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Let X be a measure space with a measure-preserving action (g, x) �→ g · x of an abelian

group G. We consider the problem of understanding the structure of measurable tilings

F � A = X of X by a measurable tile A ⊂ X translated by a finite set F ⊂ G of shifts,

thus the translates f · A, f ∈ F partition X up to null sets. Adapting arguments from

previous literature, we establish a “dilation lemma” that asserts, roughly speaking, that

F � A = X implies Fr � A = X for a large family of integer dilations r, and use this to

establish a structure theorem for such tilings analogous to that established recently by

the second and fourth authors. As applications of this theorem, we completely classify

those random tilings of finitely generated abelian groups that are “factors of iid”, and

show that measurable tilings of a torus Td can always be continuously (in fact linearly)

deformed into a tiling with rational shifts, with particularly strong results in the low-

dimensional cases d = 1, 2 (in particular resolving a conjecture of Conley, the first

author, and Pikhurko in the d = 1 case).

1 Introduction

In this paper we establish a “dilation lemma” and “structure theorem” for abelian

measurable tilings, and apply this to obtain new results on factor-of-iid tilings, as well

as measurable translational tilings of tori.
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2 J. Grebík et al.

1.1 Dilation lemmas and structure theorems for abelian tilings

Let G = (G, ·) be a (discrete) group. By a (translational) tiling F � A = G of G, we mean

a pair consisting of a finite subset F of G and a subset A of G such that the translates

f · A := {f · a : a ∈ A} of A by F partition G. If G = (G, +) is written using additive

group notation instead of multiplicative group notation, we write F ⊕ A = G instead of

F � A = G (and f + A instead of f · A). For instance, we have

{0, 1}2 ⊕ (2Z)2 = Z2.

See for instance [21, 23] for surveys on the topic of translational tilings.

One can also consider translational tilings involving multiple pairs Fi, Ai. For

instance, if G = (G, +) is an additive group, we write

(F1 ⊕ A1) 	 · · · 	 (Fk ⊕ Ak) = G

for various finite subsets F1, . . . , Fk ⊂ G and A1, . . . , Ak ⊂ G if the translates fi + Ai for

i = 1, . . . , k and fi ∈ Fi partition G. Similarly, if G is a multiplicative group.

In the case when the group G is abelian and one is tiling by only one tile, there

is a remarkable dilation phenomenon [2, 13, 15, 18, 19, 34, 35] that asserts, roughly

speaking, that the tiling F � A = G implies the tiling Fr � A = G for many integers

r, where Fr := {f r : f ∈ F}. (Again, when the group is written additively, one would

write rF ⊕ A = G in place of Fr � A = G.) In [13], it was shown that upon averaging

in r, this dilation invariance can be exploited to establish structural properties of such

tilings. (A qualitatively similar conclusion regarding the spectral measure of a measure-

preserving system associated to a tiling was obtained in [2, Lemma 3.2].)

Theorem 1.1 (Structure of tilings of Zd). Let d ≥ 1, and suppose that F ⊕ A = Zd for

some finite set F ⊂ Zd and some A ⊂ Zd.

(i) (Dilation lemma) One has rF ⊕ A = Zd whenever r is a natural number

coprime to all primes less than or equal to the cardinality |F| of F.

(ii) (Structure theorem) If we normalize 0 ∈ F, then we have a decomposition

1A = 1Zd −
∑

f ∈F\{0}
ϕf ,
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Measurable Tilings by Abelian Group Actions 3

where 1A denotes the indicator function of A (thus, 1A(x) = 1 when x ∈ A

and 1A(x) = 0 otherwise), and for each f ∈ F\{0}, ϕf : Zd → [0, 1] is a function

which is qf -periodic (i.e., ϕf (qf + x) = ϕf (x) for every x ∈ Zd), where q is the

product of all the primes less than or equal to 2|F|.

Proof. Part (i) follows from [13, Lemma 3.1(ii)], while part (ii) follows from [13,

Theorem 1.7]. The results in fact extend also to “periodic level tilings”; see [13]

for details. �

Theorem 1.1 can then be used to obtain several new results about tilings of Zd

for low values of d, for instance establishing that all tilings of Z2 are weakly periodic;

see [13] for details.

In this paper, we extend the dilation and structure theorem to the context of

measurable tilings. In this setting, we have a (discrete) group � = (�, ·) acting on some

other measure space X = (X,X , μ) in a measure-preserving action γ : x �→ γ · x for each

γ ∈ �, thus

id� · x = x

for all x ∈ X (where id� denotes the group identity in �), and

(γ γ ′) · x = γ · (γ ′ · x)

for all γ , γ ′ ∈ � and x ∈ X. By a measurable tiling F � A =a.e. X of X, we mean a

measurable subset A of X and a finite set F of � such that the dilates f ·A := {f ·a : a ∈ A}
of A for f ∈ F partition X up to μ-null sets. Again, if the group � is written additively,

we write F ⊕ A instead of F � A. For instance, if R2 acts on the torus T2 = R2/Z2 by

translation, then we have

{0, 1/2}2 ⊕ ([0, 1/2]2 mod Z2) =a.e. T
2.

Our first result is the following analogue of Theorem 1.1 in this setting:

Theorem 1.2 (Structure of abelian measurable tilings). Let � = (�, ·) be an abelian

group acting on a measure space X = (X,X , μ) in a measure-preserving way, and

suppose that F � A =a.e. X for some finite set F ⊂ � and some measurable

A ⊂ X.

(i) (Dilation lemma) One has Fr � A =a.e. X whenever r is an integer coprime to

|F|.
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4 J. Grebík et al.

(ii) (Structure theorem) Suppose that μ(X) is finite. Let q = |F|. Then we have a

decomposition

1X =a.e.

∑
f ∈F

ϕf , (1)

where we use ϕ =a.e. ψ to denote the assertion that ϕ, ψ agree μ-almost

everywhere, and for each f ∈ F, ϕf : X → [0, 1] is a measurable function that

is f q-invariant up to null sets (thus ϕf (f
q · −)) =a.e. ϕf ). Furthermore, for

all f ∈ F, we have
∫

X ϕf dμ = μ(A), and if f q · A =a.e. A then ϕf =a.e. 1f ·A.

(Note that, as opposed to Theorem 1.1(ii), we no longer require 0 ∈ F for the

structure theorem 1.2(ii).)

We prove part (i) of this theorem in Section 2, and part (ii) of this theorem in

Section 3, by adapting the arguments from [13]. The main ingredient in the proof of

Theorem 1.2(i) is the Frobenius identity (a + b)p = ap + bp, valid in any commutative

ring of characteristic p, and part (ii) will be derived from part (i) and the mean ergodic

theorem.

The requirement that μ(X) be finite in Theorem 1.2(i), as well as the requirement

that the action of G is measure-preserving, can be relaxed, as long as we also drop the

conclusion that the ϕf have mean μ(A); see Appendix A. In particular, we recover the

result in Theorem 1.1(ii) this way despite the fact that Zd has infinite counting measure.

We also remark that a result very similar to Theorem 1.2(i), though using somewhat

different notation, was proven in [2, Proposition 3.1].

Informally, Theorem 1.2(ii) allows one to describe sets A that tile a finite

measure space X in terms of auxiliary functions ϕf that enjoy some “one-dimensional”

invariance properties. As such, this result will be particularly useful when the space

X also has very low dimension, and in particular when X is the unit circle T or the

two-torus T2, although it also gives some non-trivial results in higher dimension.

1.2 First application: factor of iid tilings

We now turn to applications of Theorem 1.2. We first consider a class of random tilings

of a group known as factor of iid tilings.

Definition 1.3 (Factor of iid). Let G = (G, +) be a group. For each element x of G, let λ(x)

be an iid element of the unit interval [0, 1], thus the (λ(x))x∈G are jointly independent
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Measurable Tilings by Abelian Group Actions 5

random variables, each drawn uniformly at random from [0, 1]. A random subset A

of G is said to be a factor of iid process if there exists a Borel measurable function

� : [0, 1]G → {0, 1} such that

1A(x0) = �
(
(λ(x0 + x))x∈G

)
(2)

almost surely for all x0 ∈ G. (In particular, A is a stationary process.) More generally,

a finite collection A1, . . . , Ak of random subsets of G is a (joint) factor of iid process if

there exist Borel measurable functions �1, . . . , �k : [0, 1]G → {0, 1} such that

1Ai
(x0) = �i

(
(λ(x0 + x))x∈G

)

almost surely for all x0 ∈ G.

If F1, . . . , Fk are finite subsets of G, a factor of iid tiling of G by F1, . . . , Fk is a

joint factor of iid process A1, . . . , Ak such that

(F1 ⊕ A1) 	 · · · 	 (Fk ⊕ Ak) = G

almost surely.

Informally, a factor of iid tiling is a tiling that is is generated in a “local” fashion,

in the sense that the behavior of the tiling sets A1, . . . , Ak in some finite region � of G

is primarily determined by the random variables λ(x) for x near �. We illustrate the

concept with the following example:

Example 1.4. We can generate a factor of iid tiling of the integers Z by the tiles F1 :=
{0, 1}, F2 := {0, 1, 2} by performing the following procedure.

(i) First we generate jointly independent random variables λ(x) ∈ [0, 1] for all

x ∈ Z.

(ii) We construct the factor of iid process

S := {x ∈ Z : λ(x) < λ(x − 1), λ(x + 1)}

of “local minima” of λ. We enumerate S = {sn : n ∈ Z} by order (i.e., sn < sm

if n < m). Note that S is almost surely unbounded both above and below,

and is 2-separated, in the sense that sn+1 − sn ≥ 2 for any two consecutive

elements sn, sn+1 of S.
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6 J. Grebík et al.

(iii) Using the process S = {sn : n ∈ Z}, we construct the factor of iid process S′

by

S′ := {sn + 2j ∈ Z : n, j ∈ Z, sn ≤ sn + 2j ≤ sn+1 − 2}.

