given by the zero levels of the extended potential in
the (a, s)-plane as well as the s-dependent location of the local maximum in the a-direction.
The potential and its a-derivative are polynomials in exp(«) of higher than quadratic order,
such that exact expressions for the zero levels and local maxima would be hard to find, or
lengthy. Fortunately, since the walls of the channel are rather steep for common parameter
choices, the subtraction of p? does not significantly change the zero levels, and it does not
change local extrema at all. For sufficiently large s, we can ignore the 1/s%-term. Moreover,
around the barrier, whose properties are described by the local maxima as well as one of the
zero levels at smaller «, the v-term in the potential can be ignored because « is negative
in this region. The right-most zero level is located at positive «, where the k-term in the
potential can be ignored.

These approximations lead to simple equations for the desired quantities, given by

) _ 2k cosh(4s)

Oémax(s — _ 226
¢ 5 cosh(5s) (2:26)
for the local maxima in the a-direction,
k cosh(4s)
e (s) — & 2.9
¢ 2 cosh(5s) (2:27)
for the left zero level, and
, cosh(4s)
earlght(s) — 2 2 (228)

7 cosh(5s)

for the right zero level. For relatively large s, these equations can be simplified further by
using cosh(z) ~ $e” for 2 > 1. Thus, we arrive at

Omax(8) I(2k/5) — 5 ,  ep(s) ~In(k/2) —5 ,  uigne(s) ®In(29?) —s.  (2.29)

Figure 4 demonstrates the reliability of these approximations.
The classical local maximum, located at aumax(0) = In(2k/5), has a height of

ko(2k\*
Umax = W (5> - p27 (230)

using the same approximation as in the derivation of amax(s). The value of the extended
potential decreases along amax(s). In the limit of very large s, we can ignore contributions
from exp(a — s) in the extended potential while exp(a + s), according to (2.29) becomes
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Figure 4. Characterization of the channel, given by the local maxima in the a-direction (green), the
left side of the channel (blue) and its right side (red). Dashed lines show the approximations (2.29).
The relevant parameters are £k = 1 and v = 1.05.

independent of s. With these approximations, we can see that the maxima in the a-direction
approach a constant value which turns out to equal

ko /2kN\* 1
. 2\ _ Ry L 2
slggo (Up(amax(s),s) +p ) T ( 3 ) =3 (Umax +p ) . (2.31)
For the barrier to disappear by quantum effects for the class of states described by our closure
condition, we therefore need p? > %(Um;le +p?), or p?> > Upax. The full dependence of the
local maxima in the a-direction is shown in figure 5.

2.4 Features of tunneling trajectories

We have numerically analyzed evolution in our versions of quantum potentials, using rather
small values for « in order to avoid steep potential walls on which reflections of an evolving
trajectory are hard to resolve. The case of cosmological interest would rather be large values
of v that imply a large confined region which models long-term expansion of a universe. The
small values of v used here nevertheless allow us to infer interesting qualitative features of
trajectories that are expected to hold also for large ~.

Quantum potentials such as (2.22), (2.24) or (2.25) show how tunneling dynamics can
be realized in classical-type motion without violating energy conservation. For instance, the
second derivative in (2.22) is negative around a local maximum, and therefore the quantum
potential is lower than the classical barrier for non-zero s. In the present case, the averaging
of Uy at a + s and o — s contained in (2.24) and (2.25) not only implies a similar lowering
of the barrier, as shown in figure 6, but also extends the classically oscillating region into a
channel that reaches to negative values of « for sufficiently large s; see figure 3.

