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A B S T R A C T   

Integers have historically been approached as a system of rules. However, to teach any mathe-
matical domain for understanding, teachers must conceptualize it as comprised of more than 
procedures. Using as a lens the four types of integer reasoning identified by Bishop et al. (2014a, 
2014b), we interviewed 7th-grade teachers to investigate their own integer reasoning and how 
this corresponds to their approaches to teaching integers and to their interpretations of students’ 
reasoning. The teachers not only correctly solved integer tasks but also most reasoned using more 
than rules, demonstrating a flexibility of strategies. Additionally, although they attempted to 
introduce integers in meaningful ways, most teachers viewed teaching integers as helping their 
students apply procedures, an orientation that constrained their understanding of students’ 
integer reasoning. Results indicate that teachers possess productive conceptual resources but need 
a structure to leverage their understandings to teach integers as more than a set of rules.   

1. Introduction 

The vision of effective mathematics instruction has become one in which teachers move beyond simply demonstrating techniques 
to correctly calculate answers and instead strive to teach for understanding (e.g., Hiebert, 2013). To support teachers to see mathe-
matics as more than simply computational, educators have developed explicit descriptions of this broader view of mathematics, 
identifying multiple strands of mathematical proficiency (Kilpatrick, Swafford, & Findell, 2001; National Council of Teachers of 
Mathematics (NCTM), 2000) and various habits of mind and mathematical practices associated with engaging in mathematics (Cuoco 
et al., 1996; National Governors Association Center for Best Practices & Council of Chief State School Officers, 2010). Moreover, 
researchers have elaborated on what a meaningful understanding of mathematics entails in different content areas through the 
development of frameworks by outlining the nature of the reasoning and conceptual benchmarks inherent to the topic. Typically, these 
frameworks are organized as a hierarchy of more sophisticated ways of thinking and strategies in learning trajectories or progressions 
(Lobato & Walters, 2017). Rather than basing the hierarchies on disciplinary logic from the expert perspective, researchers capture the 
mathematical thinking and understanding from the students’ perspectives formulated through extensive student interviews. Such 
work has led researchers to reconceptualize instruction in multidigit arithmetic (e.g., Carpenter et al., 2014), rational number, 
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(Maloney & Confrey, 2010), and algebra (e.g., Kaput et al., 2008) from domains dominated by algorithms and rules for symbolic 
manipulation to developing ways of reasoning about patterns and operations. Furthermore, although researchers have only begun to 
investigate how teachers interpret and use these frameworks, evidence indicates that they can have significant positive effects on both 
student and teacher learning. Mathematics teachers experiencing repeated professional development around such frameworks were 
able to restructure their understandings of the mathematics around student thinking, enabling them to develop models of students’ 
thinking and consequently to more readily anticipate and interpret student reasoning (Wilson et al., 2013). They began to modify their 
instruction to focus less on teaching explicit procedures and more on developing students’ reasoning (Carpenter et al., 1989; Jacobs 
et al., 2007). 

We propose that to support the development of high-quality teaching in other mathematical domains, we must educate prospective 
and practicing teachers about similar frameworks so that they have organized understandings of the types of reasoning associated with 
rich understandings of the domains. To address this issue, we select one domain—integers—and consider aspects of teachers’ current 
understandings from a conceptual perspective in an effort to identify conceptual resources and constraints that can be leveraged to 
support them in (re)conceptualizing integers as a set of interrelated concepts and procedures rather than memorized algorithms and 
rules. 

2. Research on integer instruction 

Students’ struggles with integer arithmetic are well documented and stem from a range of inherent challenges (Gallardo, 
1995, 2002; Reck & Mora, 2004; Vlassis, 2002). Certain properties of integers contradict many of the intuitions developed around 
natural numbers, such as “adding makes bigger” (Bishop et al., 2011; Gallardo, 2002; Linchevski & Williams, 1999). Further-
more, the meanings of integer operations do not follow directly from concrete objects but have traditionally been achieved 
through formal mathematical reasoning (Hefendehl-Hebeker, 1991; Linchevski & Williams, 1999). Such intrinsically counter-
intuitive qualities present difficulties not only for today’s students in the classroom but historically for mathematicians as well 
(Bishop et al., 2014a, 2014b; Hefendehl-Hebeker, 1991). Additionally, the meaning of the minus sign, the symbol most funda-
mental to integers, is ambiguous. Common meanings include the meaning of an operation (take away), a value (negative), and 
“the opposite of,” and learners often apply multiple meanings during manipulation (Lamb et al., 2012). 

2.1. Design experiments 

Finding instructional approaches to overcome these inherent challenges for students has been a focus of research in the domain of 
integers. A literature review revealed that most research has consisted of design experiments to investigate the effectiveness of 
different models and representations. Although the primary concentration of this work has been on the affordances and challenges of 
various models, one consensus from these studies is that no single representation for integer operations accurately or completely 
embodies the underlying mathematical ideas (Linchevski & Williams, 1999; Stephan & Akyuz, 2012). Moreover, Peled and Carraher 
(2007) concluded that “didactical models for signed numbers have not been very successful” (p. 305), arguing that signed numbers 
entail more than computational skills and that these models do not facilitate conceptual growth. They contended that teachers used 
these instructional models on the basis of the belief that it is “easier to remember a set of strange rules in context … than a set of number 
rules” (p. 305). Peled and Carraher challenged this belief, citing Mukhopadhyay et al. (1990), who found that students more suc-
cessfully solved integer problems based in context than naked-number problems but did so by using only positive numbers rather than 
invoking signed numbers (see also, Whitacre et al., 2014, 2016). 

2.2. Teachers’ perspectives 

Although these design experiments address the teaching of integers, they are predominantly focused on instruction from the 
students’ perspective, providing limited insight into teachers’ understandings of integers and their corresponding goals. In contrast, a 
few researchers—Kinach (2002), Kumar et al. (2017), Mitchell et al. (2013), and Wessman-Enzinger and Tobias (2020)—have spe-
cifically targeted integer instruction from the perspective of teachers, with their research primarily centered around characterizing the 
mathematics knowledge for teaching teachers possess (MKT) (Hill et al., 2008). In particular, they have focused on teachers’ specialized 
content knowledge, which refers to ways of knowing mathematics that are particularly useful to teaching and that go beyond the 
professional knowledge held by laypeople. For example, in the domain of integers, teachers need to know how a context or repre-
sentation could be used to illustrate why subtracting a negative number results in a greater quantity. 

Results of these studies highlight two main conclusions. The first is that teachers often do not possess the specialized content 
knowledge to fully understand the nuances of different representations and models associated with integers. Wessman-Enzinger and 
Tobias (2020) found that teachers struggled to conceive of different contextual problem types that correctly and realistically aligned 
with different integer operations and instead consistently posed a single structure, even though it was often problematic. Whereas 
Mitchell et al. (2013) described how one teacher successfully used varied models to help students draw connections to the underlying 
algorithms, they also provided details of another teacher who confused the conventions associated with different models. Furthermore, 
the authors found that the latter teacher was more representative of the other teachers in their study. Consequently, they argued that 
teachers need increased knowledge of the conventions as well as the affordances and misconceptions associated with different integer 
representations. Similarly, Kumar et al. (2017) noted that the teachers in their study, while highly experienced, lacked understanding 
of different interpretations of the minus sign. Likewise, Kinach (2002) found that the preservice teachers (PSTs) in her study switched 
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among rules for interpreting the minus sign and were not explicit about when and why these inconsistencies existed. 
A second finding from these studies is that teachers do not understand how various models embody the underlying mathematical 

ideas. For example, Kumar et al. (2017) found that teachers believed that contexts were useful to motivate the need for integers but did 
not draw on them to develop meanings of the various operations. Although they were aware of typical student errors, they attributed 
these mistakes to students’ forgetting rules rather than to conceptual difficulties associated with reasoning about the underlying 
meanings. In addition, Mitchell et al. (2013) found that teachers struggled to gradually abstract the mathematical rules and operations 
from the use of concrete representations. As a consequence of this disconnect between contexts/models and the abstract mathematical 
ideas, teachers preferred rules and symbolic representations to using contexts and models for teaching integers. Finally, Kinach (2002) 
noted that PSTs did not attend to the conceptual meanings of the rules they explained. For example, although the PSTs recognized the 
mathematically formal equivalence of 5 + (−3) and 5 – 3, they did not appreciate how these expressions might differ for students. 
Ultimately, although they professed dedication to teaching for understanding, being unable to provide rationales for the rules of 
integer operations, they provided students with procedures to calculate answers. 

