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Beyond the Sign Rules

Are your students negative about integers? Help them
experience positivity and joy doing integer arithmetic!

Jessica Pierson Bishop, Lisa L. Lamb, Ian Whitacre,
Randolph A. Philipp, and Bonnie P. Schappelle

Consider the following integer arithmetic tasks:

6+0=4

-5--3=01

-2+0=4

-8-3=0

Which would be the most difficult for your students?
Which would be the easiest? In our work with K-12 stu-
dents, we were surprised to find that problems we ini-
tially thought would be challenging for students,
like -5 - -3 =0, were not. Further, problems we thought
would be relatively easy, such as -8 - 3 = [J, were harder
than we anticipated. We wondered what features of

these problems made them more and less challenging
and why. We answer these questions using data from
interviews with 160 K-12 students. Specifically, we share
problem-type categories for integer addition and sub-
traction that varied in difficulty and tended to evoke dif-
ferent types of reasoning (Lamb et al. 2018). In the same
spirit as the well-known Cognitively Guided Instruction
(CGI) problem-type categories for whole number oper-
ations (Carpenter et al. 2014), our categories for integer
addition and subtraction tasks and our framework for
Ways of Reasoning about integers provide an organizing
structure for integer-specific content knowledge.
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We want to highlight why this research has been use-
ful to us. As former teachers, we often showed students
a single way to solve problems—some of us preferred
rules for operating on integers, and others used chips,
or number lines, or contexts. Although these may have
been helpful for students learning to operate on integers,
we may have also inadvertently limited students’ oppor-
tunities to reason about integers by proceduralizing the
use of these tools in ways that may not have allowed for
conceptual understanding. We believe that integers can
be taught from a reasoning approach and found that the
most successful students in our study had many ways to
reason about problems. By reconceptualizing integers
around Ways of Reasoning and problem types, we create
opportunities for integers to be a conceptually oriented
mathematical topic. Furthermore, we believe that this
knowledge can support teachers to purposefully select
problems for specific instructional goals and to elicit
particular Ways of Reasoning.

PROBLEM TYPES

For many adults, the four problems in the introduction
are the same in that each one can be solved by invok-
ing a computational rule or procedure, perhaps one you
learned in school as a student yourself. But for students,
these problems were different, inasmuch as they used
different strategies to solve them. For example, one stu-
dent told us that 6 + (1 = 4 had no answer because 4 is
smaller than 6 and you are adding, so the answer should
be bigger than 6. But then she solved -2 + (1= 4 by count-
ing up by ones from -2 to 4. And to solve -5 - -3 =[], she
took away three negatives from five negatives, which left
two negatives. The different strategies and underlying
reasoning we saw in students’ solutions indicated that

FEATURE

important distinctions exist among integer addition and
subtraction problems beyond the operation itself. Below
we share problem-type categories for integer addition
and subtraction problems (what we call additive problem
types) that tended to account for the different ways stu-
dents reasoned about open number sentences.

We identified three broad categories of additive prob-
lem types for integers: all-negatives, change-positive, and
counterintuitive. The first category, all-negatives, includes
problems like -5 - -3 =1, in which all the numbers
(including the unknown, -2) in the problem are negative.
For the second problem-type category, change-positive,
we adopt the language used in the Cognitively Guided
Instruction problem-type frameworks of start, change,
and result values. In change-positive problems, the change
value is positive. The problems -8 -3=Cand-2+=4
are both change-positive because 3 and 6 (the unknown in
the second problem), are positive numbers (the change is
the number only and does not include the operation). We
named the last category counterintuitive problems because
these problems contradict the overgeneralizations that
addition makes larger and subtraction makes smaller
(Bishop et al. 2011; Karp, Bush, and Dougherty 2014). The
problem 6 + 1= 4 is a counterintuitive problem because
the result (i.e., 4) of adding 6 to an unknown quantity is
less than 6. These problem types are important because
they reflect differences not only in students’ strategies but
also in problem difficulty. The flowchart shows additive
problem types for integers (see figure 1).

In which problem-type category are the problems
easiest? Hardest? We were surprised by the answers
to these questions. In our interviews with 160 stu-
dents across multiple grade levels, we found that the
all-negatives category was the easiest type of problem,
with correct answers given to 76.3 percent of these
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problems (Lamb et al. 2018). Students also did rela-
tively well on the change-positive problems, answer-
ing 61.1 percent of those correctly, but answered only
48.4 percent of the counterintuitive problems correctly.
We suspected that counterintuitive problems would be
challenging but were surprised by how easily many stu-
dents engaged with the all-negative problems.