We enumerate S′ = {s′
n : n ∈ Z} by order. Note that S′ is also almost surely

unbounded above and below, and one has 2 ≤ s′
n+1 − s′

n ≤ 3 for any

consecutive elements s′
n, s′

n+1 of S′.
(iv) Using the process S′ = {s′

n : n ∈ Z}, we construct the joint factor of iid process

A1, A2 by setting A1 to consist of those elements s′
n of S′ for which s′

n+1−s′
n =

2, and A2 to consist of those elements of s′
n of S′ for which s′

n+1 − s′
n = 3.

One then easily verifies that A1, A2 is a factor of iid tiling of Z by F1, F2. (See [20,

25], where it was shown that tilings by two tiles can model any free ergodic Z action (up

to a certain entropy threshold). See also [24, 31] for results about tiling of orbits of any

free, measure preserving Zd (or Rd) actions by a fixed number of tiles (depending on d).)

On the other hand, there is no factor of iid tiling F1 ⊕ A1 = Z of the integers

Z just by F1 = {0, 1}, due to the “rigid” nature of this tiling equation. Indeed, the only

possible values of A1 are the even integers 2Z or the odd integers 2Z + 1. The events

0 ∈ A1, 1 ∈ A1 then complement each other and thus must each occur with probability

1/2 by stationarity. On the other hand, for any integer N, we have 0 ∈ A1 if and only

if 2N ∈ A1; sending N → ∞ we conclude that 0 ∈ A1 is a tail event, contradicting the

Kolmogorov zero-one law. A similar argument shows that there is no factor of iid tiling

that involves only the tile F2 = {0, 1, 2}.

The above argument can be strengthened to show that the tiling with the two

tiles F1, F2 is possible not only as a factor of iid, but even in other, more restrictive,

models. These include so-called finitary factors of iid, finitely dependent processes,

local distributed algorithms, etc. [3, 9, 11, 16, 17]. Similarly, a tiling with just F1, or just

F2, is not possible in any of these models. Our first application of Theorem 1.2, which

we prove in Section 4, shows that this latter phenomenon is quite general, in that in any

finitely generated abelian group G there are only very few tiles F that admit a factor of

iid tiling:

Theorem 1.5 (Tiles admitting a factor of iid tiling). Let G = (G, +) be a finitely

generated abelian group, thus without loss of generality we may take G = Zd × G0 for
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Measurable Tilings by Abelian Group Actions 7

some natural number d and finite abelian group G0 = (G0, +). Let F be a finite subset of

G. Then the following are equivalent:

(i) There exists a factor of iid tiling F ⊕ A = G of G by F.

(ii) F is of the form F = {x0} × F0 for some x0 ∈ Zd and F0 ⊂ G0, such that G0

admits a tiling F0 ⊕ A0 = G0 by F0.

Thus, for instance, the only tiles F that admit a factor of iid tiling of Zd are the

singleton tiles F = {x}.

Remark 1.6. After the submission of the paper, Tim Austin suggested a simpler proof

of a stronger version of Theorem 1.5 saying that (i) and (ii) in the theorem are equivalent

to the third statement:

(iii) Let A be the stationary point process on G such that F ⊕ A = G. If A is not

trivial then A has positive topological entropy.

The direction “(ii) implies (iii)” is similar to our proof of “(ii) implies (i)” in Section

4. The direction “(iii) implies (ii)” is an immediate corollary of Theorem 1.2, but can also

be deduced by a more elementary argument similar to the proof of [8, Lemma 2.15].

1.3 Second application: measurable tilings of tori

Our second application of Theorem 1.2 concerns measurable tilings F ⊕ A =a.e. Td of

a torus Td := Rd/Zd using the standard translation action of Rd = (Rd, +), thus F is

a finite subset of Rd and A is a measurable subset of Td. We say that such a tiling

is rational if the set F − F = {f ′ − f : f , f ′ ∈ F} lies in Qd, that is to say that all the

shifts differences f ′ − f , f ′, f ∈ F have rational coordinates. Not all measurable tilings

are rational; however, our main result below shows that all measurable tilings can be

continuously deformed to a rational tiling, with the results particularly strong in the

low dimensional cases d = 1, 2. More precisely, we have

Theorem 1.7 (Measurable tilings of a torus). Let d ≥ 1, and suppose that we have a

measurable tiling F ⊕ A =a.e. T
d of the d-torus by some finite subset F = {f1, . . . , fn} of

Rd and some measurable subset A of Td. Then there exists a rational tiling F0 ⊕ A =a.e.

Td of the d-torus by some finite subset F0 = {f 0
1 , . . . , f 0

n } of Qd, obeying the following

additional properties:

(i) If we define the velocities vi := fi − f 0
i for i = 1, . . . , n and the sets Ft =

{f 0
1 + tv1, . . . , f 0

n + tvn} for all t ∈ R, then we have Ft ⊕ A =a.e. T
d for all t ∈ R.
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8 J. Grebík et al.

In particular, one can continuously (and linearly) deform the original tile

set F = F1 to the rational tile set F0 while retaining the measurable tiling

property throughout.

(ii) If d = 2 and we impose the normalization 0 ∈ F, then all the velocities vi

are scalar multiples vi = αiv of a single vector v ∈ Z2 for some real numbers

α1, . . . , αn. Furthermore, we can partition F into subsets F1, . . . , Fk such that

for each 1 ≤ j ≤ k, the elements of Fj have the same velocity (thus αi = αi′

whenever fi, fi′ ∈ Fj), and the set Fj⊕A := {fi+a : fi ∈ Fj, a ∈ A} is Rv-invariant

in the sense that tv + Fj ⊕ A =a.e. Fj ⊕ A for every t ∈ R.

(iii) If the hypotheses are as in (ii), and furthermore the tile A is open and

connected, then we can furthermore assume that either all the velocities

vi vanish (so in particular F = F0 is rational), or else for each 1 ≤ j ≤ m,

the set Fj mod Z2 lies in a coset of Rv mod Z2, and all the Fj have the same

cardinality.

(iv) If d = 1, then F is rational; in other words, we have F = F0 + v for some

v ∈ R.

See Figure 1 for examples of tilings in cases (ii) and (iii). Informally, one can

“slide” any measurable tiling of a torus by a single tile A into a rational tiling by

assigning each copy fi + A of the tile a constant velocity vi and propagating the tile

backwards in time by one unit. In two dimensions (with the normalization 0 ∈ F), one

can make the velocities parallel, and if the tile is additionally open and connected the

tiling is either rational to begin with, or one can slide individual “rows” of the tiling

separately. Finally, we show that in one dimension the tiling is always rational. This

gives a positive answer to a conjecture from [6, Section 6]. This conjecture can also be

resolved by adapting arguments in [28, 29]; see Remark 5.2.

We prove parts (i), (ii), (iii), and (iv) of Theorem 1.7 in Section 5.4, Section 5.2,

Section 5.3, and Section 5.1, respectively.

We illustrate Theorem 1.7 with some simple examples in dimensions one, two,

and three:

Example 1.8 (One dimension). Let d = 1 and A := [0, 1/2] mod Z. Then a measurable

tiling F ⊕ A =a.e. T of A necessarily takes the form F = {v, m + 1/2 + v} for some real

number v and integer m. If we then take F0 := {0, m + 1/2}, we see that F = F0 + v is a

translate of the set F0 ⊂ Q, thus rational, and that the other translates Ft = F0 + tv also

give a measurable rational tiling: Ft ⊕ A =a.e. T.
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Measurable Tilings by Abelian Group Actions 9

Fig. 1. Left: A measurable tiling of T2 (depicted here using the fundamental domain [0, 1)2) by a

disconnected tile A by a set F0 = F0
1 ∪ F0

2 ∪ F0
3 defined in Example 1.9 and denoted here by black

squares. The shifts F0
1 , F0

2 , F0
3 generate green, blue, and red tiles. Right: A measurable tiling of T2

by an open and connected tile A′ by a set F ′1 = F ′1
1 ∪ F ′1

2 denoted here by black squares. This time,

the set F ′1
2 generating the red tiles is not necessarily a subset of Q2. However, sliding all red tiles

in the direction of a vector v0 (moving in the direction of the finger), we may enforce that the new

coordinate set F ′0
2 is rational.

Example 1.9 (Two dimensions, disconnected). Let d = 2 and A be the set

A := ((0, 1/2) × (0, 1/8) ∪ (1/4, 3/4) × (1/4, 3/8)) mod Z2,

which is a disconnected open subset of T2; see the left half of Figure 1. If we define

F0 := F0
1 ∪ F0

2 ∪ F0
3 with

F0
1 := {(0, 0), (1/2, 0)}

F0
2 := {(1/4, 1/2), (3/4, 1/2)}

F0
3 := {(0, 1/8), (3/4, 3/8), (1/2, 5/8), (1/4, 7/8)}

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnad048/7084940 by Princeton U

niversity user on 18 April 2023



10 J. Grebík et al.

and set v0 := (1, 0), then we have a measurable tiling F0 ⊕ A =a.e. T
2, with each F0

i ⊕ A

being Rv0-invariant; see the left half of Figure 1. If we then let α1, α2, α3 be arbitrary real

numbers and set F := F1 ∪ F2 ∪ F3 where

Fi := F0
i + αiv0

for i = 1, 2, 3, we see that we also have a measurable tiling F ⊕ A =a.e. T
2, which was

obtained from F0 by giving the tiles in F0
i a velocity of αiv0 and then moving the tiles for

a unit amount of time. Note that the set F3 mod Z2 is not contained in a single coset of

Rv0 mod R2.