A consistent theme through these studies is that although teachers express desire to teach integers in more meaningful ways, they 
lack the understandings necessary to do so. Without the specialized content knowledge to fully understand the nuances of various 
representations and models associated with integers, teachers are unable to support students in developing understandings that go 
beyond instrumental understanding (Skemp, 2006). Moreover, developing integer reasoning does not seem to be a goal. Given no 
alternatives, teachers equate understanding integers as knowing the rules. 

Such results underscore the difficulties associated with teachers transitioning their integer instruction beyond rules. However, to 
explore teachers’ mathematical knowledge for teaching, we took a different approach in this study. Rather than analyze teachers’ 
understandings according to expectations set by the research community that has served to identify teachers’ struggles, we chose to 
explore the conceptual resources that teachers possess and might leverage to teach integers with understanding. Specifically, we were 
curious about the ways of reasoning they brought to bear when solving problems as well as their understandings in recognizing 
nonprocedural reasoning in students. In addition, we wanted to characterize the teachers’ goals that framed their instruction of in-
tegers and look for connections with their own thinking. 

2.3. Students’ integer reasoning 

To help us understand the reasoning that teachers use, we turned to the work of a group of researchers (Bishop et al., 2014b; 
Lamb et al., 2018) who analyzed the thinking of 160 students—40 in each of Grades 2, 4, 7, and 11—when they reasoned through 
a variety of integer tasks consisting of open number sentences with the missing unknown in different locations. This 
cross-sectional work led to a variety of noteworthy findings. First, investigating the thinking and solution methods of students 
across a broad range of ages enabled the authors to identify the types of understanding that younger students possess prior to 
formal instruction. In fact, not only did Grade 2 and Grade 4 students in their study engage in a variety of informal, 
non-rule-based ways of thinking, these younger students were also able to more accurately solve problems of certain structure 
types using their informal ways of reasoning than the older students who had been taught integer-operation rules (Lamb et al., 
2018). Moreover, these younger students generally approached these problems from a meaning-making stance and, in doing so, 
treated mathematics as a discipline devoted less to learning how to apply procedures and more to finding ways of reasoning that 
would enable them to extend their understanding of number, serving as the foundation to both understand and competently 
operate with these new types of numbers. Such a finding shows that teachers who are aware of such ways of reasoning, could look 
for them among their students, identify them, and encourage students to share them. 

2.4. Integer reasoning framework 

In addition to establishing that young children bring a variety of rich resources to integer instruction, Bishop et al. (2014b) 
compared the integer thinking that students in their study exhibited across the grade levels with an historical analysis of mathema-
ticians’ integer reasoning. From these side-by-side analyses, the authors found striking similarities that led them to identify five types 
of integer reasoning: Order-based, Analogy-based (previously referred to as Magnitude-based [Bishop et al., 2014b]), Formal, 
Computational, and Emergent (previously referred to as Limited [Bishop et al., 2014b]). Although the authors do not claim to have 
identified the only ways of reasoning about integers, they argue that because these appear commonly in historical texts and in chil-
dren’s thinking, they are worthy of consideration. Below we briefly describe four of these ways of reasoning, and in the Appendix we 
provide descriptions and associated examples from children’s engagement in each type of reasoning (Note, we chose not to discuss 
Emergent reasoning here because it pertains to children who are coming to understand integer operations and would not be pertinent 
for our study of 7th-grade teachers.) 

First, Order-based Reasoning draws upon the ordered nature of integers. Invoking the number line is an example of order-based 
reasoning, but one can engage in order-based reasoning without using a number line. For example, one may solve 3 – 5 = by 
counting back by ones from 3, in which case the ordered nature of integers is invoked. 

Second, Analogy-based Reasoning involves relating (negative) numbers to an analogous concept and reasoning about the numbers 
on the basis of characteristics observed in this other concept. Such reasoning is often characterized by separately considering the sign 
and magnitude of a number and interpreting the sign as taking on the meaning based in the analogy. An example of Analogy-based 
Reasoning is when a student solves −5 – −2 by reasoning about the corresponding positive numbers, “I know that 5 minus 2 is 3, 
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so negative 5 minus negative 2 must be negative 3.” Other examples of Analogy-based Reasoning include using colored chips to refer to 
positive and negative numbers or drawing upon a context such as gaining or losing yards in football or increasing or losing altitude. 

Third, Formal Reasoning is characterized by treating negative numbers as formal objects that exist in a system and are subject to 
fundamental mathematical principles. In reasoning formally, one often draws upon underlying properties and structures to reason 
about two similar tasks. Frequently, students reasoning formally create a comparison to a familiar problem by holding all but one 
feature constant, leading to the logical necessity that the two must have different, and often exact opposite, outcomes. For example, 
when students reason that the effect of subtraction in 5 – −3 must be opposite of the effect of addition in 5 + −3, they are invoking 
formal reasoning. 

Finally, Computational Reasoning refers to using a procedure, rule, property, or calculation to compute the answer to an integer 
problem. For example, when students employ "the double-stick trick" to change 6 – −2 to 6 + +2, or they apply the rule that to add two 
negative integers, one adds the absolute values of the numbers and appends the negative sign to the sum, they are using Computational 
Reasoning. Computational Reasoning can be powerful because of its efficiency and broad applicability, and as such, rules and pro-
cedures for operating on integers are widely taught. 

A notable relationship identified by Lamb et al. (2018) is that success with integer tasks was correlated with the flexibility in 
reasoning that students demonstrated. Even older college-tracked high school students continued to invoke a range of reasoning types 
when they solved integer-arithmetic problems. Consequently, Lamb et al. suggested that flexibility with these ways of reasoning, in 
addition to supporting the development of individual ways of reasoning about integers, should be another instructional goal, so that 
students are positioned to effectively choose among solution approaches on the bases of the features of the tasks (including locations, 
signs, and magnitudes of the numbers). 

2.5. Reconceptualizing integer instruction around reasoning 

The identification of multiple ways of reasoning is a powerful result, serving to establish that the domain of integers, like all 
mathematics, involves more than merely the skills to correctly calculate. As such, this organized framework of integer reasoning 
provides a foundation for a new conceptualization of integer instruction with mathematical goals that extend beyond students’ 
learning to operate. To illustrate this shift, we look at the Analogy-based Reasoning, which is related to, but different from, the use of 
models. In focusing on Analogy-based Reasoning, one’s goal is not to support students in understanding the conventions of the model. 
Instead, the model serves as a tool to develop a more general understanding that can be leveraged and applied in other contexts. In 
particular, Analogy-based Reasoning encompasses the idea that numbers can have magnitude and direction. For example, although we 
know that −6 is less than −4, we also know that whereas −6 is comprised of six negative ones, −4 is comprises of only 4. As such −6 – 
(−4) can be interpreted as taking 4 negatives from 6 negatives, resulting in 2 negatives. Focusing on such reasoning, students grapple 
with the relationship between magnitude and direction, a critical idea that paves the way for conceptualizations applied in other 
mathematical topics, for example, vectors and polar coordinates. In contrast, when the emphasis is on the model, students often engage 
in contrived approaches that satisfy the rules associated with the model but may not feel intuitive. For example, a student taught only 
to use the conventions associated with the chip model must solve 1 – 4 by adding 3 zero pairs to get 1 + (3 +−3) – 4, rather than using a 
more meaningful number-line interpretation. 