When looking closely at the change-positive prob-
lems, we noticed that some problems such as -2 +[1=4
were easier than other problems like -8 - 3=[1. One
second-grade child, Lynn, gave us insight into why. To
solve this problem, Lynn wanted to count down but did
not know which way to count with a negative starting
value. She initially “counted down” saying, “Eight, seven
[raising one finger], six [raising a second finger], five [raising
a third finger]. Negative five.” She then changed her mind
saying, “I think it’s switched. . . . I want to change this
answer and count up now. Eight, nine [raising one finger],
ten [raising a second finger], eleven [raising a third finger].
Negative eleven.”

We suggest that Lynn was grappling with two compet-
ing ideas: She had to reconcile her understanding that
subtraction should make smaller with the fact that -11
has a larger magnitude than -8. How could Lynn subtract
3 from -8 and end up with a “larger” value of -11? Her
response highlights a challenge many students navigated
when solving this problem and others like it: Students
grappled with what bigger and smaller meant in terms of

Fig. 1

Are all terms negative?

Is the change value positive?

All-negatives
problem type
5-3=[]

Counterintuitive
problem type
6+[]=4

Change-positive
problem type

| Are start and result values neganve7

Negative-side Cross-zero
problem type problem type
-8-3=[] 2+[]=4

This flowchart shows additive problem types for integers.
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negative numbers and their resultant decisions about
which way to count. This finding led us to further differ-
entiate change-positive problems on the basis of their
starting and ending values.

We classified change-positive problems with negative
start and result values (e.g., -8 - 3 =[J) as negative-side
problems. This name reflects a common strategy of
using the number line when solving -8 - 3 = (] by start-
ing at -8 and moving 3 units left on the number line to
end at -11. In the solution to this problem, the quanti-
ties stayed on the negative side of the number line.

In contrast, using a number line to solve problems
like -2 + O = 4 involved crossing zero when moving
from -2 to 4. Thus, we classified change-positive prob-
lems with start and result values on opposite sides of
Zero as cross-zero problems. Because cross-zero prob-
lems such as -2 + (0 =4 and 3 - 5= involved start and
result values on opposite sides of zero, and because
students typically knew that negative numbers were
smaller than positive numbers (Bofferding 2014;
Whitacre et al. 2017), these types of problems did not
appear to elicit as much debate over which way to count
or whether the starting or ending values were larger
(or smaller). In other words, students could success-
fully engage with 3 - 5 =[], for example, without con-
tradicting the generalization that subtraction makes
smaller because -2 (a negative number) is clearly less
than 3 (a positive number). In contrast, negative-side
problems such as -8 - 3= and -9 + (J = -4 required
students to confront whether -4 was larger or smaller
than -9 and, therefore, whether the given problem
contradicted the generalization of addition makes
larger (or subtraction makes smaller).

To summarize, our problem-type framework com-
prises four categories: all negatives, two categories of
change-positive (negative-side and cross-zero), and coun-
terintuitive. Although integer addition and subtraction
tasks are often categorized in terms of addition versus sub-
traction, we suggest that categorizing them differently is
productive. The distinctions captured in our problem-type
categories matter because they reflect differences in dif-
ficulty, differences in students’ reasoning and strategy
choice, and differences in the structures of problems
(i.e., the locations, signs, and magnitudes of the values).

WAYS OF REASONING

In previous work, we identified five broad ways of reason-
ing (WoRs) about integer addition and subtraction into
which we could classify students’ responses: order-based,
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analogy-based, formal, computational, and emergent
(Lamb et al. 2018). WoRs are general conceptualizations
of signed numbers and operations (e.g., numbers as
sequential and ordered in the case of order-based reason-
ing) that students draw on when they solve additive inte-
ger problems. The WoRs framework is a way to organize
student thinking about integer addition and subtraction
that accounts for the underlying views of number and
operation leveraged in a student’s strategy. Knowledge

of WoRs can help teachers listen to, make sense of,

elicit, and extend student thinking about integers. After
describing the five WoRs (see table 1), we share examples
through a series of videos.

