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Let X be a measure space with a measure-preserving action (g,x) — g - x of an abelian
group G. We consider the problem of understanding the structure of measurable tilings
F©® A = X of X by a measurable tile A C X translated by a finite set F C G of shifts,
thus the translates f - A, f € F partition X up to null sets. Adapting arguments from
previous literature, we establish a “dilation lemma” that asserts, roughly speaking, that
F©® A = X implies F" © A = X for a large family of integer dilations r, and use this to
establish a structure theorem for such tilings analogous to that established recently by
the second and fourth authors. As applications of this theorem, we completely classify
those random tilings of finitely generated abelian groups that are “factors of iid”, and
show that measurable tilings of a torus T¢ can always be continuously (in fact linearly)
deformed into a tiling with rational shifts, with particularly strong results in the low-
dimensional cases d = 1,2 (in particular resolving a conjecture of Conley, the first
author, and Pikhurko in the d = 1 case).

1 Introduction

In this paper we establish a “dilation lemma” and “structure theorem” for abelian
measurable tilings, and apply this to obtain new results on factor-of-iid tilings, as well

as measurable translational tilings of tori.

Received April 5, 2022; Revised January 5, 2023; Accepted January 24, 2023
Communicated by Prof. Barak Weiss

© The Author(s) 2023. Published by Oxford University Press. All rights reserved. For permissions,

please e-mail: journals.permission@oup.com.

€202 |Udy g1 U0 Jasn AJIsiaAlun uoyeoulld Aq 0v6780./870PBUI/UIWISE0 L 0 | /I0p/3|21MB-0UBAPER/UIWI/WOoD dNo dIWapeae//:sd)y Wol) PapEojUMO(]


https://doi.org/10.1093/imrn/rnad048

2 J. Grebik et al.
1.1 Dilation lemmas and structure theorems for abelian tilings

Let G = (G, ) be a (discrete) group. By a (translational) tiling F © A = G of G, we mean
a pair consisting of a finite subset F of G and a subset A of G such that the translates
f-A:={f-a:a € A} of A by F partition G. If G = (G, +) is written using additive
group notation instead of multiplicative group notation, we write F & A = G instead of
FO®A =G (and f + A instead of f - A). For instance, we have

(0,1)? & (22)? = Z°.

See for instance [21, 23] for surveys on the topic of translational tilings.
One can also consider translational tilings involving multiple pairs F;, A;. For

instance, if G = (G, +) is an additive group, we write
(FiOADY .- W (F,®A) =G

for various finite subsets Fy,...,F, C G and A,,...,A; C G if the translates f; + A; for
i=1,...,kand f; € F, partition G. Similarly, if G is a multiplicative group.

In the case when the group G is abelian and one is tiling by only one tile, there
is a remarkable dilation phenomenon [2, 13, 15, 18, 19, 34, 35] that asserts, roughly
speaking, that the tiling F © A = G implies the tiling F" © A = G for many integers
r, where F" := {f" : f € F}. (Again, when the group is written additively, one would
write r/F @ A = G in place of F" © A = G.) In [13], it was shown that upon averaging
in r, this dilation invariance can be exploited to establish structural properties of such
tilings. (A qualitatively similar conclusion regarding the spectral measure of a measure-

preserving system associated to a tiling was obtained in [2, Lemma 3.2].)

Theorem 1.1 (Structure of tilings of 7Z%). Let d > 1, and suppose that F ® A = 74 for
some finite set F ¢ Z¢ and some A C Z2.
(i) (Dilation lemma) One has rF @ A = Z% whenever r is a natural number
coprime to all primes less than or equal to the cardinality |F| of F.

(ii) (Structure theorem) If we normalize O € F, then we have a decomposition

La=lg— > ¢
fero)
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where 1, denotes the indicator function of A (thus, 1,(x) =1 whenx € A
and 1, (x) = 0 otherwise), and for each f € F\{0}, Pr: Z% — [0, 1] is a function
which is gf-periodic (i.e., (pf(qf + x) = ¢r(x) for every x € 74), where q is the

product of all the primes less than or equal to 2|F|.

Proof. Part (i) follows from [13, Lemma 3.1(ii)], while part (ii) follows from [13,
Theorem 1.7]. The results in fact extend also to “periodic level tilings”; see [13]
for details. |

Theorem 1.1 can then be used to obtain several new results about tilings of Z¢
for low values of d, for instance establishing that all tilings of 7?2 are weakly periodic;
see [13] for details.

In this paper, we extend the dilation and structure theorem to the context of
measurable tilings. In this setting, we have a (discrete) group I' = (', -) acting on some
other measure space X = (X, X, 1) in a measure-preserving action y: x — y - x for each

y € I', thus
idp-x=x
for all x € X (where id- denotes the group identity in I'), and
vy x=y -/ x

for all y,y’ € I' and x € X. By a measurable tiling F© A =,, X of X, we mean a
measurable subset A of X and a finite set F of I' such that the dilates f-A :={f-a : a € A}
of A for f € F partition X up to pu-null sets. Again, if the group I' is written additively,
we write F @ A instead of F © A. For instance, if R? acts on the torus T? = R?/Z? by

translation, then we have

{0,1/2}* & ([0,1/2]*> mod Z?) =, , T.
Our first result is the following analogue of Theorem 1.1 in this setting:

Theorem 1.2 (Structure of abelian measurable tilings). Let I' = (I',-) be an abelian

group acting on a measure space X = (X, &, u) in a measure-preserving way, and
suppose that F © A =,, X for some finite set F C I' and some measurable
ACX.

(i) (Dilation lemma) One has F" ©® A =, , X whenever r is an integer coprime to
|E].
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4 J. Grebik et al.

(ii) (Structure theorem) Suppose that u(X) is finite. Let ¢ = |F|. Then we have a

decomposition

Iy =ae. Z(pf’ (1)

feF

where we use ¢ =, , V¥ to denote the assertion that ¢,y agree p-almost
everywhere, and for each f € F, Pr: X — [0, 1] is a measurable function that
is f9-invariant up to null sets (thus (pf(fq - =) =g <pf). Furthermore, for
all f € F, we have [y ¢y du = p(A), and if f9-A =, A then ¢y =,, ls,.
(Note that, as opposed to Theorem 1.1(ii), we no longer require 0 € F for the

structure theorem 1.2(ii).)

We prove part (i) of this theorem in Section 2, and part (ii) of this theorem in
Section 3, by adapting the arguments from [13]. The main ingredient in the proof of
Theorem 1.2(i) is the Frobenius identity (a + b)? = aP + bP, valid in any commutative
ring of characteristic p, and part (ii) will be derived from part (i) and the mean ergodic
theorem.

The requirement that 1 (X) be finite in Theorem 1.2(i), as well as the requirement
that the action of G is measure-preserving, can be relaxed, as long as we also drop the
conclusion that the Pr have mean u(A); see Appendix A. In particular, we recover the
result in Theorem 1.1(ii) this way despite the fact that Z¢ has infinite counting measure.
We also remark that a result very similar to Theorem 1.2(i), though using somewhat
different notation, was proven in [2, Proposition 3.1].

Informally, Theorem 1.2(ii) allows one to describe sets A that tile a finite
measure space X in terms of auxiliary functions ¢, that enjoy some “one-dimensional”
invariance properties. As such, this result will be particularly useful when the space
X also has very low dimension, and in particular when X is the unit circle T or the

two-torus T?, although it also gives some non-trivial results in higher dimension.

1.2 First application: factor of iid tilings

We now turn to applications of Theorem 1.2. We first consider a class of random tilings

of a group known as factor of iid tilings.

Definition 1.3 (Factor of iid). Let G = (G, +) be a group. For each element x of G, let A(x)

be an iid element of the unit interval [0, 1], thus the (A(x)),.; are jointly independent
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Measurable Tilings by Abelian Group Actions 5

random variables, each drawn uniformly at random from [0, 1]. A random subset A
of G is said to be a factor of iid process if there exists a Borel measurable function
®: [0, 1] — {0, 1} such that

1,(x0) = @ ((AM(xg + X)) xeg) (2)

almost surely for all x, € G. (In particular, A is a stationary process.) More generally,
a finite collection 4, ..., A, of random subsets of G is a (joint) factor of iid process if

there exist Borel measurable functions ®,,..., ®;: [0, 116 — {0, 1} such that
14,(%0) = ; (X0 + X))xeq)

almost surely for all x; € G.
If F,,...,F; are finite subsets of G, a factor of iid tiling of G by F;,...,F; is a
joint factor of iid process A, ..., A; such that

(FlOA)Y .- W (F,dA) =G
almost surely.