Given the richness of mathematics associated with these ways of reasoning, we argue that these ways of thinking should not be 
viewed simply as stepping stones to more efficient recall of facts but rather should frame the overarching instructional goals them-
selves. Shifting the instructional focus to ways of reasoning will not only support students in developing deeper understandings of 
integers but will also foster valuable mathematical habits of mind and ways of knowing mathematics (Cuoco et al., 1996; Harel, 2008). 

No doubt every decision a teacher makes communicates to students what mathematics is. As Bishop et al. (2014a) found, students 
exposed to integer rules without justification often develop an alternative view of the discipline. Almost 40% of the students they 
interviewed who employed rules such as Keep Change Change to transform 6 – −2 to 6 + +2, changed their answers when pressed to 
solve the problem without using the rule. Notably, when asked to clarify this discrepancy, they were not bothered by the resulting 
inconsistency and often attributed the difference to the arbitrariness of mathematics. 

We see correlations with other domains that have been previously examined through a lens of student thinking and ultimately 
organized around critical mathematical understandings. For example, the CGI framework led to the identification of children’s use of 
derived facts that significantly shifted the instructional focus of whole numbers. When students, faced with 19 × 8, reconceptualize the 
19 as (20 – 1) to mentally multiply 20 × 8 – 1 × 8, they are learning the distributive property, developing a deeper understanding of our 
base-10 number system, and engaging in the mathematical practice of looking for and using structure (CCSS, 2010). Because of the 
richness in such reasoning, supporting students to strategically decompose numbers has now become a substantial goal of whole 
number operations. 

Whereas integer operations have historically been approached as a system of rules, we contend that by conceptualizing integers as a 
domain rich in mathematical reasoning, students are more likely to approach integers more meaningfully and effectively. Overall, we 
want to broaden the field’s understanding of teachers’ perspectives about integers by exploring the conceptual resources teachers 
possess to support their students in developing deeper understandings of integers as well as limitations that might hinder this 
endeavor. Such productive and robust ways of reasoning, used by students and mirroring those of mathematicians, seemed like a 
constructive and logical starting point for considering teachers’ ways of integer reasoning. Therefore, using this Integer Reasoning 
Framework as a guide, we investigated the following research questions:  

1) What instructional goals did the teachers hold for teaching integers, and how flexible were they in their instructional approaches? 
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2) What understanding of integers did the teachers hold, and what ways of reasoning did they invoke?  
3) In what ways (or to what extent) did the teachers understand students’ integer reasoning, and what pedagogical implications did 

they draw, if any, from the students’ comments? 

3. Methods 

3.1. Setting and participants 

To identify teachers to interview about their teaching and thinking about integers, we created an online survey about integer 
teaching and invited approximately 45 Grade 7 teachers to complete it. Of the 45, 27 participants accepted the invitation and were paid 
$20 to complete the survey. Questions on the computerized survey targeted teachers’ specialized and pedagogical content knowledge, 
specifically asking participants to write story problems relevant to various integer number sentences, describe their approaches to 
teaching integers, and identify the ways and extents to which they use various models associated with integer instruction (Number Line, 
Manipulatives, Computer Applications, Other, and None). In the final question, we asked whether the respondent was willing to be 
interviewed. Although the survey was completed by teachers from several states, we invited only those within a 30-mile radius from 
our location for in-person interviews so we could audiotape the interviews and have participants, during the interviews, complete 
pencil-and-paper integer items and react to video clips of children solving integer problems. We report on 9 teachers for whom we have 
complete data. These teachers range in experience from 5 to 25 years of teaching, and their majors varied, including 2 in mathematics, 
2 in biology, and 2 in liberal studies, with the majority holding a K – 8 multiple-subject teaching credential. Teachers were paid $50 for 
participating in the interviews. 

3.2. Interview 

To provide a comprehensive view of teachers’ orientations and mathematical knowledge for teaching associated with integers, we 
conducted semistructured interviews comprised of a broad range of questions. The first section targeted the participating teachers’ 
instructional goals. Wanting to elicit their broader views of teaching integers, we began by asking teachers to describe everything they 
would want students to learn about integers under idealized circumstances. To steer away from a description of their current practices, 
we elaborated as follows: 

I would like you to imagine that your students learned everything about integers that you wanted them to learn. Everything! … 
Talk about what they would have learned about integers. Just to be clear, I’m not referring here to how they learned or how you 
taught. That’s important, but that is not what this question is about. It is just about what they would end up knowing. 

If a teacher’s initial response focused more on how students would operate on integers, we followed up probing more directly any 
conceptual understanding they might possess, distinguishing integer reasoning from what students would be able to do: 

You described what you would like students to be able to do—to calculate or compute with integers correctly. Are there ways 
that you would like them to be able to reason about integers that might not be captured by what you have already said? If so, can 
you talk about those ways of reasoning? 

We then shifted focus, asking about their current practices, including clarifying questions about their integer-instruction de-
scriptions provided in the survey. 

The second section was focused on teachers’ personal integer reasoning and involved a range of questions in which teachers were 
asked to solve several open number sentences and explain their thinking (see Fig. 1). Throughout, we asked each interviewee to “take 
off your teacher hat” and apply approaches comfortable to “you as a problem solver.” 

In addition, this section included tasks involving the comparison of quantities such as −5 and −6; – (−4) and −4; x and x + 1; −x 
and x. Teachers were asked to circle the larger, write “=” if they have the same value, or indicate using a question mark if there is insufficient 
information. 

Finally, to explore teachers’ interpretations of student thinking, we showed videos of three elementary school students solving open 
number sentences and asked the teacher to describe and reflect upon each student’s thinking. In the first video, a student sings a song 
created for integer addition, sung to the tune of “Row, Row, Row Your Boat,” with the rule, “Same sign add and keep, different signs 
subtract. Keep the sign of the bigger number, then you’ll be exact.” The child then misapplies the rule she provided, illustrating a 
student carrying out a procedure without meaning, a method that often characterizes integer instruction. In the second video, a fourth 
grader, prior to formal instruction on negative numbers, reasons about the problems −5 + −1 and −5 – −3 by comparing them to 

Fig. 1. The open number sentences completed by the teachers.  
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operations involving similar positive numbers. The third video shows a first grader solving a sequence of four problems: 5 + = 3, −2 
+ 5 = , 5 + −2 = , and 6 + = 4. Initially, he argues that addition cannot result in a smaller number but then eventually reasons 
through the problems to understand how it is possible with negative numbers. 

3.3. Analysis 

The second and last authors together conducted the teacher interviews, which were audiotaped and transcribed. Participants’ 
responses were analyzed using a grounded theory approach (Strauss & Corbin, 1994). To answer the first research question, we 
analyzed the data related to teachers’ espoused goals for integer instruction and the teachers’ responses about their instructional 
methods. Specifically, we coded the nature of their goals, determining whether they focused solely on rules, attempted to develop the 
rules along with understanding of the underlying mathematics, or were able to articulate some reasoning goals. We also categorized 
teachers’ descriptions of their instruction on the basis of whether or not a teacher relied exclusively on a single method or integer 
model. 

To answer the second research question, we analyzed the teachers’ integer reasoning by applying a coding scheme developed from 
Bishop et al.’s (2014b) study of students’ integer reasoning. Each teacher’s solution and explanation for every open number sentence 
was coded for the ways of reasoning exhibited (see Appendix for the Ways of Reasoning codes). Trained, experienced coders of the 
student data double coded all teacher responses with an interrater agreement of 86%. Coding disagreements were resolved through 
discussion and resulted in the final set of codes reported. 