A negative potential at zero energy does not necessarily imply that a trajectory can
cross the barrier if there are more than one dimension. In one dimension, the momentum is
non-zero under these conditions and the object keeps moving in the same direction, but in

~10 -
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Figure 5. Behavior of the barrier height as a function of s, normalized to unit height of the classical
barrier: Unorm(s) = (Up(emax(s), s) + p*)/(Umax + p?). The dashed line is based on the simplified
expression of amax(s) in (2.29).
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Figure 6. Larger range of the quantum potential with the same parameters and color scale as in
figure 3.

two or more dimensions an object can get deflected and turn around while its momentum
remains non-zero. Based on numerical simulations with random initial values that start
around a = 0 and small s, we have found that trajectories often get stuck in the channel and
keep moving along it to larger and larger s. At such large s, the channel is very straight such
that a trajectory, once it reaches this region, follows a periodic pattern between deflections
at the channel walls without moving out. While the channel guides the trajectory toward
smaller «, very far to the left of the classical barrier, we do not consider these solutions to

— 11 -



Figure 7. Tunneling trajectory in the amended all-orders potential (2.25). The diagonal lines indicate
characteristic features of the non-amended wall as in figure 4. The additional quartic contribution
in the amended potential allows the trajectory to penetrate the right wall of the channel at small s.
Blue and orange parts of the trajectory indicate times before and after a random initial condition,
respectively.

be good examples of tunneling because our quasiclassical approximation and the moment
closure become unreliable at large s.

Deviations from the all-orders closure, as implied by contributions from higher moments
different from (2.23), make the channel irregular, such that a trajectory bounces off the chan-
nel walls at different angles each time, making it more likely to exit the channel eventually.
At very large s, several higher-order moments are relevant in an amended closure. It is then
hard to derive generic information without prior knowledge of the tunneling state and its
moments. Fortunately, as shown by figures 7 and 8, the fourth-order amendment of the
potential in (2.25) makes it possible to find trajectories that enter and exit the channel at
rather small s. The additional fourth-order contribution to the potential, shown in figures 10
and 11, keeps the trajectory closer to the end of the channel at smaller s, where it has sev-
eral opportunities to probe the channel wall under different impact directions and eventually
crosses the barrier.

As can be seen in figure 7, s reaches large values also to the left of the classical barrier,
where this variable keeps increasing after a single reflection at small s, caused by the U/s?
contribution to the potential. This increase to large values is expected because the classical
potential is nearly constant in this region. The trajectory therefore behaves like the quantum
fluctuation s = A« of a free particle, which increases before and after its minimum value,
changing linearly for asymptotically large times.

It is noteworthy that the minima of s in the nearly free region are located close to the
classical barrier before and after tunneling in and out of the trapped region. This behavior is
expected if one imagines a wave function approaching a barrier, such that it gets more narrow
as some of its front part starts getting reflected back toward the center. Similarly, a wave
packet that tunnels out of the trapped region may narrow down briefly when only a small
contribution is left in the trapped region. Based on the extended potential as a function of
« and s, the minima of the free region are generically located near the barrier because the

- 12 —
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Figure 9. Tunneling trajectory in the amended all-orders potential (2.25). All parameters are the
same as in figure 7, except that the initial value of o has been changed from —0.09938693911314142
to —0.09938693911314141, a difference only in the last relevant decimal place. The final outcome of
this tiny change is very large because the trajectory now gets stuck in the channel.

trajectory has to approach the channel wall, located between the blue and green lines in the
figure, at close to a right angle. Under this condition it is able to move through and escape,
rather than being deflected back into the channel. The direction of the channel implies that
escaping trajectories are aimed toward smaller s, toward the U/s2-potential where they reach
their local minima.

Our quasiclassical trajectories therefore provide a meaningful and geometrical descrip-
tion of the beginning and the end of a tunneling process. The trapped part of the trajectory
is harder to interpret, but it is clear that it is much more complicated than the classical
solution in this region, which at constant energy would oscillate with a regular period and
amplitude. The combined evolution of o and s, by contrast, has neither a regular period
nor a fixed amplitude, even though the quantum energy, given by our effective Hamiltonian,
is conserved. The complicated nature of quantum dynamics in the trapped region is also
highlighted by a high sensitivity to initial values, as seen by comparing figure 7 with figure 9.

The sensitivity to initial values is reminiscent of chaos, although we have not performed
a detailed analysis to demonstrate this feature. The classical system is clearly non-chaotic
(being 1-dimensional), but quantum dynamics may nevertheless develop chaotic features as
known for instance from Bohmian treatments [45]. Another indication that the extended
dynamics here may be chaotic can be seen in the shape of the trapped region in the amended
all-orders potential, shown in figures 10 and 11. As shown by the contours, the trapped
region is confined by walls that are partially concave, which may support chaotic billiard
motion as in other cosmological models, such as anisotropic ones [46].

