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Abstract

What is the number of rolls of fair 6-sided dice until the first time the total
sum of all rolls is a prime? We compute the expectation and the variance of this
random variable up to an additive error of less than 10−4. This is a solution to a
puzzle suggested by DasGupta (2017) in the Bulletin of the Institute of Mathematical
Statistics, where the published solution is incomplete. The proof is simple, combining
a basic dynamic programming algorithm with a quick Matlab computation and basic
facts about the distribution of primes.
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1 The Problem and Monte-Carlo Simulation

The following puzzle appears in the Bulletin of the Institute of Mathematical Statistics

(DasGupta, 2017): Let X1, X2, . . . be independent uniform random variables on the integers

1, 2, . . . , 6, and define Sn = X1 + . . . + Xn for n = 1, 2, . . .. Denote by τ the discrete time

in which Sn first hits the set of prime numbers P :

τ = min {n ≥ 1 : Sn ∈ P} .

The contributing editor (DasGupta, 2017) provides a lower bound of 2.34 for the expecta-

tion E(τ) and mentions the following heuristic approximation for it: E (τ) ≈ 7.6. He also

adds that it is unknown whether τ has a finite variance.

In this note, we compute the value of E(τ) up to an additive error of less than 10−7,

showing it is much closer to the lower bound mentioned above than to 7.6. We also show

the variance is finite and compute its value up to an additive error of less than 10−4. It

will be clear from the discussion that it is not difficult to get a better approximation for

both quantities by increasing the amount of computation performed.

Before describing the rigorous argument, we present in Table 1 below the outcomes of

Monte-Carlo simulations of the process.

Table 1: Monte-Carlo simulations
number of repetitions mean(τ) variance(τ) max(τ)

106 2.4316 6.2735 49

2× 106 2.4274 6.2572 67

3× 106 2.4305 6.2372 70

5× 106 2.4287 6.2418 64

107 2.4286 6.2463 65

We provide Matlab code for the Monte-Carlo simulation in the supplementary materials,

Section A.

In the next sections, we proceed with a rigorous computation of E(τ) and V ar(τ) up

to an additive error smaller than 1/10, 000. Not surprisingly, this computation shows that

the simulations supply accurate values.
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2 Expectation and Variance of the Hitting Time

First, we present the formulas for calculating the expectation and variance of the hitting

time τ as a function of the probability that τ equals or exceeds a certain value k, for

k = 1, 2, 3, . . ., which we denote by p(k) = P (τ ≥ k). We have

E (τ) =
∑
k≥1

p(k) (1)

and

E
(
τ 2
)

=
∑
k≥1

(2k − 1)p(k). (2)

We remind in the supplementary materials, Section B how to obtain the formulas (1)

and (2).

Obviously, by the definition of variance we have

V ar(τ) = E(τ 2)− [E(τ)]2 . (3)

In section 3 we develop a dynamic programming algorithm to compute p(k) exactly and

use the first 1000 values (k = 1, . . . , 1000) to estimate E(τ) and V ar(τ) with reference to

expressions (1), (2), and (3).

3 Dynamic Programming Algorithm and Estimates

In this section we develop a dynamic programming algorithm to compute the first K values

p(1), p(2), . . . , p(K), then use these values to estimate E(τ) and V ar(τ).

3.1 Dynamic Programming Algorithm

For each integer k ≥ 1 and for each non-prime n satisfying k ≤ n ≤ 6k, let p(k, n) denote

the probability that X1 + · · ·+Xk = n and that for every i < k, X1 + · · ·+Xi is non-prime.

Fix a parameter K (in our computation, we later take K = 1000). By the definition of

p(k, n) and the rule of total probability, we have the following dynamic programming (DP)

algorithm for computing p(k, n) precisely for all 1 ≤ k ≤ K and k ≤ n ≤ 6k:

1. p(1, 1) = p(1, 4) = p(1, 6) = 1/6.

3



2. For k = 2, . . . , K and for any non-prime n between k and 6k,

p(k, n) =
1

6

∑
i

p(k − 1, n− i), (4)

where the sum ranges over all i between 1 and 6 so that n− i is non-prime.

From the definitions of p(k) and p(k, n), we obtain the following identity:

p(k + 1) =
∑

{n: k≤n≤6k}

p(k, n). (5)

We apply this DP algorithm to get the values p(k, n) for k = 1, . . . , K. Then, using

identity (5), we obtain the values p(1), p(2), . . . , p(K), which consequently provide us the

partial sums in (1) and (2). These partial sums are the lower bounds to E(τ) and E(τ 2),

which allows us to estimate the expectation and variance of the hitting time, which we

discuss in the next section.

3.2 Estimators of the Expectation and Variance of Hitting Time

Denote by EK and E
(2)
K the estimators (lower bounds) of E(τ) and E(τ 2) based on the

respective values of p(k) for the first K values in (1) and (2):

EK =
K∑
k=1

p(k) and E
(2)
K =

K∑
k=1

(2k − 1)p(k). (6)

We estimate E(τ) by EK and consequently V ar(τ) by VK , defined as follows

VK = E
(2)
K − (EK)2.

Setting K = 1000 and applying the dynamic programming algorithm in Matlab (pro-

vided in the supplementary materials, Section C), with an execution time of less than five

seconds, we obtain E1000 = 2.4284 and V1000 = 6.2427.