Informally, a factor of iid tiling is a tiling that is is generated in a “local” fashion,
in the sense that the behavior of the tiling sets A;,...,A; in some finite region Q of G
is primarily determined by the random variables A(x) for x near Q. We illustrate the

concept with the following example:

Example 1.4. We can generate a factor of iid tiling of the integers Z by the tiles F, :=
{0, 1}, F, := {0, 1, 2} by performing the following procedure.
(i) First we generate jointly independent random variables A(x) € [0, 1] for all
xelZ.

(ii) We construct the factor of iid process
S=xeZ: Mx)<Ax—1),Ax+1)}

of “local minima” of A. We enumerate S = {s,,: n € Z} by order (i.e., 5, < 5,
if n < m). Note that S is almost surely unbounded both above and below,
and is 2-separated, in the sense that s, ; — s, > 2 for any two consecutive

elements s,,, s, , of S.
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6 J. Grebik et al.

(iii) Using the process S = {s,,: n € Z}, we construct the factor of iid process S’
by

S ={s,+2jeZ:njel,s,<s,+2] <s,. —2}

We enumerate S’ = {s,,: n € Z} by order. Note that S’ is also almost surely

/

unbounded above and below, and one has 2 < s, ., — s, < 3 for any

+1
3 / / /
consecutive elements s;, s, of S".

(iv) Usingthe process S’ = {s},: n € Z}, we construct the joint factor of iid process

/ —_—
n+1

—
s, = 3.

s =

A, A, by setting A, to consist of those elements s}, of S’ for which s n

/ —
n+l1

2, and A, to consist of those elements of s, of S’ for which s

One then easily verifies that A, A, is a factor of iid tiling of Z by F;, F,. (See [20,

25], where it was shown that tilings by two tiles can model any free ergodic Z action (up

to a certain entropy threshold). See also [24, 31] for results about tiling of orbits of any

free, measure preserving Z¢ (or R%) actions by a fixed number of tiles (depending on d).)

On the other hand, there is no factor of iid tiling F; @ A; = Z of the integers

Z just by F; = {0,1}, due to the “rigid” nature of this tiling equation. Indeed, the only

possible values of A, are the even integers 2Z or the odd integers 2Z + 1. The events

0 € A,,1e A, then complement each other and thus must each occur with probability

1/2 by stationarity. On the other hand, for any integer N, we have 0 € A, if and only

if 2N € A,; sending N — oo we conclude that 0 € A, is a tail event, contradicting the

Kolmogorov zero-one law. A similar argument shows that there is no factor of iid tiling
that involves only the tile F, = {0, 1, 2}.

The above argument can be strengthened to show that the tiling with the two
tiles F,,F, is possible not only as a factor of iid, but even in other, more restrictive,
models. These include so-called finitary factors of iid, finitely dependent processes,
local distributed algorithms, etc. [3, 9, 11, 16, 17]. Similarly, a tiling with just F;, or just
F,, is not possible in any of these models. Our first application of Theorem 1.2, which
we prove in Section 4, shows that this latter phenomenon is quite general, in that in any
finitely generated abelian group G there are only very few tiles F that admit a factor of

iid tiling:

Theorem 1.5 (Tiles admitting a factor of iid tiling). Let G = (G,+) be a finitely

generated abelian group, thus without loss of generality we may take G = Z% x G, for
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Measurable Tilings by Abelian Group Actions 7

some natural number d and finite abelian group Gy = (G, +). Let F be a finite subset of

G. Then the following are equivalent:

(i) There exists a factor of iid tiling F®& A = G of G by F.
(i) F is of the form F = {x,} x F, for some x, € Z¢ and F, C G, such that G,
admits a tiling Fy @ A, = G, by F,,.

Thus, for instance, the only tiles F that admit a factor of iid tiling of 72 are the

singleton tiles F = {x}.

Remark 1.6. After the submission of the paper, Tim Austin suggested a simpler proof
of a stronger version of Theorem 1.5 saying that (i) and (ii) in the theorem are equivalent
to the third statement:

(iii) Let A be the stationary point process on G such that F ® A = G. If A is not
trivial then A has positive topological entropy.

The direction “(ii) implies (iii)” is similar to our proof of “(ii) implies (i)” in Section
4. The direction “(iii) implies (ii)” is an immediate corollary of Theorem 1.2, but can also

be deduced by a more elementary argument similar to the proof of [8, Lemma 2.15].

1.3 Second application: measurable tilings of tori

Our second application of Theorem 1.2 concerns measurable tilings F @ A =, , T¢ of
a torus T¢ := Rd/Zd using the standard translation action of RY = (Rd,+), thus F is
a finite subset of R% and A is a measurable subset of T¢. We say that such a tiling
is rational if the set F — F = {f' — f: f,f' € F} lies in Q¢, that is to say that all the
shifts differences f' — f, f’,f € F have rational coordinates. Not all measurable tilings
are rational; however, our main result below shows that all measurable tilings can be
continuously deformed to a rational tiling, with the results particularly strong in the

low dimensional cases d = 1, 2. More precisely, we have

Theorem 1.7 (Measurable tilings of a torus). Let d > 1, and suppose that we have a
measurable tiling F @ A =, , T¢ of the d-torus by some finite subset F = {f},...,f,} of
R% and some measurable subset A of T%. Then there exists a rational tiling FO ® A =,
T9 of the d-torus by some finite subset FO = {f?,...,f%} of Q% obeying the following

additional properties:

(i) If we define the velocities v; := f; —fiO fori = 1,...,n and the sets F! =
FO+tvy,...,.fo+tv,) forall t € R, then we have F* @ A =, , T¢ forall ¢t € R.
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8 J. Grebik et al.

In particular, one can continuously (and linearly) deform the original tile
set F = F! to the rational tile set F® while retaining the measurable tiling
property throughout.

(ii) If d = 2 and we impose the normalization 0 € F, then all the velocities v,
are scalar multiples v; = o;v of a single vector v € Z? for some real numbers
ay,...,a,. Furthermore, we can partition F into subsets F;,...,F; such that
for each 1 < j < k, the elements of F] have the same velocity (thus o; = «;
whenever f}, f; € Fj), and the set F;®A := {fj+a : f; € F;,a € A} is Rv-invariant
in the sense that tv + F; ® A =, , F; ® A forevery t € R.

(iii) If the hypotheses are as in (ii), and furthermore the tile A is open and
connected, then we can furthermore assume that either all the velocities
v; vanish (so in particular F = FY is rational), or else for each 1 < j < m,
the set FJ mod Z? lies in a coset of Rv mod Z2, and all the FJ have the same
cardinality.

(iv) If d = 1, then F is rational; in other words, we have F = F° + v for some

v eR.

See Figure 1 for examples of tilings in cases (ii) and (iii). Informally, one can
“slide” any measurable tiling of a torus by a single tile A into a rational tiling by
assigning each copy f; + A of the tile a constant velocity v; and propagating the tile
backwards in time by one unit. In two dimensions (with the normalization 0 € F), one
can make the velocities parallel, and if the tile is additionally open and connected the
tiling is either rational to begin with, or one can slide individual “rows” of the tiling
separately. Finally, we show that in one dimension the tiling is always rational. This
gives a positive answer to a conjecture from [6, Section 6]. This conjecture can also be
resolved by adapting arguments in [28, 29]; see Remark 5.2.

We prove parts (i), (ii), (iii), and (iv) of Theorem 1.7 in Section 5.4, Section 5.2,
Section 5.3, and Section 5.1, respectively.

We illustrate Theorem 1.7 with some simple examples in dimensions one, two,

and three:

Example 1.8 (One dimension). Let d = 1 and A := [0,1/2] mod Z. Then a measurable

tiling F® A =, ., T of A necessarily takes the form F = {v,m + 1/2 + v} for some real

number v and integer m. If we then take FO:={0,m+1/2}, weseethat F=F° +visa
translate of the set FO ¢ Q, thus rational, and that the other translates F¢ = FO + tv also

give a measurable rational tiling: F* @ A =, . T.
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Measurable Tilings by Abelian Group Actions 9

Fig. 1. Left: A measurable tiling of T2 (depicted here using the fundamental domain [0, 1)2) by a
disconnected tile A by a set FO = F? U Fg U Fg defined in Example 1.9 and denoted here by black
squares. The shifts FO,FS,Fg generate green, blue, and red tiles. Right: A measurable tiling of T2
by an open and connected tile A’ by a set F'! = Fil LJFé1 denoted here by black squares. This time,
the set Fél generating the red tiles is not necessarily a subset of Q2. However, sliding all red tiles
in the direction of a vector vy (moving in the direction of the finger), we may enforce that the new
coordinate set Féo is rational.