We note that our effective potentials could also be used to describe the classical dynamics
of an ensemble of patches of space whose volume distribution has a certain variance s2. The
main place where our dynamics depends on a non-zero value of A is in the term U/s? of the
effective potentials, where U is a constant bounded from below by /A?/4. The s~2-behavior

— 14 —



-2.0 -1.5 -1.0 -0.5 0.0 0.5
a

Figure 11. Closer view of the end of the channel from figure 10.

of this term implies a potential barrier at small s that enforces the uncertainty relation.
Classically, U can be as small as we like, removing the potential barrier. Differences between
quantum dynamics and classical ensemble dynamics should therefore be most pronounced
at small s. Both cases are likely subject to chaos because they share relevant features of
an extension from the a-line to an (a, s)-plane. However, as our sample trajectories show,
specific instances of the dynamics encounter small s multiple times. Reflections on the s~2-
potential in the quantum dynamics would classically be replaced by sharp reflections at
s =0 or (depending on the treatment) transition through s = 0 to negative values while the
variance s? stays non-negative. While both cases are likely to be chaotic, this feature also
implies that classical and quantum dynamics would differ significantly from each other after
small s are encountered by a trajectory.
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3 Conclusions

Our analysis of extended quantum potentials has suggested a strategy to find and study
quasiclassical tunneling solutions for an oscillating universe model. We derived quantum
corrections to the classical potential based on an assumption about the moment closure
of states. A closure condition is unlikely to describe all relevant states, but it can reveal
some properties of dynamical tunneling, provided solutions stay in regions in which the
closure condition can be considered a good approximation. For instance, a precise closure
at higher orders of moments should not be required if the fluctuation variable, s, remains
sufficiently small.

While a full quantum treatment would imply that any state initially supported in the
oscillating region will eventually tunnel and approach the singularity at a — —oo, perhaps
after separating into several wave packets that had tunneled at different times, our quasi-
classical description implies tunneling only under certain conditions on the initial values of
a trajectory. In particular, although the value of s should not become too big for our ap-
proximations to be valid, it has to grow sufficiently large close to the classical barrier for the
local maximum in the a-direction (one of the channel walls) to have dropped below zero.
This condition cannot be fulfilled for all parameter values but requires, in partiular, that
the parameter p that determines the asymptotic potential at &« — —oo is sufficiently large.
If p is too small, we would not see any quasiclassical tunneling solutions in our model even
though quantum tunneliung in a full treatment would certainly occur. Quasiclassical models
of the form considered here, therefore, cannot provide a complete description of tunneling.
But solutions that stay within the allowed ranges of parameters may still provide interesting
dynamical information that would be harder to find using traditional methods.

Our main result is the observation that oscillations in the trapped region, seen over
many cycles, are much less regular in the quantum case than they appear classically. Our
numerical simulations were restricted to small 7, or rather narrow trapped regions, because
the steep potential walls implied by larger values of this parameter make it hard to achieve
reliable numerics. Qualitatively, larger + imply longer cycles in the trapped region, which
may give the appearance of more regular behavior because the new quantum variable, s,
does not change as abruptly during a single cycle as it does after multiple reflections off the
potential walls. Nevertheless, the succession of several cycles should also be less regular than
in the classical case if v is large because each cycle generically starts with different values
of s and ps, which affect the evolution of « through quantum back-reaction. A single model
may therefore probe a large number of cosmological cycles with different maximal expansion,
even if matter parameters remain the same.

A quasiclassical model may also be crucial in developing a scenario that couples the
isotropic background to perturbative anisotropies or inhomogeneity. Such a combination
would be harder to analyze at the full quantum level where a combined wave function for
background and inhomogeneity would have to be evaluated. It may be easier, by compari-
son, to couple a quasiclassical background model to a standard description of perturbative
inhomogeneity and analyze how quantum effects could affect the evolution of inhomogeneous
modes through a tunneling process.
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