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Abstract

We suggest two related conjectures dealing with the existence of spanning irreg-
ular subgraphs of graphs. The first asserts that any d-regular graph on n vertices
contains a spanning subgraph in which the number of vertices of each degree between
0 and d deviates from 75 by at most 2. The second is that every graph on n ver-

tices with minimum degree § contains a spanning subgraph in which the number of

_n_
o0+1

we prove several asymptotic relaxations for graphs with a large number of vertices

vertices of each degree does not exceed + 2. Both conjectures remain open, but

n. In particular we show that if d®logn < o(n) then every d-regular graph with n

vertices contains a spanning subgraph in which the number of vertices of each degree

between 0 and d is (1 +o(1))z45. We also prove that any graph with n vertices and

minimum degree § contains a spanning subgraph in which no degree is repeated more
than (1 + o(1)) 537 + 2 times.
AMS Subject classification: 05C35, 05C07. Keywords: irregular subgraph, repeated

degrees.

1 Introduction

All graphs considered here are simple, that is, contain no loops and no parallel edges.
For a graph G and a nonnegative integer k, let m(G, k) denote the number of vertices of
degree k in G, and let m(G) = maxy m(G, k) denote the maximum number of vertices of
the same degree in G. One of the basic facts in Graph Theory is the statement that for
every graph G with at least 2 vertices, m(G) > 2. In this paper we suggest the following

two related conjectures.
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Conjecture 1.1. Every d-reqular graph G on n vertices contains a spanning subgraph H
so that for every k, 0 < k < d, Hm(H7 k) — 45 W <2

Conjecture 1.2. Every graph G with n vertices and minimum degree § contains a span-

ning subgraph H satisfying [m(H) — 5151 < 2.

If true, both conjectures are tight. One example showing it is the vertex disjoint union
of two cycles of length 4. There are also many examples showing that an extra additive 1
is needed even when 77 is an integer. Indeed, if GG is any d-regular graph with n vertices,
then by the pigeonhole principle, for any spanning subgraph H of G, m(H) > ;1, as the
degree of each vertex of H is an integer between 0 and d. If, in addition, n is divisible by
d+ 1, then the equality m(H) = 75 is possible only if m(H, k) = 15 for any 0 < k < d.
However, this is impossible if ({%j) - is odd, as the number of vertices of odd degree

d+1
in H must be even. Note that a small :rfalue of m(H) can be viewed as a measure of the
irregularity of the graph H. Thus both conjectures address the question of the existence
of highly irregular subgraphs of graphs, stating that with this interpretation every graph
G contains a spanning subgraph H which is nearly as irregular as the degrees of G permit.
We have not been able to prove any of the two conjectures above, but can establish
the following results, showing that some natural asymptotic versions of both do hold. In

the following two results the o(1) terms tend to 0 as n tends to infinity.

Theorem 1.3. If d®logn = o(n) then any d-regular graph with n vertices contains a

spanning subgraph H so that for every 0 < k <d, m(H,k) = (1+0(1)) 745

Theorem 1.4. Any graph with n vertices and minimum degree § contains a spanning
subgraph H satisfying m(H) < (1 + o(1)) {ﬁ-| +2.
In addition, if §*** > n and n is sufficiently large, there is such an H so that m(H) <

] +2.
For any values of d or § and n, without the assumption that n is sufficiently large, we

can prove a weaker universal bound showing that there is always a spanning subgraph H
with m(H) bounded by O(n/J).

Theorem 1.5. Any d-reqular graph G with n vertices contains a spanning subgraph H
satisfying m(H) < 8% + 2.

Theorem 1.6. Any graph G with n vertices and minimum degree § contains a spanning
subgraph H satisfying m(H) < 16% + 4.



We can improve the constants 8 and 16 above by a more complicated argument, but
since it is clear that these improved constants are not tight we prefer to present the shorter
proofs of the results above.

Our proofs combine some of the ideas used in the earlier work on the so called ir-
regularity strength of graphs with techniques from discrepancy theory. The irregularity
strength s(G) of a graph G with at most one isolated vertex and no isolated edges is the
smallest integer s so that one can assign a positive integer weight between 1 and s to each
edge of G so that for any two distinct vertices w and v, the sum of weights of all edges
incident with u differs from the sum of weights of all edges incident with v. This notion
was introduced in the 80s in [5]. Faudree and Lehel conjectured in [7] that there exists
an absolute constant C' so that for every d-regular graph G with n vertices, where d > 2,
5(G) < 5 4 C. The notion of irregularity strength and in particular the Faudree-Lehel
conjecture received a considerable amount of attention, see e.g. [11, 8, 6, 13, 14, 10, 12, 15].
The theorems above improve some of the results in these papers. In particular, Theorems
1.3 and 1.4 improve a result of [8] which implies that any d-regular graph with n vertices
contains a spanning subgraph H satisfying m(H) < 2n/d provided d*logn < n. (The
result there is stated in terms of assigning weights 1 and 2 to edges, for regular graphs
this is equivalent).

Theorems 1.4, 1.5 and 1.6 improve another result of [8] which implies that any d-
regular graph with n > 10 vertices, where d > 10logn, contains a spanning subgraph H
with m(H) < 48logn?%, as well as a result that for all sufficiently large n any d-regular
G contains a spanning H with m(H) < 2%. They also strengthen a result in [6] that
shows that any d-regular graph on n vertices contains a spanning H in which the number
of vertices with degrees in any interval of length ¢; logn does not exceed con logn/d where
co > 1 are some absolute constants.

Our final results demonstrate a direct connection between the irregularity strength of

graphs and our problem here.

Theorem 1.7. Let G be a bipartite graph and let s = s(G) be its irregularity strength.
Then G contains a spanning subgraph H satisfying m(H) < 2s — 1. If G is regular this
can be improved to m(H) < 2s — 3.

A similar result, with a somewhat more complicated proof, holds without the assump-
tion that G is bipartite.

Theorem 1.8. Let G be a graph and let s = s(G) be its irreqularity strength. Then G
contains a spanning subgraph H satisfying m(H) < 2s. If G is reqular this can be improved



tom(H) <2s— 2.

The rest of the paper contains the proofs as well as a brief final section suggesting

natural versions of the two conjectures that may be simpler.

