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The long-standing problem of time in canonical quantum gravity is the source of several conceptual and

technical issues. Here, recent mathematical results are used to provide a consistent algebraic formulation

of dynamical symplectic reduction that avoids difficult requirements such as the computation of a

complete set of Dirac observables or the construction of a physical Hilbert space. In addition, the new

algebraic treatment makes it possible to implement a consistent realization of the gauge structure off the

constraint surface. As a consequence, previously unrecognized consistency conditions are imposed on

deparametrization—the method traditionally used to unfreeze evolution in completely constrained systems.

A detailed discussion of how the new formulation extends previous semiclassical results shows that an

internal time degree of freedom need not be semiclassical in order to define a consistent quantum evolution.
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I. INTRODUCTION

General covariance gives rise to completely constrained

systems whose canonical dynamics is not driven by a

Hamiltonian with respect to absolute time but rather by a

constraint function. The Hamiltonian constraint vanishes

for all allowed sets of phase-space variables, and it

generates a canonical flow under which observables are

invariant. These requirements are the basis of several

conceptual and practical problems in the context of

canonical quantum gravity, including the problem of time.

Since observables are invariants of the flow, constructing

them requires integrating this flow, which, for a general

dynamical system, is complicated and can only be done

locally. Even if constructed, such invariants pose an

interpretational difficulty: since they do not exhibit evolu-

tion in time, the solution to the constrained system appears

“frozen.” As a way to address both problems, observables

can sometimes be interpreted as properties of relational

evolution. To this end, one phase-space variable is distin-

guished as an internal time with respect to which other

phase-space variables change for given constant values of

all observables [1,2]. A dynamical Hamiltonian picture can

then be recovered, but in general only locally because the

internal time one picks may not be monotonically increas-

ing along the entire flow of the Hamiltonian constraint.

In classical mechanics, one can patch together finite pieces

of overlapping internal-time evolutions and obtain com-

plete dynamical orbits.

Upon quantization, however, standard constructions

pose several difficulties, for instance because the usual

requirement of unitary evolution is in conflict with a time

variable valid for just a finite range. Owing to such

problems, the general question of how to quantize com-

pletely constrained systems has remained open, hampering

constructions of canonical quantum gravity in which this

issue appears most prominently.

Questions remain even in cases in which a single internal

time parameter may suffice to describe the entire evolution.

One problem that has not yet received much attention is the

fact that the usual procedures that implement quantum

constraints make it impossible to check whether off-shell

properties are correctly described. There are mainly two

different methods that can be used for an implementation of

constraints on a quantum theory, which in specific appli-

cations differ in their tractability. For the discussion of off-

shell properties and for later reference, we briefly review

the essential features of these two approaches.

Dirac quantization is one common approach to imple-

menting a quantum constraint. It starts with a kinematical

Hilbert space on which the basic phase-space variables of

the system, such as positions and momenta of a number

of particles, are represented without considering the con-

straint at this stage. The constraint C, given classically by a
function of the basic phase-space variables, is then turned

into an operator Ĉ acting on the same Hilbert space,

where it is in general nonzero but has a nontrivial null

eigenspace of (generalized) states jψi that obey the con-

dition Ĉjψi ¼ 0. If zero is in the discrete part of the

spectrum of Ĉ, the corresponding eigenstates are normal-

izable and form a subspace of the kinematical Hilbert space
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which can be identified with the physical Hilbert space of the

system on which the constraint is satisfied. Observables

acting on the physical Hilbert space need to keep this

subspace invariant, and are therefore required to commute

with the constraint operator, a property that defines Dirac

observables. If zero is not in the discrete part of the spectrum

of Ĉ, the corresponding eigenstates are not normalizable in

the kinematical Hilbert space. A separate physical Hilbert

space must then be constructed by introducing a suitable

inner product on the space of distributional solutions of

Ĉjψi ¼ 0 with a meaningful representation of Dirac observ-

ables. In this case, the construction of a physical Hilbert

space is usually more ambiguous than in the case of zero in

the discrete spectrum of Ĉ and may require additional

assumptions or an application of different methods, such

as those described in [3].

The other frequently employed method, reduced phase-

space quantization [4], does not introduce a kinematical

Hilbert space and avoids the transition to a physical Hilbert

space. Instead, it aims to construct the physical Hilbert

space directly by first solving the classical constraints

before quantization and then representing the resulting

phase space on a Hilbert space. The main difficulty is

usually that the solution space to the constraint may have a

nontrivial topology, which makes quantization difficult and

can also introduce ambiguities. Moreover, it is necessary to

parametrize the solution space in a manner suitable for

quantization, which in practice requires a complete solution

of all classical Dirac observables that have vanishing

Poisson brackets with the constraint.

While it remains unclear whether a reduced phase-space

approach always agrees with Dirac quantization, they do

agree in many cases, with states and operators of a physical

Hilbert space corresponding to a quantization of the

classical constraint surface and its gauge flows. The end

products of both of these approaches describe the system

confined to its classical constraint surface and neither

approach is therefore able to take into account behavior

of the constraint off that surface, which may be relevant in

quantum systems if the constraint surface is subject to

fluctuations. (If zero is in the discrete part of the spectrum

of a constraint operator used for Dirac quantization, the

basic condition Ĉjψi ¼ 0 implies that fluctuations of the

constraint vanish in any physical state. However, this

argument does not apply for zero in the continuous part

of the spectrum.) One of the main observations of this paper

is that off-shell properties are, in fact, very relevant and can

be used to place strong conditions on allowed quantizations

of constraints.

Testing off-shell properties is impossible on a Hilbert-

space level that strictly separates kinematical and physical

Hilbert spaces without transformations between them.

Moreover, the solutions of the constraint equations used

to define the physical Hilbert space are commonly obtained

for a single factor of a more complicated constraint C,

writing C ¼ NCH with the flow rate N (or lapse function

in a gravitational context) and a reduced constraint CH.

While CH ¼ 0 implies C ¼ 0, depending on properties

of N, there may be subtle differences between the solution

space and gauge transformations of CH andC. In particular,
if N is not invertible, the solution space of CH is smaller

than the solution space of C. Moreover, general gauge

transformations, generated by products of operators ΛHCH

and ΛC ¼ ΛNCH, respectively, behave differently because

there may be some ΛH that cannot be written in the form

ΛN. Therefore, while the solution space of CH is smaller, it

is subject to more gauge transformations. A single physical

state with respect to CH then corresponds to some non-

trivial subset of physical states with respect to C, and not all
physical states of C can be related to physical states of CH.

While phase-space regions where N is not invertible may

easily be treated as special cases in a classical procedure,

the quantum behavior is more complicated.

In [5], we introduced a new algebraic approach to quantiz-

ing systems with a Hamiltonian constraint in which we avoid

the thorny issues around the physical Hilbert space, by

postponing its construction for as long as possible. At the

same time, in order to facilitate comparisons between differ-

ent choices of internal times and their corresponding depar-

ametrizations, we aimed to formulate all relevant structures

related to the constraint surface, gauge transformations,

observables, and evolution on a single mathematical objects

and naturally derived features. Using algebraic methods, all

constructions are based on the original algebra A of kin-

ematical observables and a constraint elementC ∈ A, as well

as specific ideals ofA, factor algebras, and homomorphisms

between them. A number of independent and largely uncon-

trolled choices that are required in the traditional construction

of a physical Hilbert space, mainly its inner product if the

constraint operator has zero in its continuous spectrum, can

then be avoided.

The new treatment revealed several new properties of

quantum relational evolution that are important for physical

applications. In particular, Hamiltonian constraints typi-

cally encountered in models of quantum gravity, which in

general are quadratic in momenta, are subject to previously

unrecognized restrictions on their factor ordering for rela-

tional evolution to exist at a mathematically rigorous level.

They are particularly strong in cases of constraints in which

the term quadratic in momenta is multiplied by a phase-

space dependent lapse function, as is common in gravita-

tional systems where metric components appear in kinetic

energies. Our new restrictions may help to reduce quan-

tization ambiguities, but in some cases they may also

eliminate relational evolution altogether, at least in the strict

algebraic form. In this way, our mathematical discussion

serves to highlight important choices that must be made

in quantum symplectic reduction and the ambiguities that

they introduce, placing more control on the traditional

treatment in which it is difficult, for instance, to parametrize
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the freedom involved in choosing an inner product for the

physical Hilbert space.

The rest of our presentation is structured as follows.

Section II reviews the algebraic perspective on constrained

quantum systems and their reduction based on the con-

struction of Dirac observables that was introduced in [5].

Section III discusses the alternative approach to character-

izing the gauge freedom that remains after a constraint is

solved algebraically, assuming that, as is often the case,

Dirac observables are not available, culminating in an

algebraic definition of deparametrization. Section IV treats

constraints that cannot themselves be deparametrized

relative to a given clock, but possess deparametrizable

factors. We find that only a very restricted class of

constraints can be deparametrized either directly or by

factorization. Viable approximate methods for deparame-

trizing other constraints are discussed in Sec. V. Section VI

briefly addresses the link between algebraic states that we

employ throughout our construction and states in a Hilbert

space representation of a constrained system. Section VII

explores the implications of our results.

Sections II to IV review material published elsewhere,

mainly in [5], but in a manner that is more accessible to a

physics audience. In particular, we focus on essential and

conceptual features rather than detailed assumptions nec-

essary for rigorous proofs, and we present a streamlined

result that is not as general as those of [5] but serves to

highlight new properties. The final sections, V to VII,

contain entirely new material.

II. ALGEBRAIC TREATMENT OF A SINGLE

QUANTUM CONSTRAINT

For our purposes the (kinematical) degrees of freedom

of a quantum system are described by an associative,

complex, unital �-algebra, which we will denote by A.

The �-operation, mapping any element A ∈ A to another

element A� ∈ A such that A�� ¼ A (as well as ðAþ BÞ� ¼
A� þ B� and ðABÞ� ¼ B�A�) defines an analog of

Hermitian conjugation at the algebraic level. As usual,

true physical observables of the system correspond to

�-invariant elements of A.

A. States

Measurement results of observables are given by num-

bers rather than algebra elements. For physical interpreta-

tions, it is therefore necessary to introduce suitable

mappings from the algebra to, in general, complex num-

bers. The latter are interpreted as expectation values of the

observable in a state defined by the mapping ω from A,

ωðAÞ ¼ hAi. The mapping should therefore be linear.

Moreover, physical expectation values of various operators

in a given state are not arbitrary but restricted by uncer-

tainty relations. These relations, in their usual derivation,

follow from Cauchy-Schwarz inequalities, which in turn

are implied by a positivity condition on states ω: a linear

functional ω∶ A → C is positive if

ωðAA�Þ ≥ 0 for all A ∈ A:

The positivity condition implies the desired Cauchy-

Schwarz inequality

jωðAB�Þj2 ≤ jωðAA�ÞjjωðBB�Þj ð1Þ

as well as, for a unital algebra as assumed here,

ωðAÞ ¼ ωðA�Þ for all A;B ∈ A

using the complex conjugate ā of a. In particular, expect-

ation values of �-invariant A are real. If the algebra is

represented on a Hilbert space, a state is commonly given

by an element of the Hilbert space up to normalization

(a pure state or wave function ψ), or by a density operator

acting on the Hilbert space (a mixed state or density

matrix ρ̂). Both examples obey the conditions for an

algebraic state. In general, an algebraic state may therefore

be mixed, but it is defined even if there is no representation

on a Hilbert space and is therefore more general.

Positive linear functionals describe possible outcomes of

physical measurements that are usually expressed through

the construction of a Hilbert space on which wave functions

or density matrices are defined to represent states. The

concept of positive linear functionals on an algebra is, in

fact, closely related to the concept of Hilbert-space repre-

sentations because, according to the Gelfand-Naimark-

Segal theorem, every such representation of A can be

constructed by starting with an appropriate positive linear

functional on A, at least in the case of a C�-algebra (which
has a suitable norm): every algebra is also a vector space,

which can be used as the vector space underlying a Hilbert

space. An algebraic state may be used to introduce an inner

product on a suitable factor space of the original vector

space by first constructing the sesquilinear form hA; Bi ¼
ωðA�BÞ for A;B ∈ A. By positivity of the state, the

sesquilinear form is semidefinite and therefore defines

a unique inner product on the factor space in which we

factor out zero-norm states, given by all A ∈ A such that

ωðA�AÞ ¼ 0 (defining a left ideal in the algebra). A Hilbert

space is obtained by completion of the factor space. Since

pure states in the Hilbert space are given by algebra

elements modulo the ideal, multiplication in the algebra

defines a Hilbert-space representation of the algebra. If this

representation is irreducible, the state ω is pure. See for

instance [6] for a discussion.

In a sense, therefore, the space of all possible positive

linear functionals onA contains all possible representations

of the quantum system. However, in the context of con-

strained quantization with its distinction between kinemati-

cal and physical Hilbert spaces, the positivity condition
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may take different forms depending on whether the

constraint has been imposed yet: moving to a physical

Hilbert space that is not a subspace of the kinematical

Hilbert space means that there is no obvious and unam-

biguous relationship between the two inner products.

Since the physical inner product is relevant for observa-

tions while the kinematical inner product is rather an

intermediate construct on the way to the physical Hilbert

space, we will drop the positivity condition on kinematical

states and implemented only when we are at a stage

comparable to the physical representation. Accordingly,

we will use Γ to denote the space of all complex linear

functionals on A that are normalized, that is ωð1Þ ¼ 1,

and we will refer to elements of Γ as states even if they are

not positive. Note that, with the normalization condition,

Γ is not a vector subspace of the space of all linear

functionals; however, it is closed with respect to normal-

ized sums ða1ω1 þ a2ω2 þ � � � þ aNωNÞ ∈ Γ, as long as

ða1 þ a2 þ…aNÞ ¼ 1. Physical states will belong to

some Hermitian representation of A and will therefore

be positive.

In this treatment, unless explicitly stated otherwise, we

will use the so-called Schrödinger picture of time evolu-

tion, where states evolve with time, while operators that

are not explicitly time dependent remain fixed. The most

common way to specify time dependence of a quantum

system is through the commutator with a Hamiltonian

operator

d

dt
ωtðBÞ ¼

1

iℏ
ωtð½B;H�Þ ð2Þ

for B ∈ A. We treat the above relation as a differential

equation to be solved for the one-parameter family of

states ωt, t ∈ R. From the algebraic perspective, (2)

is a prescription for constructing an infinite system of

coupled ordinary differential equations, since, in order to

find ωtðBÞ we also need ωtð½B;H�Þ, ωtð½½B;H�; H�Þ, etc.
We will, in general, not attempt to integrate such flows

explicitly; however, under the assumption that this system

possesses a unique solution for a given ω0, purely

algebraic methods can be used to deduce interesting

properties of the integrated flow. For example, Lemmas

1 and 2 in [5] show that, provided ωt is positive and

normalized for some t0, this property is preserved along

the entire dynamical flow.

B. Physical states on a quantum system

with a single constraint

We assume that the unconstrained system has a well-

defined quantization that results in an associative, complex,

unital �-algebra A, which we will call the kinematical

algebra. The system is subject to a single constraint,

represented by a distinguished kinematical element C ∈ A,

such that C ¼ C�, C does not possess an inverse, and is not

a divisor of zero within A, so that AC ¼ 0 implies A ¼ 0.

(The system may also possess a Hamiltonian distinct

form C, as we are not yet specifically considering the case

of a completely constrained system.) We begin with several

definitions. In line with our earlier discussion, the space of

kinematical states, denoted Γ, is the space of all complex-

linear functionals on A, which are normalized, ωð1Þ ¼ 1,

but not, in general positive. A state ω ∈ Γ is called a

solution of the constraint if ωðACÞ ¼ 0 for all A ∈ A. The

constraint surface ΓC ⊂ Γ is the space of all solutions of C.
Any element A ∈ A generates a flow SAðλÞ on Γ

analogous to (2) but with H replaced by A:

iℏ
d

dλ
ðSAðλÞωðBÞÞ ≔ SAðλÞωð½B;A�Þ; and SAð0Þ ¼ id:

ð3Þ

Since A is not in general a Hamiltonian, this flow is not in

general temporal. In fact, if we set A ¼ C the correspond-

ing flow is the gauge flow of the constraint, which keeps

physical properties unchanged. States related by gauge

flows should therefore be indistinguishable by measure-

ments. In general, for any A ∈ A the product AC should

generate a gauge flow, because a state that solves the

constraintC also solves the constraint AC (in this ordering).

If A ≠ 0 and A ≠ 1, the flow of AC is in general nontrivial

and independent of the flow of C (using the assumption

that C not be a divisor of zero). This property is math-

ematically expressed by an equivalence relation: a pair

of states ψ ;ω ∈ Γ are said to be C-equivalent, ω ∼C ψ , if

there exist A1; A2;…; AN ∈ A, as well as λ1; λ2;…λN ∈ R,

such that

ψ ¼ SA1C
ðλ1ÞSA2C

ðλ2Þ…SANC
ðλNÞω:

We denote the entire orbit generated by all of the constraint

flows from some state ω ∈ Γ as ½ω�C ≔ fψ ∈ Γ∶ψ ∼C ωg.
The constraint surface ΓC is preserved by the flows induced

by all constraint elements AC (Lemma 4 in [5]), so that

for any ω ∈ ΓC the orbit is entirely contained within the

constraint surface ½ω�C ⊂ ΓC.

Observables of the constrained system are, by definition,

invariant under any gauge flow, (3) implies that observables

must commute with C: The observable algebra Aobs is the

commutant of C, Aobs ≔ fA ∈ A∶½A;C� ¼ 0g. It follows
that Aobs is a unital �-subalgebra of A (Lemma 3 in [5]).

Moreover, a pair of C-equivalent states in ΓC assign

identical values to the elements of Aobs (Lemma 5 in [5]).

These results motivate the following definition: The physi-

cal space of states Γphys, is the space of C-equivalence

classes of states on A, which solve the constraint. In other

words Γphys ¼ ΓC=∼C. Just like Γ and ΓC, Γphys is closed

with respect to normalized sums.