To answer the third research question, we analyzed teachers’ interpretations of student thinking evident in the videos to determine 
the degree to which their interpretations aligned with research-based frameworks of student thinking as well as the pedagogical 
ramifications they attributed to the students’ reasoning. We determined three categories: (a) aligned, which indicated an interpre-
tation that captured nuances of student thinking elevated by research and included meaningful pedagogical ramifications; (b) partially 
aligned, which was assigned to vague interpretation often stemming from an assumption that the method had been taught or that the 
students had uncommon, innate ability; (c) not aligned, which was characterized by over- or under-generalizations based on personal 
pedagogical views rather than reasoning identified by research. These categories are further explained and exemplified in the results 
section. To be clear, these categories emerged when we compared teachers’ responses to our understanding of student thinking 
interpreted through the Ways of Reasoning framework, and, as such, have a degree of subjectivity. 

4. Results 

We organize the results into three sections: (a) teachers’ instructional goals and methods, (b) teachers’ ways of thinking about 
integers, and (c) teachers’ understanding of students’ integer reasoning. Additionally, we explore the interrelationships among these 
areas. Table 1 contains these constructs, their descriptions, and the emergent categories. 

4.1. Research Question 1: teachers’ instructional goals and methods 

4.1.1. Instructional goals 
To understand teachers’ instructional goals, we asked the participants to describe their overall instructional objectives within this 

content domain, their efforts to achieve these objectives, and the characteristics they take as evidence of students’ success. Although 
teachers varied in pedagogical strategies for teaching integers, these teachers’ foci were primarily procedural. They repeatedly stated 
that they wanted students to develop the ability to correctly compute with the four operations. Three teacher categories emerged from 
the data: one characterized as teachers with a rules-only orientation, a second comprised of teachers who indicated an appreciation for 

Table 1 
The Construct Names, Descriptions, and Emergent Categories.  

Construct name Construct description Emergent categories 

Instructional goals The teaching objectives, including procedures, concepts, and ways of reasoning, 
that the teacher held for students  

• Rules-only  
• Procedures with 

understanding  
• Explicit reasoning goals 

Commitment to instructional method Whether the teacher was committed to one particular instructional method  • Single model  
• No commitment to 

approach 
Teachers’ ways of reasoning about 

integers 
The way(s) of reasoning a teacher used on each task  • Ordered-based  

• Analogy-based  
• Formal  
• Computational 

Teachers’ interpretations of students’ 
integer thinking 

Alignment of the teacher’s interpretation of student thinking with research-based 
frameworks  

• Aligned  
• Partially aligned  
• Not aligned  
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procedures with understanding, and a third marked by the ability to articulate explicit reasoning goals. Although teachers in the second 
category emphasized the desire for students to be able to reason through integer tasks, their responses indicated that they did not view 
integer concepts or ways of reasoning as topics to be developed in their own right, but only in the service of computational proficiency. 
We were not surprised by the teachers’ struggles to articulate ways of reasoning because such ideas have emerged only after extensive 
research involving a detailed literature review and the analysis of many student interviews. 

4.1.1.1. Rules-only. Two of the 9 participants, Bret and Ann (see Table 2), were classified as holding instructional goals identified as 
rules–only. These teachers, when asked to describe the full extent of what they hoped students would learn within the context of 
integers, expressed in detail the rules they expected students to learn. The precision with which they articulated these rules indicates 
that for these two teachers, the procedures, exactly as they expressed them, are essential for the success of their students. Moreover, 
both teachers specified that difficulties with integers stem from students’ lack of attention to the explicitly taught rules and failure to 
sufficiently practice them as such. 

For example, Bret highlighted that students must “do repetitions over and over and over again … until they have it embedded in 
their memory––until they get 100% … and not make a mistake.” Bret revealed more of his rules-only thinking when asked to watch the 
video clip and analyze the thinking of a fifth-grader, Jane, attempting to apply a rule by reciting a song. She rewrote the problem, 
changing the initial expression of −12 + 7 to −12 – −7 and then misapplied the rule of “same sign add and keep, different sign 
subtract” to the new subtraction problem. She obtained an answer of −19, not recognizing that the “different signs, subtract” part of 
the rule applied to the original addition problem. Responding to this video clip, Bret stated that the student should “leave the original 
problem always and rewrite whatever the rule is. … No matter what order the numbers are in, you have to subtract the smaller number 
from the larger number—their absolute values.” Bret’s interpretation was that Jane’s error was due to her failure to methodically apply 
the rule, reflecting his belief that clarity in articulating and practicing rules is essential to learning integer arithmetic. 

Similarly, Ann explained that students’ difficulties result from a lack of “drill and kill.” She further emphasized this approach by 
arguing that alternative approaches only contribute to confusion and mistakes. She explained that once, when she had allowed stu-
dents to solve problems using their own methods, the results were “disastrous.” “They all got it wrong. … It was amazing to me. It’s 
almost like they needed the steps, to feel comfortable. So maybe that is my manipulative—the steps." Ann now instructs her students to 
use only her prescribed methods. For example, she mandates that students, given a subtraction problem, rewrite the problem as 
addition and change the sign of the subtrahend. When asked how many of her students would make use of this technique and change 4 
– −12 to 4 + 12, she replied, “They would all do that or they would get it wrong. I call my classroom “Thompsonville” (note, her last 
name is Thompson), and you do it the Thompson way.” Furthermore, she said that she has her students practice the procedures “85,000 
times.” 

Later in the interview, when Bret and Ann were asked the ways in which they like students to reason about integers, their answers 
indicated no clear conception of what reasoning entails. Both replied by repeating the strict adherence to a step-by-step procedure in 
applying the rules. Ann responded with a particularly illustrative example of this phenomenon. When initially asked about reasoning, 
Ann, who taught sixth and seventh grades, appeared confused: 

Reason … I think that that comes more in seventh grade, when we take it to the next level, because we will add variables to it, 
and we add the distributive property to that. In sixth grade, we are not doing that. We are just going straight forward with it. 

Not seeing what role reasoning could play in solving integer tasks, Ann attempted to make sense of such an idea by associating it 
with topics that arise in the subsequent formal study of algebra. As these comments illustrate, for Bret and Ann, the ability to reason 
about and solve integer problems on one’s own is not simply absent from their instructional goals; it is actively discouraged. 

Table 2 
Categorization of Teachers’ Instructional Goals and Methods.  
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4.1.1.2. Procedural with understanding. Six of the other seven teachers fell into the second category characterized by a focus on 
procedural fluency accompanied with some appreciation for instilling an understanding or justification of the rules. Although these 
teachers reported the ability to accurately carry out the four operations as their main instructional goal with integers, they also voiced 
the desire for students to reason through their calculations. The teachers’ descriptions of what such reasoning might entail were vague, 
but they appeared to possess views of procedural fluency that incorporated an associated understanding of the rationales behind the 
rules. The following quotes from Gabriel are indicative of the coexistence of these two elements. He began by asserting that he hoped 
students “would know that integers are whole numbers, positives, negatives, and that they would be able to do the operations on those 
numbers,” but then added that he tries to “stay away from gimmicks [referring to rules without reasoning] that … didn’t really explain 
what was going on.” He continued, “I want them to reason through it as much as they can. They need to know that there is some other 
reason [beyond the rule].” Gabriel valued the ability to correctly carry out the operations but, unlike Bret and Ann, also wanted 
students to develop a sense of the rationale for these procedures. 

One of the more consistent results was that the teachers were unable to explain what integer reasoning entails, even though they 
had multiple opportunities and were asked in several ways to distinguish between ways of operating on integers and underlying ways of 
reasoning about integers. Each time the teachers were asked to explain what they interpreted integer reasoning to be, they responded in 
vague, nondescriptive terms. For example, Kate expressed a desire for students to be able to “just kind of picture it in their head.” 
Gabriel described this capacity as being “able to play with it a little bit in their head.” Others spoke of an intuition with numbers. For 
example, Tom emphasized that he wanted students “to be able to look at a simple integer problem and be able to tell, off the top of their 
head, if it is going to be a positive answer or a negative answer.” Jill expressed a desire for students to “have a good understanding of 
what positives and negatives mean.” Although these teachers seemed to value some sort of reasoning, they were unable to articulate 
what this might involve. 