Example 1.10 (Two dimensions, connected). Let d = 2 and A := (0, 1/2)2 mod Z2; this is

an open connected set. Let α be an irrational number. Then the set

Ft = {(0, 0), (1/2, 0), (t, 1/2), (t + 1/2, 1/2)}

generates a measurable tiling F ⊕ A =a.e. T
2 of the torus T2. If for every real t, we set

Ft = {(0, 0), (1/2, 0), (t, 1/2), (t + 1/2, 1/2)}

then Ft ⊕ A =a.e. T2 is a measurable tiling for every real number t, which is rational

when t = 0. Also, if we set v0 = (1, 0), and partition F = F1 into

F1 = {(0, 0), (1/2, 0)}; F2 = {(α, 1/2), (α + 1/2, 1/2)}},

then we can give the elements of F1 a zero velocity, and the elements of F2 a velocity of

αv0, and the sets

F1 ⊕ A =a.e. T × (0, 1/2); F2 ⊕ A =a.e. T × (1/2, 1)

are Rv0-invariant; informally, this means that one can independently “slide” the sets

F1, F2 along the direction v0 without destroying the measurable tiling property. Note

that F1 mod Z2 and F2 mod Z2 both lie on cosets of Rv0 mod Z2.

A more complicated example of a connected tile in two dimensions is depicted

on the right-hand side in Figure 1.
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Measurable Tilings by Abelian Group Actions 11

Fig. 2. A measurable tiling of T3 by eight cubes [0, 1/2)3 from Example 1.11. Only six cubes are

colored; the green, blue, and red boxes are shifted in the direction (1, 0, 0), (0, 1, 0), and (0, 0, 1).

Example 1.11 (Three dimensions). Let d = 3 and A := [0, 1/2]3 mod Z3. Let α, β, γ be

irrational numbers. For every real number t, set

Ft := {(0, tα, 0), (0, tα + 1/2, 0),

(1/2, 0, tβ), (1/2, 0, tβ + 1/2),

(tγ , 1/2, 1/2), (tγ + 1/2, 1/2, 1/2),

(0, 0, 1/2), (1/2, 1/2, 0)}.

One can then verify that Ft ⊕A =a.e. T
3 for all real t (see, Figure 2). In particular, one can

“slide” the irrational tiling F = F1 into the rational tiling F0 without destroying the tiling

property, with the elements of F being given velocities proportional to (1, 0, 0), (0, 1, 0)

and (0, 0, 1), respectively.

2 A Measurable Dilation Lemma

In this section, we establish Theorem 1.2(i). Our arguments here will be a modification

of those used to establish [13, Lemma 3.1]. (In the model case � = Zd, one can in fact

derive Theorem 1.2(i) directly from [13, Lemma 3.1] by applying that lemma to the sets

{γ ∈ Zd : γ · x ∈ A}, which form a tiling of Zd by F for almost every x ∈ X; we leave the

details of this argument to the interested reader.)
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12 J. Grebík et al.

It will be convenient to introduce the language of convolutions. Let L0(X) denote

the space of measurable functions f : X → R, up to almost everywhere equivalence,

and let R� denote the group ring of � over R, which we write as the space of finitely

supported functions w : � → R from � to the reals. With this representation, the

multiplication operation on R� becomes the usual convolution operation ∗:

w1 ∗ w2(γ ) :=
∑
γ ′∈�

w1(γ ′)w2((γ ′)−1γ );

note that only finitely many of the summands are non-zero. This operation is bilinear

and associative, and it is commutative whenever � is abelian. We can also define the

convolution w ∗ f of an element w ∈ R� of the group ring and a function f : X → R by

the formula

w ∗ f (x) :=
∑
γ∈�

w(γ )f (γ −1x);

again, only finitely many summands are non-zero, and from the invariance of μ we see

that if f is only given up to μ-almost everywhere equivalence then w ∗ f is also well-

defined up to μ-almost everywhere equivalence. Thus, the convolution w ∗ f ∈ L0(X) is

also well-defined for w ∈ R� and f ∈ L0(X). The ring R� can easily be seen to act on

L0(X); in particular, we have

(w1 ∗ w2) ∗ f = w1 ∗ (w2 ∗ f )

for all w1, w2 ∈ R� and f ∈ L0(X).

Note that if F is a finite subset of � and A is a measurable subset of X, then 1F

can be viewed as an element of R� and 1A can be viewed as an element of L0(X). The

tiling condition F � A =a.e. X is then equivalent to the convolution identity

1F ∗ 1A =a.e. 1X (3)

holding in L0(X).

We begin with the proof of Theorem 1.2(i) for r > 0. We may assume that A has

positive measure, as the claim is trivial otherwise. By induction and the fundamental

theorem of arithmetic, it suffices to verify this claim in the case that r is a prime p with

p > |F| = n, so long as we verify that Fp has the same cardinality as F (i.e., there are no

collisions f p
1 = f p

2 for distinct f1, f2 ∈ F).
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We convolve both sides of (3) by p−1 additional copies of 1F , noting that 1F ∗1X =
n1X , to conclude that

1∗p
F ∗ 1A =a.e. np−11X

in L0(X), where 1∗p
F denotes the convolution of p copies of 1F . The left-hand side is

integer-valued, thus we may reduce both sides modulo p and conclude from Fermat’s

little theorem that

1∗p
F ∗ 1A =a.e. 1X mod p. (4)

The group algebra Fp� of functions w : � → Fp is a commutative ring of

characteristic p, and thus one has the Frobenius identity (w1 + w2)∗p = w∗p
1 + w∗p

2

in this ring for all w1, w2 ∈ Fp�. Writing 1F = ∑n
i=1 δfi

as the sum of Kronecker delta

functions, we conclude that

1∗p
F =

n∑
i=1

δ
∗p
fi

= 1Fp

in Fp�, where we temporarily view Fp := {f p : f ∈ F} as a multiset rather than a set,

so that the indicator function 1Fp could theoretically take on values greater than one

(although we shall shortly eliminate this possibility). In other words,

1∗p
F = 1Fp mod p.

Since 1A is also integer-valued, we conclude that

1∗p
F ∗ 1A =a.e. 1Fp ∗ 1A mod p

pointwise everywhere in X. Combining this with (4), we conclude that

1Fp ∗ 1A =a.e. 1X mod p.

This implies that

1Fp ∗ 1A ≥a.e. 1X .
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Observe that

|F| = 1F ∗ 1Fp ∗ 1A ≥a.e. 1F ∗ 1X = |F|.

We conclude that

1Fp ∗ 1A =a.e. 1X .

Since 1X is bounded by 1 and A has positive measure, it is thus not possible for 1Fp to

attain any value larger than one, and hence there are no collisions f p
1 = f p

2 for distinct

f1, f2 ∈ F. We thus have the measurable tiling Fp � A =a.e. X, as claimed.

To conclude the proof of Theorem 1.2(i) for all suitable r ∈ Z, it suffices by the

first part to treat the case r = −1, that is to say that the translates f −1
i · A, 1 ≤ i ≤ n

partition X up to null sets. To show this, one can adopt the arguments in [34, Theorem

13], [21, Lemma 3.1], and [12, Lemma 3.2]. By hypothesis, we see that for any 1 ≤ i <

i′ ≤ n, the translates fi · A, fi′ · A are disjoint up to μ-null sets; translating this by (fifi′)
−1

and using the abelian nature of �, we conclude that f −1
i′ · A, f −1

i · A are also disjoint up

to μ-null sets. Thus, 1F−1 ∗ 1A ≤a.e. 1X . On the other hand, we have 1F ∗ 1A =a.e. 1X , and

|F| = |F−1| = n. Thus, using again the abelian nature of �, we have

1F ∗ (1X − 1F−1 ∗ 1A) =a.e. n1X − 1F−1 ∗ (1F ∗ 1A) =a.e. 0.

Thus, as both 1F and (1X − 1F−1 ∗ 1A) are non-negative and |F| > 0, we must have

1X − 1F−1 ∗ 1A =a.e. 0,

and the claim follows.

Remark 2.1. The dilation lemma fails when the group � is non-abelian. For instance,

consider the group � = Z × G for some (non-abelian) finite group G = (G, ·) (and using

the additive group law on Z), acting on X = � (equipped with counting measure) by left

translation; one can also take X to be a quotient Z/NZ × G of � = Z × G if desired to

ensure that X has finite measure. Let Ha be some right coset of a proper subgroup H of

G, and consider the finite set F ⊂ � defined by

F := ({0} × Ha) ∪ ({1} × (G\H)).
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Observe that if A ⊂ X is a set of the form

A := {(n, gn) : n ∈ Z} (5)

for some sequence gn of elements of G, then the translates f · A, f ∈ F partition X if and

only if one has the constraint

gn−1 ∈ Hagn (6)

for all n ∈ Z. If we take X to be Z/NZ × G instead of Z × G, the above discussion still

applies, but with n now ranging in Z/NZ rather than Z. In the non-abelian setting, one

can easily construct examples in which HaHaHa = G, in which case the constraint (6)

gives no relationship whatsoever between gn+r and gn for r ≥ 3. (For instance, one can

take G = S3, H to be a subgroup of S3 of order two, and a to be an element not in H.) In

particular, for such r, there is no dilated tile of the form

Fr = ({0} × E) ∪ ({r} × E′)

for some non-empty E, E′ ⊂ G with the property that F � A = X implies the Fr � A = X. A

similar analysis shows that the assertions F � A = X and F−1 � A = X are inequivalent.

This example indicates that no reasonable analogue of the dilation lemma holds in

this setting. This example also shows that non-abelian tiling problems with one tile

can be “local” in various senses; see, for instance, Section 4.1 below for a more precise

statement.

Remark 2.2. As showed in [13, Lemma 3.1], one can generalize the dilation lemma by

requiring the tiling to be a periodic level tiling rather than a partition up to null sets,

by which we mean that for every 1 ≤ k ≤ |F|, the level set {x : 1F ∗ 1A(x) = k} is periodic

in X up to μ-null sets, (where here a periodic set is a set which is μ-almost everywhere

invariant with respect to an action of some lattice). The conclusion is then that there is a

number q (depending on F and 1F ∗1A) such that if r = 1 mod q then 1Fr ∗1A =a.e. 1F ∗1A,

but now we permit collisions f r
1 = f r

2 to occur. We leave the details of this generalization

to the interested reader.

