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Beyond the Sign Rules
Are your students negative about integers? Help them  
experience positivity and joy doing integer arithmetic!

Jessica Pierson Bishop, Lisa L. Lamb, Ian Whitacre,  
Randolph A. Philipp, and Bonnie P. Schappelle

Consider the following integer arithmetic tasks:
6 + ☐ = 4
–5 – –3 = ☐
–2 + ☐ = 4
–8 – 3 = ☐
Which would be the most di"cult for your students? 

Which would be the easiest? In our work with K–12 stu-
dents, we were surprised to #nd that problems we ini-
tially thought would be challenging for students,  
like –5 – –3 = ☐, were not. Further, problems we thought 
would be relatively easy, such as –8 – 3 = ☐, were harder 
than we anticipated. We wondered what features of 

these problems made them more and less challenging 
and why. We answer these questions using data from 
interviews with 160 K–12 students. Speci#cally, we share 
problem-type categories for integer addition and sub-
traction that varied in di"culty and tended to evoke dif-
ferent types of reasoning (Lamb et al. 2018). In the same 
spirit as the well-known Cognitively Guided Instruction 
(CGI) problem-type categories for whole number oper-
ations (Carpenter et al. 2014), our categories for integer 
addition and subtraction tasks and our framework for 
Ways of Reasoning about integers provide an organizing 
structure for integer-speci#c content knowledge.

Access digital content at
nctm.org/mtlt11503g6.
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We want to highlight why this research has been use-
ful to us. As former teachers, we o$en showed students 
a single way to solve problems—some of us preferred 
rules for operating on integers, and others used chips, 
or number lines, or contexts. Although these may have 
been helpful for students learning to operate on integers, 
we may have also inadvertently limited students’ oppor-
tunities to reason about integers by proceduralizing the 
use of these tools in ways that may not have allowed for 
conceptual understanding. We believe that integers can 
be taught from a reasoning approach and found that the 
most successful students in our study had many ways to 
reason about problems. By reconceptualizing integers 
around Ways of Reasoning and problem types, we create 
opportunities for integers to be a conceptually oriented 
mathematical topic. Furthermore, we believe that this 
knowledge can support teachers to purposefully select 
problems for speci#c instructional goals and to elicit 
particular Ways of Reasoning.

PROBLEM TYPES
For many adults, the four problems in the introduction 
are the same in that each one can be solved by invok-
ing a computational rule or procedure, perhaps one you 
learned in school as a student yourself. But for students, 
these problems were di%erent, inasmuch as they used 
di%erent strategies to solve them. For example, one stu-
dent told us that 6 + ☐ = 4 had no answer because 4 is 
smaller than 6 and you are adding, so the answer should 
be bigger than 6. But then she solved –2 + ☐ = 4 by count-
ing up by ones from –2 to 4. And to solve –5 – –3 = ☐, she 
took away three negatives from #ve negatives, which le$ 
two negatives. The di%erent strategies and underlying 
reasoning we saw in students’ solutions indicated that 

important distinctions exist among integer addition and 
subtraction problems beyond the operation itself. Below 
we share problem-type categories for integer addition 
and subtraction problems (what we call additive problem 
types) that tended to account for the di%erent ways stu-
dents reasoned about open number sentences.

We identi#ed three broad categories of additive prob-
lem types for integers: all-negatives, change-positive, and 
counterintuitive. The #rst category, all-negatives, includes 
problems like –5 – –3 = ☐, in which all the numbers 
(including the unknown, –2) in the problem are negative. 
For the second problem-type category, change-positive, 
we adopt the language used in the Cognitively Guided 
Instruction problem-type frameworks of start, change, 
and result values. In change-positive problems, the change 
value is positive. The problems –8 – 3 = ☐ and –2 + ☐ = 4 
are both change-positive because 3 and 6 (the unknown in 
the second problem), are positive numbers (the change is 
the number only and does not include the operation). We 
named the last category counterintuitive problems because 
these problems contradict the overgeneralizations that 
addition makes larger and subtraction makes smaller 
(Bishop et al. 2011; Karp, Bush, and Dougherty 2014). The 
problem 6 + ☐ = 4 is a counterintuitive problem because 
the result (i.e., 4) of adding 6 to an unknown quantity is 
less than 6. These problem types are important because 
they re&ect di%erences not only in students’ strategies but 
also in problem di"culty. The &owchart shows additive 
problem types for integers (see #gure 1).