In theory, Aobs and Γphys together comprise the algebraic

solution to the quantum constraint, and we can naturally
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restrict physical states to the ones that are positive on Aobs

with respect to its inherited �-structure. Moreover, if the

kinematical algebra possesses a distinguished Hamiltonian

elementH ∈ A such that ½H;C� ¼ 0, thenH ∈ Aobs, and it

can be used to generate the dynamical flow on Γphys via the

commutator as in Eq. (2) [7].

C. A simple example of an algebraic constraint

As an example we consider a quantum particle kine-

matically free to move in two-dimensions but restricted to

one dimension by a constraint. For simplicity, we also pick

a rather artificial kinematical Hamiltonian element, which

consists of a harmonic potential and a kinetic energy that

has no dependence on the momentum component in the

restricted direction. Let the kinematical algebra A consist

of all complex polynomials in the basic elements Q1, P1,

Q2, P2, and 1, where the generating elements are star-

invariant, Q1 ¼ Q�
1 etc., and are subject to the usual

canonical commutation relations (CCRs), where the only

nontrivial commutators are ½Q1; P1� ¼ ½Q2; P2� ¼ iℏ1. Let
the Hamiltonian element be

H ¼ 1

2m
P2
1 þ

k

2
ðQ2

1 þQ2
2Þ

(where k and m are some positive constants with suitable

units), and let our particle be subject to the constraint

C ¼ Q2, which classically restricts its motion to Q2 ¼ 0

and eliminates P2 if the gauge flow us factored out.

Due to the form of the constraint, it is convenient to write

elements of A as linear combinations of specially ordered

monomials P
n1
1 P

n2
2 Q

l1
1 Q

l2
2 (with P0

1P
0
2Q

0
1Q

0
2 ¼ 1), so that

any A ∈ A can be written as a finite sum

A ¼
X

n1;n2;l1;l2¼0

a
n1n2
l1l2

P
n1
1 P

n2
2 Q

l1
1 Q

l2
2 ;

for some a
n1n2
l1l2

∈ C, where ni and li terminate at finite

maximum values. This linear decomposition is unique for

each element A ∈ A because the set of specially ordered

monomials fPn1
1 P

n2
2 Q

l1
1 Q

l2
2 g is linearly independent. Due to

the form of the CCRs, C commutes precisely with the

specially ordered monomials for which n2 ¼ 0; therefore

the observable algebra here consists of linear combinations

of P
n1
1 Q

l1
1 Q

l2
2 . Note that ½H;C� ¼ 0 and thereforeH ∈ Aobs.

Linear states on A are completely characterized by the

values they assign to the linear basis fPn1
1 P

n2
2 Q

l1
1 Q

l2
2 g:

ωðAÞ ¼
X

n1;n2;l1;l2¼0

a
n1n2
l1l2

ωðPn1
1 P

n2
2 Q

l1
1 Q

l2
2 Þ:

Any ω ∈ Γ needs to be normalized ωð1Þ ¼ 1. If we wanted

to restrict to kinematically positive states we would have to

enforce an infinite set of additional conditions on the values

assigned to these basis elements, such as ωðQ1Þ ∈ R,

ωðQ2
1Þ ≥ 0, and generalizations of uncertainty relations

ðωðQ2
1Þ − ωðQ1Þ2ÞðωðP2

1Þ − ωðP1Þ2Þ
− ðωðP1Q1Þ − ωðP1ÞωðQ1Þ þ iℏ=2Þ2 ≥ ℏ2=4:

However, in this treatment, we do not impose positivity on

kinematical states; moreover, there are choices of ordering

that are more convenient for imposing positivity than the

one selected above.

Using the specially ordered basis, ΓC, the set of solutions

to the constraint, consists of the states that satisfy ω
n1n2
l1l2

¼ 0

for all l1, l2, n1 whenever l2 ≠ 0. The flows generated by

the constraint element through the commutator may be

characterized by the way in which they affect the values a

state assigns to each basis monomial,

d

dλ
ðSACðλÞωÞðPn1

1 P
n2
2 Q

l1
1 Q

l2
2 Þjλ¼0

¼ ωð½Pn1
1 P

n2
2 Q

l1
1 Q

l2
2 ;AC�Þ

¼ ωð½Pn1
1 P

n2
2 Q

l1
1 Q

l2
2 ;A�Q2Þ− iℏn2ωðAPn1

1 P
n2−1
2 Q

l1
1 Q

l2
2 Þ:

For any ω ∈ ΓC, the first term in the last expression

identically vanishes, while the second term is only nonzero

if both n2 ≠ 0 and l2 ¼ 0. Thus, the values ω ∈ ΓC

assigned to elements of Aobs [that is ωðPn1
1 Q

l1
1 Q

l2
2 Þ]

are unaffected by the constraint-induced flows (see

Lemma 5 in [5]). Therefore, solution states that are distinct

when restricted to Aobs correspond to distinct elements

of Γphys ¼ ΓC=∼C.

Since each physical state annihilates elements of Aobs

that have the form AC≡ AQ2, it is more accurate to say

that they are states on the quotient Aobs=AobsC, rather than
the full observable algebra. Here, it is straightforward to

explicitly verify that AobsC is a two-sided �-ideal of Aobs,

which naturally makes the quotient Aobs=AobsC into

a �-algebra isomorphic to the algebra B of polynomials

in Q1, P1, and 1 only, under the mapping

η∶ ½Pn1
1 Q

l1
1 Q

l2
2 � ↦ P

n1
1 Q

l1
1 δ0l2 ;

extended to the entirety of Aobs=AobsC by linearity.

Here [A] denotes the coset of A ∈ Aobs with respect to

the idealAobsC. Verifying that η is a �-algebra isomorphism

is straightforward. This mapping also identifies a

Hamiltonian ηðHÞ ¼ 1
2m

P2
1 þ k

2
Q2

1, which generates time

evolution on B ≅ Aobs=AobsC through the commutator.

To summarize, we used the specially ordered linear basis

on the kinematical algebra in order to construct both the

observable algebra and the space of constraint solutions.

Since C-equivalent solution states assign identical values

to all elements ofAobs, physical states can be distinguished

by the values they assign to Aobs. On the other hand,
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two elements of Aobs that differ by an element of AobsC
will be assigned identical values by all physical states. We

therefore characterize physical states by the values they

assign to B ≅ Aobs=AobsC, which, in this simple case,

comes equipped with a physical Hamiltonian. At this point,

the construction of physical Hilbert space and physical

dynamics can proceed directly from B by starting with a

suitable positive state.

D. Important limitations of using

the observable algebra

In general, it may not be feasible to characterize the

physical states of a constrained system by first identifying

the corresponding observable algebra. The artificial sim-

plicity of the explicit example from the previous section has

allowed us to temporarily sweep several important diffi-

culties under the rug; we list them below.

(1) Perhaps most obviously, the simplicity of A and C
has allowed us to infer the observable algebra

explicitly more or less “by inspection”. As far as

we know, no universal method for constructing the

commutant of C within an arbitrary �-algebra exists.
(2) A more subtle caveat is that, even in this simple

example, it is not obvious that the observable algebra

A, defined as the subalgebra of those A that commute

with C, necessarily resolves the physical states,

defined as C-equivalence classes of states on A.

While it is straightforward to see that any physical

state corresponds to a unique state on B in the

preceding example, the converse is not necessarily

true. Since we have not characterized the C-equiv-
alence classes on ΓC here, we cannot ascertain that it

is possible to distinguish any two distinct physical

states through the values they assign to B.

(3) There is another way in which Aobs may end up

being too small to be able to resolve all physical

states. The invariants with respect to the adjoint

constraint action, ½·; C�, may inhabit an enlargement

of A, such as infinite power series in elements of A

that converge in a suitably defined sense. In practice,

extensions of the original algebra would be con-

structed on suitable Hilbert-space representations.

However, such definitions of the observable algebra

generally depend on the chosen representation and

introduce additional quantization ambiguities.

(4) Even if one allows extensions of the kinematical

algebra, a sufficient number of invariants may not

exist at all, as would be expected if the classical flow

of C is nonintegrable [8–10].

(5) Even with a single primary constraint, carrying the

dynamics over to the physical space can get com-

plicated if ½H;C� ≠ 0 and secondary constraints

need to be imposed. This will necessitate a sharper

definition of Aobs applicable within this context.

III. ALGEBRAIC GAUGE FIXING

The approach developed in [5] avoids some of the

difficulties associated with constructing physical observ-

ables by focusing on characterizing the physical states

instead. We note that, aside from the requirement that

physical states are positive on Aobs, Γphys can be con-

structed quite independently of Aobs. Schematically, we

first pass to the quantum constraint surface ΓC, which

imposes a set of algebraic conditions on the values assigned

by the states. The C-equivalence relation generates orbits

on ΓC, with each distinct orbit corresponding to a distinct

physical state. Since all points on a given orbit correspond

to the same physical state, we refer to the freedom to move

along an orbit as gauge freedom. This procedure makes

no use of the properties of Aobs. In the course of our

developments, we will see that even the positivity condition

can be spelled out independently of Aobs.

We note in passing that the algebraic method for fixing

quantum gauge freedom based on an internal clock

described in the rest of this section appears to be related

to the Hilbert space and operator construction of temporal

quantum reference frames in [11,12] though the full details

of this relation are yet to be understood.

A. A geometrical picture

In classical theories with gauge freedom the state space is

a symplectic or Poisson manifold with gauge orbits form-

ing lower-dimensional embedded surfaces. Classical gauge

freedom can be completely fixed by specifying a surface

that intersects each gauge orbit at one point—the main idea

of fixing the gauge is to separate orbits by these points of

intersection. Points on the gauge-fixing surface are, of

course, by inclusion, also points of the original state space,

corresponding to a given set of values of the gauge-fixing

functions. These points can be distinguished from each

other by the values they assign to functions that “live” on

the gauge-fixing surface. Intersections between gauge

orbits and a (possibly partial) gauge-fixing surface provide

a representative subset of states from each orbit.

By direct analogy, as a form of “gauge fixing” we could,

in some yet-to-be-determined way, select a subset of states

Θ ⊂ ΓC to represent the C-equivalence classes of states on
ΓC and attempt to implement one or more of the following

highly desirable properties.

(1) If the gauge freedom is completely fixed, then each

element of Γphys that has a representative in Θ will

only have one such representative. That is, for any

ω ∈ ΓC, we desire that Θ ∩ ½ω�C contains no more

than one element.

(2) The selected subset Θ should have at least one

representative from each physical state. In other

words, we desire that Θ ∩ ½ω�C contains at least one

element for each ω ∈ ΓC.
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(3) Finally, if the gauge-fixed theory is to be physically

interpretable, the collection of states in Θ should be

related to positive states on some unital �-algebra
(replacing Aobs) that, in turn, holds some relation to

the original kinematical degrees of freedom of the

system studied.

There is an immediate difficulty with item (3) above. The

states within ΓC itself are most naturally identified as states

on the linear quotient space A=AC: Since such states,

by definition, annihilate any algebra element of the form

AC with some A ∈ A, they are uniquely defined on the

equivalence classes ½B� ¼ BþAC that define the factor

spaceA=AC. However, whileAC is a subalgebra ofA, it is

only a left-sided ideal because ðACÞB ∉ AC in general. In

addition, its is not guaranteed to be �-invariant because
ðACÞ� ¼ CA� ∉ AC in general. Therefore A=AC inherits

neither the full multiplicative structure, nor the �-structure
from A. This means that there is no obvious way to

interpret ΓC as the complete collection of states of some

(reduced) system or to impose positivity via a �-operation.
We can try to remedy this situation by first identifying

elements of ΓC with states on some suitably chosen

�-algebra, before attempting to fix any gauge freedom.

The usual treatment of quantum constrained systems in

terms of the observable algebra Aobs has no analog of this

intermediate stepping stone.

To set up our new procedure, let AO ⊂ A be some unital

�-subalgebra, and let ΓAO
denote normalized linear states on

AO, defined by restricting the original Γ to the subalgebra. In

this way, any state on Γ, including those on the constraint

surface ΓC, can be projected by ϕ∶ Γ → ΓAO
, where

ϕðωÞðBÞ ≔ ωðBÞ for B ∈ AO.[13] In order to make con-

straint solutions (and, later, also gauge-fixed states) inter-

pretable as states on a �-algebra, we would like to use ΓAO
to

represent ΓC in some way. To see when this is possible,

consider the fiber of a state ω̄ ∈ ΓAO
under the map ϕ,

schematically represented in Fig. 1,

ϕ−1ðω̄Þ ≔ fω ∈ Γ∶ωðBÞ ¼ ω̄ðBÞ for allB ∈ AOg:

Given a state ω̄ ∈ ΓAO
, the corresponding fiber has a nonzero

intersection with ΓC if there is a state ω∈ϕ−1ðω̄Þ such that

ωðACÞ ¼ 0 for allA ∈ A. This implies that for allB ∈ AO ∩

AC we have ω̄ðBÞ ≔ ωðBÞ ¼ 0. Therefore, in order to

be able to identify every state in ΓAO
with a nonempty a

region of ΓC, we need to haveAO ∩ AC ¼ f0g. Under what
circumstances does a state in ΓAO

represent only a single state

on ΓC? This happens if the value a state assigns to the

subalgebras AO and AC linearly extends to the whole of A,

i.e. if linear combinations of elements in AO ∪ AC span the

whole of A.

Let us suppose that we are in possession of a

�-subalgebra AO ⊂ A such that A ¼ AO þAC and

AO ∩ AC ¼ f0g, so that there is a one-to-one map

between solutions to the constraint and states on AO and

ϕ is invertible. We can now analyze the gauge orbits by

mapping them from ΓC to ΓAO
. Indeed, any curve ωλ on ΓC

can be mapped to a curve ω̄λ on ΓAO
, via ω̄λðBÞ ≔ ωλðBÞ

for all B ∈ AO.

In order to characterize the orbits corresponding to

physical states we will fix gauge freedom by imposing

a sufficient number of additional algebraic conditions on

the states, ω̄ðAÞ ¼ 0 for all A ∈ J ⊂ AO with a suitable J .

If J is a linear subspace, then we can construct the

linear quotient space, denoting the canonical map

π∶ AO → AO=J . furthermore, if J is a �-ideal of AO,

then AO=J inherits the structure of a �-algebra from AO

(and hence from the kinematical algebraA). Geometrically,

the normalized states on AO=J can be pulled back to ΓAO

corresponding precisely to the states ω̄ that annihilate

J ¼ ker π, we denote this gauge-fixing surface

ΓAO
j
π
≔ fω̄ ∈ ΓAO

∶ω̄ðBÞ ¼ 0 for allB ∈ ker πg.
Each state on the quotient algebra AO=J can be pulled

back to a unique state on ΓAO
(belonging to the gauge-

fixing surface), which can be further mapped to a unique

state on the constraint surface ΓC by inverting the map ϕ.

We have therefore selected a subset of solutions to the

quantum constraint that can be interpreted as states on a

different unconstrained algebra, representing the degrees of

freedom that remain after gauge fixing. Revisiting our

FIG. 1. Schematic representation of the fibers of points on ΓAO

under the map ϕ. The box represents all of Γ with ΓC represented

by the curved surface inside. The shaded plane outside of the box

represents ΓAO
with vertical lines inside the box representing

fibers in Γ: the elements of each fiber are all mapped to a single

point in ΓAO
. If each fiber intersects ΓC at a single point, then

there is a one-to-one correspondence between states in ΓAO
and

those in ΓC.
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desiderata from the start of this section, we still need to

determine whether the entirety of gauge freedom has

been fixed [desideratum (i)], whether all of the physical

states are sampled [desideratum (ii)], and whether an

analog of positivity on Aobs can be imposed in some

way. Investigating these properties further requires addi-

tional assumptions about the kinematical algebra and the

constraint element.

B. Relational gauge

The construction schematically described in the previous

subsection can be concretely realized provided the con-

strained system possesses a suitable reference observable

Z ¼ Z� ∈ A. Gauge fixing will be accomplished by fixing

the value of the reference observable; the remaining free-

dom is characterized by observables that can be specified

simultaneously with Z and are therefore part of its

commutant Z0 ¼ fA ∈ A∶½A; Z� ¼ 0g. By analogy with

Aobs, Z
0 is a unital �-subalgebra of A, which will play the

role ofAO from the previous section. As discussed there, in

order for states on Z0 to be in one-to-one correspondence

with the constraint surface ΓC, we additionally require

Z0 þAC ¼ A and Z0 ∩ AC ¼ f0g. What freedom within

Z0 could we use to define gauge-fixing conditions? The

commutant of Z always contains Z itself, which, as in a

deparametrization procedure, would no longer be consid-

ered a (nontrivial) physical observable once it has been

identified with a time parameter during the gauge-fixing

process. The algebra of observables that are accessible once

a choice of Z as reference observable has been made must

therefore derive from Z0 in some way that eliminates Z.
An algebra element can be eliminated from its com-

mutant by factoring out the ideal defined by the element

times the commutant, here ZZ0, such that ½Z� ¼ ½0� for
equivalence classes in the quotient space. More generally,

any central element can be added to Z in this product. We

make use of this freedom in order to simultaneously

eliminate Z from the remaining observables and fix its

value, by considering the one-parameter family of quo-

tient algebras Z0=ðZ − t1ÞZ0, for t ∈ R. In these quotient

spaces, ½Z − t1� ¼ ½0� or ½Z� ¼ t½1�. (Even though the

equivalence class [A] depends on the choice of t, we

omit reference to t in order to reduce notational clutter.)