Order-Based Reasoning

As an example of order-based reasoning, consider

the response of Angie, who used a number line to
solve -8 - 3= and 3 - (0=-6 in video 1 (link online).
For both problems, Angie treated the start and result
values as locations on the number line and interpreted

Table 1 Ways of Reasoning Framework

Ways of Reasoning
Evidence of Order-based
Engagement
with Negative

FEATURE

the change value as the amount to move. The opera-
tions of addition and subtraction indicated the direc-
tion of motion for Angie. For -8 - 3 =1, Angie moved

video 1 Using Order-Based Reasoning
on a Number Line

Description

In this way of reasoning, one leverages the sequential and ordered nature of numbers.
Strategies include use of the number line with motion and counting forward or backward
by ones. For example, students may solve -2 + [J =4 counting by ones from -2 to 4.

Numbers
Analogy-based

This way of reasoning is characterized by relating (signed) numbers to another
concept or object and reasoning about negative numbers on the basis of behaviors
observed in this other concept. Analogy-based reasoning is often tied to ideas about
cardinality and understanding a number as having magnitude. For example, students
may reason about -8 — -1 by treating -8 as eight of something that is “negative”

(sad thoughts or bad guys). If -8 is eight negative things, we can remove one negative
thing, leaving seven negative things, or -7.

Formal In this way of reasoning, signed numbers are treated as formal objects that existin a
system and are subject to mathematical principles that govern behavior. This way of
reasoning includes generalizing beyond a specific case by making a comparison to
another, known, problem and appropriately adjusting one’s reasoning, or by applying
properties of classes of numbers, such as generalizations about zero.

Computational

In this way of reasoning, one uses a procedure, rule, or calculation. For example, some
students changed the operation of a given problem along with the corresponding sign of
the subtrahend or second addend (i.e., changing 6 - -2to 6 + 2 or 5+ -7 to 5 - 7). Students
often explained these changes by referring to rules.

Restricted to
Whole Numbers

Emergent

Adapted from Bishop et al. 2014; Lamb et al. 2018. Copyright NCTM.

This category of reasoning reflects preliminary attempts to compute with signed numbers;
the domain of possible solutions appears to be restricted to whole numbers. The possible
effect of operating with a negative number is not considered. A child may overgeneralize
that addition always makes larger, and, as a result, claim that a problem for which the sum
is less than one of the addends (6 + [J = 4) has no answer.
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from -8 to -11, explaining that subtracting 3 “goes back
to the left even farther on the number line.” Another
common order-based strategy was counting by ones,
which we described earlier in Lynn’s reasoning. In gen-
eral, order-based reasoning leverages an understanding
of numbers as ordered and sequential and operations
as ways to progress through those ordered sequences.

Analogy-Based Reasoning

Analogy-based reasoning involves the use of an anal-
ogy between signed numbers and some other concept,
object, or idea. For example, students frequently com-
pared negative numbers to positive numbers as seen in
video 2 (link online), a compilation of multiple students
solving problems including [0+ -2=-10, -5+ -1=0],
and -8 - [0 = -2. In this video, students productively rea-
soned about adding and subtracting negative numbers
on the basis of adding positive, or regular, numbers.
One student explained his solution for -5 - -3 = by
saying, “You would just take off the negatives and get

5 minus 3. And it would equal 2. Then you would put
the negatives on the numbers again. That would give
you negative 2.” Other students compared negative
numbers to contexts including owing money, eleva-
tion, and digging holes as seen in video 3 (link online).
(These are contexts students used in our interviews, but
we are not advocating the use of any particular context
or model.)

Formal Reasoning

Students used formal reasoning when they treated neg-
ative numbers as mathematical objects that exist in

a system governed by mathematical formalisms and

video 2 Using Analogy-Based Reasoning
by Treating Negative Numbers
Like Positive Numbers

PUBS.NCTM.ORG

properties. Students often conjectured about how oper-
ations with negative numbers functioned by gener-
alizing or comparing the given problem to a related
problem they could solve. Consider, for example,
Alma’s reasoning about -5 - -3 = [I: “Because when
you add, like when I'm adding negative 5 to negative 1,
it's gonna be negative 6. [The problem she had previously
solved was -5 + -1 =[1.] So, it [-5 + -1] can’t be the same
as this [-5 - -3]. So, when you subtract negative 3 from
negative 5, it’s gonna be negative 2.” Alma compared
the sum of two negative numbers (-5 + -1) to the differ-
ence of two negative numbers (-5 - -3) and reasoned
that the results of those operations would be “the other
way around” because addition and subtraction are
opposites. She continued, “It [the result to -5 - -3] can’t
be the same because it’s [circling the addition symbol

in -5 + -1] a different sign you're working with. . . .