2 Proof of Theorem 1.3 and a special case of Theorem 1.4

In this section we prove Theorem 1.3 and describe also a short proof of Theorem 1.4 for
the special case that the minimum degree § satisfies 6* = o(n/logn). The proof of the
theorem for larger § requires more work, and is presented in Section 5.

We need several combinatorial and probabilistic lemmas. The first is the standard

estimate of Chernoff for Binomial distributions.

Lemma 2.1 (Chernoff’s Inequality, c.f., e.g., [3], Appendix A). Let B(m,p) denote the
Binomial random variable with parameters m and p, that is, the sum of m independent,
identically distributed Bernoulli random wvariables, each being 1 with probability p and 0
with probability 1 — p. Then for every 0 < a < mp, P(X —mp > a) < e=@*/3mp gnd
P(|X —mp| > a) < 2e=9°/3_ If 4 > mp then P(|X —mp| > a) < 2e~%/3,

Another result we need is the following, proved (in a slightly different form) in [8].

Lemma 2.2 ([8]). Let G = (V, E) be a graph and let H be the spanning random subgraph of
G obtained as follows. For each vertex v € V' let x(v) be a uniform random weight in [0, 1],
where all choices are independent. An edge uwv € E is an edge of H iff x(u) + x(v) > 1.
Let v be a verter of G and suppose its degree in G is d. Then for every k, 0 < k < d, the
probability that the degree of v in H is k is exactly ﬁ.

The (simple) proof given in [8] proceeds by computing the corresponding integral. Here
is a combinatorial proof, avoiding this computation. Let Y = z(v) and let X7, Xo,..., Xy
be the random weights of the neighbors of v. Then the random variables 1-Y, X1, Xo, ..., Xy
are i.i.d uniform random variables in [0, 1]. By symmetry, 1 —Y is equally likely to be the
k+ 1-st largest among the variables 1 —Y, Xy,..., Xgforall 1 < k+1 < d+1, that is, the
probability that 1 — Y is smaller than exactly k of the variables X; is exactly 1/(d + 1).
The desired results follows as 1 — Y < X; iff X; +Y > 1. O

We will also use the following well known result of Hajnal and Szemerédi.

Lemma 2.3 ([9]). Any graph with n vertices and mazimum degree at most D admits a

proper vertex coloring by D+1 colors in which every color class is of size either |n/(D+1)]

or [n/(D+1)].



We are now ready to prove Theorem 1.3 in the following explicit form.

Proposition 2.4. Let G = (V, E) be a d-reqular graph on n vertices. Suppose 0 < e < 1/3

and assume that the following inequality holds.
(d +1)(d? + 1)2e~ 3= [/ (@HD]1/(@d+1) (1)

Then there is a spanning subgraph H of G so that for every integer k, 0 < k < d,

n n

H. k) — < .
m(Hk) = g < g

Proof. For each vertex v € V, let x(v) be a random weight chosen uniformly in [0, 1], where
all choices are independent. Let H be the random spanning subgraph of G consisting of
all edges uv € E that satisfy z(u) + z(v) > 1. Let G® denote the auxiliary graph on the
set of vertices V' in which two distinct vertices are adjacent if and only if their distance in
G is either 1 or 2. The maximum degree of G is at most d+d(d — 1) = d? and hence by
Lemma 2.3 the set of vertices V has a partition into t = d? + 1 pairwise disjoint subsets
Vi, Va,..., Vi, where
Vil = ni € {[n/(d* + 1)}, [n/(d* + 1)1}

for all 7 and each Vj is an independent set in G(2). Note that this means that the distance
in G between any two distinct vertices u,v € V; is larger than 2. As the degree of each
vertex v of G in H is determined by the random weights assigned to it and to its neighbors,
it follows that for every fixed 0 < k < d, the n; indicator random variables {Z, j, : v € V;}
where Z,, ;. = 1 iff the degree of v in H is k, are mutually independent. By Lemma 2.2 each
Zy ) is a Bernoulli random variable with expectation 1/(d 4 1). For any fixed k as above
it thus follows, by Lemma 2.1 and the assumption inequality (1), that the probability
that the number of vertices in V; whose degree in H is k deviates from n;/(d + 1) by at
least en;/(d+ 1) is smaller than m. By the union bound over all pairs V;, k, with
positive probability this does not happen for any k& and any V;. But in this case for every
0 < k < d the total number of vertices with degree k in H deviates from n/(d+ 1) by less
than ) . n;/(d+ 1) = en/(d + 1). This completes the proof. O

Remark: The proof above is similar to the proof of Lemma 7 in [8]. The improved
estimate here is obtained by replacing the application of Azuma’s Inequality in [8] by
the argument using the Hajnal-Szemerédi Theorem (Lemma 2.3), and by an appropriate
different choice of parameters.

By a simple modification of the proof of Proposition 2.4 we next prove the following.



Proposition 2.5. Let G = (V, E) be a graph on n vertices with minimum degree § and

mazimum degree A. Suppose 0 < € < 1/3 and assume that the following inequality holds.
(A + 1)(6A + 1) 3 I/ (GATDI/(6H) . (2)

Then there is a spanning subgraph H of G so that

n
m(H) < (1+€)5+1.

Proof. Start by modifying G to a graph G’ obtained by repeatedly deleting any edge
connecting two vertices, both of degrees larger than J, as long as there are such edges.
Thus G’ is a spanning subgraph of G. It has minimum degree § and every edge in it has
at least one end-point of degree exactly 6. Let G'®) denote the auxiliary graph on the
set of vertices V in which two distinct vertices are adjacent iff they are either adjacent or

have a common neighbor in G’. The maximum degree in G’ is at most
max{d + (A —1),A+A(6—1)} =JA.

We can now follow the argument in the proof of the previous proposition, splitting V into
0A 41 nearly equal pairwise disjoint sets V;, and defining a spanning random subgraph H
of G’ (and hence of @) using independent random uniform weights in [0, 1] as before. Here
for every vertex v and every integer k, the probability that the degree of v in H is k, is at
most 1/(6+1). This, the obvious monotonicity, and the fact that the events corresponding
to distinct members of V; are independent, imply, by Lemma 2.1 and by the assumption
inequality (2), that the probability that V; contains at least (1 4 ¢)|Vi|/(d + 1) vertices of
degree k is smaller than m. The desired result follows from the union bound, as
before. O

Similarly, we can prove the following strengthening of the last proposition.