More generally ½A� ¼ ½B� if (A − B) is in the �-ideal
ðZ − t1ÞZ0, which will play the role of J introduced at

the end of Sec. III A. Denoting the natural projection

πt∶ Z0
→ Z0=ðZ − t1ÞZ0, where πtðAÞ ¼ ½A�, we see that

the kernel of this map is precisely the ideal ker πt ¼
ðZ − t1ÞZ0, since ½ðZ − t1ÞA� ¼ ½0� for any A in Z0.
The quotient space Z0=ðZ − t1ÞZ0 is always a �-algebra

under structure inherited from A, and it is unital unless

Z ∝ 1. However it is not a subalgebra of Z0 (or of A) and

therefore cannot directly define the algebra of “system

observables other than Z.” Instead, copying the language of
[5], we define that a subalgebra F ⊂ Z0 is a fashionable

algebra compatible with Z if it is a unital �-algebra such

that for all t ∈ R we have F ∩ ker πt ¼ f0g. Therefore,
πtðF Þ ¼ Z0=ðZ − t1ÞZ0 is an isomorphism for each value

of t. A quantum clock ðZ;F Þ is a reference observable

Z ¼ Z� ∈ A together with a compatible fashionable alge-

braF ⊂ Z0.[14] Here, as in [5], our ultimate goal is to use Z
to track the passage of time, hence the term “clock,” which

we will also use to refer to Z itself. However, this

construction can also be used to fix nontemporal gauge

freedoms (e.g. associated with translation invariance). As

we will discuss in Sec. III C, the fashionable algebra F is

used to relate the states corresponding to different values

of Z, such that we can uniquely identify the evolution of a

given observable with respect to Z. Such a relationship is

critical when fixing a temporal gauge, but may not be

important for constraints generating nontemporal trans-

formations. For the rest of this subsection we will focus on

the properties of a single gauge slice (fixed t) and mostly

ignore F .

Given that our clock satisfies all of the above require-

ments, the constraint surface ΓC maps to ΓZ0 , and fixing Z
to a value t defines a gauge-fixing surface

ΓZ0 jπt ¼ fω̄ ∈ ΓZ0∶ω̄ðBÞ ¼ 0 for all B ∈ ker πtg ⊂ ΓZ0 :

ð4Þ

Under what circumstances does this surface fix all of the

gauge freedom? According to the analysis of Sec. 3.5

of [5], the additional condition required in order for this

gauge choice to fix all of the flows generated by the

elements of AC, at least locally, is that for this value of t,

½Z;C� ¼ iat1þ ðZ − t1ÞBt;

for some at ∈ R, and some Bt ∈ A, such that ½Bt; A� ¼ 0

for all A ∈ Z0. A simple way to ensure that this relation

holds for a continuous range of values of t, as necessary for
tracking time evolution relative to Z, while also fixing the

value of at, is to demand a stronger condition,

½Z;C� ¼ iℏ1;

which wewill use in the sequel [15]. This condition ensures

that the gauge is completely fixed in the sense that no flows

generated by the adjoint action of AC are tangential to the

gauge-fixing surface ΓZ0 jπt .
Revisiting our desiderata from Sec. III A, gauge fixing

associated with specifying the value of a reference observ-

able Z that is canonically conjugate to the constraint,

satisfies a local version of desideratum (i), guaranteeing

that each point on the gauge-fixing surface ΓZ0 jπt has some

open neighborhood where the same physical state is not

represented by any other state on the surface. It is still

possible that a given physical state corresponds to two

or more distinct gauge-fixed states globally. Desideratum

(ii) is explicitly of a global nature and we do not have a
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result that guarantees that every physical state corresponds

to some state on Z0=ðZ − t1ÞZ0 (see discussion in Sec. 3.5

of [5]). Desideratum (iii) is fully satisfied, since each

gauge-fixed state is a state on Z0=ðZ − t1ÞZ0. Moreover a

state that is positive on Z0=ðZ − t1ÞZ0 with respect to the

inherited �-structure corresponds to a solution of the

constraint that is positive on Aobs (Lemma 13 of [5]).

C. Dynamical reduction of a Hamiltonian constraint

We will now focus on the case of a completely con-

strained system, where the constraint also plays the role of

the Hamiltonian. In addition to correctly removing con-

strained degrees of freedom, the major objective of imple-

menting a Hamiltonian constraint is to address the problem

of dynamically interpreting the constrained system, as is

directly relevant to canonical attempts of quantizing

gravity. We refer to any procedure that implements this

additional requirement, compared with constrained systems

which have an unconstrained Hamiltonian, as dynamical

symplectic reduction.

Our efforts toward a quantization of dynamical sym-

plectic reduction are guided by the intuition we gain from

the process of parametrization of an ordinary quantum

mechanical system. Starting with a Hamiltonian system

with evolution of states given by

dωtðAÞ
dt

¼ 1

iℏ
ωtð½A;H�Þ þ ωt

�

d

dt
A

�

; ð5Þ

generated by H ∈ A, one can formally extend the kin-

ematical algebra by two new generators T ¼ T� (time)

and E ¼ E� (energy) with ½T; E� ¼ iℏ1 and ½T; A� ¼ 0 ¼
½E; A� for all A ∈ A. On this extended algebra Aext

the Hamiltonian is replaced by a constraint C ≔ EþH.

Schematically, recovering the original dynamical system

from the constrained system with the extended algebra

of degrees of freedom, Aext, is accomplished in two

steps. First, the generator E is eliminated by solving the

constraint itself: Since E ¼ C −H, the action of E on

solutions to the constraint is equivalent to that of −H.

Second, we look at the flow generated by the constraint on

the remaining degrees of freedom (Aext sans elements

constructed using E)

1

iℏ
ωtð½A;C�Þ ¼

1

iℏ
ωtð½A;H� þ ½A; E�Þ

¼ 1

iℏ
ωtð½A;H�Þ þ ωt

�

d

dT
A

�

; ð6Þ

where we allow A to explicitly depend on T polynomially.

(In this case, the derivative by an algebra element T is

defined by reordering terms in the commutator ½A;E� and
does not require the introduction of an operator topology on

the algebra.)

Although the resulting equation looks very similar to (5),

the flow (6) is equivalent to the original Hamiltonian flow

only when T is formally demoted to a parameter, rather

than an element of the kinematical algebra, and identified

with t. Intuitively, this reverse of a parametrization process

of passing from the constrained system with algebra Aext

back to the dynamical system with a smaller algebra A (or

deparametrization) can be interpreted as fixing the observ-

able T to take a specific value of the parameter t. The values
assigned by dynamical states of the original unconstrained

system at time t, solving (5), can be constructed using the

corresponding physical states of the constraint C, by

restricting the values they assign to T and other elements

of Aext derived from it, and inserting these values in the

flow (6). The main result of [5] is the definition of a

generalized algebraic version of this process, which we

summarize in the rest of this subsection.

Gathering the conditions identified in Sects. III A

and III B, we define the algebraic version of deparamet-

rization: A quantum constraint C ∈ A is deparametrized by

the clock ðZ;F Þ if ½Z;C� ¼ iℏ1 and the commutant of Z is

such that (1) Z0 ∩ AC ¼ f0g, and (2) the set Z0 ∪ fCg
algebraically generates A. It is straightforward to

verify that conditions 1 and 2 together imply, in addition,

Z0 þAC ¼ A as required for a one-to-one mapping

between the states on Z0 and solutions to the constraint.

As already discussed in Sec. III A, for each value t ∈ R, the

positive states on the quotient �-algebra Z0=ðZ − t1ÞZ0

correspond to physical states on the observable algebra.

The flow associated with the adjoint action of the

Hamiltonian constraint itself is one of the gauge freedoms

fixed by choosing a value of Z.
Since, by our definition of a deparametrized quantum

constraint, the clock and the constraint are canonically

conjugate, one can intuitively expect this flow to “evolve

the clock” and take a gauge-fixed state from one value of

the reference observable Z to another. To see that this is

indeed the case, we first note that the adjoint action of C
preserves the subalgebra Z0, since for any A ∈ Z0

½½A;C�; Z� ¼ ½½Z;C�; A� þ ½½A; Z�; C� ¼ 0;

using ½Z;C� ¼ iℏ1 and ½A; Z� ¼ 0. Therefore ½A;C� ∈ Z0,
so that ½·; C� defines a flow SCðλÞ on ΓZ0 via

iℏ
d

dλ
ðSCðλÞωðAÞÞ ≔ SCðλÞωð½A;C�Þ and SCð0Þ ¼ id:

ð7Þ

A state in which the value of Z is fixed to some t is a state
on the quotient algebra Z0=ðZ − t1ÞZ0 and can be pulled

back to some state on the gauge-fixing surface ω̄ ∈ ΓZ0 jπt .
Lemma 10 of [5] shows that in this case SCðλÞω̄ ∈ ΓZ0 jπtþλ

,

which corresponds to a state on the quotient algebra

Z0=ðZ − ðtþ λÞ1ÞZ0. Furthermore, since C� ¼ C, this flow
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preserves positivity of states on A (see Lemma 2 of [5])

and, by restriction, also of states on Z0. Since SCðλÞ is a

gauge flow, ω̄ and SCðλÞω̄ correspond to the same physical

state. The flow SC can now be interpreted as time evolution

relative to the clock Z:
(i) Given an observable A ¼ A� such that ½A; Z� ¼ 0,

we can say that “A when Z ¼ t” corresponds to

the element of the quotient algebra πtðAÞ ∈
Z0=ðZ − t1ÞZ0.

(ii) Knowing the relational state ω̄t1
∈ ΓZ0 jπt1 of the

constrained system at some time t1 corresponds to

knowing all the values assigned to such relational

observables “at Z ¼ t1.”
(iii) We can deduce the values assigned by the same

physical state at a different value of the clock t2
by integrating the flow of Eq. (7) for a duration

of t2 − t1.
One more hurdle remains before we can cast the

constrained system as some unconstrained system evolv-

ing “in time Z”: We have to specify exactly which degrees

of freedom are evolving relative to Z. The flow described

by Eq. (7) acts on the states on the commutant Z0 that
comprise ΓZ0 , while the relational observables “A when

Z ¼ t” are elements of the quotients Z0=ðZ − t1ÞZ0, which
are different algebras for different values of t with no

canonical mapping between them. We could propose that

the reduced system is described by the entire set of

observables that can be specified simultaneously with Z,
which comprise Z0, evolving in relation to Z. However
in regards to our gauge fixing procedure, Z0 is over-

complete: its elements cannot all be assigned values

independently by a gauge fixed state at some t—two

observables that differ by ðZ − t1ÞG, for some G ∈ Z0 will
be assigned identical values by any state in which the

value of Z is fixed to t.
This place is precisely where the fashionable

algebra introduced in our definition of a quantum clock

becomes important. From this definition it follows that, for

each t, the canonical projection πt restricted to F is a

�-isomorphism (see discussion in Sec. 2.4 of [5]). The

fashionable algebra can therefore be used to characterize

the degrees of freedom at every constant value of the clock

Z. Using a geometrical analogy, elements of F serve as

local coordinates along the gauge-fixed surfaces, while the

clock Z provides coordinates in the normal directions. An

initial state can be freely specified on F , and will evolve in

time Z along the flow SCðλÞ. In other words, the constrained
system, when deparametrized, is equivalent to an uncon-

strained system with degrees of freedom given by F and a

time evolution flow. Schematically, for every value t taken
by the clock, deparametrization requires the kinematical

algebra to decompose into subalgebras that share only the

null element,

A ¼ ACþ ðZ − t1ÞZ0 þ F ;

where F is a �-subalgebra of Z0 isomorphic to

Z0=ðZ − t1ÞZ0 at each t. We make use of this decomposition

to streamline the usage of different spaces of states: A state

ω ∈ Γ is almost positivewith respect to a deparametrization

of C by Z if

(1) it annihilates the left ideal generated by

C∶ ωðACÞ ¼ 0 for all A ∈ A;

(2) it is positive on the commutant of Z∶ ωðBB�Þ ≥ 0

for all B ∈ Z0;
(3) it parametrizes left multiplication by Z: for all

A ∈ A, ωðZAÞ ¼ ωðZÞωðAÞ.
Because the three component algebras of A share

only the null element, the three conditions of the

definition of an almost-positive state can be imposed

independently. The first condition ensures that an

almost-positive ω is a solution of the constraint. The

second condition ensures that ω restricts to some

positive state on Z0, and hence also on F . The third

condition ensures that this restriction belongs to the

constant clock surface ΓZ0 jπωðZÞ .
In other words, an almost-positive state ω, corresponds

to a gauge-fixed state where the value of Z is fixed to ωðZÞ,
which is also a positive state on F by restriction. The

converse is also true: given a value t ∈ R of the clock and

positive state ω̃ onF , there is a unique almost-positive state

ω, such that ωðZÞ ¼ t and ωjF ¼ ω̃ (see Lemma 7 and

Corollary 2 in [5]). Furthermore, as expected, the flow

SCðλÞ preserves almost-positivity (Lemma 12 in [5]). Once

we have identified the appropriate algebras, the particular

solutions to deparametrized dynamics can proceed via

almost-positive states on the original kinematical algebra.

These states may also be useful if one is looking for a way

to relate different clock choices: unlike the states on

quotients of different commutants, almost-positive states

associated with different clocks all exist on the same space

of states—the original space of kinematical states Γ. (A full

treatment of clock changes in the algebraic formulation

remains to be completed.)

D. Algebraic deparametrization

with a canonical clock

The conditions for deparametrization essentially

require the clock degree of freedom to form a canonical

pair with the Hamiltonian constraint ½Z;C� ¼ iℏ1. If our
algebra has a canonical decomposition, generated by Z, C
and some fQ1; Q2;…;P1; P2;…g with ½Qi; Pj� ¼ iℏδij1

and ½C;Qi� ¼ ½C;Pi� ¼ ½Z;Qi� ¼ ½Z; Pi� ¼ 0, then we

already have the solution to the constraint in the form

of the physical observables Qi and Pi. This is not the

usual situation. In this subsection, we apply algebraic

deparametrization to the more common scenario where

the clock variable has a known kinematical conjugate

E ¼ E� not equal to C, such that ½Z;E� ¼ iℏ1 while Z and

E commute with all elements ofA that are independent of

both Z and E.
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1. Canonical tensor product algebra

If the constraint in such a system is deparametrizable by

Z according to our definition, it follows that E ¼ ACþ B
for some A ∈ A and some B ∈ Z0. The canonical commu-

tation relation between Z and E then implies A ¼ 1, and,

setting H ¼ −B, we can write the constraint as

C ¼ EþH: ð8Þ

The condition C ¼ C� immediately implies H ¼ H�, and
½H;Z� ¼ 0 follows since H ¼ −B ∈ Z0. We will refer to

this type of constrained system as parametrized particle,

since it has precisely the form that leads to Eq. (5).

In this scenario, the kinematical algebra has the structure

of a tensor product of two algebras, A ≅ AT ⊗ AS. We

will denote the corresponding *-algebra isomorphism

Φ∶ A → AT ⊗ AS. The first component consists of com-

plex polynomials over a canonical pair, AT ¼ C½τ; ϵ�
with ðτϵ − ϵτÞ ¼ iℏ1T—it keeps the time. We have

ΦðZÞ ¼ τ ⊗ 1S and ΦðEÞ ¼ ϵ ⊗ 1S. The second compo-

nent corresponds to the degrees of freedom of the“rest of

the system” that evolve in Z—ones that can be specified

simultaneously with either E or Z. The “system” compo-

nent is precisely the commutant of the “clock” component

(but not necessarily vice versa, since the system component

may contain a nontrivial center)

Φ
−1ð1 ⊗ ASÞ ¼ fA ∈ A∶½Z; A� ¼ ½E; A� ¼ 0g:

The two components share the null and identity ele-

ments. The commutant of the clock variable is the

subalgebra generated by polynomials in Z and elements

of the system algebra: Z0 ¼ Φ
−1ðC½τ� ⊗ ASÞ. When the

clock is part of a canonical subsystem, as described

here, there is an obvious choice for the fashionable

algebra F ¼ Φ
−1ð1 ⊗ ASÞ, which has the property that

½F ; E� ¼ f0g. This latter property is not necessary for

deparametrization as defined here, but it allows us to

interpret E as the generator of time translation: The flow

that it generates through the commutator increases the value

a state assigns to Z, while keeping the values of the

fashionables fixed.

Let us further assume that the “system” algebra

F ¼ Φ
−1ð1 ⊗ ASÞ has a linear basis fAigi∈I where I is

some set of indices, and spell out in a bit more detail what

deparametrization looks like in this case. The full kin-

ematical algebraA is then spanned by elements fAiZ
mEng.

(Differently ordered products of powers of Z and E of order

N ¼ mþ n can be reordered using the canonical commu-

tation relation by adding terms of order (N − 1) or less.)

Basis elements Ai will, in general, have nonvanishing

commutators among themselves, and we have

½Z; E� ¼ iℏ1; ½Z; Ai� ¼ ½E; Ai� ¼ 0:

The commutant Z0 of the clock is then spanned by fAiZ
mg,

which is a subset of the basis for A, with n ¼ 0. For any

t ∈ R, the ideal ðZ − t1ÞZ0 defines cosets ½A� ⊂ Z0 for each
A ∈ Z0, where Ã ∈ ½A� if ðA − ÃÞ ¼ ðZ − t1ÞB for some

B ∈ Z0. In particular, for a basis element

AiZ
m ¼ AiððZ − t1Þ þ t1Þm

¼ Ai

X

m

k¼0

�

m

k

�

ðZ − t1Þktm−k

¼ Ait
m þ Ai

X

m

k¼1

�

m

k

�

ðZ − t1Þktm−k:

The sum at the end of the final expression lies in the ideal

ðZ − t1ÞZ0, and, therefore in the coset of the zero element;

hence, ½AiZ
m� ¼ ½Ait

m�.
The collection of cosets f½Ai�gi∈I, therefore, provides a

linear basis on the quotient algebra Z0=ðZ − t1ÞZ0. In terms

of this basis, the action of the canonical projection

πt∶ Z0
→ Z0=ðZ − t1ÞZ0 on a basis elements of Z0 is

πtðAiZ
mÞ ¼ πtðAit

mÞ ¼ tm½Ai�;

which extends to arbitrary A ∈ Z0 by linearity. Noting

that fAigi∈I is precisely the linear basis onF that we started

out with, we see that πt restricted to F (settingm ¼ 0) is an

isomorphism. This immediately implies that F satisfies

the two conditions, F ∩ ker πt ¼ f0g and πtðF Þ ¼
Z0=ðZ − t1ÞZ0, required for a fashionable algebra. For each
t, any element of Z0 can be canonically projected to

Z0=ðZ − t1ÞZ0 and then mapped to F , which gives us a

one-parameter family of projections αt∶ Z0
→ F

αtðAiZ
mÞ ¼ tmAi: ð9Þ

Each fashionable is projected to itself, while the projections

of other elements of Z0 to fashionables are t-dependent.