In which problem-type category are the problems 
easiest? Hardest? We were surprised by the answers 
to these questions. In our interviews with 160 stu-
dents across multiple grade levels, we found that the 
all-negatives category was the easiest type of problem, 
with correct answers given to 76.3 percent of these 
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problems (Lamb et al. 2018). Students also did rela-
tively well on the change-positive problems, answer-
ing 61.1 percent of those correctly, but answered only 
48.4 percent of the counterintuitive problems correctly. 
We suspected that counterintuitive problems would be 
challenging but were surprised by how easily many stu-
dents engaged with the all-negative problems.

When looking closely at the change-positive prob-
lems, we noticed that some problems such as –2 + ☐ = 4  
were easier than other problems like –8 – 3 = ☐. One 
second-grade child, Lynn, gave us insight into why. To 
solve this problem, Lynn wanted to count down but did 
not know which way to count with a negative starting 
value. She initially “counted down” saying, “Eight, seven 
[raising one !nger], six [raising a second !nger], #ve [raising 
a third !nger]. Negative #ve.” She then changed her mind 
saying, “I think it’s switched. . . . I want to change this 
answer and count up now. Eight, nine [raising one !nger], 
ten [raising a second !nger], eleven [raising a third !nger]. 
Negative eleven.”

We suggest that Lynn was grappling with two compet-
ing ideas: She had to reconcile her understanding that 
subtraction should make smaller with the fact that –11 
has a larger magnitude than –8. How could Lynn subtract 
3 from –8 and end up with a “larger” value of –11? Her 
response highlights a challenge many students navigated 
when solving this problem and others like it: Students 
grappled with what bigger and smaller meant in terms of 

negative numbers and their resultant decisions about 
which way to count. This #nding led us to further di%er-
entiate change-positive problems on the basis of their 
starting and ending values.

We classi#ed change-positive problems with negative 
start and result values (e.g., –8 – 3 = ☐) as negative-side 
problems. This name re&ects a common strategy of 
using the number line when solving –8 – 3 = ☐ by start-
ing at –8 and moving 3 units le$ on the number line to 
end at –11. In the solution to this problem, the quanti-
ties stayed on the negative side of the number line.  
In contrast, using a number line to solve problems  
like –2 + ☐ = 4 involved crossing zero when moving  
from –2 to 4. Thus, we classi#ed change-positive prob-
lems with start and result values on opposite sides of 
zero as cross-zero problems. Because cross-zero prob-
lems such as –2 + ☐ = 4 and 3 – 5 = ☐ involved start and 
result values on opposite sides of zero, and because 
students typically knew that negative numbers were 
smaller than positive numbers (Bo%erding 2014; 
Whitacre et al. 2017), these types of problems did not 
appear to elicit as much debate over which way to count 
or whether the starting or ending values were larger  
(or smaller). In other words, students could success-
fully engage with 3 – 5 = ☐, for example, without con-
tradicting the generalization that subtraction makes 
smaller because –2 (a negative number) is clearly less 
than 3 (a positive number). In contrast, negative-side 
problems such as –8 – 3 = ☐ and –9 + ☐ = –4 required 
students to confront whether –4 was larger or smaller 
than –9 and, therefore, whether the given problem  
contradicted the generalization of addition makes  
larger (or subtraction makes smaller).