Example 1.9 (Two dimensions, disconnected). Let d = 2 and A be the set
A:=((0,1/2) x (0,1/8) U (1/4,3/4) x (1/4,3/8)) mod 72,

which is a disconnected open subset of T?; see the left half of Figure 1. If we define
FO:=FY UF) UF{ with

F?:={(0,0),(1/2,0)}
FQ:={(1/4,1/2),(3/4,1/2)}

Fg :={(0,1/8),(3/4,3/8),(1/2,5/8),(1/4,7/8)}
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10 J. Grebik et al.

and set v; := (1,0), then we have a measurable tiling F* @ A =, , T?, with each F) ¢ A
being Rv,-invariant; see the left half of Figure 1. If we then let «;, @y, @3 be arbitrary real

numbers and set F := F; UF, U F; where
. g0

fori = 1,2,3, we see that we also have a measurable tiling F ® A =, ., T?, which was

a.e.

obtained from F° by giving the tiles in F? a velocity of ;v and then moving the tiles for
a unit amount of time. Note that the set F; mod Z? is not contained in a single coset of
Rv, mod R2.

Example 1.10 (Two dimensions, connected). Let d = 2 and A := (0, 1/2)%2 mod Z?; this is

an open connected set. Let « be an irrational number. Then the set
F'={(0,0),(1/2,0),(t,1/2), (t + 1/2,1/2)}

generates a measurable tiling F ® A =, , T? of the torus T?. If for every real t, we set
F'=1{(0,0),(1/2,0),(t,1/2),(t + 1/2,1/2)}

then F! ® A =, , T? is a measurable tiling for every real number ¢, which is rational

when t = 0. Also, if we set vy = (1,0), and partition F = Flinto
Fl = {(01 O)/ (1/2, 0)}! FZ = {(al 1/2)1 (a + 1/21 1/2)}}1

then we can give the elements of F; a zero velocity, and the elements of F, a velocity of

avg, and the sets
Fi®A=,, Tx(0,1/2); F,®A=,, Tx(1/2,1)

are Rvy-invariant; informally, this means that one can independently “slide” the sets
F,,F, along the direction v, without destroying the measurable tiling property. Note
that F, mod Z? and F, mod Z? both lie on cosets of Rv, mod Z2.

A more complicated example of a connected tile in two dimensions is depicted

on the right-hand side in Figure 1.
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<

4

W /2

Fig. 2. A measurable tiling of T3 by eight cubes [0,1/2)% from Example 1.11. Only six cubes are
colored; the green, blue, and red boxes are shifted in the direction (1,0, 0), (0, 1,0), and (0,0, 1).

Example 1.11 (Three dimensions). Let d = 3 and A := [0,1/2]° mod Z3. Let «, 8,y be

irrational numbers. For every real number ¢, set
F!':={(0, ta,0), (0, ta + 1/2,0),
(1/2,0,tB),(1/2,0,tB + 1/2),
(ty,1/2,1/2),(ty +1/2,1/2,1/2),
(0,0,1/2),(1/2,1/2,0)}.

One can then verify that F*® A =, , T2 for all real ¢ (see, Figure 2). In particular, one can
“slide” the irrational tiling F = F! into the rational tiling F° without destroying the tiling
property, with the elements of F being given velocities proportional to (1,0, 0), (0,1, 0)
and (0,0, 1), respectively.

2 A Measurable Dilation Lemma

In this section, we establish Theorem 1.2(i). Our arguments here will be a modification
of those used to establish [13, Lemma 3.1]. (In the model case I' = Z2, one can in fact
derive Theorem 1.2(i) directly from [13, Lemma 3.1] by applying that lemma to the sets
{y € Z% : y - x € A}, which form a tiling of Z¢ by F for almost every x € X; we leave the

details of this argument to the interested reader.)
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12 J. Grebik et al.

It will be convenient to introduce the language of convolutions. Let L(X) denote
the space of measurable functions f: X — R, up to almost everywhere equivalence,
and let RI" denote the group ring of I over R, which we write as the space of finitely
supported functions w: I' — R from I' to the reals. With this representation, the

multiplication operation on RI" becomes the usual convolution operation x:

wy xwy(y) i= D wi () wya () )
y'el
note that only finitely many of the summands are non-zero. This operation is bilinear
and associative, and it is commutative whenever I' is abelian. We can also define the
convolution w * f of an element w € RI" of the group ring and a function f: X — R by

the formula

wf(x) 1= > w)f(y ' x);

yel

again, only finitely many summands are non-zero, and from the invariance of u we see
that if f is only given up to u-almost everywhere equivalence then w % f is also well-
defined up to u-almost everywhere equivalence. Thus, the convolution w * f € LO(X) is
also well-defined for w € RI" and f € L°(X). The ring RI" can easily be seen to act on

LO(X); in particular, we have
(wy * wy) * f = wy * (wy * f)

for all w;, w, € RT and f € L(X).
Note that if F is a finite subset of I" and A is a measurable subset of X, then 1
can be viewed as an element of RI" and 1, can be viewed as an element of L9(X). The

tiling condition F ® A =, , X is then equivalent to the convolution identity
lpx 1y =56 1x (3)

holding in L°(X).

We begin with the proof of Theorem 1.2(i) for r > 0. We may assume that A has
positive measure, as the claim is trivial otherwise. By induction and the fundamental
theorem of arithmetic, it suffices to verify this claim in the case that r is a prime p with
p > |F| = n, so long as we verify that FP has the same cardinality as F (i.e., there are no
collisions f¥ = f¥ for distinct f;, f, € F).
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Measurable Tilings by Abelian Group Actions 13

We convolve both sides of (3) by p—1 additional copies of 15, noting that 115 =

nly, to conclude that
1;17 kg =q0 np_llx
in L9(X), where 1;p denotes the convolution of p copies of 1. The left-hand side is

integer-valued, thus we may reduce both sides modulo p and conclude from Fermat's

little theorem that

17 %1, =,, 1y mod p. (4)

The group algebra F,I' of functions w: ' — F, is a commutative ring of

characteristic p, and thus one has the Frobenius identity (w; + w,)*? = w;f + w,’

in this ring for all w,, w, € F,I'. Writing 15 = >t 8¢, as the sum of Kronecker delta

functions, we conclude that

n

*p __ *p __

17 =28 =1mw
i=1

in F,I", where we temporarily view FP := {f? : f € F} as a multiset rather than a set,
so that the indicator function 15, could theoretically take on values greater than one
(although we shall shortly eliminate this possibility). In other words,
1Y = 1z mod p.
Since 1, is also integer-valued, we conclude that
17 %1, =44 lpp*1, modp
pointwise everywhere in X. Combining this with (4), we conclude that
lgp %1, =, 1y mod p.

This implies that

Ippx 1y 246 1x.
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14 J. Grebik et al.

Observe that

|[Fl=1p*x1lgpx1, >, . 1px 15y = |F|.

.e

We conclude that

Lpp %1, “a.e. 1.

Since 1y is bounded by 1 and A has positive measure, it is thus not possible for 15, to
attain any value larger than one, and hence there are no collisions flp = ff for distinct
f1.fo € F. We thus have the measurable tiling F¥ © A =, . X, as claimed.