2. Almost-positive states

Let us now examine how the conditions of deparamet-

rization come into play in the above scenario. We have

already assumed that ½Z;C� ¼ iℏ1; we will now verify

that other requirements of deparametrization laid out in

Sec. III C are also satisfied. We note that any nonzero

element of AC contains at least one term with a factor

of E. When written in terms of the basis elements, it then

contains at least one term AiZ
mEn with n ≠ 0. Therefore,

Z0 ∩ AC ¼ 0, as required for deparametrization. We now

write E ¼ C −H, so that our basis elements can be

rewritten

AiZ
mE ¼ −AiZ

mH þ AiZ
mC;

AiZ
mE2 ¼ ðH2 þ ½H;C�Þ − 2HCþ C2:
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Iterating this process and recalling from Sec. III C that ½·; C�
maps Z0 to Z0, we have

AiZ
mEn ¼ AiZ

m
X

n

j¼0

BnjC
j; ð10Þ

for some Bnj ∈ Z0. Clearly, our chosen basis of A and,

therefore, also A itself is algebraically generated by

Z0 ∪ fCg as required.

Now, dynamical evolution in Z is constructed by passing

to almost-positive states with respect to this deparametri-

zation of C and focusing on the flow that is generated on

those states by C. Evaluating a basis element in an almost-

positive state using expression (10) and condition 1 of the

definition of an almost-positive state, we get a collection of

relations, one for each basis element:

ωðAiZ
mEnÞ ¼ ωðAiZ

mBn0Þ:

One way to interpret these relations is that they place no

restrictions on the values an almost-positive state assigns to

Z0 (spanned by fAiZ
mg), but once those values are set, the

above relations uniquely extend the state to the rest of A

(spanned by fAiZ
mEng). Condition 3 of the definition is

linear and can therefore also be sufficiently satisfied if

imposed on the values of basis elements: this time it will

be the basis of Z0, rather than the full kinematical algebra.

We get

ωðAiZ
mÞ ¼ ωðZÞmωðAiÞ:

Thus, the values assigned by almost-positive states to all

elements of A can be derived from the expectation value of

the clock ωðZÞ and the values they assign to the fashion-

ables. In fact, expectation values on Z0 in almost-positive

states can be taken after projecting to fashionables

using (9). It is not difficult to verify that for A ∈ Z0 and
any almost-positive state ωðAÞ ¼ ωðαωðZÞðAÞÞ with αt
defined in (9). We will shortly use this property to project

time evolution to fashionables.

Applying condition 2 of the definition of almost-positive

states to basis elements of Z0 we get

ωðAiZ
2mA�

i Þ ¼ ðωðZÞ2ÞmωðAiA
�
i Þ ≥ 0;

where we used condition 3 to obtain the first equality.

In particular, setting Ai ¼ 1 and m ¼ 1, this requires

ωðZÞ ∈ R, which guarantees that ðωðZÞ2Þm ≥ 0 for any

m. The above conditions therefore reduce to a smaller set of

requirements

ωðAiA
�
i Þ ≥ 0:

We note that, unlike conditions 1 and 3, condition 2 is not

linear: applying it to linear combinations of basis elements

may lead to additional independent conditions on the values

assigned by an almost-positive state.

Almost-positive states evolve in time Z using the flow

generated by C ¼ EþH itself (which, as we noted earlier,

preserves almost positivity). Let ωt be a one-parameter

family of states along the flow generated by C, with t0 ∈ R

being the initial value of the clock: ωt0
ðZÞ ¼ t0. Then the

clock evolves according to

d

dt
ωtðZÞ ¼

1

iℏ
ωtð½Z;C�Þ ¼ 1

so that ωtðZÞ ¼ t.
Since almost-positive states are completely characterized

by the values they assign to Z and the fashionables, the flow

is defined by the way it affects those values. However, it is

useful to compute the time evolution in Z for an arbitrary

element of Z0 projected to fashionables. Using the fact that

αt is a �-algebra homomorphism and that it does not change

the expectation value in an almost-positive state, we have

d

dt
ωtðαtðAiZ

mÞÞ

¼ d

dt
ωtðAiZ

mÞ

¼ 1

iℏ
ωtð½AiZ

m; EþH�Þ

¼ ωt

�

1

iℏ
½AiZ

m; H� þmAiZ
m−1

�

¼ ωt

�

1

iℏ
½αtðAiZ

mÞ; αtðHÞ� þ d

dt
αtðAiZ

mÞ
�

:

By linearity, this extends to an arbitrary A ∈ Z0

d

dt
ωtðαtðAÞÞ ¼ ωt

�

1

iℏ
½αtðAÞ; αtðHÞ� þ d

dt
αtðAÞ

�

: ð11Þ

With our specific choice of fashionables we have

reproduced the usual form of the quantum dynamical flow

of Eq. (5). The fashionable αtðHÞ plays the role of the

physical Hamiltonian associated with the clock ðZ;F Þ,
generating evolution in Z directly on F , where any A ∈ Z0

can be projected using (9) and evolved using (11). Note

that if H ∈ F , then αtðHÞ ¼ H; however, in general, the

physical Hamiltonian is time dependent.

3. Fashionable ambiguities

We conclude this subsection by focusing on the ambi-

guity associated with the choice of fashionables that

remains once a clock variable Z is already selected.

In the case of a canonical clock discussed here, this

ambiguity can be linked to the freedom in selecting the

conjugate momentum of the clock E (by demanding that

½F ; E� ¼ f0g). Clearly, almost positivity is unaffected by
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the choice of fashionables. In addition, for any A ∈ Z0 the
evolution of its expectation value relative to the clock Z is

given by dωtðAÞ=dt ¼ −iℏ−1ωtð½A;C�Þ, which does not

rely on the choice of F either. In what way then does the

choice of fashionables matter? In order to reduce a

completely constrained system to an unconstrained system

evolving in time, in addition to selecting the measurement

corresponding to time, one must also select a subset of

clock-compatible observables to be interpreted as measur-

ing the state of “the rest of the system” at any given time. If,

for example, the expectation values of all those measure-

ments remain unchanged as the clock evolves, we interpret

“the rest of the system” as being static.

For a simple illustration of the freedom associated

with choosing fashionables for a given clock observable,

consider the situation where AS corresponds to a one-

component canonical system. The kinematical algebra

A ≅ AT ⊗ AS is then generated by four basic elements

with ½Z;E� ¼ iℏ1 ¼ ½Q;P�. This two-component canonical

algebra can just as well be generated using a different basis

of generators, for example fZ; Ẽ; Q; P̃g, where we define

Ẽ ¼ EþQ, and P̃ ¼ P − Z. It is straightforward to check

that this basis generates the same algebra, that ½Z; Ẽ� ¼
iℏ1 ¼ ½Q; P̃�, and that all other commutators between the

generators vanish. Essentially, the new basis provides an

alternative factorization of A into two canonical compo-

nents, where both factorizations are compatible with Z
serving as the clock. For the original generating basis the

natural choice of fashionable algebra is F ¼ C½Q;P�
(compatible with treating E as the generator of time

translation in Z), while for the second basis it is F̃ ¼
C½Q; P̃� (compatible with treating Ẽ as the generator of

time translation in Z). It is straightforward to convince

oneself that the two fashionable algebras are not the same:

for example, P̃ ∈ F̃ , but P̃ ¼ P − Z is not an element

of F , since it cannot be generated by polynomials in P
and Q alone.

To see where the difference between these two choices of

fashionable algebras matters, consider the very simple case

where C ¼ E ¼ Ẽ −Q. Reducing this constraint using the

clock ðZ;F Þ results in a one-component canonical system

(generated by Q and P) that is static, since its physical

Hamiltonian is H ¼ C − E ¼ 0. Performing reduction

using ðZ; F̃ Þ also leaves us with a one-component canoni-

cal system (generated by Q and P̃), which, in this case, is

not static, since in this case the physical Hamiltonian

H̃ ¼ C − Ẽ ¼ −Q does not vanish. Viewed as self-con-

tained systems the two reductions look different. At the

same time, any element of Z0 can be projected into either

reduced system and its expectation value can be evolved in

time with identical end result.

It is instructive to see how this works out in our simple

example. For instance, P ∈ Z0 commutes with C: it is a

physical observable, and should, therefore, project to a

constant of motion for any reduction of the system. Using

ðZ;F Þ we have αtðPÞ ¼ P, and

d

dt
ωtðαtðPÞÞ ¼ ωt

�

1

iℏ
½P; αtðHÞ� þ d

dt
P

�

¼ ωt

�

1

iℏ
½P; 0�

�

¼ 0:

Using ðZ; F̃ Þ we have α̃tðPÞ ¼ α̃tðP̃þ ZÞ ¼ P̃þ t1, and

d

dt
ωtðα̃tðPÞÞ ¼ ωt

�

1

iℏ
½P̃þ t1; αtðH̃Þ� þ d

dt
ðP̃þ t1Þ

�

¼ ωt

�

1

iℏ
½P̃;−Q� þ 1

�

¼ 0:

The difference between a pair of reduced systems that

use the same clock but a different set of fashionables

may be treated as superficial if the link to the original

constrained system is maintained. In addition, one particu-

lar choice of generators may well be preferred on physical

grounds of corresponding to a natural set of measurements.

IV. DEPARAMETRIZATION BY FACTORIZATION

As we saw in Sec. III D, the conditions for algebraic

deparametrization are extremely restrictive, essentially

requiring the constraint to have the form (8). There is an

important class of constraints that do not have the simple

form of the parametrized Newtonian particle but can,

nevertheless, be straightforwardly deparametrized using

Hilbert space methods. In particular, the motion a free

relativistic particle on a Minkowski space-time cast in the

Hamiltonian form results in a constraint of the form

C ¼ E2 −H2

where ½H;E� ¼ 0 ¼ ½H;Z�. In this situation, the

constraint explicitly factorizes into two commuting factors

C ¼ ðEþHÞðE −HÞ. Either factor can play the role

of a constraint in its own right. In Hilbert space terms

ðE�HÞjψi ¼ 0 implies Cjψi ¼ 0. Conversely, the Hilbert

space solutions to the constraint are linear combinations of

(generalized) solutions to (E�H). In this section we

describe and apply the algebraic analog of deparametriza-

tion of factorizable constraints first developed in [5].

In our algebraic method, given a constraint C that does

not satisfy the definition of algebraic deparametrizability,

we attempt to factorize it. A constraint C is deparametrized

by factorization with respect to an internal clock ðZ;F Þ, if
there areN;CH ∈ A, such that C ¼ NCH, where CH ¼ C�

H

is not a divisor of zero, has no inverse in A, and is

deparametrized by ðZ;F Þ. The system with a factorized

constraint is then reduced by deparametrizing CH instead

of C. We call CH the factor constraint and N the flow rate

of C with respect to CH, since ½Z;C� ¼ iℏ½N; Z�CH þ iℏN,
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and hence for an almost-positive state relative to this

deparametrization

ωð½Z;C�Þ ¼ iℏωðNÞ ¼ ωðNÞωð½Z;CH�Þ: ð12Þ

In order for this factorization procedure to make sense

within our algebraic approach, we need to establish the

equivalence between the solutions to the original constraint

C and the factor constraint CH. Recall that in Sec. II B we

defined physical states of C as orbits generated by the

constraint flows on the constraint surface Γphys ¼ ΓC=∼C.

In the exceptional case where N is invertible in A, we have

AC ¼ ACH and algebraically imposing the factor con-

straint is exactly equivalent to imposing the original

constraint. In general, however, since AC ¼ ANCH ⊂

ACH, we have ΓCH
⊂ ΓC. Solutions of the factor constraint

CH are also solutions of the original constraint C, but the
converse is not necessarily true. Therefore, not all of the

physical states of the original constraint C will be sampled

by the deparametrization of the factor constraint CH. This is

not necessarily problematic: as we will see in the explicit

example of Sec. IVD, the original constraint may have other

factor constraints that sample other parts of its solution

space. Moreover, we do not, in general, expect that all

solutions to a factorizable constraint can be interpreted as

evolving in time. A general Hamiltonian constraint may

possess several factorizations, relative to one or more clocks

where a given physical state may be sampled by some, but

not other factorizations, or by none at all.

The situation with gauge orbits is a bit more compli-

cated: every gauge flow generator of the original constraint

AC ¼ ANCH is also a gauge flow generator of the factor

constraint, but, again, the converse is not generally true.

Let us look at the different gauge orbits ½ω�CH
and ½ω�C

more closely. (This paragraph provides further details of a

motivating discussion in our Introduction.) Assuming

factor N does not have an inverse within A, AC is a

proper subset ofACH, and hence ½ω�C ⊂ ½ω�CH
: the original

orbits of C are contained within the larger orbits of CH. As

a result, some gauge flows generated by the factor con-

straint CH are entirely new and can link distinct gauge

orbits of the original constraint C. Therefore, a physical

state with respect to CH generally corresponds to a region

of the space of physical states with respect to the original

constraint C. Furthermore, CH, which is the driver of

deparametrized evolution relative to the internal clock Z, is
itself not an element of AC. This means that we cannot, in

general, assume that ω ∈ ΓCH
and SCH

ðλÞω correspond to

the same physical state relative to the original constraint C.
Our construction in Sec. 4.1 of [5] addresses this problem

by developing conditions under which the gauge flows of

the factor constraint CH preserve the values assigned to the

observable algebra of the original constraint C. We discuss

it in detail in the next section.

Before we move to a more detailed discussion of

factorization, we note that the �-invariance of both the

original and the factor constraints places a general restric-

tion on the flow rate. Combining C ¼ C� with CH ¼ C�
H

gives NCH ¼ CHN
�, or, equivalently,

½N;CH� ¼ CHðN� − NÞ: ð13Þ

If N� ≠ N, Eq. (12) would generally lead to nonzero

Im½ωðZÞ� along the flow generated by the original con-

straint C. This would make it difficult to interpret depar-

ametrization by factorization with respect to Z as a

quantum version of “rescaling” of the flow of C so that

it is parametrized by Z. In what follows we will therefore

often focus on factorized constraints with a real flow rate

N� ¼ N. According to the adjointness relation (13) such a

flow rate will also necessarily be constant ½N;CH� ¼ 0.

A. Observables of the factorized constraint

According to the discussion in Sec. III, since the factor

constraint CH is deparametrized by the clock ðZ;F Þ,
we can use an almost-positive state in place of the entire

corresponding gauge orbit ½ω�CH
. Furthermore, the time

evolution flow generated by CH moves along the gauge

orbits. This construction guarantees that the values of

observables of CH are fixed along the orbit, in particular

making them constant along the time evolution generated

by CH. In the case of deparametrization by factorization,

however, the true physical constraint is C ¼ NCH. As we

have noted in the previous section, ½ω�C ⊂ ½ω�CH
so that an

orbit of CH will in general contain multiple orbits of the

original constraint. This could lead to the orbit ½ω�CH

containing states that assign different values to the observ-

ables of C, making an almost positive ω a poor represen-

tative state and opening up the possibility that the values of

these observables will change along the time-evolution

flow ofCH. In this section we derive conditions that prevent

this type of pathology.

Let OH be in the observable algebra of the factor

constraint so that ½OH; CH� ¼ 0. Then, relative to the

original constraint,

½OH; C� ¼ ½OH; NCH�
¼ N½OH; CH� þ ½OH; N�CH

¼ ½OH; N�CH:

Due to the cancellation property of CH, OH is in the

observable algebra of C precisely when ½OH; N� ¼ 0.

However, even if ½OH; N� ≠ 0, we get ωðA½OH; C�Þ ¼ 0

for any solution of the factor constraint ω ∈ ΓCH
and any

A ∈ A. Effectively, OH is an observable of the original

constraint when we restrict to the states on the constraint

surface of CH. In particular, OH has a unique value within
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each physical state of the original constraint, that also

belongs to ΓCH
.

On the other hand, suppose O is an observable of the

original constraint. In order for its value to be preserved by

all gauge flows generated by CH via Eq. (3) starting from

an initial almost-positive state ω, we need

SACH
ðλÞωð½O;ACH�Þ ¼ SACH

ðλÞωðA½O;CH�Þ ¼ 0;

for all A ∈ A: ð14Þ

However, ½O;C� ¼ 0 gives us ½O;NCH� ¼ ½O;N�CH þ
N½O;CH� ¼ 0. For an almost positive state ω ∈ ΓCH

,

this gives us

SACH
ðλÞωðAN½O;CH�Þ ¼ 0; for all A ∈ A; ð15Þ

which is not sufficiently strong. In general, only the

elements that commute with both factors N and CH will

have gauge-independent values relative to the physical

states of both the original constraint C and those of the

factor constraint CH. If one has a complete set of observ-

ables of C, as in the example of Sec. IV D, one can

explicitly check condition (14). In the special case where

N ∈ Z0, as in the class of constraints discussed in Sec. IV B,

we show that (14) holds as long asN is not a divisor of zero.

More generally, in [5] we introduce an additional

condition on states that makes condition (15) imply

condition (14), allowing us to interpret the physical states

of CH as states on the observable algebra of C: Left

multiplication of A ∈ A can be canceled in ω ∈ Γ if for any

B ∈ A, ωðGABÞ ¼ 0 for allG ∈ A implies ωðGBÞ ¼ 0 for

all G ∈ A. This condition is related to but is not the same

as requiring A not to be a divisor of zero. Indeed, if AB ¼ 0

for some B ≠ 0, then left multiplication of A cannot be

canceled in any state, since this implies ωðGABÞ ¼ 0 for all

G, while B ≠ 0. While A not being a divisor of zero is

necessary, it is not sufficient for left cancellation, which

imposes additional conditions on the state. Suppose left

multiplication of N can be canceled in ω ∈ ΓCH
, so that for

any B ∈ A

if ωðANBÞ ¼ 0; for all A ∈ A;

then ωðABÞ ¼ 0 for all A ∈ A: ð16Þ

Then lemma 15 of [5] demonstrates that, the values

assigned to the elements that commute with the original

constraint C are constant along the entire gauge orbit ½ω�CH

generated by all of ACH.