To summarize, our problem-type framework com-
prises four categories: all negatives, two categories of 
change-positive (negative-side and cross-zero), and coun-
terintuitive. Although integer addition and subtraction 
tasks are o$en categorized in terms of addition versus sub-
traction, we suggest that categorizing them di%erently is 
productive. The distinctions captured in our problem-type 
categories matter because they re&ect di%erences in dif-
#culty, di%erences in students’ reasoning and strategy 
choice, and di%erences in the structures of problems  
(i.e., the locations, signs, and magnitudes of the values).

WAYS OF REASONING
In previous work, we identi#ed #ve broad ways of reason-
ing (WoRs) about integer addition and subtraction into 
which we could classify students’ responses: order-based, 

Fig. 1

This "owchart shows additive problem types for integers.
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analogy-based, formal, computational, and emergent 
(Lamb et al. 2018). WoRs are general conceptualizations 
of signed numbers and operations (e.g., numbers as 
sequential and ordered in the case of order-based reason-
ing) that students draw on when they solve additive inte-
ger problems. The WoRs framework is a way to organize 
student thinking about integer addition and subtraction 
that accounts for the underlying views of number and 
operation leveraged in a student’s strategy. Knowledge 
of WoRs can help teachers listen to, make sense of, 
elicit, and extend student thinking about integers. A$er 
describing the #ve WoRs (see table 1), we share examples 
through a series of videos.

Order-Based Reasoning
As an example of order-based reasoning, consider  
the response of Angie, who used a number line to  
solve –8 – 3 = ☐ and 3 – ☐ = –6 in video 1 (link online). 
For both problems, Angie treated the start and result 
values as locations on the number line and interpreted 

the change value as the amount to move. The opera-
tions of addition and subtraction indicated the direc-
tion of motion for Angie. For –8 – 3 = ☐, Angie moved 

Table 1  Ways of Reasoning Framework

Ways of Reasoning Description

Evidence of 
Engagement 
with Negative 
Numbers

Order-based In this way of reasoning, one leverages the sequential and ordered nature of numbers. 
Strategies include use of the number line with motion and counting forward or backward 
by ones. For example, students may solve –2 + ☐ = 4 counting by ones from –2 to 4.

Analogy-based This way of reasoning is characterized by relating (signed) numbers to another 
concept or object and reasoning about negative numbers on the basis of behaviors 
observed in this other concept. Analogy-based reasoning is o$en tied to ideas about 
cardinality and understanding a number as having magnitude. For example, students 
may reason about –8 – –1 by treating –8 as eight of something that is “negative”  
(sad thoughts or bad guys). If –8 is eight negative things, we can remove one negative 
thing, leaving seven negative things, or –7.

Formal In this way of reasoning, signed numbers are treated as formal objects that exist in a 
system and are subject to mathematical principles that govern behavior. This way of 
reasoning includes generalizing beyond a speci#c case by making a comparison to 
another, known, problem and appropriately adjusting one’s reasoning, or by applying 
properties of classes of numbers, such as generalizations about zero.

Computational In this way of reasoning, one uses a procedure, rule, or calculation. For example, some 
students changed the operation of a given problem along with the corresponding sign of 
the subtrahend or second addend (i.e., changing 6 – –2 to 6 + 2 or 5 + –7 to 5 – 7). Students 
o$en explained these changes by referring to rules.

Restricted to 
Whole Numbers

Emergent This category of reasoning re&ects preliminary attempts to compute with signed numbers; 
the domain of possible solutions appears to be restricted to whole numbers. The possible 
e%ect of operating with a negative number is not considered. A child may overgeneralize 
that addition always makes larger, and, as a result, claim that a problem for which the sum 
is less than one of the addends (6 + ☐ = 4) has no answer.

Adapted from Bishop et al. 2014; Lamb et al. 2018. Copyright NCTM.

Video 1  Using Order-Based Reasoning  
on a Number Line

 Watch the full video online.
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from –8 to –11, explaining that subtracting 3 “goes back 
to the le$ even farther on the number line.” Another 
common order-based strategy was counting by ones, 
which we described earlier in Lynn’s reasoning. In gen-
eral, order-based reasoning leverages an understanding 
of numbers as ordered and sequential and operations 
as ways to progress through those ordered sequences.