4.1.1.3. Explicit reasoning goals. Only one teacher, Cheryl, articulated details about what integer reasoning entails. She stated specif-
ically that she wanted students to develop understanding of “value and quantity” associated with integers. She distinguished the two by 
explaining that −3 has a larger value than −7 but less quantity in terms of the visual context of swimming-pool depth (implicitly 
referring to magnitude). She also spoke of the need to make clear different interpretations of the minus sign as “negatives and op-
posites.” She emphasized understanding the minus sign as meaning the opposite of whatever follows and not simply the sign of the 
number. Of the 7 teachers who valued reasoning, only Cheryl spoke of specific understandings of integers she hoped to develop in 
students. For the other participants, their nebulous descriptions seem to indicate that a way of thinking about integers is not tangible for 
them. Although the teachers value and (as we will show later) possess a variety of ways of reasoning, without an explicit understanding 
of what integer reasoning is, they lack a clear picture of what understanding they could hold as goals for their students. 

4.1.2. Instructional methods 
When asked how they taught integers, all the participants mentioned the use of various models and manipulatives but struggled to 

cite any purpose for their inclusion except as a way to demonstrate the rules. In analyzing the teachers’ descriptions of the pedagogical 
approaches they used, we coded their responses into one of two categories: a firm commitment to a single model for integer instruction 
or no commitment to an approach (see Table 2). 

4.1.2.1. Single model. Four of the teachers, Ann, Bret, Kate, and Kalani, fell into the first category. What distinguished these teachers 
was not simply their exclusive use of a single method but also their strong beliefs that their chosen approaches were the best (and often 
only) way to master and understand integer operations. As highlighted previously, a trait of the rules-based-instruction orientation is 
the conviction that only through the strict adherence to rules can students learn integer operations. Consequently, both Ann and Bret 
fell into the single-model category. In addition, two of the teachers who included understanding as part of their instructional goals also 
fell into this category. Kate used exclusively the balloons and weights model (Lamb & Thanheiser, 2006), which situates integers on a 
number line and uses balloons to represent positive quantities and weights to represent negative quantities. Removing (a balloon or 
weight) represents the operation of subtraction, whereas adding (a balloon or weight) represents the operation of addition. Kalani 
related all integer problems to various contextual situations, for example highlighting how filling in holes explains the subtraction of a 
negative. All four of these teachers were so dedicated to their specific approaches that they repeatedly explained student difficulty as a 
lack of exposure to their prescribed methods. In addition, they interpreted student reasoning that did not incorporate their approach as 
lacking understanding. Consider Kalani, who was confused by the thinking of a 4th grader who correctly leveraged the inverse 
relationship between addition and subtraction to solve −5 – (−3) by reasoning that the subtraction of a negative must have the 
“opposite” effect of addition. In response, Kalani said, “I think he got confused. There’s no context involved. … I don’t quite understand 
him when he used the opposite. Opposite of what? … I don’t see a clear understanding on his part at all.” As a follow-up question to 
clarify the 4th grader’s thinking, Kalani said that he would ask if he could explain what -5 represents in context. In this exchange, 
Kalani seemed unable to follow the student’s approach and appeared to assume that because the student did not mention context, he 
possessed no meaningful conceptualization. Kalani’s reaction surprised us because in solving integer tasks, he had invoked reasoning 
almost identical to this child’s. 

4.1.2.2. No commitment to an approach. The other five teachers fell into the second category, defined by their lack of commitment to 
any particular approach. To be clear, what characterized the teachers in this category is not simply that they used multiple approaches 
but that they expressed indifference about which models they used when teaching. They each described how they selected 
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instructional aides on the basis of convenience and time constraints without having a particular commitment to those aides, often 
changing their approaches from year to year. For example, Tom told of using number lines he had found in a mathematics locker one 
year, but because the number lines had been destroyed as a result of students’ taping them to their desks, he moved on to the chips 
model the subsequent year. In addition, these teachers pointed out that the various models they had tried were inadequate, explaining 
that each inevitably led to student confusion and in the end required the teacher to tell the students the rules. Although the exact 
approach was unimportant, these teachers described the need to use some instructional aides to explain the rules or develop some sort 
of understanding of the rules they eventually taught. Such a belief aligns with Kumar et al.’s (2017) finding that teachers see contexts 
as useful to introduce students to provide a “need for integers,’’ but do not see them as effective in teaching operations with integers. 
Although these teachers wanted students to develop understandings that went beyond simply rules, lacking clear understandings of 
what this entails, they ultimately focused on providing their students procedures to correctly calculate with integers. See Table 2 for a 
summary of results on Research Question 1. 

4.2. Research Question 2: teachers’ ways of thinking about integers 

In the previous section, we shared data supporting the findings that the teachers’ goals for instruction were primarily focused on the 
mastery of operations with some appreciation for understanding (although not well-defined). Although one might infer from these 
findings that the teachers would approach solving integer tasks in a procedural manner, the results indicate otherwise: The teachers 
consistently invoked various ways of reasoning while solving integer tasks and even invoked methods that did not align with their 
endorsed instructional methods! Even when they applied rules, the teachers usually did so strategically, knowing when a particular 
rule or property would be of service, and often combining rules with other noncomputational forms of reasoning. (Note that 100% of 
the tasks were answered correctly by the teachers.) 

4.2.1. Teachers’ ways of reasoning 
To answer the second research question regarding teachers’ ways of reasoning, we turn to the teachers’ responses to the number 

sentences (see Fig. 1). In Table 3 we present the various ways of reasoning teachers used across all six problems. The Total column 
indicates the total number of times each way of reasoning was used across all the open number sentences. Note that for a single 
problem, a teacher might have invoked multiple ways of reasoning, as Bret did for Problem (b). Collectively, teachers’ solutions were 
coded as 54% Computational, 15% Formal, 15% Order-based, and 37% Analogy-based (more than 100%, because one solution may be 
coded for more than one way of reasoning). As such, the number of instances of noncomputational reasoning was larger than the 
number of instances of Computational reasoning. In fact, 2 teachers (Kalani and Gabriel) used no Computational reasoning at all (see 
the frequency counts in the Total column), and the responses of 4 of the 9 teachers indicate that it was not their preferred method. Not 
only did they use noncomputational ways of reasoning, they also demonstrated flexibility by using various ways of reasoning. Only one 
teacher, Ann, used a single way of reasoning. In the other cases, although teachers might favor a particular way of reasoning, they 
combined this preferred approach with other ways of reasoning. 

To illustrate the range of strategies used by the teachers, we describe three responses by Tom, chosen because of the clarity of his 
responses and because he favored a noncomputational way of reasoning, in particular, Order-based Reasoning. As such, his responses 
serve as examples of the variability and flexibility of the reasoning demonstrated by the teachers as a group, contrasting starkly with 
their instructional approaches. 

4.2.2. Tom’s reasoning 
Tom’s solution to −9 + = −4 exemplifies his preferred Order-based Reasoning. Here he located −9 and −4 using the sequential 

and ordered nature of numbers, stating, “If I start at negative 9 and have to get to negative 4, I have to add 5. I don’t know if I actually 
pictured a number line myself, … but I know I have to go upwards towards negative 4 and upwards is obviously a positive number.” 

Tom’s response to 5 – = 8 illustrates the combination of three ways of reasoning, Order-based, Formal, and Computational. He 
first compared 5 and 8 in an ordered way: “I know I am starting with 5 and my answer is higher than 5, so I know I have to go upwards, 
… and the difference between the two is 3.” He then used formal reasoning to infer the sign of the unknown on the basis of the 

Table 3 
Ways of Reasoning Invoked by Teachers on Interview Tasks.  

