Random Testing of a Higher-Order Blockchain Language
(Experience Report)

TRAM HOANG, National University of Singapore, Singapore
ANTON TRUNOV, Zilliga Research, Russia

LEONIDAS LAMPROPQOULQOS, University of Maryland, USA
ILYA SERGEY, National University of Singapore, Singapore

We describe our experience of using property-based testing—an approach for automatically generating random
inputs to check executable program specifications—in a development of a higher-order smart contract language
that powers a state-of-the-art blockchain with thousands of active daily users.

We outline the process of integrating QuickCHIicKk—a framework for property-based testing built on top of
the Coq proof assistant—into a real-world language implementation in OCaml. We discuss the challenges we
have encountered when generating well-typed programs for a realistic higher-order smart contract language,
which mixes purely functional and imperative computations and features runtime resource accounting. We
describe the set of the language implementation properties that we tested, as well as the semantic harness
required to enable their validation. The properties range from the standard type safety to the soundness of a
control- and type-flow analysis used by the optimizing compiler. Finally, we present the list of bugs discovered
and rediscovered with the help of QuickCaick and discuss their severity and possible ramifications.

CCS Concepts: » Software and its engineering — Functional languages.

Additional Key Words and Phrases: random testing, property-based testing, definitional interpreters, higher-
order control-flow analysis, smart contracts, QuickChick, Scilla

ACM Reference Format:

Tram Hoang, Anton Trunov, Leonidas Lampropoulos, and Ilya Sergey. 2022. Random Testing of a Higher-
Order Blockchain Language (Experience Report). Proc. ACM Program. Lang. 6, ICFP, Article 122 (August 2022),
16 pages. https://doi.org/10.1145/3547653

1T INTRODUCTION

What is worse than losing millions of dollars to a buggy program that manages decentralized
financial transactions? The answer is: losing millions of dollars to a buggy program that has been
marked as bug-free by a buggy type checker.

Smart contract languages define semantics of transactions executed by distributed blockchain
consensus protocols. Programs written in such languages encode the custom logic of replicated
computations that manipulate various digital assets in a decentralized fashion. Research in smart
contract languages is on the rise, and many proposals with exciting features, allowing for safe and
secure implementations of decentralized applications, have been recently put forward (Blackshear
et al. 2019; Coblenz 2017; Das et al. 2021; IOHK Foundation 2019; Schrans 2018; Sergey et al. 2019;
Tezos Foundation 2018). Striving to strike a good balance between expressivity and minimalism,

Authors’ addresses: Tram Hoang, National University of Singapore, Singapore, tram hoang@u.yale-nus.edu.sg; Anton
Trunov, Zilliqa Research, Russia, anton@zilliqa.com; Leonidas Lampropoulos, University of Maryland, USA, leonidas@umd.
edu; Ilya Sergey, National University of Singapore, Singapore, ilya@nus.edu.sg.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2022 Copyright held by the owner/author(s).

2475-1421/2022/8-ART122
https://doi.org/10.1145/3547653

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 122. Publication date: August 2022.

122:2 Tram Hoang, Anton Trunov, Leonidas Lampropoulos, and llya Sergey

many of those languages are based on a combination of the polymorphic lambda-calculus with
linear or session types to statically enforce properties, such as preservation of assets (Blackshear
et al. 2019) or adherence to a statically-checked communication protocol (Das et al. 2021).

The static guarantees provided by such languages in practice are, however, only as good as their
implementations, by means of a definitional interpreter, virtual machine, or via compilation to some
well-adopted back-end languages, such as EVM (Wood 2014) or wasm (Haas et al. 2017). That is, a
single bug in the implementation of a contract type checker, interpreter, or compiler can defy the
whole purpose of a strong type system by making it possible to violate its runtime guarantees—the
fact that can (and will) be exploited by the adversarial system participants for monetary profits.

One well-studied approach to ensure the correctness of various language implementation com-
ponents is to mechanize the entire development in a proof assistant, allowing to state and prove
theorems about aspects such as type- and analysis soundness. While this approach has been suc-
cessfully exercised for realistic languages, such as C (Leroy 2006) and ML (Kumar et al. 2014), it
incurs a prohibitively high first-time implementation effort and maintenance overhead, as evolution
of the codebase also requires evolving proofs, which are often hand-crafted. A more lightweight
approach to ensure correctness is via lightweight property-based testing (Claessen and Hughes
2000) of language artifacts by using large numbers of randomly generated well-formed programs.
While unable prove the absence of errors, this approach has been shown extremely efficient for
discovering multiple bugs in industry-strength compilers of both imperative (Yang et al. 2011) and
functional languages (Midtgaard et al. 2017; Patka et al. 2011). Furthermore, incremental in nature,
randomized testing allows for a gradual increase of the set of properties being checked, following
the “pay-as-you-go” principle and requiring little to no change in the tests to account for a constant
evolution of a tested codebase.