Proposition 2.6. Let G = (V, E) be a graph with at least n vertices, minimum degree §
and maximum degree A. Suppose 0 < e < 1/3. Let X C V be a set of n vertices of G and
assume that the inequality (2) holds. Then there is a spanning subgraph H of G so that

_n_

for every k the number of vertices in X of degree k in H is at most (1 + ¢) 1

Proof. The proof is a slight modification of the previous one. Let G’ be the graph obtained
from G as before. Let F' denote the auxiliary graph on the set of vertices X in which two
distinct vertices are adjacent iff they are either adjacent or have a common neighbor in G.

The maximum degree in this graph is at most §A. We can thus follow the argument in the



proof of the previous proposition, splitting X into dA + 1 nearly equal pairwise disjoint
sets X;, and defining a spanning random subgraph H of G’ (and hence of G) using the

independent random uniform weights in [0, 1] as before. O

We can now prove the assertion of Theorem 1.4 provided §* = o(n/logn) in the

following explicit form.

Proposition 2.7. Let G = (V,E) be a graph on n vertices with minimum degree 9.
Suppose 0 < e < 1/3. Define D = 5(5€+1) and assume that the following inequality holds.

(D +1)(8D + 1)~ 3= [n/@GD+D]-1/(5+1) 1, (3)
Then there is a spanning subgraph H of G so that

m(H) < (1 + 2)

n
o+1

Proof. Let G = (V,E), §, € and D be as above. As in the previous proofs we start
by modifying G to a graph G’ obtained by repeatedly deleting any edge connecting two
vertices, both of degrees larger than §, as long as there are such edges. Thus G’ is a
spanning subgraph of G; it has minimum degree § and the set of all its vertices of degree
exceeding 0 is an independent set. Let A denote the set of all vertices of degree § in G’,
B the set of all vertices of degrees larger than ¢ and at most D in G’ (if there are any),
and C the set of all vertices of degree exceeding D. Since all edges from the vertices of C
lead to vertices of A (as BUC is an independent set) it follows, by double-counting, that
|C|D < [A]6 < nd and thus [C] <nd/D = ezl.

If C = () define G” = G’; otherwise let G” be the graph obtained from G’ as follows.
For every vertex v € C' of degree d(> D) replace v by a set S, of k, = [d/d| new vertices
V1, V2, ..., Vk,. Split the set of neighbors of v in G’ (that are all in A) into k, pairwise
disjoint sets N1, Na, ..., N, , each of size at least J and at most 29, and join the vertex v;
to all vertices in NV; (1 < i < k,). Thus G” is obtained by splitting all vertices of C, and
there is a clear bijection between the edges of G’ and those of G’. Let X be an arbitrary
subset of n vertices of G containing all vertices in A U B. The graph G” has minimum
degree § and maximum degree at most D; hence by Proposition 2.6 (which can be applied
by the assumption inequality (3)) it has a spanning subgraph H” so that no degree is
repeated more than (1 + €)57; times among the vertices of X. Let H be the spanning
subgraph of G’ (and hence of G) consisting of exactly the set of edges of H”. The degree
of each vertex in AU B in H” is the same as its degree in H, hence H contains at most
(1 +€)547 vertices of each fixed degree in AU B (which is a subset of X). We have no

7



control on the degrees of the vertices of C' in H, but their total number is at most 65%.

Therefore m(H) < (1 + 2¢) 547, completing the proof. O

3 Proof of Theorems 1.5 and 1.6

The main tool in the proofs of Theorems 1.5 and 1.6 is the following result of [1]. A similar

application of this result appears in [13].

Lemma 3.1 ([1]). Let G = (V, E) be a graph. For each vertex v € V let deg(v) denote
the degree of v in G. For each vertex v, let a(v) and b(v) be two non-negative integers

satisfying

a(v) < {degQ(v)J < b(v) < deg(v) (4)

and 4

o) < 80 + )
Then there is a spanning subgraph H of G so that for every vertex v the degree of v in H
lies in the set {a(v),a(v) + 1,b(v),b(v) + 1}.

+1 and b(v) < 2a(v) + 3. (5)

Theorem 1.5 is an easy consequence of this lemma, as we show next.

Proof of Theorem 1.5: Let G = (V, E) be a d-regular graph on n vertices. Since the
assertion is trivial for d < 8 assume d > 8. Put k = [d/4] and split V arbitrarily into k
pairwise disjoint sets of vertices Vi, ..., Vj, each of size at most [n/k]|. For each vertex
v € V; define a(v) = [d/2] —i and b(v) = [d/2] + k —i. It is easy to check that deg(v) = d
and each such a(v),b(v) satisfy (4) and (5). By Lemma 3.1 there is a spanning subgraph
H of G in which the degree of every v € V; is in the set

S; = {[d/2] —i,[d/2] —i+1,[d/2] + k —i,[d/2] + k —i+1}.

It is easy to check that no integer belongs to more than 2 of the sets S;, implying that
m(H) <2[n/k] < 8n/d+ 2, and completing the proof. O

The proof of Theorem 1.6 is similar, combining the reasoning above with one additional

argument.