Analogy-Based Reasoning
Analogy-based reasoning involves the use of an anal-
ogy between signed numbers and some other concept, 
object, or idea. For example, students frequently com-
pared negative numbers to positive numbers as seen in 
video 2 (link online), a compilation of multiple students 
solving problems including ☐ + –2 = –10, –5 + –1 = ☐, 
and –8 – ☐ = –2. In this video, students productively rea-
soned about adding and subtracting negative numbers 
on the basis of adding positive, or regular, numbers. 
One student explained his solution for –5 – –3 = ☐ by 
saying, “You would just take o% the negatives and get  
5 minus 3. And it would equal 2. Then you would put 
the negatives on the numbers again. That would give 
you negative 2.” Other students compared negative 
numbers to contexts including owing money, eleva-
tion, and digging holes as seen in video 3 (link online). 
(These are contexts students used in our interviews, but 
we are not advocating the use of any particular context 
or model.)

Formal Reasoning
Students used formal reasoning when they treated neg-
ative numbers as mathematical objects that exist in 
a system governed by mathematical formalisms and 

properties. Students o$en conjectured about how oper-
ations with negative numbers functioned by gener-
alizing or comparing the given problem to a related 
problem they could solve. Consider, for example, 
Alma’s reasoning about –5 – –3 = ☐: “Because when 
you add, like when I’m adding negative 5 to negative 1, 
it’s gonna be negative 6. [The problem she had previously 
solved was –5 + –1 = ☐.] So, it [–5 + –1] can’t be the same 
as this [–5 – –3]. So, when you subtract negative 3 from 
negative 5, it’s gonna be negative 2.” Alma compared 
the sum of two negative numbers (–5 + –1) to the di%er-
ence of two negative numbers (–5 – –3) and reasoned 
that the results of those operations would be “the other 
way around” because addition and subtraction are 
opposites. She continued, “It [the result to –5 – –3] can’t 
be the same because it’s [circling the addition symbol  
in –5 + –1] a di%erent sign you’re working with. . . .  
It’s [–5 – –3] gonna work the other way around.” (Watch 
Alma use formal reasoning on two problems in video 4 
[link online].)

We also saw formal reasoning in Melissa’s solution 
for 6 + ☐ = 4, as seen in video 5 (link online). Melissa 
productively leveraged a generalization that the sum 
of two positive numbers is larger than each addend, 
explaining, “You can’t have a positive number [point-
ing to the box] to get a number [the sum] that’s less 
than the #rst number. So, you would have to have a 
negative number right there [pointing to the box].” She 
noticed the operation and the signs and magnitudes 
of the given numbers and used these features to rea-
son, more generally, about a class of problems—in 
this instance, problems in which addition does not 
make larger.

Video 2  Using Analogy-Based Reasoning 
by Treating Negative Numbers 
Like Positive Numbers

 Watch the full video online.

Video 3  Using Analogy-Based Reasoning 
by Comparing Negative Numbers 
to Contexts

 Watch the full video online.
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Computational Reasoning
Computational reasoning involves using a procedure, 
rule, or calculation to solve an integers problem and 
was used with increasing frequency from elemen-
tary to high school. The most common rule was Keep, 
Change, Change (or KCC for short), so named as a 
memory device for the procedure to Keep the sign of 
the #rst number, Change the operation, and Change the 
sign of the second number (e.g., 6 – –2 is changed to  
6 + +2). Watch several students using variations of KCC 
in video 6 (link online).