To conclude the proof of Theorem 1.2(i) for all suitable r € Z, it suffices by the
first part to treat the case r = —1, that is to say that the translates fi_1 LAl <i<n
partition X up to null sets. To show this, one can adopt the arguments in [34, Theorem
13], [21, Lemma 3.1], and [12, Lemma 3.2]. By hypothesis, we see that for any 1 < i <
i’ < n, the translates f;- A, f; - A are disjoint up to u-null sets; translating this by (fif;) !
and using the abelian nature of I', we conclude that fi'_l ~A,fi_1 - A are also disjoint up

to u-null sets. Thus, 151 %1, <, . ly. On the other hand, we have 1, %1, =,

<ae. 1y, and

.e

|F| = |F~!| = n. Thus, using again the abelian nature of I', we have

lpx(ly —1paxly) =, nly —1pa x(1px1,) =, O.
Thus, as both 1z and (13 — 1z-1 * 1,) are non-negative and |F| > 0, we must have

ly —1pax1y=,,.0,

and the claim follows.
Remark 2.1. The dilation lemma fails when the group I' is non-abelian. For instance,
consider the group I' = Z x G for some (non-abelian) finite group G = (G, -) (and using
the additive group law on Z), acting on X = I' (equipped with counting measure) by left
translation; one can also take X to be a quotient Z/NZ x G of ' = Z x G if desired to

ensure that X has finite measure. Let Ha be some right coset of a proper subgroup H of
G, and consider the finite set F C I defined by

F:= ({0} x Ha) U ({1} x (G\H)).
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Measurable Tilings by Abelian Group Actions 15

Observe that if A C X is a set of the form
A:={(n,g,) :nelZ (5)

for some sequence g,, of elements of G, then the translates f - A, f € F partition X if and

only if one has the constraint
9,1 € Hag, (6)

for all n € Z. If we take X to be Z/NZ x G instead of Z x G, the above discussion still
applies, but with n now ranging in Z/NZ rather than Z. In the non-abelian setting, one
can easily construct examples in which HaHaHa = G, in which case the constraint (6)
gives no relationship whatsoever between g,, ., and g,, for r > 3. (For instance, one can
take G = S;, H to be a subgroup of S; of order two, and a to be an element not in H.) In

particular, for such r, there is no dilated tile of the form
F.= ({0} x E)U({r} x E)

for some non-empty E, E’ C G with the property that FO A = X implies the F, 0A=X. A
similar analysis shows that the assertions F© A = X and F~! ® A = X are inequivalent.
This example indicates that no reasonable analogue of the dilation lemma holds in
this setting. This example also shows that non-abelian tiling problems with one tile
can be “local” in various senses; see, for instance, Section 4.1 below for a more precise

statement.

Remark 2.2, As showed in [13, Lemma 3.1], one can generalize the dilation lemma by
requiring the tiling to be a periodic level tiling rather than a partition up to null sets,
by which we mean that for every 1 < k < |F|, the level set {x: 1 * 1,(x) = k} is periodic
in X up to u-null sets, (where here a periodic set is a set which is px-almost everywhere
invariant with respect to an action of some lattice). The conclusion is then that there is a
number g (depending on F and 1;%1,) such thatifr=1mod gthen 15 %1, =, . 1z%1,,
but now we permit collisions f] = fJ to occur. We leave the details of this generalization

to the interested reader.

Remark 2.3. Theorem 1.2(i) easily extends to the setting in which the action of T is

quasi-invariant rather than invariant, which means that it maps u-null sets to u-null
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16 J. Grebik et al.

sets. This can be accomplished simply by replacing x with the (non-o-finite) measure i

defined by setting fi(E) to equal 400 when u(E) > 0 and to equal zero otherwise.

3 A Measurable Structure Theorem

In this section, using Theorem 1.2(i), we will establish Theorem 1.2(ii). Let the hypothe-
ses be as in that theorem. Applying part (i) of that theorem, we see that for any integer

r coprime to g, we have

FFoOA =ae X,

which we rewrite as the assertion that

Iy =ae. Z lfVAA'

feF
Settingr =1+ nqforn =1,...,N and averaging, we conclude in particular that
L v
1y =, Z ﬁ Z l(fq)n.f.A
feF  n=1

for all N. By the mean ergodic theorem, for each f € F, the averages % 217\1’21 Lifayn.f.a
converge in L!(X) to a f9-invariant function Pri since these averages all have total mass
w(A), ¢ does also. It is also clear from construction that if f9-A =, . Athengr =, , 1¢,.

The claim follows.

Remark 3.1. As it turns out, one can replace the requirement that the measure u be
finite to merely o-finite, and also assume that the action is only quasi-invariant rather
than measure-preserving, as long as we also drop the conclusion that the ¢ have mean

uw(A); see Appendix A.

Remark 3.2. Using Remark 2.2, one can also extend the above structure theorem to
periodic level tilings, and in particular, to level k tilings (by which we mean that almost
every element of X lies in precisely k of the translates f - A for some k < |F|), but now
replacing 1y in (1) with k1. (Higher level tilings are studied in several places in the
literature; see for instance [21], [10], [4].) However, this identity (1) is significantly less
useful in the k > 1 case due to the gap in values between k1 and 1,, which leaves more

room for the functions ¢, f € F to vary (cf., [13, Theorem 1.3(ii))).
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Measurable Tilings by Abelian Group Actions 17
4 Factor of iid Tilings

In this section, we prove Theorem 1.5.

We first show that (ii) implies (i). By translating F, we may assume without loss
of generality that x, = 0. By the hypothesis (ii), there exists a subset 4, of G, such that
the translates f, + Ag, f, € F, partition G,. Next, let A(x,g,) € [0,1], (x,g,) € Z% x Gy,
be the iid random variables from Definition 1.3, and for each x € 79, let go(x) denote
the element of G, which minimizes the quantity A(x, go(x)). Clearly, g, is almost surely

well-defined as a function from Z? to G,. We then form the random set
A= {(x,g0(®) +ag) : x € Z% ay € Ay). (7)

It is a routine matter to verify that F® A =, , G is a factor of iid tiling. This proves (i).
Conversely, suppose that (i) holds. Applying a translation, we may assume
without loss of generality that F contains the identity (0, 0) of Z% x Gy.Let FGA=Gbea
factor of'iid tiling. Let ®: [0, 116 — {0, 1} be the measurable function obeying (2). Observe
that [0, 1]¢ is a probability space with product measure dm and a measure-preserving

action of G given by the translation action
X - (A)xec = (Axpix)xec-
If we define the set A C [0,1]¢ by
A=071({1)
then from (2) one easily verifies that we have the tiling
FOA=,, [0,1]°

Applying Theorem 1.2(ii), we obtain a decomposition

Lio16 =ae 14 + Z oF (8)
SEF\{(0,0)}

G

for some non-negative gf-invariant functions Pr: [0,11° — [0,1] of mean m(il); in

particular, on integrating we have

1 = |[Fim(A).
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18 J. Grebik et al.

Suppose that there exists an element f, of F that is not contained in {0} x G,. Then
the action of gf, on [0, 1]¢ is ergodic (this follows for instance from the Kolmogorov
zero-one law, since any gf,-invariant subset in [0, 1]° is measurable with respect to the
tail algebra of [0, 1]), and hence 5, is almost everywhere constant; since it has mean
m(A) = 1/|F|, we thus have ¢ =, , 1/|F|. From (8), we thus have the inequality

.€

1
liggge =13+ ﬁ 9)
almost everywhere, which is absurd since A has positive measure. Thus, all elements of
F lie in {0} x G, and so we may write F = {0} x F, for some F, C G.
By hypothesis, there is a tiling A of Z% x Gy by {0} x F,. This implies that the
set Aj 1= {ag : (0,ay) € A} is a tiling of G, by F,, giving (ii). This completes the proof of
Theorem 1.5.

Remark 4.1. In the case when tiling a finitely generated abelian group with a tile that
does not contain any non-trivial element of finite order (e.g., tiling Z¢ with a non-trivial
tile), Theorem 1.2 implies a stronger conclusion saying that the spectral measure of the
tiling is supported on a finite union of subtorii; in particular, the tiling in this case is

not weak-mixing in some directions. We thank the referee for this observation.

4.1 Some counterexamples

4.1.1 Tiling by multiple tiles and tilings in non-abelian groups
In Example 1.4, an example was given showing that Theorem 1.5 breaks down once two
or more tiles are present. We now give a modification of this example that shows that
Theorem 1.5 also breaks down when the group G is non-abelian.

Indeed, let H, a, Z x G, and F be as in Remark 2.1, with HaHaHa = G. We
arbitrarily place total ordering < on G. Despite the fact that the tile F is not contained
in a single fiber {x} x G of Z x G, one can construct a factor of iid tiling of Z x G by F by

the following modification of the construction in Example 1.4.

(i) First we generate jointly independent random variables A(x, g) € [0, 1] for all
x € Z and g € G. Then set A(x) := ming.; A(x, ).

(ii) Similarly as in Example 1.4, we construct the random set

Si={xeZ:Ax) <Ax—2),Ax—1),Ax+ 1D, AMx+2)} CZ.
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Measurable Tilings by Abelian Group Actions 19

We enumerate S = {s,: n € Z} by order (i.e., s, < s, if n < m). Observe
that this set is almost surely unbounded both above and below, and that
Sp41 — Sy = 3 for any two consecutive elements of S.

(iv) For each s, € S, we define 9gs, € G to be the element of G that maximizes
A(s,,9), g € G; this is almost surely well-defined.