It’s [-5 - -3] gonna work the other way around.” (Watch
Alma use formal reasoning on two problems in video 4
[link online].)

We also saw formal reasoning in Melissa’s solution
for 6 + (0 =4, as seen in video 5 (link online). Melissa
productively leveraged a generalization that the sum
of two positive numbers is larger than each addend,
explaining, “You can’t have a positive number [point-
ing to the box] to get a number [the sum] that’s less
than the first number. So, you would have to have a
negative number right there [pointing to the box].” She
noticed the operation and the signs and magnitudes
of the given numbers and used these features to rea-
son, more generally, about a class of problems—in
this instance, problems in which addition does not
make larger.

video 3 Using Analogy-Based Reasoning
by Comparing Negative Numbers
to Contexts
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Computational Reasoning

Computational reasoning involves using a procedure,
rule, or calculation to solve an integers problem and
was used with increasing frequency from elemen-
tary to high school. The most common rule was Keep,
Change, Change (or KCC for short), so named as a
memory device for the procedure to Keep the sign of
the first number, Change the operation, and Change the
sign of the second number (e.g., 6 - -2 is changed to

6 +*2). Watch several students using variations of KCC
in video 6 (link online).

Although students often used procedures and rules
efficiently and correctly to solve problems, they were
typically unable to justify those procedures. Further,
many students struggled with the idea of equivalent

video 4 Using Formal Reasoning
through Logical
Necessity

video 5 Using Formal Reasoning to Infer
the Sign of the Unknown by
Generalizing

FEATURE

transformations that preserved the solution of a given
equation. For example, if students transformed 6 - -2 to
6 +*2 using KCC, we asked them if the answer to the orig-
inal problem of 6 - -2 (before changing it) was also 8. Of
the 19 seventh graders who changed 6 - -2to 6 +*2, 7
said the two expressions had different answers! (Watch
students discussing whether 6 - -2 =6 +*2 in video 7
[link online]). After watching this clip, you might con-
clude that computational reasoning is less desirable than
other WoRs. But that is not necessarily the case! After all,
procedures and rules enable us to solve problems effi-
ciently and flexibly. We are, however, highlighting that
some students may learn to solve integer problems

using procedures without understanding why these
procedures are mathematically valid.

video6 Using Computational Reasoning
to Solve Problems Using the
Keep-Change-Change Procedure

<1

video 7 Discussing the Equivalence of
6--2and 6 +*2
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Emergent Reasoning

The fifth way of reasoning, emergent reasoning, was
often seen in young children’s attempts to compute with
integers. For example, many students overgeneralized
the ideas that addition makes larger and subtraction
makes smaller on the basis of their experiences with
whole numbers and, thus, were unable to solve prob-
lems like 6 + [01=4 and 5 - (J = 8. This reasoning was
more prevalent with the second and fourth graders we
interviewed, but a subset of seventh graders also main-
tained that these kinds of problems were not solvable
(see video 8 [link online] for an example of a seventh
grader using emergent reasoning). Although emergent
reasoning frequently resulted in an answer of “not pos-
sible” or another incorrect answer, many of these strat-
egies were sensible and provided a foundation from
which more robust integer reasoning could emerge.

WHY PROBLEM TYPES AND WAYS OF
REASONING MATTER

In this article, we shared frameworks for prob-

lem types and students’ reasoning about integers.
Furthermore, we found that all WoRs were used across
grade levels. But there is more to the story: We found
that specific problem types tended to evoke particu-
lar WoRs. Specifically, students were more likely to
use analogy-based reasoning on all-negatives prob-
lems than on other problem types, order-based rea-
soning on change-positive problems, and emergent
reasoning on counterintuitive problems (Lamb et al.
2018). Formal reasoning and computational reason-
ing did not follow any distinct patterns in our data. The

video 8 Using Emergent Reasoning to
Conclude 5 - (1= 8 Is Impossible
to Solve
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videos themselves reflect these relationships: All but
one problem in the videos illustrating analogy-based
reasoning are all-negatives problems; all problems
illustrating order-based reasoning are change-positive
problems; and all problems illustrating emergent rea-
soning are counterintuitive. Although we presented
these frameworks separately, we suggest that teachers
integrate problem types and WoRs in their instruction.