In this paper, we describe our experience of using QuickCHick (Lampropoulos and Pierce 2018),
a state-of-the-art framework, implemented on top of Coq proof assistant, for randomized property-
based testing of Coq and OCaml programs, inspired by QuickCheck (Claessen and Hughes 2000),
to find bugs in the implementation of SciLLa smart contract language (Sergey et al. 2019).

Why SciLra? SciLLa combines a pure functional calculus based on System F with state-managing
imperative computations and message-passing semantics for communication between contracts.
The combination of these aspects makes it challenging to define random generators that provide
good distribution of well-typed programs, while avoiding degenerate cases, such as those with
uninhabited polymorphic types. Most of these aspects are not specific to SciLLa and make an
appearance in other popular smart contract languages, such as Prutus (IOHK Foundation 2019)
and MicHELSON (Tezos Foundation 2018). However, to the best of our knowledge, there are no
random program generators for property-based testing of any of those language’s implementations.
SciiLra’s semantics is defined by means of a monadic definitional interpreter written in OCaml,
which streamlines testing basic properties, such as the soundness of its type checker, and also, with
some harness, testing advanced ones, such as soundness of various static analysers. Finally, SciLLa
has been deployed on top of ZiLrLiga—a real-world blockchain protocol; therefore, any bugs found
in its implementation would be likely taken seriously and fixed by the developers.

Why QuickCHIck? QUICKCHICK is a property-based testing framework for the Coq proof assis-
tant. Its guiding design principle is to fully support power users writing and fine-tuning hand-crafted
generators for random data, while adding type-based and specification-based automation on top of
that (Lampropoulos 2018). This made it perfect for an extended case study like the one presented
in this paper, as the automatically obtained generators could serve as a starting point for the more
elaborated program generation strategies. In addition, while originally designed to test Coq code,
QuickCHICK operates via extraction to OCaml, allowing for access to side effects (such as printing

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 122. Publication date: August 2022.

Random Testing of a Higher-Order Blockchain Language (Experience Report) 122:3

counterexamples and pseudo-random number generation). By adapting this extraction process, we
were able to use QUICKCHICK to test the extended OCaml codebase of SciLrA. In contrast with other
existing framework for property-based in OCaml (qcheck,! crowbar,? and base_quickcheck®) that
struggle with generating good distributions for hierarchical data (e.g., program terms), QUIcKCHICK
combines coverage-guided fuzzing of properties (Lampropoulos et al. 2019), targeted property-based
testing (Loscher and Sagonas 2017), and combinatorial testing (Goldstein et al. 2021), all of which
have been shown to allow for defining fine-tuned program generators, while significantly cutting
the space of tests required to discover bugs in language implementations.

Contributions and outline. In summary, this paper makes the following contributions that will
be of interest to the practitioners who work on implementations of interpreters and compilers for
higher-order languages, general-purpose ones and for blockchain programming in particular:

e We present a novel approach to efficiently generate well-typed programs in System F. We
also outline how to generate imperative state-manipulating code and full-blown SciLLA smart
contracts, as well as inputs to simulate the contracts’ executions on a blockchain (Sec. 3).

e We implement these generation strategies in QuickCHICK and use them to test the correctness
of SciLra evaluator and type checker (Sec. 4).

e We demonstrate how a monadic implementation of SciLLa interpreter (Sec. 2) allows for testing
correctness of abstract interpretation-based higher-order control- and type-flow analyses by
relating their results to the collecting semantics of a concrete program execution (Sec. 5).

e We present the bugs discovered and rediscovered in the SciLLa type checker, interpreter, and type-
flow analysis using QuickCHIcK, and discuss their possible impact in the context of blockchain-
based programming (Sec. 6).

2 A BRIEF OVERVIEW OF SCILLA

Scrirra is an ML-style functional language combining pure functional and structured imperative
programming, targeted at implementing smart contracts in the form of state-transition systems
that communicate via message-passing (Sergey et al. 2019). Fig. 1 shows the SciLLa encoding
(with some details omitted) of the most popular smart contract used to define custom currencies
(so-called fungible tokens), following the ERC-20 standard of the Ethereum community (Ethereum
Foundation 2018). Once can think of this definition as a “template” for contracts implementing
this logic, somewhat similar to Java classes. The implementation starts by declaring the ScirLa
version (line 1), followed by the library of pure functions (lines 3-5) that can be utilised by this
contract as well as by other contracts that import the library. The contract definition (lines 7-29)
features a number of immutable contract parameters (line 8), mutable fields (lines 10-12), and six
transitions (lines 14-29) which determine how external entities may interact with the contract.
A transition is invoked by an external entity passing a message to the contract. Each transition
contains a number of effectful statements that result in a change to the contract state, the emission
of externally observable events, and the addition of messages to the contract’s outbox via the send
statement. For instance, the transition BalanceOf responds with the token balance of the tokenOwner
account by scheduling the corresponding message for delivery upon the end of the transition.