Proof of Theorem 1.6: Let G = (V, E) be a graph with n vertices and minimum degree
0. As the result is trivial for § < 16, assume § > 16. Order the vertices of G by degrees,
that is, put V = {v1,va,...,v,}, where the degree of v; is d; and d1 > dy > ... > d,. Put
k = [§/4] and split the set of vertices into m = [n/k] blocks Bi, Bo, ..., By, of consecutive



vertices in the order above, each (besides possibly the last) containing k vertices. Thus
Bi = {v—1)k41, V(i=1)k+2s - - - Vi } for all i < m and By, = V — UiemB;. Fix a block
B = B;; let wy, we, ..., w denote its vertices and let fi > fo > ... > fi be their degrees
(assume now that B is not the last block). For each vertex w; define a; = [f;/2] — 1,
b = [fi/2] + k — i. For the last block B, define the numbers a;,b; similarly, taking
only the first |B,,|(< k) terms defined as above. Note that the sequence (aq,as,...,ax)
(as well as the possibly shorter one for the last block) is strictly decreasing, and so are
the sequences (a1 + 1,a2 + 1,...,ax + 1), (b1,bo,...,bx) and (by + 1,00 + 1,... bk + 1).
Therefore, no integer belongs to more than 4 of the sets S(w;) = {a;,a; + 1,b;,b; + 1},
1 <i < k. Note also that the numbers deg(v) = f;, a(v) = a;, b(v) = b; satisfy (4) and (5).
By Lemma 3.1 there is a spanning subgraph H of GG in which the degree of every vertex
v lies in the corresponding set S(v). Therefore m(H) < 4m < 16% + 4, completing the
proof. O

4 Proof of Theorem 1.7 and 1.8

Proof of Theorem 1.7: The proof is based on the simple known fact that the incidence
matrix of any bipartite graph is totally unimodular (see, e.g., [17], page 318). Let G =
(V, E) be a bipartite graph and let s = s(G) be its irregularity strength. By the definition
of s(G) there is a weight function assigning to each edge e € E a weight w(e) which is
a positive integer between 1 and s, so that all the sums ) o w(e), v € V are pairwise

distinct. Consider the following system of linear inequalities in the variables z(e),e € E.
0<z(e)<1 forall ec F

and

\‘Z wie)J < Z:c(e) < |VZ w!(:q for all veV.

esv esv esv

This system has a real solution given by z(e) = @ for all e € E. Since the V x E
incidence matrix of G is totally unimodular there is an integer solution as well, namely,
a solution in which z(e) € {0,1} for all e € E. Let H be the spanning subgraph of G
consisting of all edges e with z(e) = 1. For each integer k the vertex v can have degree k

in Honlyifk—1<) wle) < k + 1, that is, only if the integer >

eSV s

w(e) is strictly

esv

between s(k — 1) and s(k + 1). As there are only 2s — 1 such integers, and the integers
Y o5y W(e) are pairwise distinct, it follows that m(H, k) < 2s — 1.



If G is regular one can repeat the above proof replacing w(e) by w(e) — 1 for every e
and replacing s by s — 1. This completes the proof of Theorem 1.7. ]
The proof of Theorem 1.8 is similar to the last proof, but requires an additional argu-
ment, as the incidence matrix of a non-bipartite graph is not totally unimodular. We thus
prove the following lemma. Its proof is based on some of the techniques of Discrepancy
Theory, following the approach of Beck and Fiala in [4]. This lemma will also be useful in

the proof of Theorem 1.4 described in the next section.

Lemma 4.1. Let G = (V,E) be a graph, and let z : E — [0,1] be a weight function
assigning to each edge e € E a real weight z(e) in [0,1]. Then there is a function x : E
{0,1} assigning to each edge an integer value in {0,1} so that for every v € V

doale) 1<) z(e) <> z(e)+ 1. (6)

esv esv esv

Note that the deviation of 1 in this inequality is tight, as shown by any odd cycle and

the function z assigning weight 1/2 to each of its edges.

Proof. We describe an algorithm for generating the required numbers z(e). Think of
these values as variables. During the algorithm, the variables z(e) will always lie in the
continuous interval [0,1]. Call a variable z(e) fixed if z(e) € {0,1}, otherwise call it
floating. At the beginning of the algorithm, some (or all) variables z(e) will possibly be
floating, and as the algorithm proceeds, floating variables will become fixed. Once fixed,
a variable does not change anymore during the algorithm, and at the end all variables will
be fixed. For convenience, call an edge e floating iff x(e) is floating.

For each edge e € F, let y, denote the corresponding column of the V' x E incidence
matrix of G, that is, the vector of length |V'| defined by y.(v) =1 if v € e and ye(v) =0
otherwise.

Start the algorithm with z(e) = z(e) for alle € E. As long as the vectors y, correspond-
ing to the floating edges e (assuming there are such edges) are not linearly independent
over the reals, let Y . p ceye = 0 be a linear dependence, where E' is a set of floating
edges and ¢, # 0 for all e € E’. Note that for any real v, if we replace z(e) by z(e) + vee

then the values of the sums
> a(e) forall veV (7)

esSv
stay unchanged. As v varies this determines a line of values of the variables z(e) (in which
the only ones that change are the variables z(e) for e € E’) so that the sums in (7) stay

fixed along the line. By choosing v appropriately we can find a point along this line in

10



which all variables stay in [0, 1] and at least one of the floating variables in E’ reaches 0 or
1. We now update the variables z(e) as determined by this point, thus fixing at least one
of the floating variables. Continuing in this manner the algorithm finds an assignment of
the variables x(e) so that for each v € V, > x(e) = .5, 2(e) and the set of vectors
Ye,e € E', where E’ is the set of floating edges, is linearly independent. Note that this
implies that the set of edges in each connected component of the graph (V, E’) is either a
tree, or contains exactly one cycle, which is odd.

As long as there is a connected component consisting of floating edges, which is not
an odd cycle or a single edge, let V" be the set of all vertices of such a component whose
degree in the component exceeds 1. Let E” be the set of edges of this component (recall

that all of these edges are floating). Consider the following system of linear equations.

Zx(e) = Zz(e) for all ve V", (8)

esv esv
This system is viewed as one in which the only variables are x(e) for e € E”. The other
x(e) appearing in the system are already fixed, and are thus considered as constants, and
the values z(e) are also constants. It is easy to check that the number of variables in this
system, which is |E”|, exceeds the number of equations, which is the number of vertices
of degree at least 2 in the component. Therefore there is a line of solutions, and as before
we move to a point on this line which keeps all variables z(e) in [0, 1] and fixes at least
one variable z(e) for some e € E” shifting it to either 0 or 1. Note, crucially, that each of
the sums ) 5, z(e) for v € V" stays unchanged, but the value of this sum for vertices of
degree 1 in the component may change.