Purposefully Use Problem Types to Highlight
Particular Ways of Reasoning

One way teachers can use these frameworks is to pur-
posefully select problem types that are likely to elicit
a particular WoR. For example, if a teacher wanted to
engage students in a discussion about a single WoR,
like order-based, they might pose a change-positive
problem such as -2 + [1=4. Or a teacher might

pose two change-positive problems—a cross-zero
problem like -2 + [0 = 4 and a negative-side problem
like -2 + 1 = [O. Although both can be solved with
order-based reasoning by counting up or using a
number line, the problem -2 + 1 = [ challenges stu-
dents to determine which way to count in a way

that -2 + O = 4 does not. In the discussion of strategies
and answers to this problem pair, teachers might ask
students whether we always count up (or move right)
when adding a positive number. Or they might attach
mathematical terminology and symbols to student
ideas to help them differentiate order and magni-
tude—concepts that students confront when deciding
what it means for a negative number to be “larger”
(i.e., -2 < -1 but| -2| >| -1]). These conversations may
help students to reason about what stays the same
and what changes for integer addition and subtrac-
tion while extending their number systems from
whole numbers to integers.

Purposefully Use Problem Types to Compare
Multiple Ways of Reasoning

Alternatively, teachers may want to highlight various
WoRs and promote fluency across WoRs. To do so, they
might pose a single problem and elicit multiple WoRs
for that problem. For example, we have seen students
productively use analogy-based reasoning (using debt),
order-based reasoning, and formal reasoning to

solve -3 + 6 =[. Another way to elicit multiple WoRs is
to pose problems from different problem-type catego-
ries. For example, a teacher might pose an all-negatives
problem like -5 - -3 =[J and a change-positive problem
like -5 - 3= or -5 - [0 =-8, and ask students to
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compare the open number sentences. Teachers can
support students to identify features of problems (e.g.,
signs of the numbers, change value, and location of the
unknown) and link those features to productive uses of
WoRs. In the problem pairing just given, the class might
consider which strategies are relatively easy to use

for -5 - -3 (i.e., analogy-based reasoning) but more
challenging to apply to -5 - 3 and why.

To support teachers to use problem types to elicit
specific WoRs, we have paired each WoR with problems
likely to elicit this WoR and follow-up questions to probe
and extend that reasoning (see table 2). We encourage
teachers to use this table to provide opportunities for
students to use and discuss different WoRs and to explic-
itly promote the value of flexibly using multiple WoRs.

Table 2 Problems to Pose

FEATURE 6-8

A common instructional approach for integers—
one that we have used—is for teachers to empha-
size one way of reasoning they want students to use
when solving integer addition and subtraction prob-
lems. But we found that students in our study often
used various ways of reasoning, depending on prob-
lem type, and the students who reasoned more flex-
ibly were more successful. Flexibility and variety
in reasoning involves making choices on the basis
of the specifics of the problem. As a result, we do
not believe that any one WoR should be exclusively
used or taught. We recommend teaching with goals
of cultivating ways of reasoning and flexibility and
selecting problems according to the frameworks
presented here.

To Evoke This Way of
. 4 Use These Problems
Reasoning (WoR)

All WoRs All problem types

Order-based Cross-zero
-3+6=0
4-0=-6
Negative-side
-8-3=0
9+0O=-4

Analogy-based All-negatives
-7--5=0
-8+0=-12

Formal Counterintuitive
6+0=4
5-0=8

Formal or Counterintuitive

Computational 6--2=0
4+-7=00

Pose These Questions

How did you think about this problem? Why did you decide to use
this strategy? Was there a feature of the problem or numbers that
encouraged you to use your strategy? (general questions that can be
asked regardless of problem type or WoR)

How did you know which way to count/move? Where to start/end?

Is -11 or -5 greater than or smaller than -8? In what way could you see
-11 as larger than -8?

I noticed that you compared negatives to
etc.). Why did you make this comparison?

(positives, owing,

Did anyone try other approaches and decide they would be challenging
to use? Which ones? Why do you think your approach was challenging to
use for this problem?

You shared that you knew that the answer had to be negative. What features
of this problem helped you to realize that the answer had to be negative?

Is there a related problem that might help you solve this?

Alternatively, share pairs of problems such as 6 - 2 and 6 - -2; 4 + 7 and
4+-7;0r-7+4and 4 +-7, and ask, “How does knowing the answer to
the first problem help you to answer the second problem?” (Bishop et al.
2016).

Is there a rule that you can use to help you solve these problems? If a
younger child asked you why the rule works, what would you say?
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