Remark 2.3. Theorem 1.2(i) easily extends to the setting in which the action of � is

quasi-invariant rather than invariant, which means that it maps μ-null sets to μ-null
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16 J. Grebík et al.

sets. This can be accomplished simply by replacing μ with the (non-σ -finite) measure μ̃

defined by setting μ̃(E) to equal +∞ when μ(E) > 0 and to equal zero otherwise.

3 A Measurable Structure Theorem

In this section, using Theorem 1.2(i), we will establish Theorem 1.2(ii). Let the hypothe-

ses be as in that theorem. Applying part (i) of that theorem, we see that for any integer

r coprime to q, we have

Fr � A =a.e. X,

which we rewrite as the assertion that

1X =a.e.

∑
f ∈F

1f r ·A.

Setting r = 1 + nq for n = 1, . . . , N and averaging, we conclude in particular that

1X =a.e.

∑
f ∈F

1

N

N∑
n=1

1(f q)n·f ·A

for all N. By the mean ergodic theorem, for each f ∈ F, the averages 1
N

∑N
n=1 1(f q)n·f ·A

converge in L1(X) to a f q-invariant function ϕf ; since these averages all have total mass

μ(A), ϕf does also. It is also clear from construction that if f q ·A =a.e. A then ϕf =a.e. 1f ·A.

The claim follows.

Remark 3.1. As it turns out, one can replace the requirement that the measure μ be

finite to merely σ -finite, and also assume that the action is only quasi-invariant rather

than measure-preserving, as long as we also drop the conclusion that the ϕf have mean

μ(A); see Appendix A.

Remark 3.2. Using Remark 2.2, one can also extend the above structure theorem to

periodic level tilings, and in particular, to level k tilings (by which we mean that almost

every element of X lies in precisely k of the translates f · A for some k ≤ |F|), but now

replacing 1X in (1) with k1X . (Higher level tilings are studied in several places in the

literature; see for instance [21], [10], [4].) However, this identity (1) is significantly less

useful in the k > 1 case due to the gap in values between k1X and 1A, which leaves more

room for the functions ϕf , f ∈ F to vary (cf., [13, Theorem 1.3(ii)]).
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4 Factor of iid Tilings

In this section, we prove Theorem 1.5.

We first show that (ii) implies (i). By translating F, we may assume without loss

of generality that x0 = 0. By the hypothesis (ii), there exists a subset A0 of G0 such that

the translates f0 + A0, f0 ∈ F0 partition G0. Next, let λ(x, g0) ∈ [0, 1], (x, g0) ∈ Zd × G0,

be the iid random variables from Definition 1.3, and for each x ∈ Zd, let g0(x) denote

the element of G0, which minimizes the quantity λ(x, g0(x)). Clearly, g0 is almost surely

well-defined as a function from Zd to G0. We then form the random set

A := {(x, g0(x) + a0) : x ∈ Zd; a0 ∈ A0}. (7)

It is a routine matter to verify that F ⊕ A =a.e. G is a factor of iid tiling. This proves (i).

Conversely, suppose that (i) holds. Applying a translation, we may assume

without loss of generality that F contains the identity (0, 0) of Zd ×G0. Let F ⊕A = G be a

factor of iid tiling. Let � : [0, 1]G → {0, 1} be the measurable function obeying (2). Observe

that [0, 1]G is a probability space with product measure dm and a measure-preserving

action of G given by the translation action

x0 · (λx)x∈G := (λx0+x)x∈G.

If we define the set Ã ⊂ [0, 1]G by

Ã := �−1({1})

then from (2) one easily verifies that we have the tiling

F � Ã =a.e. [0, 1]G.

Applying Theorem 1.2(ii), we obtain a decomposition

1[0,1]G =a.e. 1Ã +
∑

f ∈F\{(0,0)}
ϕf (8)

for some non-negative qf -invariant functions ϕf : [0, 1]G → [0, 1] of mean m(Ã); in

particular, on integrating we have

1 = |F|m(Ã).
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Suppose that there exists an element f∗ of F that is not contained in {0} × G0. Then

the action of qf∗ on [0, 1]G is ergodic (this follows for instance from the Kolmogorov

zero-one law, since any qf∗-invariant subset in [0, 1]G is measurable with respect to the

tail algebra of [0, 1]G), and hence ϕf∗ is almost everywhere constant; since it has mean

m(Ã) = 1/|F|, we thus have ϕf∗ =a.e. 1/|F|. From (8), we thus have the inequality

1[0,1]G ≥ 1Ã + 1

|F| (9)

almost everywhere, which is absurd since Ã has positive measure. Thus, all elements of

F lie in {0} × G0, and so we may write F = {0} × F0 for some F0 ⊂ G0.

By hypothesis, there is a tiling A of Zd × G0 by {0} × F0. This implies that the

set A0 := {a0 : (0, a0) ∈ A} is a tiling of G0 by F0, giving (ii). This completes the proof of

Theorem 1.5.

Remark 4.1. In the case when tiling a finitely generated abelian group with a tile that

does not contain any non-trivial element of finite order (e.g., tiling Zd with a non-trivial

tile), Theorem 1.2 implies a stronger conclusion saying that the spectral measure of the

tiling is supported on a finite union of subtorii; in particular, the tiling in this case is

not weak-mixing in some directions. We thank the referee for this observation.

4.1 Some counterexamples

4.1.1 Tiling by multiple tiles and tilings in non-abelian groups

In Example 1.4, an example was given showing that Theorem 1.5 breaks down once two

or more tiles are present. We now give a modification of this example that shows that

Theorem 1.5 also breaks down when the group G is non-abelian.

Indeed, let H, a, Z × G, and F be as in Remark 2.1, with HaHaHa = G. We

arbitrarily place total ordering < on G. Despite the fact that the tile F is not contained

in a single fiber {x} × G of Z× G, one can construct a factor of iid tiling of Z× G by F by

the following modification of the construction in Example 1.4.

(i) First we generate jointly independent random variables λ(x, g) ∈ [0, 1] for all

x ∈ Z and g ∈ G. Then set λ(x) := ming∈G λ(x, g).

(ii) Similarly as in Example 1.4, we construct the random set

S := {x ∈ Z : λ(x) < λ(x − 2), λ(x − 1), λ(x + 1), λ(x + 2)} ⊂ Z.
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We enumerate S = {sn : n ∈ Z} by order (i.e., sn < sm if n < m). Observe

that this set is almost surely unbounded both above and below, and that

sn+1 − sn ≥ 3 for any two consecutive elements of S.

(iv) For each sn ∈ S, we define gsn
∈ G to be the element of G that maximizes

λ(sn, g), g ∈ G; this is almost surely well-defined.

(v) If sn, sn+1 are consecutive elements of S, we define gsn+j = a−jgsn
for 1 ≤ j ≤

sn+1 − sn − 3, and then define gsn+1−1 = b0gsn+1−2 = b0b1gsn+1−3, where b0, b1

is the lexicographically minimal pair of elements of a−1H such that

b0b1gsn+1−3 ∈ Hagsn+1

(such a pair exists since HaHaHa = G). Note from construction that for all

x ∈ Z, gx is now almost surely well-defined and obeys (6).

(vi) Finally, we let A ⊂ Z × G be the set defined by (5).

It is then a routine matter to verify that F � A = Z × G is a (non-abelian) factor

of iid tiling of Z × G by F. This shows that Theorem 1.5 breaks down once the group is

non-abelian.

4.1.2 Higher level tilings

Observe that Theorem 1.5 also breaks down once one considers tilings of level higher

than one; in this setting there are (as noted in Remarks 2.2 and 3.2) analogues of the

dilation lemma and structure theorem, but the analogue of the inequality (9) no longer

generates a contradiction. Indeed, since 1F ∗ 1G = |F|1G, every finite tile F trivially has a

factor of iid tiling of level |F|. In the latter example, the tiling has entropy zero.

When G = Zd, any k-level factor of iid tiling has entropy zero (we thank the

referee for this observation). Indeed, suppose that A is a level k factor of iid tiling of Zd

by F. A higher level version of Theorem 1.2 (see Remark 3.2) will give the generalization

of (8):

k1
[0,1]Zd =a.e. 1Ã +

∑
f ∈F\{0}

ϕf , (10)

where for every f ∈ F\{0}, ϕf : Zd → [0, k] is measurable |F|f -invariant and has mean

m(Ã) = k/|F|. On the other hand, if f �= 0 ∈ F, then, by the Kolmogorov zero-one law, ϕf

is almost everywhere constant, thus ϕf =a.e. k/|F|. From (10), we thus have

k1
[0,1]Zd =a.e. 1Ã + k(|F| − 1)

|F| , (11)

which implies k = |F| and A = Zd.
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However, when G = Zd × G0 and G0 is not trivial, there are non-vertical sets that

admit non-trivial factor of iid tilings of level higher than one; for instance, let d ≥ 1,

k > 1, S be a subset of Zd of cardinality k, and G0 be some finite abelian group, then the

set S × G0 admits a non-trivial (positive entropy) factor of iid tiling of level k of Zd × G0

(to show this, one can adapt our construction (7), with A0 = G0).

5 Measurable Tilings of a Torus

We now prove Theorem 1.7. We begin with some easy consequences of Theorem 1.2:

Lemma 5.1 (Initial properties). Let F ⊕ A =a.e. T
d be a measurable tiling of a torus Td

by a finite set F ⊂ Rd and a measurable set A ⊂ Td. We normalize 0 ∈ F.

(i) (Weak rationality) For every f ∈ F, there exists k ∈ Zd\{0} such that k · f ∈ Z.

(ii) (Weak structure) Up to sets of measure zero, one can write

⋃
f ∈F∩Qd

(f + A) =
⋂

f ∈F\Qd

Af ,

where for each f ∈ F\Qd, Af is a qf -invariant measurable subset of Td for

some natural number q with 0 < μ(Af ) < 1.

