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Abstract

What is the number of rolls of fair 6-sided dice until the first time the total
sum of all rolls is a prime? We compute the expectation and the variance of this
random variable up to an additive error of less than 107%. This is a solution to a
puzzle suggested by DasGupta (2017) in the Bulletin of the Institute of Mathematical
Statistics, where the published solution is incomplete. The proof is simple, combining
a basic dynamic programming algorithm with a quick Matlab computation and basic
facts about the distribution of primes.
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1 The Problem and Monte-Carlo Simulation

The following puzzle appears in the Bulletin of the Institute of Mathematical Statistics
(DasGupta, 2017): Let X7, X5, ... be independent uniform random variables on the integers
1,2,...,6, and define S,, = X1+ ...+ X,, for n = 1,2,.... Denote by 7 the discrete time

in which S, first hits the set of prime numbers P:
T=min{n >1:5, € P}.

The contributing editor (DasGupta, 2017) provides a lower bound of 2.34 for the expecta-
tion E(7) and mentions the following heuristic approximation for it: E (1) ~ 7.6. He also
adds that it is unknown whether 7 has a finite variance.

In this note, we compute the value of F(7) up to an additive error of less than 1077,
showing it is much closer to the lower bound mentioned above than to 7.6. We also show
the variance is finite and compute its value up to an additive error of less than 10~ It
will be clear from the discussion that it is not difficult to get a better approximation for
both quantities by increasing the amount of computation performed.

Before describing the rigorous argument, we present in Table 1 below the outcomes of

Monte-Carlo simulations of the process.

Table 1: Monte-Carlo simulations
number of repetitions mean(7) wvariance(t) max(T)

106 2.4316 6.2735 49
2 x 108 24274 6.2572 67
3 x 10° 2.4305 6.2372 70
5 x 109 2.4287 6.2418 64
107 2.4286 6.2463 65

We provide Matlab code for the Monte-Carlo simulation in the supplementary materials,
Section A.

In the next sections, we proceed with a rigorous computation of E(7) and Var(r) up
to an additive error smaller than 1/10,000. Not surprisingly, this computation shows that

the simulations supply accurate values.



2 Expectation and Variance of the Hitting Time

First, we present the formulas for calculating the expectation and variance of the hitting

time 7 as a function of the probability that 7 equals or exceeds a certain value k, for
k=1,2,3,..., which we denote by p(k) = P(r > k). We have
E(r) =Y plk) (1)
k>1

and

E(r) =) (2k — 1)p(k). (2)

k>1

We remind in the supplementary materials, Section B how to obtain the formulas (1)
and (2).

Obviously, by the definition of variance we have
Var(r) = B(r*) - [E(7)]". (3)

In section 3 we develop a dynamic programming algorithm to compute p(k) exactly and
use the first 1000 values (k = 1,...,1000) to estimate E(7) and Var(r) with reference to
expressions (1), (2), and (3).

3 Dynamic Programming Algorithm and Estimates

In this section we develop a dynamic programming algorithm to compute the first K values

p(1),p(2),...,p(K), then use these values to estimate E(7) and Var(r).

3.1 Dynamic Programming Algorithm

For each integer & > 1 and for each non-prime n satisfying &k < n < 6k, let p(k,n) denote
the probability that X; 4 - - -+ X = n and that for every i < k, X; +---+ X; is non-prime.
Fix a parameter K (in our computation, we later take K = 1000). By the definition of
p(k,n) and the rule of total probability, we have the following dynamic programming (DP)
algorithm for computing p(k, n) precisely for all 1 < k£ < K and k < n < 6k:

1. p(1,1) = p(1,4) = p(1,6) = 1/6.



2. For k =2,..., K and for any non-prime n between k and 6k,
1 :
p(k>n):6;p(k_1>n_z)a (4)

where the sum ranges over all ¢ between 1 and 6 so that n — ¢ is non-prime.
From the definitions of p(k) and p(k,n), we obtain the following identity:
plk+1)=" > pkn). (5)
{n: k<n<6k}

We apply this DP algorithm to get the values p(k,n) for k = 1,..., K. Then, using
identity (5), we obtain the values p(1),p(2),...,p(K), which consequently provide us the
partial sums in (1) and (2). These partial sums are the lower bounds to E(7) and F(7?),
which allows us to estimate the expectation and variance of the hitting time, which we

discuss in the next section.

3.2 Estimators of the Expectation and Variance of Hitting Time

Denote by Ef and Eg) the estimators (lower bounds) of E(7) and E(7?) based on the
respective values of p(k) for the first K values in (1) and (2):

K

Ex =Y p(k) and EZ = (2k—1)p(k). (6)

k=1

We estimate F(7) by Ex and consequently Var(r) by Vi, defined as follows
Vi = B — (Ex)%.

Setting K = 1000 and applying the dynamic programming algorithm in Matlab (pro-
vided in the supplementary materials, Section C), with an execution time of less than five
seconds, we obtain Eggg = 2.4284 and Vigg = 6.2427.