We can somewhat relax the left cancellation condition

in the case where the flow rate is constant, so that

½N;CH� ¼ 0. In Appendix A, where we appropriately

specialize Lemma 15 of [5] to the constant flow rate

scenario. We show that, for a constant flow rate, the values

of observables are preserved along orbits generated by CH

starting from some state ω ∈ ΓCH
as long as for any B ∈ Z0

if ωðANBÞ ¼ 0; for all A ∈ Z0;

then ωðABÞ ¼ 0 for all A ∈ Z0: ð17Þ

The important relaxation in above is that left cancellation

of N, provided ½N;CH� ¼ 0, needs to be checked only for

A;B ∈ Z0, rather than A.

Even in this relaxed formulation, however, given a

state, it is difficult to explicitly determine whether the left

cancellation condition holds. Fortunately, in the case of the

real flow rate, we can use almost positivity to simplify it

further. We recall from the discussion in Sec. III C that for

any CH deparametrized by the clock ðZ;F Þ the algebra A
splits, so that for any B ∈ Z0 left multiplication by the flow

rate can be decomposed NB ¼ B0 þ B1 where B0 ∈ Z0 and
B1 ∈ ACH. Because these subsets are disjoint linear sub-

spaces, the decomposition is linear, but does not preserve

algebraic multiplication (except left multiplication by

elements of Z0). An almost-positive state assigns zero to

elements of ACH, so that ωðNBÞ ¼ ωðN̂ðBÞÞ, where

N̂∶ B ↦ B0. In the simple case where N ∈ Z0 we have

N̂B ¼ NB. In general, N ¼ N0 þ
P

M
n¼1 NnC

n
H for some

integer M and Nn ∈ Z0. For convenience, we will denote

repeated commutator with the factor constraint as adnCH
A,

where ad0CH
A ¼ A and adnþ1

CH
A ¼ ½adnCH

A;CH�. Permuting

factors of CH to the right one by one (recall from Sec. III C

that adCH
preserves Z0) we note that

Cn
HB ¼ ð−1ÞnadnCH

Bþ GCH;

where G ∈ A is a combination of B, CH and their

commutators. Thus

N̂B ¼ N0Bþ
X

M

n¼1

Nnð−1ÞnadnCH
B: ð18Þ

The left cancellation condition for a real flow rate (17),

evaluated in an almost-positive state then has the general

property thatωðAN̂ðBÞÞ ¼ 0 for allA ∈ Z0 impliesωðABÞ ¼
0 for all A ∈ Z0. Becauseω is positive on Z0,ωðAN̂ðBÞÞ ¼ 0

for all A ∈ Z0 if and only if ωðN̂ðBÞ�N̂ðBÞÞ ¼ 0 [16].

The necessity is trivial; sufficiency follows from the

Schwarz-type inequality

jωðAN̂ðBÞÞj2 ≤ ωðAA�ÞωðN̂ðBÞ�N̂ðBÞÞ:

A more compact version of the cancellation restriction is

therefore to only consider almost-positive states such that

ωðN̂ðBÞ�N̂ðBÞÞ ¼ 0 implies ωðB�BÞ ¼ 0 for any B ∈ Z0.
A positive linear functional (PLF) on Z0 can be used to

construct a pre-Hilbert space representation ΛðZ0Þ; if
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ωððABÞ�ABÞ ¼ 0 in this PLF, then ΛðAÞ has zero in the

discrete part of the spectrum, so one way to look for

appropriate states within a representation Λ of Z0 is to study
the spectra of ΛðN̂ðBÞÞ.
We see that deparametrization via factorization success-

fully casts a quantum system with a Hamiltonian constraint

as an unconstrained dynamical system, with one important

caveat. This is only possible for physical states that contain

some almost-positive states relative to deparametrization of

CH, in which condition (14) can be verified either directly

or via left cancellation of the action of the flow rate

factor N.

B. Linear factorizable constraint

Let us assume that C ¼ NCH is deparametrizable with

respect to ðZ;F Þ by factorization, and consider the simplest

generalization of the directly deparametrizable situation,

namely that ½Z;C� ≠ iℏ1, but ½Z; ½Z;C�� ¼ 0. From the

conditions placed on C, CH and Z, it then follows that such
a constraint can be written in the form

C ¼ B0 þ B1CH;

for some B0; B1 ∈ Z0. The constraint is therefore linear in
momentum conjugate to the clock variable Z (in this case

represented by CH). This can be used to demonstrate that

½N; Z� ¼ 0, N� ¼ N, and ½N;CH� ¼ 0, so that the flow rate

of a linear factorizable constraint is automatically real

(and therefore also constant). Details of the argument can

be found in Appendix B.

Do the gauge flows of the factor constraint CH preserve

the values that states assign to observables of the original

constraint C? In this simple scenario, we can ensure this in

two distinct ways. First, any O ∈ Aobs can be written

as O ¼ O0 þO1CH for some O0 ∈ Z0 and O1 ∈ A. For

O ∈ Aobs we then have

0 ¼ ½O;C� ¼ N½O0; CH� þ ðN½O1; CH�CH þ ½O;N�CHÞ:

Since N ∈ Z0 for a linear constraint and ½O0; CH� ∈ Z0 for
any O0 ∈ Z0, the first term in the final expression above is

in Z0, while the rest of the expression is clearly in ACH.

Since the two subalgebras are disjoint by the requirement of

deparametrization, the two parts of the final expression

must vanish separately; in particular

N½O0; CH� ¼ 0:

Provided that N is not a divisor of zero within Z0, this
implies ½O0; CH� ¼ 0, so that in any state ω ∈ ΓCH

SACH
ðλÞωðA½O;CH�Þ ¼ SACH

ðλÞωðB½O1; CH�CHÞ ¼ 0;

for any A ∈ A as required by condition (14).

We can also apply the left cancellation condition.

We note that the flow rate here is real and that N ∈ Z0.
The left cancellation condition therefore simplifies to: for

any A ∈ Z0 if ωððNAÞ�ðNAÞÞ ¼ 0 then ωðA�AÞ ¼ 0.

Formulated in this way, the left cancellation property is

related to the spectrum of N in a Gelfand-Naimark-Segal

representation containing ω, and one might intuit that,

if N is positive definite, there should not be any almost-

positive states that violate the left cancellation condition.

Indeed there are ways to ensure this. For example, let

N ¼ BB� þ a1 for some B ∈ Z0 and some real number

a > 0, then

ωððNAÞ�ðNAÞÞ
¼ω½ððBB�þa1ÞAÞ�ððBB�þa1ÞAÞ�
¼ω½ðBB�AÞ�ðBB�AÞ�þ2aω½ðB�AÞ�ðB�AÞ�þa2ω½A�A�:

Each of the terms in the final expression is proportional

to ωðD�DÞ, for a D ∈ Z0. For an almost-positive ω each

term is non-negative, therefore if ωððNAÞ�ðNAÞÞ ¼ 0,

each term must vanish separately. Thus, in particular,

ωððNAÞ�ðNAÞÞ ¼ 0 here would automatically imply

ωðA�AÞ ¼ 0. In this specific case, the left action of N
within Z0 would be canceled in any almost-positive state.

C. Factorizable constraints with a canonical clock

Here we make the same assumptions about the kin-

ematical algebra as in Sec. III D. A constraint that is

deparametrizable by factorization must then have the

following general form

C ¼ NCH ¼ NðEþHÞ:

Where N ∈ A, H ¼ H� ∈ Z0 and E is canonically con-

jugate to Z. We assume that the fashionable algebra

commutes with E, so that Z0 is algebraically generated

by fZg ∪ F andA is algebraically generated by fEg ∪ Z0

(as well as by fCHg ∪ Z0 as required by deparametriza-

tion). It is convenient to classify such constraints by

their polynomial order in E. For a constraint linear in E,
we immediately have ½Z; ½Z;C�� ¼ 0 and the results

of the previous section apply: N ∈ Z0, N� ¼ N, and

½N;CH� ¼ 0, so that ½N;E� ¼ −½N;H�. If, in addition,

N is not a divisor of zero within Z0, the deparametrization

by factorization preserves the observables of the original

constraint C.
To see just how restrictive the adjointness conditions

are, let us consider the “nice-looking” linear constraint of

the form

C ¼ 1

2
ðB1Eþ EB1Þ þ B0; ð19Þ
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with �-invariant B0 and B1 such that ½B1; E� ≠ 0 and B1 is

invertible. Noting that the “unfactorized” constraint must

have the form C ¼ NEþ NH, we reorder and factorize

C ¼ B1Eþ B0 −
1

2
½B1; E�

¼ B1

�

Eþ 1

2
ðB−1

1 B0 þ B0B
−1
1 Þ

þ 1

2
½B−1

1 ; B0� −
1

2
B−1
1 ½B1; E�

�

:

So that N ¼ B1, which is �-invariant, while

CH¼Eþ1

2
ðB−1

1 B0þB0B
−1
1 Þþ1

2
½B−1

1 ;B0�−
1

2
B−1
1 ½B1;E�:

The first two terms in the expression fo CH are always

�-invariant, however, unless additional conditions are

imposed, the sum of the last two terms is not. After a

bit of algebra one finds that CH ¼ C�
H is equivalent to

½B0; B1� ¼
1

2
ðB1½B1; E� þ ½B1; E�B1Þ: ð20Þ

We conclude that the constraint of Eq. (19) cannot be

deparametrized relative to clock Z, unless the additional

condition of Eq. (20) is satisfied. (Note that, because

C ¼ C� here, CH ¼ C�
H and N ¼ N� together automati-

cally imply ½N;CH� ¼ 0, so the latter condition does not

generate additional restrictions.) In this example, there is

nothing preventing us from defining almost-positive states

that solve CH and are positive on Z0 and fashionables.

However, the gauge flow of a non-�-invariant CH implies

that evolution of fashionables would not preserve their

reality and cannot be interpreted as unitary time evolution.

A more interesting scenario in the context of quantum

cosmology is the situation where C is quadratic in E.
Assuming C can be factorized,

C ¼ ðN1Eþ N0ÞðEþHÞ: ð21Þ

for someN0; N1; H ∈ Z0, withH� ¼ H. Here as well, exact

factorizability places strong restrictions on the possible

form of the constraint, such as the factor ordering chosen

for the original quadratic expression. Our algebraic con-

ditions on deparametrization allow us to derive additional

constraints on the terms in (21), following the discussion

in Sec. 4.2 of [5]. To this end, we apply algebraic

deparametrization to (21) such that CH ¼ EþH is the

linearized constraint with flow rate N ¼ N1Eþ N0. The

adjointness conditions C ¼ C�, Z ¼ Z� by themselves give

�

1

iℏ

�

Z;
1

iℏ
½Z;C�

��

¼
�

1

iℏ

�

Z;
1

iℏ
½Z;C�

���
;

which immediately implies N1 ¼ N�
1. Unlike the linear

case, here the adjointness conditions on their own do not

force the flow rate to be real (or equivalently to be

constant).

Restricting to the cases where N is required to be real,

N� ¼ EN1 þ N�
0 ¼ N ¼ N1Eþ N0, we obtain

N�
0 ¼ N0 þ ½N1; E�: ð22Þ

According to (13), a real flow rate is also constant,

½N;CH� ¼ 0, which yields

0 ¼ ð½N1; E� þ ½N1; H�ÞEþ N1½E;H� þ ½N0; E� þ ½N0; H�:

The parenthesis as well as the last three terms of this

equation are elements of Z0. Taking a commutator of the

whole equation with Z therefore implies

½N1; E� þ ½N1; H� ¼ 0: ð23Þ

The remaining terms then require

N1½E;H� þ ½N0; E� þ ½N0; H� ¼ 0: ð24Þ

The general factorized constraint (21), when multiplied out,

takes the complicated form

C ¼ N1E
2 þ ðN0 þ N1HÞEþ N1½E;H� þ N0H: ð25Þ

The coefficients of powers of E are subject toN1 ¼ N�
1 and,

in the case of a real flow rate, also to Eqs. (22) through (24).

Can these conditions help us determine whether a general

constraint that is a quadratic polynomial in E is depar-

ametrizable by factorization?

We are able to answer this question in the affirmative if

N1 ¼ 1. The flow rate then equals N ¼ Eþ N0 and (22)

implies that N0 is �-invariant. Condition (23) is immedi-

ately satisfied, while (24) reads

½H;E� ¼ ½N0; E� þ ½N0; H�: ð26Þ

Now the constraint has the simpler form

C ¼ E2 þ A1Eþ A0; ð27Þ

with A1¼N0þH¼A�
1∈Z0 and A0 ¼ ½E;H� þ N0H ∈ Z0.

We can perform factorization in two steps. First we

complete the square with E

C ¼
�

Eþ 1

2
A1

�

2

−

�

1

4
A2
1 −

1

2
½A1; E� − A0

�

¼ Ẽ2 − h

ð28Þ
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where Ẽ ¼ Eþ 1
2
A1 and

h ¼ 1

4
A2
1 −

1

2
½A1; E� − A0: ð29Þ

Here Ẽ is �-invariant because A�
1 ¼ A1, and it has the

canonical commutator with Z, ½Z; Ẽ� ¼ iℏ1, because

A1 ∈ Z0. Clearly h ∈ Z0 because A1 and A2 are in Z0.
Using the definitions of A0 and A1 we have

h ¼ 1

4
ðN0 þHÞ2 − 1

2
½N0; E� þ

1

2
½H;E� − N0H

¼ 1

4
ðN2

0 þH2 þ N0H þHN0Þ −
1

2
ðN0H þHN0Þ

¼
�

1

2
ðN0 −HÞ

�

2

;

where we also used (26) to obtain the second equality.

Writing h in this way we immediately see that h� ¼ h, it

has a square root
ffiffiffi

h
p

¼ 1
2
ðN0 −HÞ, and condition (26) is

equivalent to ½
ffiffiffi

h
p

; Ẽ� ¼ 0. Clearly, when this condition is

satisfied the difference of squares in Eq. (28) can be

factorized as

C ¼ ðẼ −
ffiffiffi

h
p

ÞðẼþ
ffiffiffi

h
p

Þ

¼
�

Eþ
�

1

2
A1 −

ffiffiffi

h
p ���

Eþ
�

1

2
A1 þ

ffiffiffi

h
p ��

:

What we have shown is that a quadratic constraint of

the form (27) is deparametrizable by factorization with

respect to Z precisely when: A0; A1 ∈ Z0; A1 ¼ A�
1; h

defined by (29) is �-invariant and has a square root
ffiffiffi

h
p

such that ½
ffiffiffi

h
p

; Eþ 1
2
A1� ¼ 0. Since the two factors com-

mute and have canonical commutator with Z, in this case

either factor can be moved to the right to play the role

of CH. We have not one, but two deparametrizations of C
with respect to Z. We study the consequences of this more

closely through a concrete example in the next section.

D. Quadratic example: “Slow” relativistic particle

The Hamiltonian constraint for the free particle

(rest mass μ > 0) in Minkowski spacetime relative to the

standard coordinates is identical to the relativistic energy-

momentum relation

E2 − p2 − μ2 ¼ 0;

where we have set the speed of light c ¼ 1 and p2 ¼
p2
x þ p2

y þ p2
z relative to Cartesian coordinates on space. In

order to work with a simple polynomial algebra and avoid

having to define general square-root elements, we will

assume that the particle is “slow,” i.e. p ≪ μ. We write

E2 − p2 − μ2 ¼ E2 − ð1
2
p2=μþ μÞ2 þ p2ð1

2
p=μÞ2.

Dropping the last term the approximate Hamiltonian

constraint is

C ¼ E2 −

�

p2

2μ
þ μ

�

2

: ð30Þ

We will further simplify matters by assuming that there

is only one spatial dimension, writing p ¼ px, and q ¼ x.
As our quantum kinematical algebra A we will use the

algebra of polynomials with complex coefficients gener-

ated by two canonical pairs of variables with the nonzero

commutators having canonical form, ½q; p� ¼ ½Z; E� ¼ iℏ1,
where each generator is �-invariant. We note that this

algebra can be represented as operators on the space of

Schwartz-type wave functions on R2 with the usual square-

integral inner product.

This constraint has the form of a difference of commut-

ing squares we saw in Eq. (28), with Ẽ ¼ E and
ffiffiffi

h
p

¼ ð1
2
p2=μþ μ1Þ, which factorizes as

C ¼ CþC− ¼ C−Cþ

where C� ¼ E� ð1
2
p2=μþ μ1Þ. The factors commute,

neither is a divisor of zero or has an inverse in A, and

we also have C�
� ¼ C�. [17] Either factor can be used to

define a linearization of the constraint: If Cþ plays the role

of CH, then C− plays the role of N and vice versa.

Each factor has the form of a parametrized Newtonian

particle and can be deparametrized by Z as the clock. To see

this we note that A has a basis of specially ordered

monomials qkplZmEn, for integer k, l, m, n, analogous
to our example in Sec. II C. As in Sec. III D, the commutant

Z0 has a linear basis consisting of monomials qkplZm,

restricting the basis ofA to those elements with n ¼ 0. The

ideal ðZ − t1ÞZ0 defines cosets on Z0 given by

½qkplZm� ¼ ½qkpltm� ¼ tm½qkpl�:

The collection of cosets f½qkpl�g therefore provides a linear
basis on the quotient algebra Z0=ðZ − t1ÞZ0, on which the

canonical projection πt∶ Z0
→ Z0=ðZ − t1ÞZ0 acts by

πtðqkplZmÞ ¼ tm½qkpl�:

The linear span of the monomials qkpl ∈ Z0 is the natural
choice for the fashionable algebra F corresponding to

treating E as the time translation generator, so that

½E;F � ¼ 0 (see discussion in Sec. III D 3). The clock

ðZ;F Þ deparametrizes each factor C� as described in

Sec. III D 2.