Proof. We begin with (i). From Theorem 1.2(ii), we have a decomposition

1Td = 1A +
∑

f ∈F\{0}
ϕf ,

where for each f ∈ F\{0}, ϕf : Td → [0, 1] is a measurable function of mean μ(A) = 1/|F|
which is qf -invariant for some natural number q. Now if f ∈ F\{0} is such that k · f �∈ Z

for all k ∈ Zd\{0}, then by the Weyl equidistribution theorem, the action of qf is ergodic,

thus ϕf is almost everywhere equal to a constant, which must be 1/|F|. Thus, in this

case, we have the inequality

1Td ≥ 1A + 1

|F|

almost everywhere, which is a contradiction since A has positive measure. This proves

(i).
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Now we prove (ii). Let q̃ be a natural number divisible by all primes less than or

equal to |F| such that q̃f = 0 mod Zd for all f ∈ F ∩ Qd. From Theorem 1.2(ii), we have

1Td =
∑

f ∈F∩Qd

1f +A +
∑

f ∈F\Qd

ϕ̃f , (12)

where for each f ∈ F\Qd, ϕ̃f : Td → [0, 1] is a measurable function that is q̃f -invariant

and has positive mean. If we let Af denote the complement of the support of ϕ̃f , then Af

is also q̃f -invariant and has measure less than 1. Note that, up to sets of measure zero,∑
f ∈F\Qd ϕ̃f vanishes precisely on

⋂
f ∈F\Qd Af , and

∑
f ∈F∩Qd 1f +A is the indicator function

of
⋃

f ∈F∩Qd f + A. The claim (ii) then follows from (12) (note that none of the Af can have

zero measure since
⋃

f ∈F∩Qd(f + A) has positive measure). �

5.1 The one-dimensional case

We can now easily establish the one dimensional case (iv) of Theorem 1.7. Indeed,

by translating F ⊂ R by a constant, we may assume without loss of generality that

0 ∈ F. From Lemma 5.1(i), we then see that every element of F\{0} is rational, and

Theorem 1.7(iv) follows.

Remark 5.2. An alternate way to prove Theorem 1.7(iv) is as follows. In [28, Theorem 2],

it was proved that if A ⊂ R is bounded, Lebesgue measurable, and has a zero measure

boundary and if A ⊕ R =a.e. R for some R ⊂ R, then the set R′ = μ(A)−1R must be

rational, that is, R′ − R′ = {r′ − r : r′, r ∈ R′} ⊂ Q. However, looking into the proof there,

the condition that the set A has boundary of measure zero is used in order to show that

any such tiling set R must be periodic, and the rest of the argument, [28, Theorem 6 and

Section 4], does not use this assumption. Thus, under the assumption that a bounded

measurable set A tiles the line by a periodic set R, the argument of Lagarias–Wang gives

the rationality of R′ = μ(A)−1R. Since any measurable tiling F ⊕ A =a.e. T of the torus

induces a periodic measurable tiling (F + Z) ⊕ Ã =a.e. R of the real line by a bounded

measurable set Ã of rational measure (defined as the image of A under the identification

of the circle T with the [0, 1)), we conclude Theorem 1.7(iv). In particular, the conjecture

from [6] may also be deduced from the results in [28].

In fact, it was shown in [22, Theorem 6.1] that any tiling of R with a bounded

measurable set A is periodic. Thus, combining this result with [28, Section 4], we have

that every tiling of R by a bounded measurable set is periodic and rational. (We remark

that classifying bounded measurable tiles A ⊂ R is a notoriously difficult problem even
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in the case when A is a finite union of intervals. See, for instance, [7, 26, 27, 30, 35] and

the references therein.)

Remark 5.3. Using Theorem 1.7(iv), it is possible to fully describe all measurable

tilings of the circle in terms of tilings of finite cyclic groups. Namely, given F =
{f1, . . . , fn} ⊆ Q and assuming that f1 = 0, we find a g ∈ T1 ∩ Q such that 〈g〉, the cyclic

group generated by g, contains F ′ = {f1 mod 1, . . . , fn mod 1} and is minimal with respect

to set inclusion; for instance, one can take g = 1
q mod 1 where q is the least common

multiple of the denominators of elements from F. Let Tg,F ′ be the set of all A′ ⊆ 〈g〉 such

that F ′ ⊕ A′ = 〈g〉, that is, Tg,F ′ consists of all tiles of the finite cyclic group 〈g〉 using

translates of F ′. Consider the action of 〈g〉 on T1 induced by x �→ g+x. As g ∈ Q, we infer

that the orbit of each x ∈ T1 is finite, in fact, of cardinality |〈g〉|. It follows that there is

a measurable set X ⊆ T1 that intersects each orbit of the 〈g〉 in exactly one point.

There is a one-to-one correspondence between measurable sets A ⊆ T1 that

satisfies F ⊕ A =a.e. T
1 and measurable functions

ψ : X → Tg,F ,

(where Tg,F is endowed with the discrete σ -algebra) that is given as follows: the

measurable set Aψ , that corresponds to ψ , is defined as

Aψ =
{
y ∈ T1 : ∃x ∈ X y ∈ ψ(x) + x

}
.

Similarly, given a measurable tile A, the function

ψA(x) = {h ∈ 〈g〉 : h + x ∈ A},

defined for x ∈ X, is measurable and ψA(x) ∈ Tg,F ′ almost surely.

5.2 The two-dimensional case

We now establish Theorem 1.7(ii). By Lemma 5.1(i) we see that for each f ∈ F\Q2 there

exists a primitive hf ∈ Z2\{0} such that hf · f ∈ Q. Note that as f �∈ Q2, hf is determined

up to sign. The key observation (which is specific to two dimensions, as Example 1.11

shows) is

Proposition 5.4 (All shifts are parallel). For any f1, f2 ∈ F\Q2, one has hf1
= ±hf2

.
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Measurable Tilings by Abelian Group Actions 23

We give two proofs of this proposition: a “physical space” proof inspired by the

arguments in [13], which is based on the equidistribution theory of polynomials modulo

one, and a “Fourier analytic” proof that exploits the fact that a non-trivial trigonometric

polynomial can only vanish on a set of measure zero.

Proof. First proof Let q be a natural number divisible by all the primes up to |F|, such

that qf ∈ Z2 for all f ∈ F ∩ Q2. By Theorem 1.2(ii), we have a decomposition

1T2 =a.e.

∑
f ∈F∩Q2

1f +A +
∑

f ∈F\Q2

ϕf , (13)

where for each f ∈ F\Q2, ϕf : T2 → [0, 1] is qf -invariant and has mean μ(A) = 1/|F|.
For each f ∈ F\Q2, some integer multiple kqf of f lies in the subtorus

〈hf 〉⊥ := {x ∈ T2 : hf · x = 0}.

Since f �∈ Q2, the translation action of kqf is ergodic on this subtorus. We conclude that

ϕf is in fact 〈hf 〉⊥-invariant. If we then define

�1 :=
∑

f ∈F\Q2:hf =±hf1

ϕf ,

then �1 is also 〈hf1
〉⊥-invariant. On reducing (13) modulo one, we have

0 =a.e. �1 +
∑
f ∈F1

ϕf mod 1, (14)

where F1 consists of those f ∈ F\Q2 with hf �= ±hf1
. To eliminate the ϕf terms, we

introduce the difference operators

∂vg(x) := g(x) − g(x − v)

for any g : T2 → T and v ∈ T2. Observe that these operators ∂v commute with each other.

If f ∈ F1, we have

〈hf 〉⊥ + 〈hf1
〉⊥ = T2
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24 J. Grebík et al.

and hence if gf ∈ T2 we may decompose gf = g′
f + g′′

f where g′
f ∈ 〈hf 〉⊥ and g′′

f ∈ 〈hf1
〉⊥.

We then obtain the identities

∂g′
f
�1 =a.e. ∂gf

�1

and

∂g′
f
ϕf =a.e. 0.

If one then applies each of the operators ∂g′
f

in turn to (14) for f ∈ F1 to eliminate the ϕf

terms, we conclude that

⎛
⎝ ∏

f ∈F1

∂gf

⎞
⎠ �1 =a.e. 0 mod 1

whenever gf ∈ T2. Since �1 is 〈hf1
〉⊥-invariant, we may write

�1(x) =a.e. �̃1(hf1
· x) mod 1

for some measurable function �̃1 : T → T, and then we have

∂α1
. . . ∂α|F1|�̃1 =a.e. 0 (15)

for all α1, . . . , α|F1| ∈ T. We claim that this implies that �̃1 is a linear function

�̃1(x) = n1x + θ1 (16)

for some integer n1 and θ1 ∈ T, and almost all x ∈ T. (See also [1] for an extensive study

on factorization of solutions to partial difference equations in compact abelian groups

(such as (15)).) We prove this by induction on the number |F1| of derivatives. For |F1| ≤ 1,

�̃1 is necessarily constant almost everywhere and the claim follows. If |F1| > 1, then by

induction hypothesis, we see that for every α ∈ T there exists an integer nα and θα ∈ T

such that

∂α�̃1(x) = nαx + θα
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for almost every x ∈ T. As α → 0, the continuity of translation in the strong operator

topology shows that e2π i∂α�̃1 converges in L2(T) to the constant 1, and hence nα must

vanish for α sufficiently close to the origin. Using the cocycle identity

∂α+β�̃1(x) = ∂α�̃1(x) + ∂β�̃1(x − α)

and induction we conclude that nα vanishes for all α. This argument also shows that the

map α �→ θα is a continuous homomorphism from T to T, and is thus of the form θα = n1α

for some integer n1. The function �̃1(x)− n1x is then almost everywhere constant (since

all of its derivatives vanish almost everywhere), and the claim follows. In particular, we

have

�1(x) = n1hf1
· x + θ1 mod 1 (17)

for almost all x ∈ T2.

Now suppose for contradiction that hf2
�= ±hf1

. If we set

�2 :=
∑

f ∈F\Q2:hf =±hf2

ϕf

then by repeating the previous arguments, we can find an integer n2 and θ2 ∈ T such

that

�2(x) = n2hf2
· x + θ2 mod 1 (18)

for almost all x ∈ T2.