The ”quality” of these estimators can be measured as the difference between E(τ) and

V ar(τ) and their corresponding estimators:

REK = E(τ)− EK and RVK = V ar(τ)− VK . (7)

In the next section, we bound REK and RVK and show that for K = 1000, RE1000 <

10−7 and RV1000 < 10−4.
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4 Bounding the Remainders

In this section, we provide the bounds for the remainder terms defined in (7). To accomplish

this, we will use basic facts about the distribution of primes and prove the following simple

result by induction on k.

Proposition 1. For every k and for every non-prime n,

p(k, n) <
1

3

(
5

6

)π(n)
, (8)

where π(n) is the number of primes smaller than n.

Proof. Note first that (8) holds for k = 1, as 1/6 = p(1, 6) < (1/3)(5/6)3, 1/6 = p(1, 4) <

(1/3)(5/6)2 and 1/6 = p(1, 1) < (1/3)(5/6)0, with room to spare. Assuming the inequality

holds for k − 1 (and every relevant n) we prove it for k. Suppose there are q primes in the

set {n− 6, . . . , n− 1}, then π(n− i) ≥ π(n)− q for all non-prime n− i in this set. Thus,

by the induction hypothesis, and using (4), we obtain

p(k, n) ≤ 1

6
(6− q)1

3

(
5

6

)π(n)−q
≤
(

5

6

)q
1

3

(
5

6

)π(n)−q
=

1

3

(
5

6

)π(n)
.

By the prime number theorem (cf., e.g., Hardy and Wright (2008)), for every n > 1000

π(n) > 0.9
n

lnn
(again, with room to spare). Therefore, from the above estimate, we arrive

at the following result.

Corollary 1. For every k > 1000 and every non-prime n(n ≥ k),

p(k, n) <
1

3

(
5

6

)0.9 n
lnn

.

Corollary 1 is the crucial result in obtaining the upper bounds of the remainders RE1000

and RV1000, which are given in the following proposition.

Proposition 2. The remainder terms, which are defined in (7), are bounded as follows:

(a) RE1000 < 10−7,

(b) RV1000 < 10−4.
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Proof. Recall that

P (τ ≥ k + 1) = p(k + 1) =
∑

{n: k≤n≤6k}

p(k, n).

For part (a), we have

RE1000 =
∑
k>1000

P (τ ≥ k) =
∑
k>999

P (τ ≥ k + 1) =
∑
k>999

∑
{n: k≤n≤6k}

p(k, n)

<
∑
k>999

∑
{n: k≤n≤6k}

1

3

(
5

6

)0.9n/ lnn

=
∑

n≥1000

n∑
k=max(1000,n/6)

1

3

(
5

6

)0.9n/ lnn

<
∑

n≥1000

n∑
k=1000

1

3

(
5

6

)0.9n/ lnn

=
∑

n≥1000

(n− 999)
1

3

(
5

6

)0.9n/ lnn

, (9)

where the first inequality is obtained from Corollary 1.

Define

f(n) = (n− 999)
1

3

(
5

6

)0.9n/ lnn

, (10)

where n is an integer≥ 1000. The first part of Proposition 2 follows by noting
∑

n≥1000

f(n) < 10−7,

shown in the supplementary materials, Section D.

For part (b),

R
(2)
1000 :=

∑
k>1000

(2k − 1)P (τ ≥ k) =
∑
k>1000

∑
{n: k−1≤n≤6(k−1)}

(2k − 1)p(k − 1, n)

<
∑
k>1000

∑
{n: k−1≤n≤6(k−1)}

(2k − 1)

(
5

6

)0.9n/ lnn

=
∑

n≥1000

1

3

(
5

6

)0.9n/ lnn n+1∑
k=max(1001,n/6+1)

(2k − 1)

<
∑

n≥1000

1

3

(
5

6

)0.9n/ lnn n+1∑
k=1001

(2k − 1) =
∑

n≥1000

1

3

(
5

6

)0.9n/ lnn [
(n+ 1)2 − 10002

]
, (11)

where the first inequality is also obtained from Corollary 1.

Denote by

g(n) =
[
(n+ 1)2 − 10002

] 1

3

(
5

6

)0.9n/ lnn

, (12)

where n is an integer ≥ 1000. Likewise, the second part of Proposition 2 follows by noting∑
n≥10,000

g(n) < 3.4× 10−68, shown in the supplementary materials, Section E.
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Combining this with (11), we obtain

R
(2)
1000 <

9999∑
n=1000

g(n) +
∑

n≥10,000

g(n) < 8.5× 10−5 + 3.4× 10−68 < 1/10, 000. (13)

Now, from (6) and (7) it follows that RVK = R
(2)
K − 2EK(REK) − (REK)2, where

R
(2)
K :=

∑
k>K

(2k − 1)p(k). Combining this with (13) and part (a) of Proposition 2, we con-

clude that RV1000 < 10−4, i.e., the error of the variance estimation based on the first 1000

values of k is below 1/10, 000.

5 Final Remarks

The problem considered in this work deals with a random process for generating primes,

and its investigation ties together a simple algorithmic idea with basic facts about the

distribution of prime numbers. Although the solution is tailored to this specific situation,

it offers a method for studying problems of this type. This note can also be used as a

motivator in upper-level undergraduate or graduate classes by introducing and illustrating

the power of combining a simple dynamic programming algorithm with a quick computer-

aided computation and basic facts about the distribution of primes.

Supplementary Materials

Section A Matlab Code for the Monte-Carlo Simulation.

Section B The First Two Moments of the Hitting Time.

Section C Matlab Code for the Dynamic-Programming Algorithm.

Section D Upper Bound of
∑

n≥1000 f(n).

Section E Upper Bound of
∑

n≥10,000 g(n).
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