Let us explicitly characterize the algebraic restrictions

placed on kinematical states by this deparametrization. An

almost-positive state defined in Sec. III C is a solution of
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C�. Using the same factorization as above ω�ðAC�Þ ¼ 0

yields a condition for the value assigned to basis

monomials

ω�ðqkplZmEnÞ ¼ ð∓1Þnω�

�

qkplZm

�

p2

2μ
þ μ1

�

n
�

¼ ð∓1Þn
X

n

j¼0

�

1

2μ

�

j

μn−jω�ðqkplþ2jZmÞ:

As anticipated by the discussion in Sec. III D 2, the above

relation can be interpreted as placing no restrictions on

the values assigned by states to elements of Z0 (basis

elements with n ¼ 0), which can then be used to com-

pletely determine the values assigned to the rest of A. In

addition, an almost-positive state parametrizes Z, leading to
restrictions on values assigned to Z0

ω�ðqkplZmÞ ¼ ω�ðZÞmω�ðqkplÞ:

We can freely specify the values assigned by the state to the

clock ω�ðZÞ and to elements of the fashionable algebra;

after that the values assigned to the rest of Z0 are completely

fixed by the parametrization condition. Finally, positivity

on Z0 is satisfied if, in addition, ω�ðZÞ ∈ R and ω� is

positive onF , which captures the degrees of freedom of the

deparametrized system. They evolve relative to clock Z

along the flow generated by C� ¼ E�
ffiffiffi

h
p

. Since
ffiffiffi

h
p

¼
ð1
2
p2=μþ μ1Þ is a fashionable and commutes with E,

following the same reasoning as in Sec. III D 2 leading

up to Eq. (11), deparametrized time evolution of values of

A ∈ F is generated via

d

dt
ωt;�ðAÞ ¼

1

iℏ
ωt;�

��

A;�
�

1

2μ
p2 þ μ1

���

:

Now that we understand how to algebraically depar-

ametrize either factor C� with respect to Z, let us discuss
how this deparametrization relates to the algebraic solution

of the original constraint C, as defined in Sec. II B. Let us

begin by understanding the relation of the constraint

surfaces ΓC� defined by the two factors to the constraint

surface ΓC corresponding to the original constraint.

Since both ωðACþÞ ¼ 0 and ωðAC−Þ ¼ 0 also imply

ωðACÞ ¼ 0, every solution of C� is also a solution of

C. Therefore both constraint surfaces ΓC� are entirely

contained within the constraint surface ΓC. Furthermore,

normalized combinations of states from ΓCþ and ΓC−
also

give us solutions to C. In particular, if aþ; a− ∈ C, where

aþ þ a− ¼ 1, and if we have two states ωþ ∈ ΓCþ and

ω− ∈ ΓC−
, then ω ¼ aþωþ þ a−ω− is an element of ΓC.

For any constraint of the type C ¼ CþC− ¼
ðẼþ

ffiffiffi

h
p

ÞðẼ −
ffiffiffi

h
p

Þ (discussed in Sec. IV C), including

the current example, the two surfaces ΓC� are not disjoint.

A solution to both constraint factors must satisfy

ωðACþÞ ¼ 0 and ωðAC−Þ ¼ 0 for any A ∈ A. These

conditions are entirely equivalent to requiring that both

ωðAẼÞ ¼ 0 and ωðA
ffiffiffi

h
p

Þ ¼ 0 for all A ∈ A, since

ωðAẼÞ ¼ ω

�

A ·
1

2
ðCþ þ C−Þ

�

¼ 1

2
ðωðACþÞ þ ωðAC−ÞÞ ¼ 0;

ωðA
ffiffiffi

h
p

Þ ¼ ω

�

A ·
1

2
ðCþ − C−Þ

�

¼ 1

2
ðωðACþÞ − ωðAC−ÞÞ ¼ 0:

Conversely, ωðAẼÞ ¼ 0 and ωðA
ffiffiffi

h
p

Þ ¼ 0 immediately

imply both ωðACþÞ ¼ 0 and ωðAC−Þ ¼ 0. Now, the only

restriction on the values assigned by a general state ω ∈ Γ

is normalization ωð1Þ ¼ 1. So, it is possible to satisfy both

ωðAẼÞ ¼ 0 and ωðA
ffiffiffi

h
p

Þ ¼ 0 for all A, unless AẼþ
B

ffiffiffi

h
p

¼ 1 for some A;B ∈ A. No such A and B exist

within A in our example, hence the intersection ΓCþ ∩ ΓC−

is nonempty.

However if we consider only almost-positive states,

there are additional restrictions. In the present example,

since p ¼ p� ∈ Z0,

ωð
ffiffiffi

h
p

Þ ¼ 1

2μ
ωðpp�Þ þ μ ≥ μ > 0;

which means ωð
ffiffiffi

h
p

Þ ¼ 0 cannot be satisfied by an almost-

positive state. Hence the sets of almost-positive states

with respect to internal clock Z defined by the two

constraint factors are, in this case, completely disjoint.

Furthermore, because ½Cþ; C−� ¼ 0, the value ωþðC−Þ ¼
ωðCþ − 2

ffiffiffi

h
p

Þ ¼ −2ωð
ffiffiffi

h
p

Þ < −2μ ≠ 0 is preserved along

the entire orbit generated by ACþ; therefore ½ωþ�Cþ
∩

ΓC−
¼ ∅. By a symmetric argument ½ω−�C−

∩ ΓCþ ¼ ∅.

The constraint of our example possesses two factorizations

deparametrizable by the same clock Z, which sample

distinct physical states of the original constraint (note that

½ω�C ⊂ ½ω�C�
as discussed in detail below).

Let us consider the gauge orbits ½ω�C�
generated by a

factor constraint more closely. As we have pointed out in

Sec. IVA, ½ω�C ⊂ ½ω�C�
and we generally need additional

conditions (see Secs. IVA and IV B) to ensure that the

observables of the original constraint C are preserved along

the gauge flows associated with a factor constraint C�.
In this particular case, it is straightforward to check this

explicitly by finding a complete set of observables. The

complete classical solution of a two-component system

with a single constraint (that could then be quantized),

should result in 2 × 2 − 1 ¼ 3 independent observables

that are constant along the flow generated by the constraint
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via the Poisson bracket. (One further degree of freedom

would then be eliminated by the constraint condition,

leaving us a one-component unconstrained system.)

Clearly ½E;C� ¼ ½p;C� ¼ 0 and it is not very difficult to

find the third independent observable O ¼ 1
μ
Zp

ffiffiffi

h
p

þ qE.

It is immediately obvious that E and p also commute with

the factor constraints C�, and a brief calculation yields

½O;C�� ¼
�

1

μ
Zp

ffiffiffi

h
p

þ qE; E�
ffiffiffi

h
p �

¼ 1

μ
p

ffiffiffi

h
p

½Z; E� � ½q;
ffiffiffi

h
p

�E

¼ 1

μ
iℏp

ffiffiffi

h
p

� 1

μ
iℏpE ¼ iℏ

μ
pC�:

Therefore, for any ω ∈ ΓC� all states within the orbit ½ω�C�
assign identical values to the observable algebra Aobs

associated with the original constraint C, here generated

by E, p, and O.

V. METHODS FOR APPROXIMATE

DEPARAMETRIZATION

As we have seen in Secs. III and IV, given an internal

clock, only a select few of the constraints that satisfy the

conditions laid out in Sec. II B can be deparametrized by it

exactly—either directly or by factorization. This should not

be surprising: even in the classical description of totally

constrained systems a given internal clock, in general, is

only locally (and temporarily) valid where the Poisson

bracket fZ;Cg is nonvanishing. In the quantum case, the

states are difficult to localize, especially in the kinematical

setting where nothing restricts gauge orbits to be “local”

and physical states can only be truly localized on the values

they assign to the Dirac observables of the system. It is

therefore reasonable to expect that quantum deparametri-

zation will, in general, only hold approximately, and only

on states that satisfy additional localization conditions.

In this section we discuss several state-based strategies

for approximately deparametrizing a given constraint.

Our objective here is to show that our algebraic approach

to deparametrization is well suited for development of

approximation techniques, some of which will be briefly

explored, leaving their detailed study for another time.

A. Approximate factorization

Consider a pair of �-invariant elementsN;CH ∈ A, where

CH has all the properties of a constraint that is exactly

deparametrizable by some clock ðZ;F Þ. For ½N;CH� ≠ 0,

the product NCH is not �-invariant and so could not serve as
a constraint. Consider instead the constraint

C ¼ NCH −
1

2
½N;CH�:

It is straightforward to check that C� ¼ C; however, CH is

not exactly a factor constraint of C, but it would be

approximately a factor of C if ½N;CH� is “small.” Since

½N;CH� is just some element of the kinematical algebraA its

value in a state is a priori not restricted by anything

other than normalization and constraint conditions.

Suppose ω is a solution of CH, under what conditions does

it also solve C? Since

ωðACÞ ¼ ω

�

ANCH −
1

2
A½N;CH�

�

¼ 1

2
ωðA½N;CH�Þ;

we need ωðA½N;CH�Þ ¼ 0 for all A ∈ A, imposed on

solutions to CH in order for them to also solve C.
Unfortunately, unless ½CH; ½N;CH�� ¼ 0, this leads to further

conditions or inconsistencies, since we need

ωð½CH; ½N;CH��Þ ¼ ωðCH½N;CH�Þ þ ωð½N;CH�CHÞ ¼ 0:

For example, suppose N ¼ a1þ bZ2, where a; b ∈ R,

we have ωð½CH; ½N;CH��Þ ¼ 2ℏ2b, so that CH and C ¼
ða1þ bZ2ÞCH − iℏbZ do not share any solutions at all.

Nevertheless, almost positive states of CH for which

ωðA½N;CH�Þ ¼ 2iℏbωðAZÞ ¼ 2iℏðωðZÞωðAÞ þωð½A;Z�ÞÞ

is small for all A ∈ A are also approximate solutions to the

constraint C.
What general form can this “smallness” condition take?

For a general flow rate N ¼ N0 þ N1CH, where N0 ∈ Z0

and N1 ∈ A, so that in an almost positive state

ωðA½N;CH�Þ ¼ ωðA½N0; CH�Þ. Further, for an arbitrary

A ∈ A there are Bn ∈ Z0 and an integer M, such that

A ¼ B0 þ
P

M
n¼1 BnC

n
H. So that

ωðA½N;CH�Þ ¼
X

M

n¼0

ωðBnC
n
H½N0; CH�Þ

¼
X

M

n¼0

ωðBnad
nþ1
CH

ðN0ÞÞ; ð31Þ

where we have commuted every factor of CH all the way to

the right and used the fact that ω solves CH. We note that

adnCH
ðN0Þ [using notation introduced in Sec. IVA leading

up to Eq. (18)] is an element of Z0 for any n. By positivity of
ω on Z0 we therefore have ωððadnCH

ðN0ÞÞ�adnCH
ðN0ÞÞ ≥ 0.

Let us restrict to almost-positive states for which

these values are suppressed by some small quantity ϵ,

formally

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωððadnCH
ðN0ÞÞ�adnCH

ðN0ÞÞ
q

∝ ℏnϵ; ð32Þ

where we have included factors of ℏ to keep track of the

number of commutators taken. Using positivity of ω on Z0,
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this condition is sufficient to ensure that all values of the

form ωðA½N;CH�Þ are now also small. Using (31) we have

jωðA½N;CH�Þj

≤
X

M

n¼0

jωðBnad
nþ1
CH

ðN0ÞÞj

≤
X

M

n¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωðB�
nBnÞ

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωððadnCH
ðN0ÞÞ�adnCH

ðN0ÞÞ
q

∝ ℏϵ
X

M

n¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωðB�
nBnÞ

p

ℏ
n ∝ ℏϵ:

More generally, following the same argument we get

jωðAadnCH
ðNÞÞj ∝ ℏ

nϵ:

Furthermore, the “smallness” is locally approximately

preserved along the gauge orbits generated by CH in the

sense that the derivatives of these conditions along the

gauge flows are also of order ϵ. We use (3) to compute

changes in values assigned by an almost-positive ω along

the gauge flow generated by GCH for an arbitrary G ∈ A

�

�

�

�

d

dλ
SGCH

ðλÞωðA½N;CH�Þ
�

�

�

�

λ¼0

¼ 1

ℏ
jωð½A½N;CH�; BCH�Þj

¼ 1

ℏ
jωðBAad2CH

ðNÞ þ B½A;CH�½N;CH�Þj

≤
1

ℏ
jωðBAad2CH

ðNÞÞj þ jωðB½A;CH�½N;CH�Þj

∝ ℏϵ;

which is of the same order as ωðA½N;CH�Þ.
Depending on the particular system studied, this

approximation can be quite manageable. For example,

if N ¼ a1þ bZ2, as we considered earlier, we have

N0 ¼ N ∈ Z0, as well as

adCH
ðN0Þ ¼ 2iℏbZ;

ad2CH
ðN0Þ ¼ −2ℏ2b1; and adnCH

ðN0Þ ¼ 0; for n > 2:

So (32) results in only two conditions for approximate

factorization

jbjjωðZÞj ∝ ϵ and jbj ∝ ϵ:

It is then sufficient to require b to be small and for ωðZÞ to
not be very large.

B. Deparametrization by linearization

Given a constraint C and a clock ðZ;F Þ such that the

commutator ½Z;C� ≠ 0, but is not of the canonical form, the

idea here is to perform some approximately reversible

transformation on C that will make it exactly deparame-

trizable with respect to Z

LC ¼ CH:

Our starting assumption will be that L, just as the form of

the above expression suggests, is a left multiplication

by some combination of elements of the kinematical

algebra A. In the most straightforward situation L ∈ A

and linearization is the reverse of factorization discussed in

Sec. IV with L ¼ N−1. In fact, this relation immediately

highlights where linearization requires more subtlety than

factorization: in all of our explicit examples so far, with

kinematical algebra A constructed out of polynomials in

basic (usually canonical) generators, no elements of A

other than multiples of the identity are invertible within A

itself. In a Hilbert space representation of A inverses of

some operators can be constructed by spectral decompo-

sition. When an inverse operator A−1 exists, when we

restrict to the overlap of domains of An for all positive

integer n and A−1, its action coincides with the action of the

infinite power series constructed out of A

A−1 ¼ ða01þ ðA − a01ÞÞ−1 ¼
1

a0

X

∞

n¼0

�

−1

a0

�

n

ðA − a01Þn;

for an arbitrary number a0. The first approximation that we

will employ here is the use of such formal power series to

invert elements of A: the results of our manipulations will

only be defined on a subset of algebraic states, for which

computing ωðA−1Þ and related expressions converges.

For our purposes, it is convenient to define state-

dependent “moment” elements

ΔA ¼ A − ωðAÞ1: ð33Þ

For any fixed state this gives an element ofA, which will be

different if a different state is selected. We will keep this

state dependence in mind, while omitting explicit reference

to the state when writing ΔA to reduce notational clutter.

By setting a0 ¼ ωðAÞ we re-write the inverse power series
in terms of the moments

A−1 ¼ 1

ωðAÞ
X

∞

n¼0

�

−1

ωðAÞ

�

n

ðΔAÞn: ð34Þ

Linearization may also involve inverting other polynimial

operations, such as taking square roots, which can also be

constructed using power series in moments. We, therefore,
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expect that linearization will have the general form of

multiplication by some

L ¼
X

∞

n¼0

fnðωÞAn;

where fðωÞ are some state-dependent numerical coeffi-

cients and An ∈ A. We also anticipate that the resultant

linearized constraint CH will also be of this form.

1. Time-independent quadratic constraint

To show how linerization can be constructed in practice

we will focus on the situation where Z is canonical, as in

Sec. III D, and the constraint has the special quadratic form

C ¼ E2 − h;

with h� ¼ h and ½E; h� ¼ 0. This is a special case of the

quadratic constraint in Eq. (28) with Ẽ ¼ E, so if h has a

square root we can factorize C ¼ ðE −
ffiffiffi

h
p

ÞðEþ
ffiffiffi

h
p

Þ.
Looking for linearization LC ¼ Eþ

ffiffiffi

h
p

≕CH we will

need to take the square root of h and invert ðE −
ffiffiffi

h
p

Þ.
For the kinematical algebra constructed out of polynomials

in E and other generators, h will not in general have a

square root in A and even if it does, ðE −
ffiffiffi

h
p

Þ does not

have an inverse in A. We therefore use state-dependent

moments to write

E −
ffiffiffi

h
p

¼ ωðE −
ffiffiffi

h
p

Þ þ ΔðE −
ffiffiffi

h
p

Þ: ð35Þ

For the states on which h has a square root and ðE −
ffiffiffi

h
p

Þ
can be inverted, enforcing C is equivalent to enforcing CH,

so that for a solution of C we also have ωðE −
ffiffiffi

h
p

Þ ¼
ωð2E − ðEþ

ffiffiffi

h
p

ÞÞ ¼ 2ωðEÞ. We define L as a formal

state-dependent power series expanding ðE −
ffiffiffi

h
p

Þ−1
around ωðEÞ as in Eq. (34):

L ≔
1

2ωðEÞ
X

∞

n¼0

�

−
ΔE − Δ

ffiffiffi

h
p

2ωðEÞ

�n

: ð36Þ

By construction, LC ¼ E −
ffiffiffi

h
p

is linear in E and

�-invariant, where if h does not have a square root in A,

it can be constructed through its own moment power series

ffiffiffi

h
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωðhÞ þ Δh
p

¼
ffiffiffiffiffiffiffiffiffiffi

ωðhÞ
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Δh

ωðhÞ

s

¼
ffiffiffiffiffiffiffiffiffiffi

ωðhÞ
p

X

∞

n¼0

�

1
2

n

��

Δh

ωðhÞ

�

n

:

2. Time-dependent quadratic constraint

Here the constraint is similar to the previous section

C ¼ E2 −H2, but with ½E;H� ≠ 0, so that we cannot

factorize the constraint: E2 −H2 ≠ ðE −HÞðEþHÞ.
However, we can find appropriate factors again at the

level of formal power series. To show this, we rewrite our

constraint as C ¼ E2 −H2 − V with ½E;H� ¼ 0 but

½E; V� ≠ 0, explicitly splitting off a time-dependent poten-

tial V. In this form, there is the additional problem of taking

the square root ofH2 þ V. If the square root is not obtained
from a representation on a kinematical Hilbert space via the

spectral decomposition of H2 þ V, it can be defined by a

formal power series

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H2 þ V
p

≔ H þ 1

2
H−1V þ � � � ð37Þ

if H is invertible and commutes with V.
Given a square root, we make an ansatz to factorize the

constraint as

C ¼ E2 −H2 − V

¼
�

Eþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H2 þ V
p

þ X
	�

E −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H2 þ V
p

þ Y
	

ð38Þ

with X; Y ∈ A to be determined so as to make the equation

an identity. Both X and Y should be �-invariant for the two
terms in the factorization (38) to serve as either N or CH.