The ”quality” of these estimators can be measured as the difference between F(7) and

Var(7) and their corresponding estimators:
REx = E(1) — Ex and RVi =Var(r) — Vk. (7)

In the next section, we bound REx and RV and show that for K = 1000, RE1pp0 <
10~7 and RVigoo < 10—,



4 Bounding the Remainders

In this section, we provide the bounds for the remainder terms defined in (7). To accomplish
this, we will use basic facts about the distribution of primes and prove the following simple

result by induction on k.

Proposition 1. For every k and for every non-prime n,

<5 () ®)

where (n) is the number of primes smaller than n.

Proof. Note first that (8) holds for k =1, as 1/6 = p(1,6) < (1/3)(5/6)3, 1/6 = p(1,4) <
(1/3)(5/6)% and 1/6 = p(1,1) < (1/3)(5/6)°, with room to spare. Assuming the inequality
holds for & — 1 (and every relevant n) we prove it for k. Suppose there are ¢ primes in the
set {n —6,...,n— 1}, then m(n — i) > 7(n) — ¢ for all non-prime n — ¢ in this set. Thus,

by the induction hypothesis, and using (4), we obtain
w(n)—q q w(n)—q w(n)
1 1/5 5\*1 /5 1/5
<Z(6-—q)-(2 <(2) =(2 — (2 .

By the prime number theorem (cf., e.g., Hardy and Wright (2008)), for every n > 1000

]

n
m(n) > 0.91— (again, with room to spare). Therefore, from the above estimate, we arrive
nn

at the following result.

Corollary 1. For every k > 1000 and every non-prime n(n > k),

1 /5)\%ma
k - | = :

Corollary 1 is the crucial result in obtaining the upper bounds of the remainders RFE1 g

and RVigg, which are given in the following proposition.

Proposition 2. The remainder terms, which are defined in (7), are bounded as follows:

(CL) RElOOO < 10_7,
(b) RV&OOO < 10_4.
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Proof. Recall that
Pir>k+1)=pk+1)= >  plkn).
{n: k<n<6k}
For part (a), we have

RE1p00 = ZP(TZk):ZP(TZk-i-l):Z Z p(k,n)

k>1000 k>999 k>999 {n: k<n<6k}

1/5 0.9n/Inn 1/5 0.9n/Inn n 1/5 0.9n/Inn
<> 2 g(g) =2 Z g(g) <> Zg(g)

k>999 {n: k<n<6k} 1n>1000 k=max(1000,n/6) n>1000 £=1000
1/5 0.9n/Inn
= —999)- | = 9
> -0z (3) )
n>1000
where the first inequality is obtained from Corollary 1.

Define

) = (n — 999) (2)/ , (10)

where n is an integer > 1000. The first part of Proposition 2 follows by noting Z f(n) <1077,

n>1000
shown in the supplementary materials, Section D.

For part (b),

R = > (2k—-1P(r>k)= > > (2k — V)p(k — 1,n)

k>1000 k>1000 {n: k—1<n<6(k—1)}

oI SRR3R ST () R s

k>1000 {n: k—1<n<6(k—1)} n>1000 k=max(1001,n/6+1)
1/5 09n/lnn n+l 1/5 0.9n/Inn
< — (= 2k —1) = — (= 1)? — 1000? 11
() Te-n- i(3) (merrowwd,
n>1000 k=1001 n>1000
where the first inequality is also obtained from Corollary 1.
Denote by

0.9n/Inn
g(n) = [(n+ 1)* — 10007] % (g) : (12)

where n is an integer > 1000. Likewise, the second part of Proposition 2 follows by noting

Z g(n) < 3.4 x 107%, shown in the supplementary materials, Section E.
1n>10,000



Combining this with (11), we obtain

9999
Righo < Y gn)+ > g(n) <85x107° +3.4 x 107 < 1/10,000.  (13)
n=1000 n>10,000

Now, from (6) and (7) it follows that RVix = RY — 2Ex(REy) — (REx)?, where
Rg) = Z(Qk — 1)p(k). Combining this with (13) and part (a) of Proposition 2, we con-

k>K
clude that RVigoo < 1074, i.e., the error of the variance estimation based on the first 1000
values of k is below 1/10, 000. O

5 Final Remarks

The problem considered in this work deals with a random process for generating primes,
and its investigation ties together a simple algorithmic idea with basic facts about the
distribution of prime numbers. Although the solution is tailored to this specific situation,
it offers a method for studying problems of this type. This note can also be used as a
motivator in upper-level undergraduate or graduate classes by introducing and illustrating
the power of combining a simple dynamic programming algorithm with a quick computer-

aided computation and basic facts about the distribution of primes.

Supplementary Materials

Section A Matlab Code for the Monte-Carlo Simulation.

Section B The First Two Moments of the Hitting Time.

Section C Matlab Code for the Dynamic-Programming Algorithm.
Section D Upper Bound of 3 400 f(7).

Section E Upper Bound of >~ ;400 9(7)-
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