Teacher + −2 = −10   −9 +
= −4   

−3 + 6 = 5 –  
= 8   

−3 –  
= 2   

6 +
= 4   

Total 

Ann C C C C C C C = 6 
Bret C F, C C C C F C = 5, F = 2 
Kalani A A A O O A A = 4, O = 2 
Kate C C C F C C C = 5, F = 1 
Jill A A A A, C O, A F, A A = 6, C = 1, F = 1, O = 1 
Ron C C A C C C, F A = 1, C = 5, F = 1 
Tom A O O O, C, F O, C O, F A = 1, C = 2, F = 2, O = 5 
Gabriel A A A F F A A = 4, F = 2 
Cheryl A, C A, C A C C A, C A = 4, C = 5 

Note. A = Analogy-based, C = Computational, F = Formal, and O = Order-based. 
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operation of subtraction and the fact that the ending value of 8 has a greater magnitude than the starting value of 5. He said, “But the 
subtraction sign leads me to think, ’How can we go upwards to eight?’ So I know it has to be a negative number, negative 3.” He then 
invoked a rule (Computational reasoning) saying, “Two negatives turn into a positive. Explaining to the kids, ’5 minus negative,’ they 
can’t visually see that minus a negative means adding. But if you just tell them, ’Two negatives in a row make a positive,’ they can 
understand that a little bit better.” Using a mixture of Ordered-based, Formal, and Computational reasoning, Tom correctly answered 
−3. 

Finally, to solve + −2 = −10, Tom reasoned quite differently, using an analogy-based approach. He stated, “I am thinking there 
are 10 negatives, so you have to add up to 10 negatives, so if I have 8 negatives and 2 negatives it makes 10 negatives.” Notice the focus 
here on magnitude, that is, the absolute values of the numbers. He separated the negative sign from the magnitude, viewing −10 as 
representing a collection of 10 objects that are “negatives.” If he already has 2 of these objects, he needs 8 more. 

4.2.3. Relationships between teachers’ reasoning and their pedagogical goals 
After investigating teachers’ personal reasoning and their instructional goals, we wondered whether a relationship existed between 

these two areas. Overall, we found a limited relationship. All participants did indicate, to varying degrees, that integer rules were part 
of their instruction, and this did emerge as the preferred method. Nonetheless, all except Ann used other noncomputational approaches 
to solve the six open number sentences, and most tended to flexibly modify their thinking depending on the problem at hand. The one 
strong correlation that emerged was with the two teachers who reported a rules-only orientation. As mentioned above, Ann, whose 
instruction was characterized by strict adherence to rules, exclusively invoked Computational reasoning. Similarly, Bret tended to 
invoke Computational reasoning, but he also engaged in formal reasoning for two tasks to justify which sign the answer should have. 

For the others, these data highlight that teachers possess a wide range of resources that they invoke when reasoning but appear to 
not fully leverage in their instruction. In fact, the thinking of the other seven participants differed quite noticeably from their stated 
instructional goals and strategies. This contrast was particularly visible with the two teachers who were dedicated exclusively to a 
single instructional model. Kate, who reported using a model that combined an analogy-based and ordered-based approach, used 
neither the model nor either of these two ways of reasoning to answer any of the questions! Kalani, who viewed integer instruction 
almost exclusively through a lens of context, solved the integer tasks using a variety of approaches. Although he did show some 
preference for Analogy-based Reasoning, he explicitly stated that applying a context would be unsuitable for two of the problems. 
Similarly, none of the other teachers, whose instruction did not align with a single model, favored a single approach. 

4.3. Research Question 3: teachers’ understanding of students’ integer reasoning 

During the interview, each teacher viewed videos of three elementary school students solving open number sentences and were 
asked to describe and reflect upon each student’s thinking. Even though the teachers were not asked to address possible pedagogical 
ramifications associated with these approaches, most offered explanations for students’ thinking, cited possible instructional re-
sponses, or reflected on the students’ thinking in terms of their own pedagogy. Therefore, although we focused on teachers’ in-
terpretations of student thinking, we also analyzed various pedagogical implications and interpretations teachers chose to incorporate 
in their answers. 

The data for our analysis come primarily from teachers’ reflections on the second and third videos. The second video was of a fourth 
grader, Raymond, solving two problems. In solving the first problem, −5 +−1, he reasoned, “If you add these two together … it would 
make it farther from the positive numbers, and it’s like mainly just doing 5 plus 1 equals 6.” By comparing −5 +−1 to the sum of 5 + 1, 
he used analogy-based reasoning to conclude that adding negatives depends only on the magnitudes of the numbers, resulting in a 
number six away from the positives just as 5 + 1 results in a larger positive number. In addition, Raymond’s statement that the result 
was “farther from the positive numbers” indicates that he also invoked Order-based Reasoning. 

Raymond used a formal approach to solve −5 – −3. He held the two values of −5 and −3 constant and compared the problem he 
was asked to solve to the related addition problem −5 + −3. Through this comparison, he conjectured that because “addition [of the 
two negative numbers] … would be farther from positive numbers, if you do the opposite, it should be closer [to the positive 
numbers].” Using formal reasoning and invoking the idea that subtraction is the inverse of addition, he concluded that the effect of 
subtracting a number is opposite the effect of adding that number, resulting in this case a final value three units closer to the positive 
numbers than the first term. Again, Raymond’s description of being closer to and farther from the positive numbers indicates that he 
also invoked Order-Based Reasoning. 

The third video showed a first-grader, Ryan, solving a sequence of four problems: 5 + = 3, −2 + 5 = , 5 +−2 = , and 6 +
= 4. In solving the first problem, he stated that 5 + = 3 has no solution because “it’s [the sum is] always past 3 if it’s plus,” alluding 
to the idea that addition makes bigger. He then solved −2 + 5 by using ordered-based reasoning and counting on five units from −2. 
Across these two problems, we conclude that Ryan was able to conceptualize negatives as a starting position on the number line (as in 
the 2nd problem) but not as a decreasing change action requiring movement to the left (as in the first). Ryan then solved 5 +−2 (with a 
negative change action) by applying the commutative property (using formal reasoning) to the previous problem, stating “because it’s 
pretty much the same thing. Five plus negative 2, [and] negative 2 plus 5. ‘Cause you add the same things.” Finally, Ryan reproduced 
this sequence of reasoning to solve the problem 6 + = 4 (a negative change as the unknown instead of given), stating, “It was kind of 
like that (pointing to 5 + − 2 = ). Plus a negative.” When asked to explain, Ryan summarized his method, arguing that “negative is 
like minus” and negative 2 means “go back two.” Ryan began to make sense of adding a negative as change and connecting this 
understanding to that of the operation of subtraction. Remember, Ryan was in first grade. 
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4.3.1. Teachers’ interpretations of students’ thinking 
In our analysis we coded the teachers’ interpretations of these students’ thinking into three categories: aligned, partially aligned, 

and not aligned (see Table 4). Aligned indicates responses showing that the teacher understood and could articulate nuances of student 
thinking in a way that aligns with research-based frameworks. Furthermore, the teacher made meaningful connections to instruction, 
explaining how students’ thinking informed her about changes she should make to her own teaching. Partially aligned means that the 
teacher’s explanations of student thinking, though correct, were vague, without attention to details, often incorporating an over-
generalization of the student’s understanding and generally attributing student thinking to a learned method or innate intelligence. Not 
aligned denotes inaccurate explanations of the students’ reasoning with interpretations of the students’ reasoning made almost solely 
through the lens of the teacher’s preferred instructional approach. Unable to detach their understanding of the students’ ideas from 
their views of instruction, teachers whose responses were categorized as not aligned overestimated the student’s understanding when it 
corresponded with their views of instruction or described the approach as unproductive when it did not, offering pedagogical sug-
gestions to improve or correct the student’s understanding. To illustrate, we provide an example of teacher responses to either 
Raymond’s or Ryan’s thinking from each classification. To help the reader contextualize the data, we also present the categorization of 
each teacher’s interpretation of student thinking in a table along with the classification of goals and methods and the ways of reasoning 
(see Table 4). 