(v) Ifs,, s, are consecutive elements of S, we define Isptj = a‘jgsn forl <j<
s

nt1 —Sp — 3, and then define g, 1 = bogs, |2 = bob1gs,,, 3, Where by, b,

is the lexicographically minimal pair of elements of a~'H such that

boblgsn+1—3 < Hagsn+1

(such a pair exists since HaHaHa = G). Note from construction that for all
x € Z, g, is now almost surely well-defined and obeys (6).
(vi) Finally, we let A C Z x G be the set defined by (5).

It is then a routine matter to verify that F© A = Z x G is a (non-abelian) factor
of iid tiling of Z x G by F. This shows that Theorem 1.5 breaks down once the group is

non-abelian.

4.1.2 Higher level tilings

Observe that Theorem 1.5 also breaks down once one considers tilings of level higher
than one; in this setting there are (as noted in Remarks 2.2 and 3.2) analogues of the
dilation lemma and structure theorem, but the analogue of the inequality (9) no longer
generates a contradiction. Indeed, since 15 x 1, = |F|1, every finite tile F trivially has a
factor of iid tiling of level |F|. In the latter example, the tiling has entropy zero.

When G = Z%, any k-level factor of iid tiling has entropy zero (we thank the
referee for this observation). Indeed, suppose that A is a level k factor of iid tiling of Z¢
by F. A higher level version of Theorem 1.2 (see Remark 3.2) will give the generalization
of (8):

Bl gt =ae 13+ 2 05 10
feF\{0}
where for every f € F\{0}, @r: Z% — [0, k] is measurable |F|f-invariant and has mean
m(A) = k/|F|. On the other hand, if f # 0 € F, then, by the Kolmogorov zero-one law, Pr
is almost everywhere constant, thus ¢r =, . k/|F|. From (10), we thus have

L4 KOFL=D

k1
4 |F|

[O,I]Zd =a.e. (1 1)

which implies k = |F| and A = Z2.
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20 J. Grebik et al.

However, when G = Z¢ x G, and Gy, is not trivial, there are non-vertical sets that
admit non-trivial factor of iid tilings of level higher than one; for instance, let d > 1,
k > 1, S be a subset of Z% of cardinality k, and G, be some finite abelian group, then the
set S x G, admits a non-trivial (positive entropy) factor of iid tiling of level k of 78 x Gy

(to show this, one can adapt our construction (7), with Ay = G,).

5 Measurable Tilings of a Torus

We now prove Theorem 1.7. We begin with some easy consequences of Theorem 1.2:

Lemma 5.1 (Initial properties). Let F @ A =, . T¢ be a measurable tiling of a torus T¢

by a finite set F c R and a measurable set A C T%. We normalize O € F.

(i) (Weak rationality) For every f € F, there exists k € Z%\{0} such that k - f € Z.

(ii) (Weak structure) Up to sets of measure zero, one can write

U ¢+a= ) 4
feFnQd feF\Qd

where for each f € F\Q%, Ay is a gf-invariant measurable subset of T4 for

some natural number q with 0 < n(Ap) < 1.

Proof. We begin with (i). From Theorem 1.2(ii), we have a decomposition

la=1,+ > o
feFr\(0)

where for each f € F\{0}, P T¢ — [0, 1] is a measurable function of mean w(4) = 1/|F|
which is gf-invariant for some natural number q. Now if f € F\{0} is such thatk-f ¢ Z
for all k € Z%\{0}, then by the Weyl equidistribution theorem, the action of gf is ergodic,
thus ¢, is almost everywhere equal to a constant, which must be 1/|F|. Thus, in this
case, we have the inequality
lpa > 1, + !
a> —
almost everywhere, which is a contradiction since A has positive measure. This proves

(i).
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Measurable Tilings by Abelian Group Actions 21

Now we prove (ii). Let g be a natural number divisible by all primes less than or
equal to |F| such that gf = 0 mod Z¢ for all f € F N Q%. From Theorem 1.2(ii), we have

M YRR 02

feFNQd fer\Q4

where for each f € F\Qd, gZ)f: T4 — [0, 1] is a measurable function that is gf-invariant
and has positive mean. If we let A; denote the complement of the support of ¢, then Ag
is also gf-invariant and has measure less than 1. Note that, up to sets of measure zero,
2 fer\qd ¥r vanishes precisely on (g gd Ap, and 2 pepnga 15, 4 is the indicator function
of Ugepnga f +A. The claim (ii) then follows from (12) (note that none of the A¢ can have

zero measure since (Jgcpnga (f + A) has positive measure). |

5.1 The one-dimensional case

We can now easily establish the one dimensional case (iv) of Theorem 1.7. Indeed,
by translating F C R by a constant, we may assume without loss of generality that
0 € F. From Lemma 5.1(i), we then see that every element of F\{0} is rational, and

Theorem 1.7(iv) follows.

Remark 5.2. An alternate way to prove Theorem 1.7(iv) is as follows. In [28, Theorem 2],
it was proved that if A C R is bounded, Lebesgue measurable, and has a zero measure
boundary and if A ® R = R for some R C R, then the set R" = u(A)"'R must be

rational, that is, R" — R’ = {r' —r: r/,r € R’} C Q. However, looking into the proof there,

a.e.

the condition that the set A has boundary of measure zero is used in order to show that
any such tiling set R must be periodic, and the rest of the argument, [28, Theorem 6 and
Section 4], does not use this assumption. Thus, under the assumption that a bounded
measurable set A tiles the line by a periodic set R, the argument of Lagarias—Wang gives
the rationality of R" = u(A)"!R. Since any measurable tiling F & A =, , T of the torus

induces a periodic measurable tiling (F + Z) @ A =, , R of the real line by a bounded

a.e.
measurable set A of rational measure (defined as the image of A under the identification
of the circle T with the [0, 1)), we conclude Theorem 1.7(iv). In particular, the conjecture
from [6] may also be deduced from the results in [28].

In fact, it was shown in [22, Theorem 6.1] that any tiling of R with a bounded
measurable set A is periodic. Thus, combining this result with [28, Section 4], we have
that every tiling of R by a bounded measurable set is periodic and rational. (We remark

that classifying bounded measurable tiles A C R is a notoriously difficult problem even
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in the case when A is a finite union of intervals. See, for instance, [7, 26, 27, 30, 35] and

the references therein.)

Remark 5.3. Using Theorem 1.7(iv), it is possible to fully describe all measurable
tilings of the circle in terms of tilings of finite cyclic groups. Namely, given F =
{fi,---.f,} € Q and assuming that f; = 0, we find a g € T! N Q such that (g), the cyclic

group generated by g, contains ' = {f; mod 1, ..., f,, mod 1} and is minimal with respect
1
q
multiple of the denominators of elements from F. Let 7,z be the set of all A’ C {(g) such

that F @ A’ = (g), that is, 7;

translates of F'. Consider the action of (g) on T! induced by x — g+x. As g € Q, we infer

to set inclusion; for instance, one can take g = = mod 1 where g is the least common

 consists of all tiles of the finite cyclic group (g) using

that the orbit of each x € T! is finite, in fact, of cardinality |(g)|. It follows that there is
a measurable set X C T! that intersects each orbit of the (g) in exactly one point.

There is a one-to-one correspondence between measurable sets A € T! that

satisfies F® A =, , T! and measurable functions
v X > 7;'1;,

(where 7, is endowed with the discrete o-algebra) that is given as follows: the

measurable set Ay, that corresponds to v, is defined as
Ay = {yeTl ZHXGXYGI/I(X)—}—X}.
Similarly, given a measurable tile 4, the function
Yax) =the(g):h+xeA}

defined for x € X, is measurable and 4 (x) € 7,  almost surely.

5.2 The two-dimensional case

We now establish Theorem 1.7(ii). By Lemma 5.1(i) we see that for each f € F\Q? there
exists a primitive h; € Z*\{0} such that h; - f € Q. Note that as f ¢ Q?, hy is determined
up to sign. The key observation (which is specific to two dimensions, as Example 1.11

shows) is

Proposition 5.4 (All shifts are parallel). For any f;,f; € F\Q?, one has hf1 = ihfz.
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We give two proofs of this proposition: a “physical space” proof inspired by the
arguments in [13], which is based on the equidistribution theory of polynomials modulo
one, and a “Fourier analytic” proof that exploits the fact that a non-trivial trigonometric

polynomial can only vanish on a set of measure zero.

Proof. First proof Let g be a natural number divisible by all the primes up to |F|, such
that gf € Z? for all f € F N Q?. By Theorem 1.2(ii), we have a decomposition

lie =, D lrat D 97 (13)
feFNQ? feF\Q?

where for each f € F\Q?, ¢y: T? — [0, 1] is gf-invariant and has mean ;(4) = 1/|F|.
For each f € F\Q?, some integer multiple kqf of f lies in the subtorus

(hf)l ={xeT?: hf -x = 0}.