Continuing this process we keep reducing the number of floating edges. When the graph
of floating edges contains only connected components which are odd cycles or isolated edges
we finish by rounding each floating variable x(e) to either 0 or 1, whichever is closer to its
current value, where z(e) = 1/2 is always rounded to 1. Once this is done, all variables
x(e) are fixed, that is z(e) € {0,1} for all e. It remains to show that (6) holds for each
v € V. To this end note that as long as the degree of v in the graph consisting of all floating
edges is at least 2, and the component in which it lies is not an odd cycle, the value of
the sum ) . x(e) stays unchanged (and is thus equal exactly to ) o, z(e)) even after
modifying the variables z(e) in the corresponding step of the algorithm. Therefore, at the
first time the degree of v in this floating graph (the graph of floating edges) becomes 1, if
this ever happens, the sum ) o x(e) is still exactly > - z(e). Afterwards this sum can
change only by the change in the value of the unique floating edge incident with it, which

is less than 1 (as this value has been in the open interval (0,1) and will end being either

11



0 or 1). The only case in which the final sum 5 x(e) can differ by 1 from ) . z(e) is
if the final step in which all floating edges incident with v become fixed is a step in which
the connected component of v in the floating graph is an odd cycle, xz(e) = 1/2 for both
edges of this component incident with v, and both are rounded to the same value 1. In
this case (6) holds with equality, and in all other cases it holds with a strict inequality.
This completes the proof of the lemma. O

Proof of Theorem 1.8: The proof is similar to that of Theorem 1.7, replacing the
argument using the total unimodularity of the incidence matrix of the graph by Lemma
4.1. Let G = (V, E) be a graph let s = s(G) be its irregularity strength. Thus there is
a weight function assigning to each edge e € E a weight w(e) which is a positive integer
between 1 and s, so that all the sums ) . w(e), v € V are pairwise distinct. Define
z 1 E w— [0,1] by z(e) = w(e)/s for each e € E. By Lemma 4.1 there is a function
x: E — {0,1} so that for every v € V (6) holds. Let H be the spanning subgraph of G
consisting of all edges e with z(e) = 1. For each integer k the vertex v can have degree k

in H only if

k—lSZz(e)—Zwie) <k+1,
esv esv

that is, only if the integer »° 5, w(e) is at least s(k — 1) and strictly smaller than s(k +1).
As there are only 2s such integers, and the integers »_
follows that m(H, k) < 2s.

If G is regular one can repeat the above proof replacing w(e) by w(e) — 1 for every e

50 W(e) are pairwise distinct, it

and replacing s by s — 1. This completes the proof. O

5 Proof of Theorem 1.4

In this section we describe the proof of Theorem 1.4 for all § and n where n is sufficiently
large. If § = o((n/logn)/*) the assertion of the theorem holds, as proved in Section 2. We
thus can and will assume that ¢ is larger. In particular it will be convenient to fix a small
e > 0 and assume that § > In?/¢ n(Inlnn)'/¢. The argument here is more complicated
than the one for smaller . To simplify the presentation we omit, throughout the proof,
all floor and ceiling signs whenever these are not crucial (but leave these signs when this
is important). We further assume whenever this is needed that n is sufficiently large as a

function of e. The explicit version of the theorem we prove here is the following.
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Theorem 5.1. Fiz ¢ € (0,1/4). Every graph G with n vertices and minimum degree
§ with § > In%/¢ n(lnln n)l/6 and n sufficiently large in terms of € contains a spanning

subgraph H satisfying

n  5y/(n/d)(Inn) 2016nlnninlnn
m<H><{5+W o [Mbntanlodnn )y

In particular, when §'7¢ > 2016nInnlnlnn, and n is sufficiently large, then
m(H) <[n/(0+1)] +2.

The constants 5,2016 and the assumption §'7¢ > 2016nInnInlnn can be improved,
but as this will not lead to any significant change in the asymptotic statement given in
Theorem 1.4 it is convenient to prove the result as stated above.

In the proof we assign binary weights to the edges of the graph G, where weight one
corresponds to edges in H and zero to non-edges. The weight of a vertex will always be
the sum of weights of the edges incident to it. We use deg(v) to denote the degree of the
vertex v in G. By assumption deg(v) > § for every v.

Put s* = 61/t | = 51/2_6/111 Inn. By our assumption on § we have k > In®n. We
will assume that both s* and k are integers, and § — s* is divisible by [v/§] '. We start
by partitioning the vertices randomly into a big set B and a small set S, where each is
further partitioned into B = By ---U Bs_¢s and S = S; U ---US,. This random partition
is achieved in the following way. Let X,, v € V(G) be i.i.d. uniform random variables
X, ~ U[0,1]. For each integer 1 < i < § — s*, if X, € [’5%, %), then place v in B;.
For each integer 1 < 7 < k—1,if X, € 5_53* + (j_(;,?’s*, 5_53* %), place v in Sj; if

X, € 6%* + (k’_éi)s*,l], place v in S.

The weight assignment will be done in three steps. The first two steps only concern

edges in B and between B and S. The last step only concerns edges within S. We will
randomly label some edges between S and B to be active and removable. Active edges
denote the edges between S and B that will be assigned weight one in Step 1, and active
and removable edges denote ones whose weights can be modified back to zero in Step 2.
For each 1 < i < k, vertex v € S; and its neighbor u € B, the edge uv is active randomly

and independently with probability %. It is removable randomly and independently

326Inn

s*+/deg(u)

'There is always a value of s* in the interval [[§'/2F |, |§1/27¢| + /5] such that § — s* is divisible by
|V/3]. When e is fixed and n sufficiently large, such value of s* is asymptotically §l/2te,

with probability

13



The next lemma shows that the quantities we care about in G are not far from their

expected values with high probability.

Lemma 5.2. Lete € (0,1/4). Suppose n is sufficiently large in terms of € and assume that
§¢ >1Innlnlnn. Let h: [n] x [0 — s*] = R be a function h(d,i) = c1(d)i + cad + c33/d + c4
where c1(d) > 1 for all d > § and co,c3,c4 € R. Then, with probability at least 1 — 7/n?,

the following statements hold simultaneously with the random choices described above.

(1) For any integer 0 < j < n—1, the number of vertices v € B satisfying h(deg(v), Z(v)) €

4,7 + [V6]) is at most |V/6]% +44/% - V/d1nn, where Z(v) € [§ — s*] is the random

variable satisfying v € By (y).
(i) For any vertezx v, its degree to S is in the interval [0.5s* deg(v)/d, 1.5s* deg(v)/d].