Although students o$en used procedures and rules 
e"ciently and correctly to solve problems, they were 
typically unable to justify those procedures. Further, 
many students struggled with the idea of equivalent 

transformations that preserved the solution of a given 
equation. For example, if students transformed 6 – –2 to 
6 + +2 using KCC, we asked them if the answer to the orig-
inal problem of 6 – –2 (before changing it) was also 8. Of 
the 19 seventh graders who changed 6 – –2 to 6 + +2, 7  
said the two expressions had di%erent answers! (Watch 
students discussing whether 6 – –2 = 6 + +2 in video 7 
[link online]). A$er watching this clip, you might con-
clude that computational reasoning is less desirable than 
other WoRs. But that is not necessarily the case! A$er all, 
procedures and rules enable us to solve problems e"-
ciently and &exibly. We are, however, highlighting that 
some students may learn to solve integer problems  
using procedures without understanding why these  
procedures are mathematically valid.

Video 4  Using Formal Reasoning  
through Logical  
Necessity

 Watch the full video online.

Video 5  Using Formal Reasoning to Infer 
the Sign of the Unknown by 
Generalizing

 Watch the full video online.

Video 6  Using Computational Reasoning 
to Solve Problems Using the  
Keep-Change-Change Procedure

 Watch the full video online.

Video 7  Discussing the Equivalence of  
6 – –2 and 6 + +2

 Watch the full video online.
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Emergent Reasoning
The #$h way of reasoning, emergent reasoning, was 
o$en seen in young children’s attempts to compute with 
integers. For example, many students overgeneralized 
the ideas that addition makes larger and subtraction 
makes smaller on the basis of their experiences with 
whole numbers and, thus, were unable to solve prob-
lems like 6 + ☐ = 4 and 5 – ☐ = 8. This reasoning was 
more prevalent with the second and fourth graders we 
interviewed, but a subset of seventh graders also main-
tained that these kinds of problems were not solvable 
(see video 8 [link online] for an example of a seventh 
grader using emergent reasoning). Although emergent 
reasoning frequently resulted in an answer of “not pos-
sible” or another incorrect answer, many of these strat-
egies were sensible and provided a foundation from 
which more robust integer reasoning could emerge.

WHY PROBLEM TYPES AND WAYS OF 
REASONING MATTER
In this article, we shared frameworks for prob-
lem types and students’ reasoning about integers. 
Furthermore, we found that all WoRs were used across 
grade levels. But there is more to the story: We found 
that speci#c problem types tended to evoke particu-
lar WoRs. Speci#cally, students were more likely to 
use analogy-based reasoning on all-negatives prob-
lems than on other problem types, order-based rea-
soning on change-positive problems, and emergent 
reasoning on counterintuitive problems (Lamb et al. 
2018). Formal reasoning and computational reason-
ing did not follow any distinct patterns in our data. The 

videos themselves re&ect these relationships: All but 
one problem in the videos illustrating analogy-based 
reasoning are all-negatives problems; all problems 
illustrating order-based reasoning are change-positive 
problems; and all problems illustrating emergent rea-
soning are counterintuitive. Although we presented 
these frameworks separately, we suggest that teachers 
integrate problem types and WoRs in their instruction.

Purposefully Use Problem Types to Highlight 
Particular Ways of Reasoning
One way teachers can use these frameworks is to pur-
posefully select problem types that are likely to elicit 
a particular WoR. For example, if a teacher wanted to 
engage students in a discussion about a single WoR, 
like order-based, they might pose a change-positive 
problem such as –2 + ☐ = 4. Or a teacher might  
pose two change-positive problems—a cross-zero 
problem like –2 + ☐ = 4 and a negative-side problem  
like –2 + 1 = ☐. Although both can be solved with 
order-based reasoning by counting up or using a 
number line, the problem –2 + 1 = ☐ challenges stu-
dents to determine which way to count in a way  
that –2 + ☐ = 4 does not. In the discussion of strategies 
and answers to this problem pair, teachers might ask 
students whether we always count up (or move right) 
when adding a positive number. Or they might attach 
mathematical terminology and symbols to student 
ideas to help them differentiate order and magni-
tude—concepts that students confront when deciding 
what it means for a negative number to be “larger” 
(i.e., –2 < –1 but | –2| > | –1|). These conversations may 
help students to reason about what stays the same 
and what changes for integer addition and subtrac-
tion while extending their number systems from 
whole numbers to integers.