4.3.1.1. Aligned. Cheryl’s analysis of Ryan’s thinking illustrates the nuanced characteristic of interpretations that align with research- 
based frameworks along with the associated pedagogical reflections. Cheryl began by clearly explaining Ryan’s reasoning: “He has a 
number-line sense of where the numbers are placed. So if he started from a negative, he can move up, and he didn’t quite have that 
understanding of a negative movement.” She then continued to reflect on this observation, considering implications for instruction: 

It made me really think of––especially the children that are struggling with integers—is to definitely start it with the negative 
because that was really apparent to him. And the commutative property, changing the order of them around, wasn’t a big deal 
for him. 

Cheryl indicated that she saw how the order of the addends in integer addition (i.e., 5 + −2 vs. −2 + 5) could make a significant 
difference for students while they come to understand integers. She concluded that starting with problems in which the first addend is 
negative provides a more accessible approach for students and that such sequencing may allow students ways to reason about problems 
in which the second addend is negative. 

4.3.1.2. Partially aligned. Tom’s response to Raymond’s video is an example of a partially aligned interpretation. When asked about 
Raymond’s solution for −5 +−1, Tom expressed satisfaction with Raymond’s thinking, explaining that he would like all his students to 
be able to identify the answer as negative before actually calculating the exact value. Tom offered no details about Raymond’s 
reasoning, stating, “He [Raymond] just sat there and thought about it.” He attributed Raymond’s method to innate ability, describing 
him as “a bright mathematical student,” clarifying that he believed that some students “have these math instincts that give them a push 
towards something or another, and some just don’t have those kind of math––they don’t understand it as well.” When asked to 
comment on Raymond’s solution for −5 – −3, Tom was initially unable to follow Raymond’s reasoning but assumed that the method 
was “something he was taught.” When shown the video a second time, Tom was able to explain the crux of Raymond’s thinking, 
stating, “I think because the problem beforehand was plus, it was more negative. So he says, it has to be the other way then.” Tom 
followed this explanation with a comment clarifying how he saw this answer as another example of Raymond’s “math instincts." Again, 
Tom offered some articulation of Raymond’s thinking, but he interpreted his reasoning as evidence of some natural mathematics 
aptitude or a specifically instructed method. 

4.3.1.3. Not aligned. Finally, we present responses from Ann, whose analysis and comparison of both students’ mathematical thinking 
provides an example of the overgeneralized nature and strong pedagogical evaluation of interpretations in this category. After being 
shown Ryan working on the first two problems in which he classified 5 – = 3 as an impossible problem and accurately reasoned 
through −2 + 5, Ann concluded that Ryan possessed no understanding. She explained, “Obviously it [his understanding] didn’t 

Table 4 
Teachers’ Interpretations of Student Thinking With Summary of Integer Instruction and Personal Ways of Reasoning Across Teachers.  

Teacher Instructional 
goals 

Instructional 
methods 

Teachers’ ways of reasoning about integers Interpretation of students’ integer thinking 

Ann Rules only Single model C = 6 Not aligned 
Bret Rules only Single model C = 5, F = 2 Not aligned 
Kalani Procedural with understanding Single model A = 4, O = 2 Not aligned 
Kate Procedural with understanding Single model C = 5, F = 1 Partially aligned 
Jill Procedural with understanding No commitment A = 6, C = 1, F = 1, O = 1 Partially aligned 
Ron Procedural with understanding No commitment A = 1, C = 5, 

F = 1 
Partially aligned 

Tom Procedural with understanding No commitment A = 1, C = 2, F = 2, O = 5 Partially aligned 
Gabriel Procedural with understanding No commitment A = 4, F = 2 Aligned 
Cheryl Explicit reasoning goals No commitment A = 4, C = 5 Aligned 

Note. A = Analogy-based, C = Computational, F = Formal, and O = Order-based. 
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translate to the other problem. So, does he have a full working knowledge of it? If he did, he would have been able to transfer it there.” 
Her assessment of Ryan changed though after she saw him correctly solve the final two problems. Much like Tom, Ann attributed 
Ryan’s success to an innate ability, describing him as possessing “a very promising understanding of numbers.” When asked what 
evidence she had, she commented that Ryan used a method that corresponded to her instructional method, what she called “double- 
duty” to describe how a negative could be an operation or the sign of a number, stating, “Because he did my double-duty. He said, 
’Subtraction is like.’ … He saw negative as taking away and he called it ‘negative.’ He said, ‘The negative sign is like the subtraction 
sign. You are taking it away.’” It seems that because Ryan’s approach was consistent with a rule and vocabulary that Ann teaches in her 
classroom, she attributed this to strong understanding. She then contrasted Ryan’s thinking to Raymond’s, which she did not value: 

So, there is a better number sense there than I think Raymond had. … Raymond was calling it minus. He didn’t have a concept of 
negative and positive. He was looking at it like a subtraction sign. I think Raymond can get the right answers, but his thinking 
would have to be adjusted. 

Ann demonstrated strong feelings about not only the procedures that ought to be taught but also the language that ought to be used, 
regarding Raymond’s use of the term minus to be problematic. Furthermore, when Ann was asked whether she would like someone to 
come into her class thinking like Raymond or if would it make it worse, she responded without hesitation, “Worse! I absolutely do not 
want them learning positive and negative numbers with the operations in fourth grade.” We conclude that Ann not only failed to 
recognize the rich and valid reasoning embedded in Raymond’s responses but that she also did not consider that an approach different 
from her own could be valid. Finally, she clearly wished to avoid Raymond’s reasoning, and, we suspect, any reasoning that was not 
consistent with meeting her instructional goals. 

4.3.2. Relationship between teachers’ interpretations of student thinking and their instructional goals 
Although the teachers’ instructional goals and their own personal reasoning seemed disconnected, we did find a correspondence 

between teachers’ pedagogical orientations and their interpretations of student thinking (see Table 4 above). Those teachers, like Ann 
and Bret, who possessed a rules-only perspective of integer instruction seemed to have a binary view of student understanding and 
were unable to follow students’ ways of reasoning unless they mapped onto their own instructional methods for teaching. Similarly, 
Kalani, who valued students’ developing some understanding of the rules but was rigid in his pedagogical approaches, struggled to 
follow students’ reasoning. These three teachers were critical of methods not corresponding to their own instructional goals and 
overgeneralized students’ strategies and understandings related to their preferred instructional approaches. We conjecture that 
without an appreciation of integer reasoning, these teachers failed to understand how a student could solve one problem, such as −2 +
5 = , but not another, such as 5 + = 3. Furthermore, they incorrectly concluded that one correct solution by a student implied that 
the student had a robust understanding of integers. In contrast, Cheryl, who articulated some nonprocedural goals, provided more 
detail in her interpretations of student reasoning and was able to formulate pedagogical conclusions on the bases of the nuances of 
student thinking. 