Since f ¢ Q?, the translation action of kqf is ergodic on this subtorus. We conclude that

¢r is in fact (hs)*-invariant. If we then define

(DI = Z §0f,

feF\Q? :hf=ihf1

then @, is also (hfl)L—invariant. On reducing (13) modulo one, we have

0=pe ®;+ D ¢pmodl, (14)
ferm

where F, consists of those f € F\Q? with hy # xhg. To eliminate the ¢ terms, we

introduce the difference operators
0,9(x) := g(x) — g(x — v)

for any g: T? — T and v € T?. Observe that these operators 3, commute with each other.
If f € F;, we have

(he)t + (g )t =T
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and hence if g; € T? we may decompose g; = gp + g; where g; € (hs)+ and g; € (et
We then obtain the identities

and

8g} Pf =ae. 0.

If one then applies each of the operators ag} in turn to (14) for f € F; to eliminate the ¢

terms, we conclude that

H dgp | P1 =ae Omod 1
€F,

whenever g; € T?. Since @, is (hg,)"-invariant, we may write
P (%) =, P;(hy - x) mod 1

for some measurable function d~>1 : T — T, and then we have

gy« Oy | P1 =ae. O (15)
forall ay,...,op € T. We claim that this implies that ®, is a linear function
C‘ISI(X) - n1X+91 (16)

for some integer n; and 6, € T, and almost all x € T. (See also [1] for an extensive study
on factorization of solutions to partial difference equations in compact abelian groups
(such as (15)).) We prove this by induction on the number |F, | of derivatives. For |F;| <1,
&)1 is necessarily constant almost everywhere and the claim follows. If |F;| > 1, then by
induction hypothesis, we see that for every o € T there exists an integer n, and 6, € T
such that

3,P,(x) =n,x+6,
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for almost every x € T. As « — 0, the continuity of translation in the strong operator
topology shows that e?"%®1 converges in L?(T) to the constant 1, and hence n, must

vanish for « sufficiently close to the origin. Using the cocycle identity
Oy g @1 () = 8, P () + 9P (x — @)

and induction we conclude that n, vanishes for all «. This argument also shows that the
map « — 6, is a continuous homomorphism from T to T, and is thus of the form 6, = n,«
for some integer n;. The function ®,(x) —n,x is then almost everywhere constant (since
all of its derivatives vanish almost everywhere), and the claim follows. In particular, we

have
@ (x) = nyhy - x+6; mod 1 (17)

for almost all x € T2.

Now suppose for contradiction that hg, # £hy, . If we set

Py = > ¢

feF\Q? thp=xhg,

then by repeating the previous arguments, we can find an integer n, and 6, € T such
that

@y (x) = nyhy, - x + 6, mod 1 (18)

for almost all x € T2.
On the other hand, from (13), we have

O, (x)+Py(x) <1

for almost all x € T?. Since @, is (hp)" )t

>J_

-invariant, and ®, is (hg,
>J_

-invariant, and every

coset of (hf1 intersects every coset of (hf2 , we have

||CI>1||L<>O('JI‘2) + ||®2||Loo('ﬂ‘2) = ||d)1 + (DZHLOO(TZ) S 1
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We conclude that for some i = 1, 2, we have
||q)i||Loo(T2) S 1/2.

Comparing this with (17) or (18) we conclude that n; must vanish, and ®, is equal almost
everywhere to a constant ¢;. Since ®; > ¢ and ¢y has mean 1/|F|, we have ¢; > 1/|F]|.

From (13), we then have the inequality
1’[[‘2 2 1A+1/|F|
almost everywhere, but this contradicts the positive measure of A. Hence hf1 = :I:hf2 as

required. u

Proof. Second proof We introduce the set

Q4 = [J f+A
feFNQ?

Since Q(A) contains A but not f; + A, we have
0 < pn(Q(A)) < 1. (19)

On the one hand, from (13) and the arguments immediately following, we have a

decomposition

low) =ae 112 — Z @f (20)
feF\Q?

where each @r is (hf)L—invariant. On the other hand, from Lemma 5.1(ii), we have a

factorization

low =ae. | la (21)
feF\Q?

where each Agis gf-invariant for some natural number g, and hence also (hf)L-invariant

by the arguments following (13), and 0 < u(Ay) < 1. To exploit these representations (20),
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(21) we use the Fourier transform
Fk) := / F(x)e kX dx, ke 72
TZ

defined for any F e L%(T?).
From (20), we see that the Fourier transform iQ(A) € €%(Z?) of 15(a) is supported

on the set

U @,

feF\Q?

where (hy) = {jhy : j € Z} is the group generated by hy. Indeed, this follows from the
linearity of the Fourier transformation together with the fact that each (ﬁf, for f € F\ Q?
is supported on (hf) as g is (hf>i-invariant, that is, ¢f can only correlate with g~ 2nikx
where k € (hf), and similarly the support of iTz is {(0,0)} c Z2. In particular, if k €
Zz\(hfl), then iO(A) is only non-zero on finitely many elements of the coset k + (hg ). It
follows that

Gip@:= 2, lau ke
k' ek+(hy;)

is a trigonometric polynomial. We claim that G;, f agrees almost everywhere with the

averaged function

Grp, () = /(h " 1o (x +y)e 2y dvip )1 (¥)

1

(where Vihg, )t is Haar probability measure on (hfl)i). Indeed, for k¥ € k + (hfl)’ one

computes

Gy p (x)e 27K X dx = / / Lo (x + e 27k dy. o (y) Je 2Tk x dx
/TZ k.f 12\ Jony, Q(4) thy)

/(hf

1

1 x e—2nik/-(X+y) dx e—2ni(k—k/)~y d
" (/TZ o) +7Y) Vi, )+ )
:/ 1 o) (K& 276Ky v 11 @)

(he)t

= ia(A)(k/)
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by Fubini's Theorem and the fact that (k — k') - y = 0 for every y € (hfl)l-, and a similar
computation shows that the Fourier coefficient sz ék:fl (x)e 27 iK'x dx vanishes if k’ &
k + (hg,). By the Fourier inversion formula, we conclude that Gy 5 = . ék,fl as claimed.

On the other hand, from (21) and the (hfl)l—invariance of Ag, the function
Grf =ae. ék,fl is supported on A as

ék,fl (x) = / | H lAf (x + y)e—Znik.y d”(hf1>i(Y)
( f1> EF\QZ

= / L lap ® H ly, | (x+ y)e kY dvp, )L (@)
) eMQ2Ulf1)

=0,

whenever 1, " (x) = 0. Since 0 < nAg) <1, and a non-trivial trigonometric polynomial
only vanishes on a set of measure zero, we conclude that ka1 vanishes whenever
k e ZZ\(hfl). By the Fourier inversion formula, this implies that iO(A) is supported on
(hﬁ)' If hf1 #* :i:hfz, then this argument shows that 1,, is supported on (hfl)ﬂ(hfz) = {0},
and hence 15, is constant. But this contradicts (19). Hence, we have hy; = =*hy

as claimed. [ |

With Proposition 5.4 in hand, we can now complete the proof of Theorem 1.7(ii).
We may assume that F\Q? is non-empty, since the claim is trivial otherwise. By
Proposition 5.4, we may find an irreducible k € Z?\{0} such that h-f € Q for all f € F\Q?
(and hence for all f € F). By applying a suitable element of SL,(Z) (which does not affect

the hypotheses or conclusions of Theorem 1.7(ii)), we may assume that h = (0, 1), thus

we have
FCRxQ.
We can then cover F by disjoint cosets («;, 0) +Q2,..., (g, 0) +Q? for some real numbers
ay,...,ar, whose differences are all irrational. Of course, we can assume that the
intersections
F;:=F N ((;,0) + Q%)
are non-empty foreachi=1,...,k.

Let f; be an element of F;. Let g be a natural number divisible by all primes less
than or equal to |F|, such that q(f — f;) € Z? for all f € F;. By applying Theorem 1.2(ii) to
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the tiling (F — f)) ® A =, , T2, we obtain a decomposition

= >, lpa+t 2 onp (22)
feFi—fi SFeF\F;

where each ¢y ¢ T2 — [0,1] is q(f — f,)-invariant. By construction, for each f € F\F,,
q(f — f;) lies in a coset (8, 0) + Q? for some irrational g, thus by the ergodic theorem P f
is invariant with respect to the action of R(1,0). By (22), we conclude that ZfeFi—fi leia
is also R(1, 0)-invariant, and thus the set F; @ A is also R(1, 0)-invariant.