We compute

C ¼ E2 −H2 − V þ
h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H2 þ V
p

; E
i

þ X
�

E −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H2 þ V
p

	

þ
�

Eþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H2 þ V
p

	

Y þ XY:

The terms in C that are not manifestly �-invariant are

given by

0 ¼ C − C�

¼
h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H2 þ V
p

; 2Eþ X þ Y
i

þ ½X − Y; E� þ ½X; Y�:

ð39Þ

The symmetric terms required to vanish for (38) to be

valid are

0 ¼ ðCþ C�Þ − 2ðE2 −H2 − VÞ
¼ ððX þ YÞEþ EðY þ XÞÞ

−

�

ðX − YÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H2 þ V
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H2 þ V
p

ðX − YÞ
	

þ XY þ YX: ð40Þ

It is difficult to find general solutions to these equations.

One simple but not particularly interesting special solution
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to (40) is obtained if we set Y ¼ −X. Equation (40)

then implies

X2 þ
�

X
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H2 þ V
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H2 þ V
p

X
	

¼ 0

with an obvious solution X ¼ −2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H2 þ V
p

. This simple

solution is of little interest because it merely flips the two

factors in (38). Moreover, because these two factors do

not commute in the time-dependent case, it cannot be a

complete solution, and indeed Eq. (39) is violated.

Nevertheless, assuming that Y ¼ −X is useful because it

allows us to make contact with previous work on effective

constraints. At least formally, we can factorize the con-

straint in the form (38) if we do not insist on �-invariant X
and Y. This condition is necessary in our algebraic

deparametrization because it guarantees a �-invariant flow
rate N and Hamiltonian in CH, such that C ¼ NCH. These

invariance conditions, in turn, are required for a well-

defined flow that preserves the reality of fashionables and is

meaningful off-shell. If X or Y are no longer �-invariant, at
least one of these conditions must be violated.

If we then ignore the condition of �-invariance of C, the
factorization (38) imposes only one equation that relates X
and Y, instead of two equations, (39) and (40). We may

again choose Y ≔ −X, such that C ¼ E2 −H2 − V in (38)

implies the condition

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H2þV
p

X¼
h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H2þV
p

;E
i

þ
h

X;E−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H2þV
p

i

−X2:

ð41Þ

We solve this equation for X, assuming
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H2 þ V
p

to be

invertible and using a formal power series,

X ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H2 þ V
p

−1

�

h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H2 þ V
p

; E
i

þ 1

2

h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H2 þ V
p

−1
h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H2 þ V
p

; E
i

; E
i

−
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H2 þ V
p

−1
h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H2 þ V
p

; E
i

2 þ � � �
�

; ð42Þ

iteratively inserting X. The presence of iterated and squared
commutators means that this formal power series takes the

form of an expansion by powers of ℏ.

If ½V;H� ¼ 0 (but still ½V; E� ≠ 0), we can compute

½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H2 þ V
p

; E� by interpreting
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H2 þ V
p

as the formal

power series (37). The expansion in (42) is then done

by iterated commutators ½� � � ½V; E�;…; E� which are deriv-

atives of V by Z. (It takes the form of an adiabatic

expansion.) For polynomial VðZÞ, therefore, the formal

power series (42) truncates after finitely many terms. Using

the assumption ½V;H� ¼ 0, we have, to first order in ℏ

(or in commutators with E),

X ¼ iℏV 0ðZÞ
4H2

þOðℏ2Þ þOðV2Þ ð43Þ

if the square root is understood as in (37). Clearly, this

solution for X (and, correspondingly, for −Y) is not

�-invariant.
The C-flow under the quantum clock Z, generated

by LC ¼ E −H − 1
2
H−1V − X, would be �-invariant if

VðZÞ þ 1
2
iℏH−1V 0ðZÞ could be �-invariant. This condition

(for H� ¼ H) can be fulfilled only if Z is not �-invariant.
We dismiss this possibility because Z is a member of a

basic canonical pair, and its �-invariance is required for Z0

to inherit a �-structure from A. Since fashionables are

defined as a subset of Z0, a �-structure is required for a

meaningful physical interpretation.

Alternatively, given the notion of almost-positive states,

we may consider a weaker condition on the flow generated

by NC. Instead of requiring LC to be �-invariant, we can

impose the condition that ωðLCÞ be real for admissible

states ω. For an almost-positive state, LC ≠ ðLCÞ� does

not imply a nonreal ωðLCÞ off-shell because LC ∉ Z0.
The contribution in LC that is not �-invariant is given

by 1
2
H−1V − X or, since we assume that ½V;H� ¼ 0, by

VðZÞ þ 1
2
iℏH−1V 0ðZÞ. If we then require that ωðVðZÞ þ

1
2
iℏH−1V 0ðZÞÞ be real, ωðZÞ cannot be real. We may still

assume that Z is �-invariant if we modify our definition of

almost-positive states to be positive only on fashionables,

rather than the full Z0. A nonzero imaginary part of ωðZÞ
is required by the ℏ-term in X, so that it should be of the

order of ℏ.

For a polynomial VðZÞ ¼
P

n VnZ
n, we expand

ωðVðZÞÞ ¼
X

n

VnωðZnÞ ¼
X

n

VnωðZÞn

and

ωðH−1V 0ðZÞÞ ¼
X

n

nVnωðZÞn−1ωðH−1Þ:

Here, we use the fact that the condition ωðZAÞ ¼
ωðZÞωðAÞ for all A ∈ A if ω is almost-positive implies

ωðZnÞ¼ωðZÞn because Z ∈ A. Writing ωðZÞ¼ReωðZÞ þ
iImωðZÞ and treating ImωðZÞ as a number of the order ℏ,

we can solve for

ImωðZÞ ¼ −
1

2
ℏωðH−1Þ þOðℏ2Þ: ð44Þ

The imaginary part is thus fixed, and only the real part of

ωðZÞ plays the role of an evolution parameter in the flow

equation (5). This result agrees with what had been found

previously using effective constraints.

In this interpretation, we may have �-invariant C, L, CH

and Z. As a consequence, off-shell gauge transformations

and deparametrized evolution are meaningful, and a natural
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�-structure is induced on Z0 which can be applied to

fashionables. However, if we use a complex z instead of

a real t for ωðZÞ, ðZ − z1ÞZ0 does not define a �-invariant
subalgebra of Z0, and Z0=ðZ − z1ÞZ0 does not inherit a

natural �-structure from Z0. The projection πt∶ Z0
→

Z0=ðZ − z1ÞZ0, used in the definition of the gauge-fixing

surface (4), is no longer a �-homomorphism. It would

therefore be impossible to define positivity conditions on

gauge-fixed states.

The present derivation shows that we would have to

violate at least one of the conditions of algebraic depar-

ametrization as defined here if we wanted to implement

previous results from effective constraints. It therefore

remains unclear whether complex time evolution with an

imaginary contribution (44) can be extended from semi-

classical evolution to full quantum evolution.

C. Moments and effective constraints

Effective constraints in canonical theories can be derived

from moment expansions, replacing functionals ω on an

algebra with sets of infinitely many moments. In semi-

classical and perhaps other regimes, a finite number

of lower-order moments may be sufficient to describe

the dynamics, giving rise to systematic approximation

methods. This canonical version of the method of effective

actions, introduced and developed in [18–20], is rather

close to the algebraic viewpoint of the present article.

Given a basic set of algebra elements xi for i ¼ 1;…n
which generate the algebra A and have closed commutator

relations with one another, we define the moments

Δðxa11 � � � xann Þ ≔ ωððx1 − ωðx1ÞÞa1 � � � ðxn − ωðxnÞÞanÞWeyl

ð45Þ

of a given state ω, indicating by the subscript “Weyl” that

all products of the xi are ordered completely symmetrically.

(If the xi are �-invariant, the moments are then real numbers

in a positive state.)

1. Uncertainty relations

These moments are useful for different considerations

of physical properties. For instance, when one rewrites the

Cauchy-Schwarz inequality in terms of them, one obtains

uncertainty relations. A standard derivation shows that (1)

for A ≔ Δxj ¼ xj − ωðxjÞ and B ≔ Δxk implies

Δðx2jÞΔðx2kÞ − ΔðxjxkÞ2 ≥
jωð½xj; xk�Þj2

4
ð46Þ

if ωð½xj; xk�Þ is purely imaginary and ΔðxjxjÞ is real.

Otherwise, we would have

Δðx2jÞΔðx2kÞ ≥ ðReΔðxjxjÞ þ Reωð½xj; xk�ÞÞ2

þ 1

4
ðImΔðxjxjÞ þ Imωð½xj; xk�ÞÞ2:

For A and B polynomials in the Δxj, we obtain higher-

order uncertainty relations for moments of order a1 þ � � � þ
an > 2 [21,22].

It is interesting to note that moments of almost-positive

linear functionals formally satisfy the standard uncertainty

relation even though they do not have full positivity.

The Cauchy-Schwarz inequality is replaced by ωðZAÞ ¼
ωðZÞωðAÞ for a quantum clock Z if A ∈ Z0. From this

equation, we derive that ΔðZ2Þ ¼ 0, while

ΔðZEÞ¼1

2
ωðZEþEZÞ−ωðZÞωðEÞ¼1

2
ωð½E;Z�Þ ð47Þ

is purely imaginary. The uncertainty relation (46) therefore

remains valid (and saturated) for xj ¼ Z, xk ¼ E. [A

vanishing fluctuation ΔðZ2Þ is formally consistent with

the uncertainty relation because ΔðZEÞ is not real. This

result is only formal because the derivation of (46) is not

valid if ΔðxjxkÞ is not real, as it would be for xj ¼ Z and

xk ¼ E.] This calculation confirms and explains analogous

results derived for effective constraints in an expansion to

first order in ℏ [19,20].

Semiclassical or ℏ-expansions are defined by the order

of moments,

Δðxa11 � � � xann Þ ¼ Oðℏða1þ���þanÞ=2Þ: ð48Þ

(Since the commutator ½xj; xk� is proportional to ℏ,

moments of states that nearly saturate uncertainty relations

must generically be of this order.) Any state with this

behavior of the moments is called semiclassical. For an

algebra generated by a single basic canonical pair ðq; pÞ
with ½q; p� ¼ iℏ, a special form of a semiclassical state is an

uncorrelated Gaussian state ωσ for which

Δωσ
ðqapbÞ ¼ 2−ðaþbÞ

ℏ
aσb−a

a!b!

ða=2Þ!ðb=2Þ! ð49Þ

whenever a and b are even, and Δωσ
ðqapbÞ ¼ 0 otherwise.

[The fluctuation parameter σ is of the order ℏ=2

because Δðp2Þ ¼ 1
2
σ2.]

2. Poisson structure

The commutator in A induces a Poisson structure on the

set of all states by defining

fωðAÞ;ωðBÞg ≔
ωð½A;B�Þ

iℏ
: ð50Þ

It can be extended to polynomials in ωðxki Þ by requiring

the Leibniz rule to hold, and then provides as Poisson

structure on Γ, with coordinates given by expectation

values and moments of basic elements xi. An explicit

calculation shows that

fωðxiÞ;Δðxa11 � � � xann Þg ¼ 0 ð51Þ
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for canonical xi. (There is a closed but lengthy expression

also for Poisson brackets of different moments [23].)

On semiclassical states, one obtains a finite-dimensional

Poisson manifold to each order N, at which only moments

with a1 þ � � � þ an ≤ N are considered; see [24] for proper-

ties of such truncations. (These manifolds, in general, are

not symplectic.) By setting all higher-order moments, as

well as products of moments whose combined order

exceeds N, equal to zero, one obtains effective constraints

Cp ≔ ωðpCÞ ð52Þ

for all polynomials p in xi − ωðxiÞ, of a certain maximum

degree required for moments up to order M. Poisson

reduction of this constrained system is equivalent to solving

the constraint C to order M=2 in ℏ. The reduced phase

space, given by the constraint surface divided by the flow

generated by the constraints, consists of observables of the

system to within the same order.

Alternatively, one may solve the system by fixing

the gauge, that is, finding a cross section of the fibration

given by the flow generated by effective constraints. For

effective constraints Cp with nonconstant p, a gauge-fixing

condition is given by almost positivity in the form

ωðZAÞ ¼ ωðZÞωðAÞ, which in terms of moments implies

ΔðZa � � �Þ ¼ 0 ð53Þ

for all a ≥ 1. Up to constant multiples, only one effective

constraint
P

pi
lpiCpi

(expressed in a polynomial basis)

remains unfixed, which generates evolution

dωðFÞ
dz

¼



ωðFÞ;
X

pi

lpiCpi

�

ð54Þ

compatible with the gauge-fixing conditions:




ΔðZa � � �Þ;
X

pi

LpiCpi

�

¼ 0: ð55Þ

This compatibility condition provides a set of linear equa-

tions for the coefficients lpi . (For examples, see [25–27].) For

several independent basic variables xi, or for higher orders in
ℏ, these linear systems can become rather large.

Our general theory of algebraic deparametrization pro-

vides a more practical method: We can expand LC around

ωðEÞ, as in (36). We then recognize ωðLCÞ with (36) as an

expansion by effective constraints. Coefficients in this

expansion will therefore produce the lpi . To first order in

ℏ, we include all effective constraints with linear poly-

nomials; L in (36) should therefore be expanded to linear

order. For a single canonical pair ðQ;PÞ in addition to

ðZ; EÞ, we have

L ¼ 1

2ωðEÞ

�

1 −
ΔðEÞ þ ΔðHÞ

2ωðEÞ þ � � �
�

¼ 1

2ωðEÞ

�

1 −
ΔðEÞ
2ωðEÞ −

1

2Hω

∂Hω

∂ωðQÞΔQ −
1

2Hω

∂Hω

∂ωðPÞΔPþ � � �
�

ð56Þ

where we introducedHω ≔ HclassðωðQÞ;ωðPÞÞ as the classical limit ofH, and Taylor-expanded in ΔQ and ΔP. Moreover,

we identified ωðEÞ ¼ Hω in coefficients of ΔQ and ΔP using the constraint, which is valid to this order of expansion.

We then obtain the linearized effective constraint

ωðLCÞ ¼
X

lpiCpi

¼ 1

2ωðEÞ

�

C1 −
1

2ωðEÞCE −
1

2Hω

∂Hω

∂ωðQÞCQ −
1

2Hω

∂Hω

∂ωðPÞCP þ � � �
�

ð57Þ

which generates a flow compatible with the quantum

clock Z. This general expression agrees with the specific

examples found in [25–27]. The new methods presented

here offer a streamlined derivation of effective evolution

generators and, at the same time, highlight a direct

relationship between gauge-fixing conditions of effective

constraints and (almost-)positivity conditions on an alge-

braic state.

VI. HILBERT SPACES

In the previous section, we have provided a well-defined

scheme to obtain complete physical evolution of algebraic

states. We were able to avoid several difficulties usually

encountered when one attempts similar constructions on

physical Hilbert spaces. Nevertheless, it is often useful to

have Hilbert-space representations at hand. In our context,

Hilbert spaces are important in order to discuss conver-

gence issues of the various formal power series we referred

to. These applications occur at two different levels,

amounting to kinematical and physical Hilbert spaces.

A. Kinematical Hilbert space

When one quantizes a theory in standard form, one

constructs a �-algebra not abstractly but rather as operators
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on a Hilbert space. Our algebraA would follow in this way

by using a kinematical Hilbert space representation.

Classical observables (real functions on phase space) are

assigned self-adjoint operators, so that Poisson brackets of

a set of basic variables xi turn into commutators of their

operators. One of the classical phase-space functions is the

constraint C, which becomes an element of A in the

quantization procedure. So far, we have simply assumed

that some �-algebra with a set of basic element and a

constraint is constructed in this process, which we have

analyzed further.

A kinematical Hilbert space provides different topol-

ogies in which one can formulate the convergence of power

series, such as (37). It also allows one to analyze the

invertibility of operators, such asH in (37), which would be

more difficult at the pure algebra level. Moreover, for

normal operators, the spectral decomposition is a powerful

method to compute explicit versions of square roots or

inverse operators. All this can be done on a kinematical

Hilbert space and does not require one to enter the

complicated issues surrounding the construction of physi-

cal Hilbert spaces. We can therefore appeal to a kinematical

Hilbert space in the context of our formal power series.

In particular, instead of just assuming that a square root or

an inverse exists in our algebra, we could go back to the

kinematical Hilbert space and enlarge our �-algebra by

elements corresponding to square roots or inverses of

required operators.

The state-dependent expansion (36) is less obvious to

deal with. However, in order to test convergence, we may

simply view ωðEÞ in this series as a (nonzero) number and

discuss the convergence of the resulting operator series. If

the series converges to a well-defined operator for all

nonzero ωðEÞ (or at least some range), we can consider the

limit operators as elements of our �-algebra. Well-defined

N ∈ A and thus evolution generatorsNC are then obtained.

The final kinematical question is about properties of the

generator NC. By our conditions, it must be self-adjoint.

Two problems may arise in this context: First, as we have

seen algebraically, an NC of the required form can, in

general, be self-adjoint only if ωðZÞ is not real even though
Z is self-adjoint on the kinematical Hilbert space. Secondly,

even if the series (36) converges in a well-defined sense on

the kinematical Hilbert space, it may not do so uniquely. In

the latter case, NC would not be essentially self-adjoint,

even though it may have self-adjoint extensions.