(i11) For each1 <1i < 6—s* and for each vertex v € B;, its degree to {|J Bj,0 —s*—i+1 <

j<8— s isin [“16(51’)—12 1de() 11y, ’d‘fg()+12\/ide§<“)1nn].

(iv) For each 1 < i < k and each vertex v € S;, the number of edges between v and B

that are active s in the interval
4 4
[(5 S; deg(v — y/deg(v) Inn, (0- S; deg(v + \deg(v lnn] .

The number of edges between v € S and B that are both active and removable is at
33(6—4s*%) deg(v)Inn

VEs* ’
(v) For each 1 < i <k and each u € B, the number of edges between u and S; that are

active 1s in the interval

[s deg(u) 0 —4s™  [deg(u)s un. deg(u) 6 —4s* n deg(u)s lnn] .

most

Sk 0 —s* Sk Sk 6 —s* Sk

The number of edges between uw € B and S that are both active and removable is at

least 27+/deg(u) Inn.

Proof. We first prove (i). Given j and v, since ci(deg(v)) > 1 as deg(v) > 0, there is
at most one integer 1 < i < § — s* such that h(deg(v),i) = c1(deg(v))i + c2 - deg(v) +
C3\/<M +c4 € [§,j +1). Thus each vertex independently has probability at most
|V/§] /5 to satisfy h(deg(v), Z(v)) € [j,§ + |V4]). By Chernoff’s Inequality (Lemma 2.1)

and a union bound over 0 < j < n— 1 and v, the probability that (i) is violated is at most
n2e—(16(n/8)(V8)Inn)/(3(n/6)(V8)  p2e—4lnn _ 1/n2.
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To prove (ii), note that for each vertex v, each of its neighbors independently has
probability % to be in S. Therefore its expected degree in S is M. By Cher-
noff’s Inequality and a union bound over v, (ii) is violated with probability at most
ne—0-25der(v)s/(38) < 1 /p2,

To prove (iii), note that for each 1 <7 < § — s*, each neighbor of v independently has
probability i/d to be in Bs_g+_;11U---UBjs_g+, and thus the expected number of its neigh-
bors in Bs_g«_j41 U---U Bjs_g is %. By Chernoff’s Inequality, for any positive value
i, given v € B;, the probability that (iii) is violated is at most 2e~H* /(3 max(ideg(v)/d,))
Plugging in p = 12y/ideg(v)/dInn and noting that max(ideg(v)/d, u)) < 12% Inn,
the probability that (iii) is violated for v € B; is at most 2¢~1212"/3 = 2/n%. By a union
bound over all vertices the probability that (iii) is violated is much smaller than 1/n2.

Similarly we can prove (iv). Given v € S;, each edge incident to v independently

has probability 5_58* . 55:485:" = 5‘§S*i to be active. Thus the expected number of ac-
deg(v)(6—4s*17)
———.

tive edges incident to v € §; is Again by Chernoff’s Inequality and a

union bound over v, the first statement in (iv) is violated with probability at most
n2e~ des(v) In® n/(3(6-4s"1) deg(v)/0) o pe—In*n/3 1/n?. Similarly, for a neighbor u of
0—4s*i_326Inn

3 s*q/deg(u) —
32(6—4s*i)Inn

Vo to be both active and removable. By Chernoft’s Inequality and a union

v € S;, the edge (v,u) randomly and independently has probability

bound over v the probability that the second statement is violated is much smaller than
1/n?.

(v) is proved in almost the same way. Fix 1 < i < k and v € B. Each edge uv
independently has probability Z—; . 557_5:" to be active and satisfy v € S;; and it has

0—4s*i  _320lnn_ _ 32lnn | 0—4s*q 30Inn :
5" e fdeg() % (6—s")/dea(e) > oy /deg(e) to be both active
and removable and incident to S;. Thus for any v € B the expected number of edges uv

with v € S which are both active and removable is at least 301nn/deg(u). Applying
Chernoft’s Inequality and a union bound it follows that the probability that the statement

probability Z—; :

fails is much smaller than 2/n?. O

Therefore, with probability at least 1 — 7/n? all assertions of Lemma 5.2 hold, where
the function h(deg(v),4) in (i) is

1 d *d 0—2s"(k+1
hp(deg(v),i) = : eg(v) + 2 ((esg(v) 55—(s*+ ) _ 134/deg(v) Inn.

Since deg(v) > 6§, ks* = ¢/Inlnn and by the lower bounds on § in the assumption, it is
easy to see that hp(d,i) > s*/2 > /6. Note that hp satisfies the requirement of h(d,7)
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in Lemma 5.2. We can now proceed assigning weights in {0, 1} to the edges in G in three
steps.

In Step 1, we assign the following edges weight one: (1) for all 1 <i < § — s*, all the
edges between B; and {{J; Bj, 6 —s* —i+1 < j <6 —s"}; (2) all the active edges between
B and S.

In Step 2, the goal is to ensure that each vertex weight appears in at most
(/6 +5v/n/6vVInn/§Y4) (9)

vertices in B. This is achieved by making two modifications. First ensure that each vertex
v in B; has weight exactly |hp(deg(v),?)]. By Lemma 5.2 applied with hp(d,?), with
probability at least 1 — 7/n? after Step 1, for each 1 < i < § — s*, the weight of v € B;
deviates from

k

ideg(v) s*deg(v) 6 —4s*j _
By EEE L2 hp(deg(v), i) + 13y/deg(0) Inn

j=1

by at most k %lnn—i— 12+/deg(v) Inn < 13y/deg(v) Inn by Lemma 5.2 (iii) and
the first statement in (v). Thus it is possible to transform the weight of v to exactly
|hp(deg(v),i)] by reducing the weights of at most 26+/deg(v) Inn+1 < 26.5,/deg(v) Inn
(active and removable) edges from v to S from one to zero.