On the other hand, from (13), we have

�1(x) + �2(x) ≤ 1

for almost all x ∈ T2. Since �1 is 〈hf1
〉⊥-invariant, and �2 is 〈hf2

〉⊥-invariant, and every

coset of 〈hf1
〉⊥ intersects every coset of 〈hf2

〉⊥, we have

‖�1‖L∞(T2) + ‖�2‖L∞(T2) = ‖�1 + �2‖L∞(T2) ≤ 1.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnad048/7084940 by Princeton U

niversity user on 18 April 2023



26 J. Grebík et al.

We conclude that for some i = 1, 2, we have

‖�i‖L∞(T2) ≤ 1/2.

Comparing this with (17) or (18) we conclude that ni must vanish, and �i is equal almost

everywhere to a constant ci. Since �i ≥ ϕfi
and ϕfi

has mean 1/|F|, we have ci ≥ 1/|F|.
From (13), we then have the inequality

1T2 ≥ 1A + 1/|F|

almost everywhere, but this contradicts the positive measure of A. Hence hf1
= ±hf2

as

required. �

Proof. Second proof We introduce the set

Q(A) :=
⋃

f ∈F∩Q2

f + A.

Since Q(A) contains A but not f1 + A, we have

0 < μ(Q(A)) < 1. (19)

On the one hand, from (13) and the arguments immediately following, we have a

decomposition

1Q(A) =a.e. 1T2 −
∑

f ∈F\Q2

ϕf , (20)

where each ϕf is 〈hf 〉⊥-invariant. On the other hand, from Lemma 5.1(ii), we have a

factorization

1Q(A) =a.e.

∏
f ∈F\Q2

1Af
(21)

where each Af is qf -invariant for some natural number q, and hence also 〈hf 〉⊥-invariant

by the arguments following (13), and 0 < μ(Af ) < 1. To exploit these representations (20),
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Measurable Tilings by Abelian Group Actions 27

(21) we use the Fourier transform

F̂(k) :=
∫
T2

F(x)e−2π ik·x dx, k ∈ Z2

defined for any F ∈ L2(T2).

From (20), we see that the Fourier transform 1̂Q(A) ∈ �2(Z2) of 1Q(A) is supported

on the set

⋃
f ∈F\Q2

〈hf 〉,

where 〈hf 〉 = {jhf : j ∈ Z} is the group generated by hf . Indeed, this follows from the

linearity of the Fourier transformation together with the fact that each ϕ̂f , for f ∈ F \Q2

is supported on 〈hf 〉 as ϕf is 〈hf 〉⊥-invariant, that is, ϕf can only correlate with e−2π ik·x

where k ∈ 〈hf 〉, and similarly the support of 1̂T2 is {(0, 0)} ⊂ Z2. In particular, if k ∈
Z2\〈hf1

〉, then 1̂Q(A) is only non-zero on finitely many elements of the coset k + 〈hf1
〉. It

follows that

Gk,f1
(x) :=

∑
k′∈k+〈hf1 〉

1̂Q(A)(k
′)e2π ik′·x

is a trigonometric polynomial. We claim that Gk,f1
agrees almost everywhere with the

averaged function

G̃k,f1
(x) :=

∫
〈hf1 〉⊥

1Q(A)(x + y)e−2π ik·y dν〈hf1 〉⊥(y)

(where ν〈hf1 〉⊥ is Haar probability measure on 〈hf1
〉⊥). Indeed, for k′ ∈ k + 〈hf1

〉, one

computes

∫
T2

G̃k,f1
(x)e−2π ik′·x dx =

∫
T2

(∫
〈hf1 〉⊥

1Q(A)(x + y)e−2π ik·y dν〈hf1 〉⊥(y)

)
e−2π ik′·x dx

=
∫

〈hf1 〉⊥

(∫
T2

1Q(A)(x + y)e−2π ik′·(x+y) dx
)

e−2π i(k−k′)·y dν〈hf1 〉⊥(y)

=
∫

〈hf1 〉⊥
1̂Q(A)(k

′)e−2π i(k−k′)·y dν〈hf1 〉⊥(y)

= 1̂Q(A)(k
′)
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by Fubini’s Theorem and the fact that (k − k′) · y = 0 for every y ∈ 〈hf1
〉⊥, and a similar

computation shows that the Fourier coefficient
∫
T2 G̃k,f1

(x)e−2π ik′·x dx vanishes if k′ �∈
k + 〈hf1

〉. By the Fourier inversion formula, we conclude that Gk,f1
=a.e. G̃k,f1

as claimed.

On the other hand, from (21) and the 〈hf1
〉⊥-invariance of Af1

, the function

Gk,f1
=a.e. G̃k,f1

is supported on Af1
as

G̃k,f1
(x) =

∫
〈hf1 〉⊥

⎛
⎝ ∏

f ∈F\Q2

1Af

⎞
⎠ (x + y)e−2π ik·y dν〈hf1 〉⊥(y)

=
∫

〈hf1 〉⊥
1Af1

(x)

⎛
⎝ ∏

f ∈F\Q2∪{f1}
1Af

⎞
⎠ (x + y)e−2π ik·y dν〈hf1 〉⊥(y)

= 0,

whenever 1Af1
(x) = 0. Since 0 < μ(Af1

) < 1, and a non-trivial trigonometric polynomial

only vanishes on a set of measure zero, we conclude that Gk,f1
vanishes whenever

k ∈ Z2\〈hf1
〉. By the Fourier inversion formula, this implies that 1̂Q(A) is supported on

〈hf1
〉. If hf1

�= ±hf2
, then this argument shows that 1̂Q(A) is supported on 〈hf1

〉∩〈hf2
〉 = {0},

and hence 1Q(A) is constant. But this contradicts (19). Hence, we have hf1
= ±hf2

as claimed. �

With Proposition 5.4 in hand, we can now complete the proof of Theorem 1.7(ii).

We may assume that F\Q2 is non-empty, since the claim is trivial otherwise. By

Proposition 5.4, we may find an irreducible h ∈ Z2\{0} such that h · f ∈ Q for all f ∈ F\Q2

(and hence for all f ∈ F). By applying a suitable element of SL2(Z) (which does not affect

the hypotheses or conclusions of Theorem 1.7(ii)), we may assume that h = (0, 1), thus

we have

F ⊂ R × Q.

We can then cover F by disjoint cosets (α1, 0)+Q2, . . . , (αk, 0)+Q2 for some real numbers

α1, . . . , αk, whose differences are all irrational. Of course, we can assume that the

intersections

Fi := F ∩ ((αi, 0) + Q2)

are non-empty for each i = 1, . . . , k.

Let fi be an element of Fi. Let q be a natural number divisible by all primes less

than or equal to |F|, such that q(f − fi) ∈ Z2 for all f ∈ Fi. By applying Theorem 1.2(ii) to
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the tiling (F − fi) ⊕ A =a.e. T
2, we obtain a decomposition

1T2 =
∑

f ∈Fi−fi

1f +A +
∑

f ∈F\Fi

ϕfi,f , (22)

where each ϕfi,f : T2 → [0, 1] is q(f − fi)-invariant. By construction, for each f ∈ F\Fi,

q(f − fi) lies in a coset (β, 0) +Q2 for some irrational β, thus by the ergodic theorem ϕfi,f

is invariant with respect to the action of R(1, 0). By (22), we conclude that
∑

f ∈Fi−fi
1f +A

is also R(1, 0)-invariant, and thus the set Fi ⊕ A is also R(1, 0)-invariant.

If we now give each f ∈ Fi the velocity vf := (αi, 0) for every i = 1, . . . , k, then the

(multi-)set F0 := {f − vf : f ∈ F} lies in Q2, and if we then define the (multi-)set

Ft := {f − vf + tvf : f ∈ F}

then we have by the R(1, 0)-invariance of Fi ⊕ A that

∑
f ∈Ft

1f +A =
k∑

i=1

∑
f ∈Fi

1f −vf +tvf +A

=
k∑

i=1

1Fi⊕A+((t−1)αi,0)

=a.e.

k∑
i=1

1Fi⊕A

=
∑
f ∈F

1f +A

=a.e. 1T2

and hence

Ft ⊕ A =a.e. T
2.

Since A has positive measure, this implies that the elements of Ft are distinct (and so Ft

is a set, not just a multiset). The claim in Theorem 1.7(ii) follows (with v0 = (1, 0)).

Remark 5.5. Suppose that F ⊕A =a.e. T
d is a measurable tiling of the d-torus, d ≥ 2, by

some finite subset F = {f1, . . . , fn} of Rd and some measurable subset A of Td. Consider

the velocities vi as in Theorem 1.7(i), and let F(v) := {fi : vi = v} be those elements of
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F that are moving with velocity v. Theorem 1.7(ii) gives that the sets F(v) ⊕ A are Rv-

invariant for every v ∈ R2. In dimensions d ≥ 3, this is no longer true. For instance, if

A = [0, 1/2]3 and

F = {(0, 0, 0), (0, 1/2, 0),

(1/2, 0, 0), (1/2, 1/2, 0)

(α, 0, 1/2), (α, 1/2, 1/2),

(α + 1/2, β, 1/2), (α + 1/2, β + 1/2, 1/2)}

for some irrationally numbers α, β, and F0 = {0, 1/2}3. Then, if v = (α, β) or v = (α, 0),

we have that F(v) ⊕ A is not Rv-invariant.

However, we do not know if there is any measurable tiling F ⊕ A =a.e. T
d, d ≥ 3

that does not satisfy the following weaker analogue of Theorem 1.7(ii). The velocities are

replaced with piecewise linear functions vf : [0, 1] → Rd, for f ∈ F, such that Ft ⊕ A =a.e.