Purposefully Use Problem Types to Compare 
Multiple Ways of Reasoning
Alternatively, teachers may want to highlight various 
WoRs and promote &uency across WoRs. To do so, they 
might pose a single problem and elicit multiple WoRs 
for that problem. For example, we have seen students 
productively use analogy-based reasoning (using debt), 
order-based reasoning, and formal reasoning to  
solve –3 + 6 = ☐. Another way to elicit multiple WoRs is 
to pose problems from di%erent problem-type catego-
ries. For example, a teacher might pose an all-negatives 
problem like –5 – –3 = ☐ and a change-positive problem  
like –5 – 3 = ☐ or –5 – ☐ = –8, and ask students to 

Video 8  Using Emergent Reasoning to  
Conclude 5 – ☐ = 8 Is Impossible 
to Solve

 Watch the full video online.
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compare the open number sentences. Teachers can 
support students to identify features of problems (e.g., 
signs of the numbers, change value, and location of the 
unknown) and link those features to productive uses of 
WoRs. In the problem pairing just given, the class might 
consider which strategies are relatively easy to use  
for –5 – –3 (i.e., analogy-based reasoning) but more 
challenging to apply to –5 – 3 and why.

To support teachers to use problem types to elicit 
speci#c WoRs, we have paired each WoR with problems 
likely to elicit this WoR and follow-up questions to probe 
and extend that reasoning (see table 2). We encourage 
teachers to use this table to provide opportunities for 
students to use and discuss di%erent WoRs and to explic-
itly promote the value of &exibly using multiple WoRs.

A common instructional approach for integers—
one that we have used—is for teachers to empha-
size one way of reasoning they want students to use 
when solving integer addition and subtraction prob-
lems. But we found that students in our study often 
used various ways of reasoning, depending on prob-
lem type, and the students who reasoned more flex-
ibly were more successful. Flexibility and variety 
in reasoning involves making choices on the basis 
of the specifics of the problem. As a result, we do 
not believe that any one WoR should be exclusively 
used or taught. We recommend teaching with goals 
of cultivating ways of reasoning and flexibility and 
selecting problems according to the frameworks 
presented here.   

Table 2  Problems to Pose

To Evoke This Way of 
Reasoning (WoR)

Use These Problems Pose These Questions

All WoRs All problem types How did you think about this problem? Why did you decide to use 
this strategy? Was there a feature of the problem or numbers that 
encouraged you to use your strategy? (general questions that can be 
asked regardless of problem type or WoR)

Order-based Cross-zero
–3 + 6 = ☐
4 – ☐ = –6

Negative-side
–8 – 3 = ☐
–9 + ☐ = -4

How did you know which way to count/move? Where to start/end?

Is –11 or –5 greater than or smaller than –8? In what way could you see 
–11 as larger than –8?

Analogy-based All-negatives
–7 – –5 = ☐
–8 + ☐ = –12

I noticed that you compared negatives to  (positives, owing, 
etc.). Why did you make this comparison?

Did anyone try other approaches and decide they would be challenging 
to use? Which ones? Why do you think your approach was challenging to 
use for this problem?

Formal Counterintuitive
6 + ☐ = 4
5 – ☐ = 8

You shared that you knew that the answer had to be negative. What features 
of this problem helped you to realize that the answer had to be negative?

Formal or 
Computational

Counterintuitive
6 – –2 = ☐
4 + –7 = ☐

Is there a related problem that might help you solve this?

Alternatively, share pairs of problems such as 6 – 2 and 6 – –2; 4 + 7 and  
4 + –7; or –7 + 4 and 4 + –7, and ask, “How does knowing the answer to 
the #rst problem help you to answer the second problem?” (Bishop et al. 
2016).

Is there a rule that you can use to help you solve these problems? If a 
younger child asked you why the rule works, what would you say?
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