If we now give each f € F; the velocity Vpi= (o;,0) foreveryi =1,...,k, then the
(multi-)set FO := {f — vy : f € F} lies in Q?, and if we then define the (multi-)set

Fl:={f —vp+tvp:f €F)

then we have by the R(1, 0)-invariance of F; @ A that

k
Z lria= Z z Lr vettvera

feFt i=1 feF;
k
= lpeat(-Dao

i=1

k
“a.e. Z lFiEBA
i=1
= Z lfia

feF
=ae 172
and hence
t 2
FFeA=,, T=.

Since A has positive measure, this implies that the elements of F! are distinct (and so F?

is a set, not just a multiset). The claim in Theorem 1.7(ii) follows (with v, = (1, 0)).

Remark 5.5. Suppose that F§A =, , T¢ is a measurable tiling of the d-torus, d > 2, by
some finite subset F = {f},...,f,} of R4 and some measurable subset A of T%. Consider

the velocities v; as in Theorem 1.7(i), and let F,, := {f; : v; = v} be those elements of
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F that are moving with velocity v. Theorem 1.7(ii) gives that the sets F,, ® A are Rv-
invariant for every v € R2. In dimensions d > 3, this is no longer true. For instance, if
A =10,1/2]° and

F ={(0,0,0),(0,1/2,0),
(1/2,0,0),(1/2,1/2,0)
(,0,1/2),(,1/2,1/2),
(a+1/2,8,1/2), (¢ +1/2,8+1/2,1/2)}

for some irrationally numbers «, 8, and FO = {0, 1/2}3. Then, if v = («, ) or v = («, 0),
we have that F ) @ A is not Rv-invariant.

However, we do not know if there is any measurable tiling F® A =, T¢,d > 3
that does not satisfy the following weaker analogue of Theorem 1.7(ii). The velocities are
replaced with piecewise linear functions vy : [0, 1] — R4, for f € F, such that FF® A =,
T4, where F* is defined analogously as in Theorem 1.7. Moreover, if we set FE:V) ={f €
F . V}-(t) =v}, forv e R4, then F(tv) @ A is Rv-invariant for every v € R? and t < [0, 1]
whenever all the derivatives exist. In fact, we do not even know whether there exists
any measurable tiling F @ A =, , T¢, d > 3 such that there is no velocity 0 # v € R? for
which there is a proper non-empty subset F’ of F such that F’ @ A is Rv-invariant. Note
that the argument in [33] implies that if the tile A is a cube then every tiling F satisfies
this weaker analogue of Theorem 1.7(ii). On the other hand, if we are allowed to use
more than one tile, then we can construct such a tiling in T3, as follows. Letf: T — R

be the function

and consider the following subsets A, A,, A3 of T*:

A ={(x,y,zmod 1) : (x,y) € T? : f(x) <z < 1/3 + f(x + )}
A, :={(x,y,zmod 1) : (x,y) € T?: 1/3+ f(x+y) <z < 2/3+f(y)}

Az ={(x,y,zmod 1) : (x,y) € T?:2/3 +fy) <z<1+f(x)}.
It is a routine matter to verify that

((£,0,0) + A) W ((0,¢,0) + Ay) & ((t,1,0) + Ag) =, , T°
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for any t € R, but that none of the individual sets A;,A,, A; enjoy any translational

symmetries. Thus, we see that there is a non-rigidity to the tiling problem
A +ADY (o +A) Y (fs + Ag) =, T

that cannot be explained purely by sliding each of the A;,A,, A; separately, or by

translating the entire triple A;,A,, A; by a common shift.

5.3 The two-dimensional connected case

We now prove Theorem 1.7(iii). The main new ingredient is the following classification

of tilings of an interval by functions of connected support.

Lemma 5.6 (Connected tilings of intervals). Let F be a finite multiset in R, [a,b] C R
be a finite interval and v : R — [0, c0) be a measurable function that is supported on a

connected set. If

1F * Y =a.e. I[a,b]' (23)

then there exists m € N, ¢ < ¢’ such that my =, Liccn

We remark that it is important here that the support of v is connected, since the

tiling
Lio,1y * Lo, 102,31 =ace. Li0,41

provides a counterexample in the disconnected case. The proof of Lemma 5.6 follows

from two observations sketched in Figure 3.

Proof. By translation and rescaling, we may normalize [a,b] = [0, 1] to be the unit
interval, and also normalize min F = 0. We enumerate the distinct elements of F in

order as
O=fi<fo<---<fx

and write

k
Lr =2 mlg,
j=1
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fo—f1 S — fe—1

Fig. 3. Lemma 5.6 follows from two observations. First, we analyze the left and the right “border”
of the tiling to conclude that almost everywhere on [c, c+f> —fi] and [¢’ — (fy —fx—1). €], ¥ is equal
to the same constant 1/m where m is the multiplicity of both fj and fj in F. We then consider the
shift f;_; and since v is assumed to be connected, we conclude that ¢’ — ¢ < fx — fr—1, which in
turn implies v is constant on its whole support.

where m; =1 is the multiplicity of fJ in F; thus

k
Lo () = D mir(x — f) (24)
j=1

for almost every x.
If kK = 1 then the claim immediately follows from (24). Henceforth, we assume
k > 1. Let [c, '] be the support of v, then the support of Z};l m;y (x —f}-) has infimum ¢

and supremum f; + ¢/, thus by (24) we have ¢’ > ¢ =0 and

O<fr=1-c¢ <1. (25)

From (24), focusing attention in particular on the j = 1 term on the right-hand

side, we have
1>my(x) (26)

for almost every 0 < x < 1, with equality for almost every 0 < x < f;. Focusing instead

on the j = k term, we have

for almost every 0 < x < 1, with equality for almost every f;_; + ¢’ < x < 1. Combining
these facts, we see that for almost every f; < x < min(l, f;, + f5), we have
my

1>my(x—fi) = ot
1
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and for almost every max(0, fj,_; — f; + ¢') < x </, we have
m,
1>myx) = —L.
my
Since both of these ranges of x have positive measure, we have m; = m; = m for some

natural number m, and

1
V(X)) =—
m

for almost every 0 < x < § := min(1, f; +f,) —f. Returning to (24), and isolating thej =k
term again, we see that

k—1

1=1+ > myx—f)

j=1
for almost all f, < x < min(f}, + §,1). In particular, we have ¥ (x) = 0 for almost all
fe = fio1 < x < min(fy, + 68,1) — f;,_;. Since ¢ is supported on [0, ¢/], this implies that
¢’ < fx — fi_1- Thus, the functions ¥ (x —fJ-) vanish forall 1 < j < k— 1 and almost all
x>fi > f] + ’; inserting this back into (24), we conclude that

Lo 11(x) = my(x — fy)

for almost all x > fi. Thus, my =, 1jp;_p) = 1, and the claim follows. n

.e

Now we can prove Theorem 1.7(iii). Repeating the arguments from the preceding
section, we may assume that F C R x Q is partitioned as F; U --- U F;, where each F; is

non-empty, and of the form
F;:=F N ((e;,0) + Q%)

with each of the F; @ A being R(1, 0)-invariant.

Suppose first that k = 1, then F = F, is contained in a single coset of Q?, and
hence lies in Q? thanks to the normalization 0 € F. In this case, we can set all velocities
equal to zero, and the claim follows.

Now suppose that k > 1. For each i = 1,...,k, the R(1,0)-invariant set F; @ A
is equal almost everywhere to a set T x I;, with the I, being of positive measure and
partitioning T. Since A is open and connected, its projection to the vertical axis {0} x T
must then be an interval, and I; is (up to null sets) the union of finitely many translates
of that interval. In particular, each I; can be expressed as the disjoint union of finitely

many intervals ;; = la;

ijrbi;l mod Z in T for some a;; < b;; < a;; + 1. We can then
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partition F; into F; ; such that F; ; @A =, T x I

;j» Or equivalently that

]"]TXIiJ' Za.e. ]'Fw * lA‘

On integrating out the horizontal variable, we have

IIiJ “a.e. ]'JT(FI'J') * w’ (28)

where 7: R? — T is the projection homomorphism 7 (x, y) := y mod 1 (with 7 (F;) viewed

as a multi-set), and ¥ : T — [0, +00) is the function

Y(y) = /T 1,(x,y) dx.