5. Discussion 

Our goal of this study was to investigate seventh-grade teachers’ perspectives about integers, including their goals and methods for 
instruction, their ways of reasoning when solving integer tasks, and their understanding of students’ integer reasoning. Results indicate 
that the seventh-grade teachers in this study did not explicitly articulate reasoning about integers as an instructional goal and instead 
focused primarily on the mastery of the four operations, as evidenced by the first column of Table 1, “Instructional goals.” Further-
more, although most of the teachers shared that they would like for this mastery to be associated with understanding, only one teacher, 
Cheryl, was able to provide specificity as to what an understanding of integers might entail. Additionally, all the teachers correctly 
completed integer tasks, and all but one invoked more than one way of reasoning across the tasks (see Table 3). Notably, whereas the 
teachers used a range of noncomputational strategies associated with a variety of ways of reasoning in their own thinking, such 
reasoning was not evident in their instructional goals. Overall, we found limited relationships among teachers’ personal reasoning, 
their instructional goals, and their interpretations of student thinking. However, we did find that teachers who strongly preferred a 
single model for instruction or held a singular focus on rules as an instructional goal seemed to be constrained by these relatively 
narrow instructional models and goals when interpreting student thinking. Thus, a flexible approach to integer instruction appeared to 
be a necessary, but not sufficient, attribute for appreciating student reasoning. 

Such results point to a disconnect between the types of reasoning that teachers strive for as part of their instructional goals for 
integers and their own personal reasoning. Even though the participants in our study drew on a range of ways of reasoning themselves, 
they were, for the most part, unable to explicitly identify such reasoning as instructional goals and struggled to recognize the cor-
responding integer concepts in students’ strategies. The lack of conceptual specificity in the teachers’ responses highlights an 
important dimension of Mathematical Knowledge for Teaching. Although seven of the nine teachers in this study were explicitly 
committed to developing integer understanding, they lacked an organized structure for their knowledge that would enable them to 
leverage the conceptual resources they possessed. Without a framework to guide them, they ultimately focused their instruction on 
integer models and rules. 

Previous research designed to explore teacher knowledge in the realm of integers has been focused primarily on the lack of 
Specialized Content Knowledge (SCK) involved in understanding of different representations, models, and contexts associated with 
integers (Kinach, 2002; Kumar et al., 2017; Mitchell et al., 2013; Wessman-Enzinger & Tobias, 2020). We build on this research, but 
take a different approach. The inability of teachers in this study to connect the rich integer understanding they demonstrated to their 
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classroom instruction suggests an additional component of SCK, the ability to coherently organize an instructional domain (like in-
tegers) around key concepts and reasoning. Within the domain of integers such a structure would incorporate the various meanings of 
the minus sign, the underlying meanings and perspectives of number (ordinal, cardinal) and operations (motion, movement, acqui-
sition, etc), the use of fundamental properties to justify procedures and rules, and various ways of reasoning students can use to solve 
problems. We believe that the Ways of Reasoning framework provides such an organizational piece, connecting and giving purpose to 
these different aspects of specialized knowledge. 

In addition, we extend previous research by describing not only the importance of a structure for organizing SCK but also how SCK 
for integers may interact with the ways teachers interpret and respond to students’ mathematical thinking within a particular content 
domain. Those teachers whose instructional goals included understanding in addition to computational proficiency and indicated 
more flexibility in their instructional approaches were able to appreciate and recognize student reasoning when observing videos, with 
some even articulating clear pedagogical implications. 

Shifting teachers’ current pedagogical methods so that their instructional practices encompass teaching for understanding and 
responding to student thinking entails not only knowing how to solve problems but also possessing an organized understanding of the 
associated types of reasoning. We believe that the mathematics education community needs to reconceptualize mathematical domains 
around the types of student reasoning associated with a rich understanding of the content, as has been done with whole number 
operations through the CGI–based research (Carpenter et al., 2014). By identifying and organizing such knowledge into frameworks, 
researchers elevate ways of reasoning for teachers, enabling them to more productively attend to and learn from their students’ 
thinking. To effectively listen and respond to students’ thinking, teachers must not only want to know what their students are thinking, 
they must also hold a structured understanding of the underlying ways of reasoning that enables them to meaningfully interpret their 
students’ reasoning and use that reasoning to make effective in-the-moment pedagogical decisions (Jacobs et al., 2010). As CGI 
research has shown (e.g., Carpenter et al., 1989), a restructuring of teachers’ thinking can have powerful effects on teachers’ un-
derstanding of the goals related to a mathematical domain and, as a consequence, on their instruction. 

A profound principle about learning that applies not just to children but to all people is that we must start with what one already 
knows when trying to move that person to a richer understanding. Our study shows that although many teachers did not recognize the 
various ways of reasoning in student’s responses, they were able to use them in thoughtful and productive ways. Clearly, in the domain 
of integers we have a productive starting point that can be leveraged once we provide teachers the right support. 
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Appendix A. Integer Reasoning Framework  

Ways of Integer 
Reasoning 

Descriptions Examples 

Order-based 
Reasoning 

Using the sequential and ordered nature of numbers to reason 
about a problem (e.g., counting strategies or a number line with 
motion). 

Maria (3 –  
= −3) Referring to a number line, Maria puts her finger on 3, 

and while she moves her finger to the left, she counts her touches, 
starting at 1, “One (touches 2), 2 (touches 1), 3 (touches 0), 4 
(touches −1), 5 (touches −2), 6 (touches −3). Six.” Maria’s 
approach is common in that the number line is a powerful 
representation that supports ordered-based reasoning. 
Ryan (−2 + 5 =

) “It was negative 2, negative 1 (puts up one finger), 0 (puts up a 
second finger), 1 (puts up a third finger), 2 (puts up a fourth finger), 
3 (puts up a fifth finger).” Ryan uses the ordering of numbers to 
interpret −2 as a starting place and counts on five numbers to 3. 
Ryan’s counting strategy shows that ordered-based reasoning does 
not require the number line. 

Analogy-based 
Reasoning 

Relating negative numbers to another idea and reasoning about 
negative numbers on the basis of characteristics observed in this 
other concept. This way of reasoning may be characterized by 

Felisha (4 + −5 =
) Using colored chips, Felisha counts four blue chips and five red 

chips, matches each blue chip to one red chip, touches the 
remaining unmatched red chip, and says, “Negative one.” Note that 

(continued on next page) 
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(continued ) 

Ways of Integer 
Reasoning 

Descriptions Examples 

thinking of the sign and magnitude of the number separately and 
interpreting the sign as taking on the meaning based in the analogy. 

the chips model is associated with analogical reasoning, but as 
Julio demonstrates in the following example, analogical reasoning 
need not involve physical models. 
Julio (−9 +

= −4) “The idea here is you have a negative quantity or a 
negative nine holes in the ground. How do you get to having only 
four holes in the ground? You fill up five of those.” Julio used 
analogy-based reasoning to relate negative numbers to holes in the 
ground and interpreted addition of positive numbers as the act of 
filling holes. 

Formal Reasoning Negative numbers are treated as formal objects that exist in a 
system and are subject to fundamental mathematical principles. 
Formal strategies often involve comparisons to other, known 
problems so that the logic of the approach remains consistent and 
underlying structural principles are not violated. 

Francisco (−8 – 3 =
) When describing his answer of −11, Francisco explained that 

he used the previous result. “Well I looked back up at this problem 
[pointing to −3 + 6 =

]. I got 3 because I counted up; negative 3, negative 2… And 
then I thought, ‘Well, minus [as indicated by the subtraction sign in 
−8 – 3] must be going down. And I got 11… Negative 8, negative 9 
(raises one finger), negative 10 (raises second finger), negative 11 
(raises third finger).” Francisco used what he knew about the sum 
of −3 and 6 to help him make a reasonable conjecture about how 
subtraction might function when the starting value is a negative 
number. Francisco reasoned that if addition means to count up, 
then subtraction must do the opposite and be going down. 

Computational 
Reasoning 

Using a procedure, rule, property, or calculation to arrive at an 
answer. 

Omar (6 – −2 =
) Omar changes the minus sign to addition and the negative sign 

to positive to rewrite the left-hand side of the equation as 6 + +2 
and says, “The answer would be 8.” When asked to explain, he 
refers to this practice as using the double-stick trick. 
Katie (−3 + 6 =

) “I know that negative 3 plus 6 is the same as six plus negative 
three, and adding a negative is the same as subtracting a positive, 
and 6 minus 3 is 3.”    
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