Suppose this first modification is possible, in the second modification, by Lemma 5.2
(i) and the fact that hp(deg(v),i) > V0 for each vertex v and 1 < i < § — s* and that
§ — s* is divisible by |V/4], we can further reduce the weights of at most 2(v/9) edges
between each v € B and S ensuring that each integer vertex weight appears in at most
[(L\fdjn/d—i—él (n/8)(V9) lnn> /L\/gj—‘ < [n/§ + 5y/n/6vVInn/5'/4] vertices in B, as
desired. Indeed, this can be done by considering, for any fixed admissible j > 1, all vertices
whose weight after the first modification lies in [(j — 1)(|V/4]),5([V/3])). Their weights
can be reduced and distributed uniformly among the possible weights in the interval
G — 2)(1V3)), G — D(1Va))).

It is not difficult to check that these two modifications can be accomplished by reducing
only the weights of some edges which are both active and removable. Indeed, for every
vertex v € B it is only needed to reduce its weight by at most 26.5@ Inn+2v0 <
27@111 n. By Lemma 5.2 (v), the number of edges between v and S which are both
active and removable is at least 27@ Inn, and as all active edges between B and
S have weight one prior to Step 2 there are enough edges whose weights can be reduced

from one to zero to allow the two modifications.
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In Step 3, we will only adjust the weights of edges within S to ensure that each weight
appears in at most LWJ + 1 vertices in S. We first use a method developed in a
paper in preparation by the second author and J. Przybyto [16] to identify which vertices
in S might have the same weight. For each vertex v € S, we will define a set L(v) such
that v,u € S cannot have the same weight at the end of Step 3 if u ¢ L(v). We will then
show that with high probability all sets L(v) will not be large.

To start, we relax the problem where the weight of each edge in S can be any real
number in [0, 1]. We first analyze the range of weight for each v € S after adjusting weights
in S.

By Lemma 5.2 (iv), after Step 2, since @lnn < deg(v)Inn/v/3d, the weight of
v € §; is at least the number of edges incident to v which are active but not removable,

which is bounded below by

(6 —4s™i)deg(v) deg(v)Inn  33(6 —4s"i)deg(v)Inn
6 Vo Vs

4s*7 33Inn Inn 4s*t  34lnn
= — e - > — — .
deg(v) ((1 0 > <1 0° > \/5> > deg(v) (1 0 o° )

This is also a lower bound on the weight of v € S; after Step 3. By Lemma 5.2 (ii),

the additional weight each vertex v € S can gain in Step 3 is at most degg(v) - 1 <
1.5deg(v)s*/d. Again together with Lemma 5.2 (iv), the weight of v € S; after Step 3 is

6—4s*i) deg(v eg(v)Inn * s*1 nn .5s*
at most <( 1 (;)dg()—i—dg(\/)gl >+1.5deg(v)s /(5:deg(v)(1—45 —i—lﬁ—&-l% )<

deg(v) (1 — 45? + 3%) In summary, the weight of v € S; after assigning arbitrary weights

in [0, 1] to edges in S is always in the interval

4s*;  34lnn 4s*;  3s*
I,; = [deg(v) <1 - (56> ,deg(v) (1 -5 + 5 >] . (10)

Therefore, vertex v € S; and v € §; can have the same weight after Step 3 only if
I,; NI, ; # 0, which is equivalent to

4s*i  341lnn 455 3s*
deg(v) (1 5 5 ) < deg(u) <1 5 + 5 > ; and (11)
4s*j  34lnn 453 3s*
— — < — .
deg(u) (1 3 5 > < deg(v) <1 5 + 5 ) (12)

Let u € L(v) if and only if u # v, v € S, and both (11) and (12) hold if v € S;. Clearly
u ¢ L(v) implies the distinct vertices u,v € S have distinct weights.

Claim 5.3. With probability at least 1 — 1/n?, |L(v)| < meﬁw forallveS.
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Proof. Given v € S; we bound the number of vertices v in L(v) by bounding the number
of vertices w in all sets S; where j satisfies both inequalities (11) and (12). These two

inequalities together imply

o

deg(v) (1  4sti 34lnn) 38" - 4s*j

deg(v) 1_43*1’ 3s* 341lnn
deg(u) ) 5e 5~ 5 = '

eg(u) ) + ) €

This means the value of 485* J can only lie in an interval of length geggg (3 4 3in) 4
34 lnn 4 35 2de5g(v) (3§* + 34;?”) < 2de§( )37ln" where the last inequality uses € < 1/4.
ThlS 1Inp11es j can only lie in an interval of length at most %Me{;‘;(”) 3751§n — dezgs(* v) 3751?71‘

Since with probability Z—;, the vertex u lies in S; for any given j, the probability that

u satisfies u € S; for some j with I, ; N I, ; # 0 is at most

s (deg(v) 37lnn 1) < s deg(v) 37Inn _ 37deg(v)Inn
ko \ 2s* &€ ~kd s 5 kotte -

The first inequality uses the fact that e < 1/4. Thus E[|L(v)|] < n%w. Since the

events for different vertices v are independent, by Chernoff’s Inequality the probability
that |L(v)| > nlniefw is at most n~*. By a union bound over v, the desired result
follows. m

We are now ready to adjust the weights of edges in S. First we show there is a desired
weighting with edges in S having fractional weights in {0,1/4,1/2,3/4,1}.

Claim 5.4. With probability at least 1 — 8/n? one can assign each edge in S a weight in
{0,1/4,1/2,3/4,1} such that for each vertex v € S, the number of vertices in L(v) whose

weight (including the weight to B) differs from that of v by strictly less than 11/4 is at

most L2016n;{1ﬁ1nlnnJ )

In particular, if 5'7¢ > 2016nInnlnlnn, for any two vertices v,u € S where u € L(v),
the difference between the weights of v and w is at least 11/4.

Proof. We use a modified version of the algorithm by Kalkowski, Karonski, and Pfender [10].
All edge weights in S are initialized to be 1/2.