Note that as A is open and connected, v is supported on some interval supported inside

some translate of I, ;, and we can lift ¥ to a function ¥ : R — [0, +00) supported inside

ij’

some translate of [a:

ij» bijl so that one has a tiling

g byt =ae. 1iy;

for some finite multiset Fi,j in R. Applying Lemma 5.6, we see that v takes the form
%I[C,c,] for some natural number m and some interval [c, ¢/], which is contained in a
translate of [a;, b;] and thus has length strictly less than one; pushing back to T, we
conclude that ¥ = # 1 Inserting this into (28), we see that the multi-set 7 (F; ;)

with

lc,cl mod1-
is in fact an arithmetic progression (of spacing ¢’ —c) contained in a translate of L,

each element in this progression occurring with multiplicity m. Thus, one can partition
each F;; further into subsets F;;, of cardinality m, with each 7 (F;;;) consisting of a
single point x; ; , with multiplicity m; in particular, each F;;; mod Z? is contained in a

single coset of ¥ = %1 and

lc.cl mod 1’
Lja+lec) =ae L@ * V-

The right-hand side is the projection of 1 Fi * la after integrating out the horizontal

variable. Since this function is bounded by 15 %1, =, , 12, we must therefore have

.e

ITX(XL',]'-F[C,C’]) “a.e. lFiJ,k * 1A
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or equivalently
Fijx®A=qe Tx (x5, +c, ).
In particular, each F;; ; & A is Rvy-invariant. This completes the proof.

Remark 5.7. The hypothesis that A is open and connected can be relaxed to the
hypothesis that A is “measurably connected” in the following sense: for every & € Z%\{0},
the function Ve T — [0, +00) defined by

t) ;= 1,,
Vet /g.X:t A

where the integral is with respect to the Haar probability measure on {x € T? : £ . x = t},
has connected support (modulo null sets). We leave the details of this generalization to

the interested reader.

5.4 The high-dimensional case

We now prove Theorem 1.7(i). Let T(4) C (T%)" denote the set of all tuples (fl,. .. ,fn) €
(T%4)™ which generate a measurable tiling of the torus T9 in the sense that the translates

fi +A,i=1,...,n partition Td up to null sets, or equivalently that

n
Z 1ﬁ+A =ae. lmd-
i=1

Since translation is a continuous operation in the strong operator topology of (say)
L%(T9), we see that the set 7(A) is closed. (This is, for instance, an immediate
consequence of Lusin’s theorem.) By hypothesis, this set 7(A) is also non-empty; indeed,

it contains the point

f:=,....f, mod (ZH™.

Now let g be the product of all the primes up to n. By Theorem 1.2(i), we know that
(nq+1)F ® A =, , T for all integers n, thus

(nq+ 1)f € T(A).
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We conclude that the orbit closure

{ng+1f :ne)
also lies in 7 (A). We may write this orbit closure as
F+H,
where H is the orbit closure
H:=(ngf :nez).

Clearly, H is a closed subgroup of the torus (T%)" and is thus a compact abelian Lie
group. By the classification of such groups (see e.g., [32, Theorem 5.2(a)]), one can split
H = H° ® K, where H° is the identity connected component of H (and thus a subtorus of
(T%)") and K is a finite subgroup of the torus (T4", In particular, H is a finite union of
rational cosets of H® (translates of H® by an element of (QH™). Since qf' € H, we conclude

that f + H is also a finite union of rational cosets of H°. In particular, one has
fefP+H CT(A)

for some f0 € (Q%)". One can write H° as h mod (Z%9)", where h < (R%)" is the Lie
algebra of H (or H®). Pulling back from (TH" to (R4, we conclude that

Froeeif) € F2 o fO + 1
for some (flo, e fde (Q%)™ with the property that
(... f)+b mod ZH" C T(A).
In particular, if we set
oo D = D+ t(vy, ., vy)
fort € R, where v; :=f; — io, then we have

(Ft,....fH mod (ZH" € T(A)
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and hence

it fhea=,, T

The claims in Theorem 1.7(i) then follow.

Remark 5.8. The periodic tiling conjecture [14, 28] asserts that if one has a tiling F &
A = 7% for some finite tile F in Z% and A c Z¢, then there is also a periodic tiling F§A’ =
72, thus A’ is a finite union of cosets of some lattice in Z<. Currently, this conjecture
has only been established up to d < 2; see [2, 13]. A variant of the argument used to
prove Theorem 1.7(i) can establish the following partial result towards this conjecture:
suppose that there is a homomorphism T: Z¢ — T™ and a measurable subset E of the
torus T™ and a finite F C Z? such that one has the measurable tiling T(F) @ E =, , T™,
where an element f of Z% acts on T™ via translation by T(f). Then F admits a periodic
tiling F®A’ = Z2. Indeed, if one defines 7 (F) to be the space of homomorphisms T: Z% —
T™ (which one can identify with (T™)%) such that T(F) ®E =, , T™, then a variant of the

above arguments shows that 7 (F) contains the orbit closure

{(ng+ 1T :n €Z}.

By the above analysis, this orbit closure contains a rational point T°, and by restricting

the measurable tiling T°(F) @ E =, , T™ to a generic coset of T°(Z%) and pulling back

a.e.

by Z¢ one obtains a periodic tiling F @ A’ = Z¢; we leave the details to the interested

reader.

A General Structure Theorem

In this appendix, we establish

Proposition A.1. Theorem 1.2(ii) continues to hold if the measure u is assumed to be
o-finite rather than finite, and the action is assumed to be quasi-invariant rather than

invariant, but the claim that the ¢, has mean ;(A) is dropped.

In particular, we can recover Theorem 1.1(ii), which addresses the case of 74
equipped with counting measure.
We begin with some easy reductions. As every o-finite measure can be replaced

by a probability measure in the same measure class, in particular, as the null sets are
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the same, we have that the action remains quasi-invariant, we may assume that u is a
probability measure. (For instance, if  is a o-finite measure and X is exhausted by sets
K, with 0 < u(K,) < oo then one can replace n by the equivalent probability measure
>l lf(;Kr;)lKnu.) Also, we may assume without loss of generality that the measure
space X is complete, since otherwise one can pass to the completion and modify the
¢r afterwards on a null set to recover measurability in the original o-algebra.

The main new ingredient is that the use of the mean ergodic theorem is replaced
by the use of a measurable medial mean. Recall that a medial mean m is a linear
functional from ¢ (the set of bounded sequences indexed by N) to R that is positive,
that is, m(«) > 0 whenever o > 0, normalized, that is, m(1) = 1, and shift-invariant, that

is, m(«) = m(S(x)), where S(@)(n) := a«(n + 1). We have the following key fact:
Proposition A.2 (Existence of measurable medial mean). [5, Section 3] Let v be a Borel
probability measure on [0, 1]. Then there is a medial mean

m: ¢, — R,

that is v-measurable when restricted to [0, 1IN (i.e., it is measurable with respect to the

completion of the Borel o-algebra of [0, 1IN by v).
We have the following simple estimate:

Claim A.3. Let m be a medial mean and «, 8 € £, such that lim,_,  «(V) — B(N) — O.
Then m(«) = m(B).

Proof. Let y(N) = a(N) — B(IV). It is enough to show that m(y) = 0. We have —|y| <y <
|y|. By positivity and additivity of m this gives m(|y|) > m(y) > —m(|y|), as we have

m(ly]) —m(y) =m(ly| —y) =0
and similarly
m(y) —m(—|y)) =m(y — (=lyD) = 0.
Consequently, it is enough to show that m(|y|) = 0. We have
m(|y|) = m(S¥y|) < m(max S|y|) = max S¥|y| - 0

by shift-invariance, normality, and positivity. |
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Now we are ready to prove Proposition A.1. From the first part of Theorem 1.2(i)

and Remark 2.3, we have, as in the proof of Theorem 1.2(ii), that

N
1
=2 7 2 lyornsa
feF n=1
u-almost everywhere for all N. For each f € F, let wf: X — [0,1]N be the measurable

function

|
Vy = (ﬁ > l(f‘?)”f‘A)

n=1 NeN
Note that we have

Dr=(,1,...)

feF

p-almost everywhere.

Write vy for the push-forward of u via ¥, where f € F. By Proposition A.2
(applied to v = ﬁ ZfGF vr), there is a medial mean m that is simultaneously measurable
for each ve. Define ¢p := moyy. By the definition of m, we have that ¢y are positive

measurable functions that satisfy
Iy = > o (A.1)
feF

It is routine to verify that

[V (X)(N) — Y (y)(N)| < 2/N,

whenever y = f9 - x, and that shows that ¢, is f9-invariant for every f € F by Claim A.3.

Also from construction, we have ¢r =, . 17, if f7-A =, . A. Proposition A.1 follows.

.€
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