The first problem has already appeared in the context

of the state-dependent expansion (36). Heuristically, for

physical observables we need only require self-ajointness

on the induced kinematical representation of the subalgebra

of A “not containing Z and E.” Using the conditions on

almost-positive states, we may then treat any occurrence of

Z inNC as a complex numberωðZÞ, and require thatNC be

self-adjoint in this representation for certain imaginary

parts of ωðZÞ, such as (44). However, as we have seen in

our detailed algebraic discussion, a full realization of the

deparametrized system requires a meaningful choice of a

fashionable algebra which makes sense of the heuristic

statement “not containing Z and E” above. Our definition

of a fashionable algebra requires a �-relation, but none
would be inherited naturally if neither Z0 nor Z=ðZ − t1ÞZ0

are �-invariant. This problem may not be obvious on the

Hilbert-space level, but is the underlying reason of several

uncontrolled ambiguities in this setting because the analog

of a fashionable algebra appears at best implicitly.

The second problem is not restricted to our formalism,

and it can be dealt with as usual. If an evolution generator is

not essentially self-adjoint, quantum dynamics is not

considered uniquely determined. For all self-ajoint exten-

sions, we obtain well-defined (but mutually inequivalent)

quantum evolutions. For each of them one can use our

formalism to make predictions, and confront them with

experiments. The self-adjoint extension might, in general,

depend on ReωðZÞ. Such an outcome would mean that

there could hardly be any predictivity because there would

be free functions undetermined by physical laws: the

extension parameters are functions of time. However, in

concrete models the constraint would be given by a

differential operator, whose inequivalent self-adjoint exten-

sions are classified in terms of boundary conditions. If one

uses the requirement that the boundary condition itself

should not depend on the time when it is posed, allowed

self-adjoint extensions do not depend on ReωðZÞ.

B. Physical Hilbert space

We do not need to refer to a physical Hilbert space in our

treatment. Nevertheless, we can construct one if we restrict

our almost-positive linear functionals ωz, solving evolution

equations within a given quantum clock Z, to fashionables,
on which they become positive. Applying the GNS con-

struction for one such state then provides a physical Hilbert

space representation with a flow on it. However, there is no

natural unitary relation between such Hilbert spaces for

different choices of quantum clocks. Our algebraic treat-

ment, by contrast, presents a unified treatment and clearly

reveals possible ambiguities, for instance in the choice of

fashionable algebras.

VII. IMPLICATIONS FOR THE PROBLEM

OF TIME

We have described the main features of a new algebraic

theory of deparametrization that highlights key mathemati-

cal properties underlying the problem of time. Our con-

structions are based almost completely on the initial

kinematical �-algebra A used to define the system as well

as natural ingredients such as ideals, factor spaces, and

homomorphisms. The only exception to naturalness is the

introduction of a fashionable algebra F whose elements

serve as observables evolving with respect to a quantum
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clock Z. But even in this ingredient, there are well-defined

conditions that place it within the kinematical algebra.

Such a streamlined treatment of quantum symplectic

reduction can be expected to facilitate comparisons of

physical results based on different choices of internal times,

possibly also of transformations between different times. In

the traditional treatment, by contrast, one would have

independent physical Hilbert spaces for different internal

times, which in general are not related by any natural

transformations. A growing list of papers has shown

physical inequivalences between results obtained using

different internal times, mainly in cosmological systems

[28–32]. This outcome is not surprising if one considers the

largely uncontrolled set of choices that enter the definition

of a physical Hilbert space in its usual derivation. One may

hope that a construction that clarifies and, as much as

possible, avoids such choices would make it easier to find

transformations between different versions and to make

sure that their physical results agree. Our algebraic defi-

nition of deparametrization is a first step in this direction

(which at the moment runs in parallel with the already-

mentioned representation-based approach of [11,12]).

As it turns out, our new definition places strong

conditions on any well-defined implementation of evo-

lution relative to an internal time, which had not

been anticipated in the traditional treatment of physical

Hilbert spaces. Qualitatively, this observation confirms

the expectation that unified constructions in which differ-

ent choices of quantum clocks can consistently be

compared should be more restricted than individual

quantizations based on a single clock, because trans-

formability between different clocks amounts to a physi-

cal invariance that is easily violated if each instance is

considered in isolation. Somewhat unfortunately, how-

ever, the conditions appear to be very strong, making it

hard to find a sufficiently large number of interesting

cosmological realizations.

All new conditions are a consequence of properties

related to the factorization C ¼ NCH of the initial con-

straint operator C in order to obtain an evolution generator

½Z;CH� ¼ iℏ1, which for a canonical Z corresponds to CH

being linear in its conjugate momentum. This factorization

is crucial and appears, in some form, in any derivation of a

physical Hilbert space in which relational evolution is

formulated by a Schrödinger-type equation. It is perhaps

not surprising that our new strong conditions appear in

relation to this factorization:

(i) We require the constraint operator C to be

�-invariant, C� ¼ C in order to have well-defined

off-shell gauge flows that preserve the �-relation,
with Dirac observables inheriting the �-structure
from A.

(ii) We require CH to be �-invariant, CH ¼ C�
H, in order

to have well-defined relational evolution that pre-

serves the �-relation.

(iii) We assume constant flow rate, ½N;CH� ¼ 0, in order

to be able to demonstrate that the values of observ-

ables are preserved by evolution generated by CH, as

detailed in Appendix A. This demonstration, in turn,

is required because C and CH do not have the same

gauge orbits if N is not invertible, a common feature

in cosmological models in particular when the

original constraint, C, is not linear in the time

momentum E.
These conditions imply that the flow rate, N, must also be

�-invariant because C ¼ C� with C ¼ NCH where C�
H ¼

CH directly leads to CHðN� − NÞ ¼ ½N;CH�. Therefore, for
constant flow rate we have N� ¼ N. All three algebra

elements in the equation C ¼ NCH must therefore be

�-invariant, even while we have to keep CH to the right

of N in order for it to act directly on a state.

A direct calculation attempting to factorize constraints

quadratic in E showed that �-invariance of C and its factors

may be easier to implement if complex internal times were

allowed. Algebraically, we introduce internal time by a

quantum clock Z ∈ A. Crucial steps of our construction are

based on the commutant Z0 ⊂ A of Z, as well as the ideal
ðZ − t1ÞZ0 ⊂ Z0 and the factor space of the former by the

latter. We use these ideals and factor spaces in order to

define evolving observables (fashionables) and gauge-

fixing surfaces that correspond to fixing the internal time

value t of the quantum clock Z. For well-defined observ-

ables and gauge fixings, we need �-operations on Z0 and
Z0=Z − t1 with a number t, which can then also be used to

introduce positivity conditions on physical states. For Z0 to
inherit a natural �-operation fromA, Z must be �-invariant.
Since Z would not be used to act on the physical Hilbert

space, where it would rather be replaced by the internal

time t, physical states ω on A need not be positive or real

when applied to Z. It may therefore be possible to have a

complex expectation value ωðZÞ even if Z is �-invariant. If
we use this complex value for our number t that defines
internal time, however, Z − t1 is not �-invariant and there is
no natural �-operation on the factor space Z0=ðZ − t1ÞZ0. In
algebraic deparametrization, therefore, complex time is not

a possibility to avoid strong conditions on allowed models.

Most of these basic requirements cannot be circum-

vented because they are directly related to �-operations,
which in turn are needed for unambiguous definitions of

positivity of states (or, in more physical terms, uncertainty

relations). The only exception is the assumption of constant

flow rate, ½N;CH� ¼ 0, which we made for more technical

reasons. If the relevant lemmas can be generalized to

nonconstant flow rates, conditions on well-defined depar-

ametrizable constraints may be relaxable.

Alternatively, because our new restrictions become

especially confining in relativistic systems with constraints

nonlinear in the time momentum E and with nonconstant

lapse functions N, they may be telling us something

about quantum time in relativistic gravitational systems.
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In general, when spacetime geometry itself is subject to

some form of quantum dynamics, one might expect that the

ability to interpret a model universe as a quantum system

evolving unitarily relative to an internal clock and even the

existence of suitable internal clocks may be limited. They

may instead be approximate emergent properties of a

special class of dynamical solutions.

The semiclassical analysis of [25,26] has sometimes

been interpreted [33] to mean that deparametrization

requires the clock to be semiclassical or the quantum state

of the universe to be peaked around a classical trajectory (or

“history”). Our new algebraic analysis of deparametrization

provides a nonsemiclassical vantage point on this issue,

with gauge-fixing conditions of effective constraints now

recognized as a general almost-positivity requirement on

allowed states of the quantum constrained system. Does a

clock need to be semiclassical to deparametrize a quantum

constraint? This question is moot when asked within

deparametrization relative to a given clock Z, since within
the reduction it is just a parameter with vanishing spread. In

the context of a physical state that can be interpreted

relative to multiple clocks Z1 and Z2 (for example if

C ¼ E1 þ E2 þH, with ½H;Z1� ¼ ½H;Z2� ¼ 0) there is

nothing precluding Z1 from being “very quantum,” in

the sense of having a large spread or strong correlations

with other variables, in states deparametrized relative to Z2

and vice versa. The theory for transforming states from Z1

Zeitgeist to Z2 Zeitgeist and back is yet to be worked out in

the algebraic approach; however, there is no reason to

believe that there will be any restriction of states that can be

transformed in the simplest cases of a constraint exactly

deparametrizable by two clocks. The situation becomes

more subtle if deparametrization is approximate and subject

to localization restrictions on states such as the ones

discussed in Sec. VA. In this scenario, the state still need

not be semiclassical, but does need to be localized to the

region where the given clock choice is valid.
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APPENDIX A: RESULT FOR FACTORIZATION

WITH A CONSTANT FLOW RATE

Let C ¼ NCH be deparametrized by factorization with

respect to some clock ðZ;F Þ as described in Sec. IV, such

that the flow rate is constant ½N;CH� ¼ 0. Let ω be almost

positive with respect to the deparametrization of CH by Z.
Furthermore let ω be such that left multiplication by N
within Z0 can be canceled in ω. We show that ωðOÞ is

constant along all flows generated byACH for any physical

observable O ∈ Aobs of the original constraint (that is,

O ∈ A and ½O;C� ¼ 0).

First we show by induction that for anyO ∈ Aobs and for

all integers n ≥ 1 we have (using notation for repeated

commutators introduced in Sec. IVA)

ðadn−1CH
ð½O;N�ÞÞCH þ NadnCH

O ¼ 0: ðA1Þ

The case of n ¼ 1 follows immediately from ½O;C� ¼
½O;NCH� ¼ 0. Assuming relation (A1) holds up to some n,
we take a commutator with CH on both sides of Eq. (A1)

and use the fact that ½N;CH� ¼ 0 to get

ðadnCH
ð½O;N�ÞÞCH þ Nadnþ1

CH
O ¼ 0;

thus completing the proof of (A1) by induction.

Now, using the algebra decomposition associated with

deparametrization of CH, an observable O ¼ O1 þO2CH,

for some O1 ∈ Z0 and O2 ∈ A. So that adnCH
O ¼

adnCH
O1 þ ðadnCH

O2ÞCH, where adnCH
O1 ∈ Z0, since O1 ∈

Z0 as discussed in Sec. III C (immediately following the

definition of deparametrization). We rewrite Eq. (A1) as

ðadn−1CH
ð½O;N�Þ þ adnCH

O2ÞCH þ NadnCH
O1 ¼ 0;

where adnCH
O1 ∈ Z0. It follows that for any B ∈ Z0

ωðBNadnCH
O1Þ ¼ 0;

where we have used the fact that ω is almost positive. The

left cancellation property of N within Z0 now implies that

for all B ∈ Z0 we also have

ωðBadnCH
O1Þ ¼ 0: ðA2Þ

We now show that property (A2) is preserved along an

arbitrary constraint flow SACH
ðλÞ with any given A ∈ A.

We recall, that, since Z0 ∪ fCHg algebraically generates A

can be uniquely written as a power series in CH

A ¼
X

M

m¼0

GmC
m
H;

for some integer M and some Gm ∈ Z0. According to

lemma 8 of [5], the flow generated by ACH on a solution to

the factor constraint ω ∈ ΓCH
evaluated on any F ∈ Z0

satisfies

iℏ
d

dλ
ðSACH

ðλÞωðFÞÞ

¼ SACH
ðλÞω

�

X

Mþ1

m¼1

ð−1Þm−1Gm−1ad
m
CH
F

�

: ðA3Þ
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Now we follow the logic of the proof of lemma 15 of [5]: for every B ∈ Z0 and n ≥ 1 let us define a function along the flow

f
ðnÞ
B ðλÞ ¼ SACH

ðλÞωðBadnCH
O1Þ. According to property (A2), f

ðnÞ
B ð0Þ ¼ 0, for all B and n. Now, suppose that all functions

f
ðnÞ
B ðλ0Þ ¼ 0 for some λ0, then, using Eq. (A3) we also have

iℏ
df

ðnÞ
B

dλ

�

�

�

�

λ¼λ0
¼ iℏ

d

dλ
½SACH

ðλÞðBadnCH
O1Þ�

�

�

�

�

λ¼λ0

¼ SACH
ðλ0Þω

�

X

Mþ1

m¼1

ð−1Þm−1Gm−1ad
m
CH
ðBadnCH

O1Þ
�

¼
X

Mþ1

m¼1

ð−1Þm−1SACH
ðλ0Þω

�

Gm−1

X

m

k¼1

�

m

l

�

ðadlCH
BÞðadnþm−l

CH
O1Þ

�

¼
X

Mþ1

m¼1

ð−1Þm−1
X

m

k¼1

�

m

l

�

f
ðnþm−lÞ
ðGm−1ðadlCHBÞÞ

ðλ0Þ ¼ 0;

by our assumption, since every term in the sum is proportional to f
ðnÞ
B ðλ0Þ for some B ∈ Z0. Therefore ffðnÞB ðλÞ ¼ 0; ∀ λg is

a solution to the flow generated by ACH on the functions we defined starting with the initial state ω. Since A is arbitrary

SACH
ðλÞωðBadnCH

O1Þ ¼ 0 for all A ∈ A. Now the value of ωðOÞ along the flow generated by ACH for any A ∈ A varies

according to

iℏ
d

dλ
ðSACH

ðλÞωðOÞÞ ¼ iℏ
d

dλ
ðSACH

ðλÞωðO1ÞÞ þ iℏ
d

dλ
ðSACH

ðλÞωðO2CHÞÞ

¼
X

Mþ1

m¼1

ð−1Þm−1SACH
ðλÞωðGm−1ad

m
CH
O1Þ þ SACH

ðλÞωð½O2; CH�CHÞ ¼ 0;

where we have used Eq. (A3) to evolve the value of O1

since it is in Z0, while we evolved the value of O2CH using

the basic definition given in Eq. (3). The sum-over-m term

in the final expression vanishes by the immediately

preceding argument, the second term vanishes because

ω ∈ ΓCH
and therefore, according to lemma 4 of [5],

SACH
ðλÞω ∈ ΓCH

. This completes the proof of invariance

of the values assigned to Aobs by all states belonging to the

orbit ½ω�CH
.

APPENDIX B: GENERAL FORM OF A

FACTORIZABLE LINEAR CONSTRAINT

Consider a constraint C that is deparametrizable by

factorization with respect to a clock ðZ;F Þ, such that

½Z; ½Z;C�� ¼ 0. Therefore, there are CH; N ∈ A such that

C ¼ NCH and CH is a constraint that is directly depar-

ametrizable by Z. To show that

C ¼ B0 þ B1CH;

with B0; B1 ∈ Z0, we note that, by the definition of

deparametrization in Sec. III C, Z0 ∪ CH algebraically

generate A; therefore, there are some M ∈ Z and Bn ∈ Z0

(that is ½Bn; Z� ¼ 0), such that

C ¼
X

M

n¼0

BnC
n
H:

Since ½Z;CH� ¼ iℏ1, we have the usual result for conjugate
variables

½Z;Cn
H� ¼ iℏnCn−1

H :

We then obtain

½Z; ½Z;C�� ¼
�

Z; iℏ
X

M

n¼1

nBnC
n−1
H

�

¼ −ℏ2
X

M

n¼2

nðn− 1ÞBnC
n−2
H

¼ −ℏ2

�

2B2 þ
�

X

M

n¼3

nðn− 1ÞBnC
n−3
H

�

CH

�

¼ 0:

Since Z0 ∩ ACH ¼ f0g, the two terms in the square

parentheses in the final expression must vanish separately,

so that B2 ¼ 0 and ðPM
n¼3 nðn − 1ÞBnC

n−3
H ÞCH ¼ 0.

However, since CH is not a divisor of zero, this also gives

X

M

n¼3

nðn − 1ÞBnC
n−3
H

¼ 6B3 þ
�

X

M

n¼4

nðn − 1ÞBnC
n−4
H

�

CH ¼ 0:

We repeat the above argument to conclude that B3 ¼ 0

and
P

M
n¼4 nðn − 1ÞBnC

n−4
H ¼ 0. Continuing to iterate we
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conclude that Bn ¼ 0 for all n ≥ 2, obtaining

C ¼ B0 þ B1CH, with B0; B1 ∈ Z0, as desired.
We now want to show that for this factorization ½N; Z� ¼

0 ¼ ½N;CH� and N ¼ N�. To do so, we set the factorized

and power-series forms of the constraint equal NCH ¼
B0 þ B1CH, so that

B0 þ ðB1 − NÞCH ¼ 0:

Again, the two terms must vanish separately, so that

B0 ¼ 0 and ðB1 − NÞCH ¼ 0. Again, since CH is

not a divisor of zero, this gives N ¼ B1 ∈ Z0. Now

we have

½Z;C� ¼ ½Z;NCH� ¼ iℏN:

Taking the star involution of both sides with Z� ¼ Z and

C� ¼ C, this immediately gives N� ¼ N. Equation (13)

then implies ½N;CH� ¼ 0. Therefore, if C is deparametriz-

able by factorization and ½Z; ½Z;C�� ¼ 0, the constraint

must have the form C ¼ NCH, where N ¼ N� ∈ Z0 and
½N;CH� ¼ 0, as claimed.
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