Td, where Ft is defined analogously as in Theorem 1.7. Moreover, if we set Ft
(v) = {f ∈

F : v′
f (t) = v}, for v ∈ Rd, then Ft

(v) ⊕ A is Rv-invariant for every v ∈ Rd and t ∈ [0, 1]

whenever all the derivatives exist. In fact, we do not even know whether there exists

any measurable tiling F ⊕ A =a.e. T
d, d ≥ 3 such that there is no velocity 0 �= v ∈ Rd for

which there is a proper non-empty subset F ′ of F such that F ′ ⊕ A is Rv-invariant. Note

that the argument in [33] implies that if the tile A is a cube then every tiling F satisfies

this weaker analogue of Theorem 1.7(ii). On the other hand, if we are allowed to use

more than one tile, then we can construct such a tiling in T3, as follows. Let f : T → R

be the function

f (x) := sin(πx)

10

and consider the following subsets A1, A2, A3 of T3:

A1 := {(x, y, z mod 1) : (x, y) ∈ T2 : f (x) ≤ z < 1/3 + f (x + y)}
A2 := {(x, y, z mod 1) : (x, y) ∈ T2 : 1/3 + f (x + y) ≤ z < 2/3 + f (y)}
A3 := {(x, y, z mod 1) : (x, y) ∈ T2 : 2/3 + f (y) ≤ z < 1 + f (x)}.

It is a routine matter to verify that

((t, 0, 0) + A1) 	 ((0, t, 0) + A2) 	 ((t, t, 0) + A3) =a.e. T
3
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for any t ∈ R, but that none of the individual sets A1, A2, A3 enjoy any translational

symmetries. Thus, we see that there is a non-rigidity to the tiling problem

(f1 + A1) 	 (f2 + A2) 	 (f3 + A3) =a.e. T
3

that cannot be explained purely by sliding each of the A1, A2, A3 separately, or by

translating the entire triple A1, A2, A3 by a common shift.

5.3 The two-dimensional connected case

We now prove Theorem 1.7(iii). The main new ingredient is the following classification

of tilings of an interval by functions of connected support.

Lemma 5.6 (Connected tilings of intervals). Let F be a finite multiset in R, [a, b] ⊂ R

be a finite interval and ψ : R → [0, ∞) be a measurable function that is supported on a

connected set. If

1F ∗ ψ =a.e. 1[a,b], (23)

then there exists m ∈ N, c < c′ such that mψ =a.e. 1[c,c′].

We remark that it is important here that the support of ψ is connected, since the

tiling

1{0,1} ∗ 1[0,1]∪[2,3] =a.e. 1[0,4]

provides a counterexample in the disconnected case. The proof of Lemma 5.6 follows

from two observations sketched in Figure 3.

Proof. By translation and rescaling, we may normalize [a, b] = [0, 1] to be the unit

interval, and also normalize min F = 0. We enumerate the distinct elements of F in

order as

0 = f1 < f2 < · · · < fk

and write

1F =
k∑

j=1

mj1{fj},
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Fig. 3. Lemma 5.6 follows from two observations. First, we analyze the left and the right “border”

of the tiling to conclude that almost everywhere on [c, c+f2 −f1] and [c′ − (fk −fk−1), c′], ψ is equal

to the same constant 1/m where m is the multiplicity of both f1 and fk in F. We then consider the

shift fk−1 and since ψ is assumed to be connected, we conclude that c′ − c ≤ fk − fk−1, which in

turn implies ψ is constant on its whole support.

where mj ≥ 1 is the multiplicity of fj in F; thus

1[0,1](x) =
k∑

j=1

mjψ(x − fj) (24)

for almost every x.

If k = 1 then the claim immediately follows from (24). Henceforth, we assume

k > 1. Let [c, c′] be the support of ψ , then the support of
∑k

j=1 mjψ(x − fj) has infimum c

and supremum fk + c′, thus by (24) we have c′ > c = 0 and

0 < fk = 1 − c′ < 1. (25)

From (24), focusing attention in particular on the j = 1 term on the right-hand

side, we have

1 ≥ m1ψ(x) (26)

for almost every 0 ≤ x ≤ 1, with equality for almost every 0 ≤ x ≤ f2. Focusing instead

on the j = k term, we have

1 ≥ mkψ(x − fk) (27)

for almost every 0 ≤ x ≤ 1, with equality for almost every fk−1 + c′ ≤ x ≤ 1. Combining

these facts, we see that for almost every fk ≤ x ≤ min(1, fk + f2), we have

1 ≥ mkψ(x − fk) = mk

m1
,
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and for almost every max(0, fk−1 − fk + c′) ≤ x ≤ c′, we have

1 ≥ m1ψ(x) = m1

mk
.

Since both of these ranges of x have positive measure, we have m1 = mk = m for some

natural number m, and

ψ(x) = 1

m

for almost every 0 ≤ x ≤ δ := min(1, fk + f2)− fk. Returning to (24), and isolating the j = k

term again, we see that

1 = 1 +
k−1∑
j=1

mjψ(x − fj)

for almost all fk ≤ x ≤ min(fk + δ, 1). In particular, we have ψ(x) = 0 for almost all

fk − fk−1 ≤ x ≤ min(fk + δ, 1) − fk−1. Since ψ is supported on [0, c′], this implies that

c′ ≤ fk − fk−1. Thus, the functions ψ(x − fj) vanish for all 1 ≤ j ≤ k − 1 and almost all

x ≥ fk ≥ fj + c′; inserting this back into (24), we conclude that

1[0,1](x) = mψ(x − fk)

for almost all x ≥ fk. Thus, mψ =a.e. 1[0,1−fk] = 1[c,c′], and the claim follows. �

Now we can prove Theorem 1.7(iii). Repeating the arguments from the preceding

section, we may assume that F ⊂ R × Q is partitioned as F1 ∪ · · · ∪ Fk, where each Fi is

non-empty, and of the form

Fi := F ∩ ((αi, 0) + Q2)

with each of the Fi ⊕ A being R(1, 0)-invariant.

Suppose first that k = 1, then F = F1 is contained in a single coset of Q2, and

hence lies in Q2 thanks to the normalization 0 ∈ F. In this case, we can set all velocities

equal to zero, and the claim follows.

Now suppose that k > 1. For each i = 1, . . . , k, the R(1, 0)-invariant set Fi ⊕ A

is equal almost everywhere to a set T × Ii, with the Ii being of positive measure and

partitioning T. Since A is open and connected, its projection to the vertical axis {0} × T

must then be an interval, and Ii is (up to null sets) the union of finitely many translates

of that interval. In particular, each Ii can be expressed as the disjoint union of finitely

many intervals Ii,j = [ai,j, bi,j] mod Z in T for some ai,j < bi,j < ai,j + 1. We can then
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partition Fi into Fi,j such that Fi,j ⊕ A =a.e. T × Ii,j, or equivalently that

1T×Ii,j =a.e. 1Fi,j
∗ 1A.

On integrating out the horizontal variable, we have

1Ii,j =a.e. 1π(Fi,j)
∗ ψ , (28)

where π : R2 → T is the projection homomorphism π(x, y) := y mod 1 (with π(Fi) viewed

as a multi-set), and ψ : T → [0, +∞) is the function

ψ(y) :=
∫
T

1A(x, y) dx.

Note that as A is open and connected, ψ is supported on some interval supported inside

some translate of Ii,j, and we can lift ψ to a function ψ̃ : R → [0, +∞) supported inside

some translate of [ai,j, bi,j] so that one has a tiling

1[ai,j,bi,j] =a.e. 1F̃i,j
∗ ψ̃

for some finite multiset F̃i,j in R. Applying Lemma 5.6, we see that ψ̃ takes the form
1
m1[c,c′] for some natural number m and some interval [c, c′], which is contained in a

translate of [ai, bi] and thus has length strictly less than one; pushing back to T, we

conclude that ψ = 1
m1[c,c′] mod1. Inserting this into (28), we see that the multi-set π(Fi,j)

is in fact an arithmetic progression (of spacing c′−c) contained in a translate of Ii,j, with

each element in this progression occurring with multiplicity m. Thus, one can partition

each Fi,j further into subsets Fi,j,k of cardinality m, with each π(Fi,j,k) consisting of a

single point xi,j,k with multiplicity m; in particular, each Fi,j,k mod Z2 is contained in a

single coset of ψ = 1
m1[c,c′] mod 1, and

1xi,j,k+[c,c′] =a.e. 1π(Fi,j,k) ∗ ψ .

The right-hand side is the projection of 1Fi,j,k
∗ 1A after integrating out the horizontal

variable. Since this function is bounded by 1F ∗ 1A =a.e. 1T2 , we must therefore have

1T×(xi,j+[c,c′]) =a.e. 1Fi,j,k
∗ 1A
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or equivalently

Fi,j,k ⊕ A =a.e. T × (xi,j,k + [c, c′]).

In particular, each Fi,j,k ⊕ A is Rv0-invariant. This completes the proof.

Remark 5.7. The hypothesis that A is open and connected can be relaxed to the

hypothesis that A is “measurably connected” in the following sense: for every ξ ∈ Z2\{0},
the function ψξ : T → [0, +∞) defined by

ψξ (t) :=
∫

ξ ·x=t
1A,

where the integral is with respect to the Haar probability measure on {x ∈ T2 : ξ · x = t},
has connected support (modulo null sets). We leave the details of this generalization to

the interested reader.

5.4 The high-dimensional case

We now prove Theorem 1.7(i). Let T (A) ⊂ (Td)n denote the set of all tuples (f̃1, . . . , f̃n) ∈
(Td)n which generate a measurable tiling of the torus Td in the sense that the translates

f̃i + A, i = 1, . . . , n partition Td up to null sets, or equivalently that

n∑
i=1

1f̃i+A =a.e. 1Td .

Since translation is a continuous operation in the strong operator topology of (say)

L2(Td), we see that the set T (A) is closed. (This is, for instance, an immediate

consequence of Lusin’s theorem.) By hypothesis, this set T (A) is also non-empty; indeed,

it contains the point

f̃ := (f1, . . . , fn) mod (Zd)n.