Order the vertices of S arbitrarily as v1,vs,... and process them sequentially starting
from v;. When processing v;, we will find a set A,, of the form {12a 12“+1} for some
a € Z, such that throughout the later stages of the algorithm, A,, will stay unchanged
and the weight of v; will always stay in A,,. Suppose we are processing v; for ¢ > 1.
For each forward edge, i.e., edge v;v; where j > 7 if exists, we allow to change the edge

weight by increasing it by 0 or 1/4; for each backward edge v;v; where j < i if exists, we
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allow to change the weight by adding an element of {—1/4,0,1/4}, where if the current
weight of v; is the maximum value in A,;, we can only change this backward edge by
adding a member of {—1/4,0}, whereas if the current weight of v; is the minimum value
in A,,, we can only change this backward edge by adding a member of {0,1/4}. This rule
guarantees the weight of v; which has been processed always stays in A,;. Furthermore,
by all combinations of the allowable changes, the weight of v; can achieve any value in
an arithmetic progression P; with common difference 1/4 and of length degg(v;). In
addition, by our constraints on the structure of the sets A,,, a vertex v; has weight in
Ay, = {1%‘1, %} if and only if v; has weight in J,, = {122 12atl 12a42 "~ " 12“2'11}.

40 4 4

Thus there must be a set %b, mfl, 122”, cee %} C P; for some b € Z which is
shared by at most [|L(v)|/((|F;] —22)/12)] sets J,; for v; € L(v) and j < i. Fix such a
b 12b b b
set {%’ 124+17 124+27”.’ 12 111} c
{120 12641
10 4

P; as J,, and then ensure that the weight of v; lies in
} = A,, by adjusting the weights of forward and backward edges appropriately,
and then continue to v;+1. By Claim 5.3 and Lemma 5.2 (ii) which implies that |P;| >
0.5s* deg(v) /9,

_42ndeg(v)Inn

1 k61+€ — —
LR =2/12) < Gos gy /s — & bew EE

_ 48 -42n Inn 2016nInnlnlnn

where the equality is by plugging in ks* = §/Inlnn. Therefore we have shown that each
set J,, can be shared by at most LM"(SI?WJ other J,, for v; € L(v;). Furthermore,
if J, is different from J, which implies J, is disjoint from J,, then since the weight of v
is in A, C J, and the weight of u is in A, C J,, the difference between the weights of
u and v is at least 11/4. Lastly, notice that each edge changes its weight at most twice
(once as a forward edge and once as a backward edge), so all edge weights in S stay in
{0,1/4,1/2,3/4,1}. Therefore the first statement holds. The second statement holds by

noticing that when 6'+¢ > 2016n InnInlnn, then LM%‘WJ = 0. O

Suppose 6¢ > In?nlnlnn. We are now ready to finish the construction and the
proof. Suppose z(e) are the current weights of edges e in E(G) where when e € E(S5),
z(e) € {0,1/4,1/2,3/4,1} and when e ¢ E(S), z(e) € {0,1}. We now show that we can

change the edge weights in S to be in {0,1} so that each weight is shared by at most

L2016n;?ﬂeln 1nnJ

subgraph on S to conclude that there is a binary weighting z : E(G) — {0, 1} such that
z(e) = z(e) for e ¢ E(S), and for each v € S,

Y ozle)—1<) w(e) <> z(e) + 1. (13)

esv esv esv

+ 1 vertices in S. To achieve this, we apply Lemma 4.1 to the induced
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We now bound the number of vertices in S sharing the same weight. Given v € 5, if a
different vertex u € S satisfies > o x(e) = > 5, z(e), then v € L(v). Furthermore, by
the triangle inequality and (13),

Z x(e) — Z x(e)

esv esu

0= >

Z z(e) — Z z(e)

esv esu

__2’

which implies ’Zeavz(e) — D esu z(e)’ < 2 < 11/4. By Claim 5.4, there are at most
LWJ different u € L(v) with ‘Zeav z(€) = o5, 2(€)| < 11/4. Thus each weight
with respect to x is shared by at most LM”;?WJ + 1 vertices in S, as desired.

We have shown in (9) in Step 2 that the number of vertices in B with the same weight
is at most [n/645+/n/0vInn/6Y/*], and note that weights of vertices in B do not change
after Step 2. Therefore we have shown that there is a spanning subgraph H of G (cor-
responding to the edges with z(e) = 1) satisfying m(H) < {n/é + 5@\/@/51/41 +

LWJ + 1. This completes the proof of the first statement in Theorem 5.1.

In case 6'*¢ > 2016nlnnlnlnn, m(H) < [n/§ + 5y/n/6vVInn/sY*] +1 = [n/(6 +
1)+ n/(0(6 + 1)) + 5¢/n/6v/Inn/6Y/*] + 1. Since §'*¢ > 2016nlnninlnn, the value
of n/(6(8 + 1)) + 5/n/6vInn/§'/* is arbitrarily small when n is sufficiently large. Thus
in this case, m(H) < [n/(d + 1)] + 2, as needed.

To see the first statement in Theorem 1.4 holds, notice that when §'¢ > 2016nlnnInlnn
then it is implied by the second statement in Theorem 5.1. Otherwise it follows from the
first statement of this theorem and the fact that we may assume that § > Q((n/logn)'/4)
by the results in Section 2, that m(H) < (n/0)(1 + o(1)) = (n/(6 + 1))(1 4+ o(1)). The
second statement in Theorem 1.4 holds since the condition 6'?* > n implies that for suf-
ficiently large n, 614> > 2016nInnInlnn and the desired result follows from the second

statement in Theorem 5.1. O

6 Open problems

The two conjectures 1.1 and 1.2 remain open, although we have established some weaker
asymptotic versions. It is possible that the constant 2 in both conjectures can even be
replaced by 1 provided the number of vertices in the graphs considered is large. As
proved by Axenovich and Fiiredi in [2] this is inded the case for Conjecture 1.2 provided
d>"Tn/8+ en®/* for an appropriate absolute constant ¢. It may be interesting to prove
that the assertions of the two conjectures hold if we replace the constant 2 in each of them

by some absolute constant C'. It will also be nice to prove that every d-regular graph
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on n vertices, where d = o(n), contains a spanning subgraph H in which every degree
between 0 and d appears (1 +o(1)) 77 times, even when d is nearly linear in n. As is the
case throughout the paper, the o(1)-term here tends to 0 as n tends to infinity. Finally,
Theorems 1.7 and 1.8 suggest the question of deciding whether or not there is an absolute
constant C' so that every graph G (with a finite irregularity strength s(G)) contains a
spanning subgraph H satisfying m(H) < s(G) + C.

Acknowledgment: We thank Démotor Palvolgyi for pointing out that the original ver-

sion of our conjectures has been too strong.
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