Now let q be the product of all the primes up to n. By Theorem 1.2(i), we know that

(nq + 1)F ⊕ A =a.e. T
d for all integers n, thus

(nq + 1)f̃ ∈ T (A).
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We conclude that the orbit closure

{(nq + 1)f̃ : n ∈ Z}

also lies in T (A). We may write this orbit closure as

f̃ + H,

where H is the orbit closure

H := {nqf̃ : n ∈ Z}.

Clearly, H is a closed subgroup of the torus (Td)n and is thus a compact abelian Lie

group. By the classification of such groups (see e.g., [32, Theorem 5.2(a)]), one can split

H = H◦ ⊕ K, where H◦ is the identity connected component of H (and thus a subtorus of

(Td)n) and K is a finite subgroup of the torus (Td)n. In particular, H is a finite union of

rational cosets of H◦ (translates of H◦ by an element of (Qd)n). Since qf̃ ∈ H, we conclude

that f̃ + H is also a finite union of rational cosets of H◦. In particular, one has

f̃ ∈ f̃ 0 + H◦ ⊂ T (A)

for some f̃ 0 ∈ (Qd)n. One can write H◦ as h mod (Zd)n, where h ≤ (Rd)n is the Lie

algebra of H (or H◦). Pulling back from (Td)n to (Rd)n, we conclude that

(f1, . . . , fn) ∈ (f 0
1 , . . . , f 0

n ) + h

for some (f 0
1 , . . . , f 0

n ) ∈ (Qd)n with the property that

(f 0
1 , . . . , f 0

n ) + h mod (Zd)n ⊂ T (A).

In particular, if we set

(f t
1, . . . , f t

n) := (f 0
1 , . . . , f 0

n ) + t(v1, . . . , vn)

for t ∈ R, where vi := fi − f 0
i , then we have

(f t
1, . . . , f t

n) mod (Zd)n ∈ T (A)
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and hence

{f t
1, . . . , f t

n} ⊕ A =a.e. T
d.

The claims in Theorem 1.7(i) then follow.

Remark 5.8. The periodic tiling conjecture [14, 28] asserts that if one has a tiling F ⊕
A = Zd for some finite tile F in Zd and A ⊂ Zd, then there is also a periodic tiling F⊕A′ =
Zd, thus A′ is a finite union of cosets of some lattice in Zd. Currently, this conjecture

has only been established up to d ≤ 2; see [2, 13]. A variant of the argument used to

prove Theorem 1.7(i) can establish the following partial result towards this conjecture:

suppose that there is a homomorphism T : Zd → Tm and a measurable subset E of the

torus Tm and a finite F ⊂ Zd such that one has the measurable tiling T(F) ⊕ E =a.e. T
m,

where an element f of Zd acts on Tm via translation by T(f ). Then F admits a periodic

tiling F⊕A′ = Zd. Indeed, if one defines T (F) to be the space of homomorphisms T̃ : Zd →
Tm (which one can identify with (Tm)d) such that T̃(F)⊕ E =a.e. T

m, then a variant of the

above arguments shows that T (F) contains the orbit closure

{(nq + 1)T : n ∈ Z}.

By the above analysis, this orbit closure contains a rational point T0, and by restricting

the measurable tiling T0(F) ⊕ E =a.e. T
m to a generic coset of T0(Zd) and pulling back

by Zd one obtains a periodic tiling F ⊕ A′ = Zd; we leave the details to the interested

reader.

A General Structure Theorem

In this appendix, we establish

Proposition A.1. Theorem 1.2(ii) continues to hold if the measure μ is assumed to be

σ -finite rather than finite, and the action is assumed to be quasi-invariant rather than

invariant, but the claim that the ϕf has mean μ(A) is dropped.

In particular, we can recover Theorem 1.1(ii), which addresses the case of Zd

equipped with counting measure.

We begin with some easy reductions. As every σ -finite measure can be replaced

by a probability measure in the same measure class, in particular, as the null sets are
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the same, we have that the action remains quasi-invariant, we may assume that μ is a

probability measure. (For instance, if μ is a σ -finite measure and X is exhausted by sets

Kn with 0 < μ(Kn) < ∞ then one can replace μ by the equivalent probability measure∑∞
n=1

2−n

μ(Kn)
1Kn

μ.) Also, we may assume without loss of generality that the measure

space X is complete, since otherwise one can pass to the completion and modify the

ϕf afterwards on a null set to recover measurability in the original σ -algebra.

The main new ingredient is that the use of the mean ergodic theorem is replaced

by the use of a measurable medial mean. Recall that a medial mean m is a linear

functional from �∞ (the set of bounded sequences indexed by N) to R that is positive,

that is, m(α) ≥ 0 whenever α ≥ 0, normalized, that is, m(1) = 1, and shift-invariant, that

is, m(α) = m(S(α)), where S(α)(n) := α(n + 1). We have the following key fact:

Proposition A.2 (Existence of measurable medial mean). [5, Section 3] Let ν be a Borel

probability measure on [0, 1]N. Then there is a medial mean

m: �∞ → R,

that is ν-measurable when restricted to [0, 1]N (i.e., it is measurable with respect to the

completion of the Borel σ -algebra of [0, 1]N by ν).

We have the following simple estimate:

Claim A.3. Let m be a medial mean and α, β ∈ �∞ such that limN→∞ α(N) − β(N) → 0.

Then m(α) = m(β).

Proof. Let γ (N) = α(N) − β(N). It is enough to show that m(γ ) = 0. We have −|γ | ≤ γ ≤
|γ |. By positivity and additivity of m this gives m(|γ |) ≥ m(γ ) ≥ − m(|γ |), as we have

m(|γ |) − m(γ ) = m(|γ | − γ ) ≥ 0

and similarly

m(γ ) − m(−|γ |) = m(γ − (−|γ |)) ≥ 0.

Consequently, it is enough to show that m(|γ |) = 0. We have

m(|γ |) = m(Sk|γ |) ≤ m(max Sk|γ |) = max Sk|γ | → 0

by shift-invariance, normality, and positivity. �
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Now we are ready to prove Proposition A.1. From the first part of Theorem 1.2(i)

and Remark 2.3, we have, as in the proof of Theorem 1.2(ii), that

1X =
∑
f ∈F

1

N

N∑
n=1

1(f q)n·f ·A

μ-almost everywhere for all N. For each f ∈ F, let ψf : X → [0, 1]N be the measurable

function

ψf :=
(

1

N

N∑
n=1

1(f q)n·f ·A

)
N∈N

.

Note that we have

∑
f ∈F

ψf = (1, 1, . . . )

μ-almost everywhere.

Write νf for the push-forward of μ via ψf , where f ∈ F. By Proposition A.2

(applied to ν = 1
|F|

∑
f ∈F νf ), there is a medial mean m that is simultaneously measurable

for each νf . Define ϕf := m ◦ψf . By the definition of m, we have that ϕf are positive

measurable functions that satisfy

1X =
∑
f ∈F

ϕf . (A.1)

It is routine to verify that

|ψf (x)(N) − ψf (y)(N)| ≤ 2/N,

whenever y = f q · x, and that shows that ϕf is f q-invariant for every f ∈ F by Claim A.3.

Also from construction, we have ϕf =a.e. 1f ·A if f q · A =a.e. A. Proposition A.1 follows.
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[5] Cieśla, T. and M. Sabok. “Measurable hall’s theorem for actions of abelian groups.” J. Eur.

Math. Soc. 24 (2021): 2751–73. https://doi.org/10.4171/JEMS/1164.

[6] Conley, C. T., J. Grebík, and O. Pikhurko. “Divisibility of spheres with measurable pieces.”

2020.

[7] Coven, E. M. and A. Meyerowitz. “Tiling the integers with translates of one finite set.” J.

Algebra 212, no. 1 (1999): 161–74. https://doi.org/10.1006/jabr.1998.7628.

[8] Cyr, V. and B. Kra. “Nonexpansive Z2-subdynamics and Nivat’s conjecture.” Trans. Amer.

Math. Soc. 367, no. 9 (2015): 6487–537.

[9] Gao, S., S. Jackson, E. Krohne, and B. Seward. “Continuous combinatorics of abelian group

actions.” 2018.

[10] Gravin, N., M. N. Kolountzakis, S. Robins, and D. Shiryaev. “Structure results for multiple

tilings in 3D.” Discrete Comput. Geom. 50, no. 4 (2013): 1033–50. https://doi.org/10.1007/

s00454-013-9548-3.
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[24] Kra, B., A. Quas, and A. Şahin. “Rudolph’s two step coding theorem and Alpern’s lemma for

Rd actions.” Trans. Amer. Math. Soc. 367, no. 6 (2015): 4253–85.

[25] Krieger, W. “On generators in ergodic theory.” Proceedings of the International Congress

of Mathematicians (Vancouver, B.C., 1974), Vol. 2. 303–8. Canad. Math. Congress, Montreal,

Que, 1975.

[26] Laba, I. and I. Londner. “The Coven–Meyerowitz tiling conditions for 3 odd prime factors.”

Invent. Math. (2022). https://doi.org/10.1007/s00222-022-01169-y.

[27] Lagarias, J. C. and S. Szabó. “Universal spectra and Tijdeman’s conjecture on factorization of

cyclic groups.” J. Fourier Anal. Appl. 7, no. 1 (2001): 63–70. https://doi.org/10.1007/s00041-

001-0005-y.

[28] Lagarias, J. C. and Y. Wang. “Tiling the line with translates of one tile.” Invent. Math. 124,

no. 1–3 (1996): 341–65. https://doi.org/10.1007/s002220050056.

[29] Leptin, H. and D. Müller. “Uniform partitions of unity on locally compact groups.” Adv. Math.

90, no. 1 (1991): 1–14. https://doi.org/10.1016/0001-8708(91)90017-2.

[30] Newman, D. J. “Tesselation of integers.” J. Number Theory9, no. 1 (1977): 107–11. https://doi.

org/10.1016/0022-314X(77)90054-3.
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