Individual transitions can only implement simple control flow logic, featuring straight-line code,
branching by means of pattern matching on a value, and for-loops. This is a design choice aimed
to deprecate contract reentrancy “in the middle of” a transition, which is considered a harmful
practice in smart contract programming (Cecchetti et al. 2021; Giin Sirer 2016). Transitions may

Thttps://github.com/c-cube/qcheck

Zhttps://github.com/stedolan/crowbar
Shttps://github.com/janestreet/base_quickcheck

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 122. Publication date: August 2022.

122:4 Tram Hoang, Anton Trunov, Leonidas Lampropoulos, and llya Sergey

1 scilla_version @

2 library FungibleToken

3 let min_int : Uint128 — Uint128 — Uint128 = (* ... *)

4 let le_int : Uint128 — Uint128 — Bool = (% ... %)

5 let one_msg : Msg — List Msg = (x Return singleton List with a message *)

6

7 contract FungibleToken

8 (owner : ByStr20, total_tokens : Uint128, decimals : Uint32, name : String, symbol : String)

9

10 field balances : Map ByStr20 Uint128 =

11 let m = Emp ByStr20 Uint128 in builtin put m owner total_tokens

12 field allowed : Map ByStr20 (Map ByStr20 Uint128) = Emp ByStr20 (Map ByStr20 Uint128)

13

14 transition BalanceOf (tokenOwner : ByStr20)

15 bal « balances[tokenOwner];

16 match bal with

17 | Some v =

18 msg = {_tag : "BalanceOfResponse"; _recipient : _sender; address : tokenOwner; balance : v};
19 msgs = one_msg msg; send msgs

20 | None =

21 msg = {_tag : "BalanceOfResponse"; _recipient : _sender; address : tokenOwner; balance : zero};
22 msgs = one_msg msg; send msgs

23 end

24 end

25 transition TotalSupply () (* code omitted %) end

26 transition Transfer (to : ByStr20, tokens : Uint128) (* code omitted *) end

27 transition TransferFrom (from : ByStr20, to : ByStr20, tokens : Uint128) (* code omitted *) end
28 transition Approve (spender : ByStr20, tokens : Uint128) (* code omitted *) end

29 transition Allowance (tokenOwner : ByStr20, spender : ByStr20) (* code omitted *) end

Fig. 1. The FungibleToken smart contract implementation in SciLLA.

locally define and apply pure functions, as well as apply functions from the contract’s own library
or from imported libraries defined by other, previously deployed contracts. In the example above
the BalanceOf transition uses the function one_msg defined in the contract’s own library.

The pure fragment of SciLLa corresponds to an explicitly typed implementation of the Sys-
tem F calculus (Girard 1972; Reynolds 1974), extended with built-in primitive types and operations,
user-defined (non-inductive) algebraic data types, as well as a number of embedded inductive
polymorphic data types equipped with pre-defined recursion principles. That is, SCILLA program-
mers only get access to a number of polymorphic structural recursion combinators (aka folds)
implementing traversals of collections in a strictly terminating manner.

For example, the following code fragment demonstrates the SciLLA encoding of the standard
polymorphic implementation of list reversal by using one of the language’s embedded recursion
primitives, namely, 1ist_foldl. The second line explicitly instantiates the polymorphic type scheme
of the generic 1ist_foldl with the type of the list element 'E and the accumulated result (List 'E);
the rest of the code applies the specialised fold to the iterated function and the initial value.

let list_reverse : forall 'E. List 'E — List 'E = tfun 'E=
let foldl = @list_foldl 'E (List 'E) in
let iter = fun (z : List 'E) = fun (h : 'E) = Cons {'E} h z in
let init = Nil {'E} in foldl iter init

A wn =

In practice, most non-trivial SciLLA code is written in its pure functional fragment, leaving only
the most primitive state-manipulating logic (e.g., reading and assigning to contract fields or map
values—cf. line 15 of Fig. 1) to the imperative logic of transitions.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 122. Publication date: August 2022.

Random Testing of a Higher-Order Blockchain Language (Experience Report) 122:5

(a) Contract deployment Replicated by many miners

f: Int32 -> Int32
g: String -> Bool
Parser —P‘ Type Checker

Xy x

TX aborted TX aborted

Proposed by single miner

C.scilla
code and state
are replicated

(b) Contract execution

Replicated by many miners

Message m, by
miner or contract

to: C V

transition: t validation

replicated if
TX succeeds

> Interpreter

eval C.t(m, oc)

TX aborted

Fig. 2. Contract deployment (top) and contract execution (bottom) with the blockchain-replicated state.

2.1 Deploying and Executing SciLLA Contracts

The top part (a) of Fig. 2 demonstrates the deployment pipeline. Once a contract, e.g., C.scillais
proposed by a protocol participant (aka miner), it is parsed and type checked by a number of active
miners participating in the protocol. Since the transition might use functions that are contained
in other, previously deployed contracts (e.g., f and g of types Int32 — Int32 and String — Bool,
shown in the figure), type checking requires fetching their signatures from a local copy of the
replicated state, available to each miner. Once the checks succeed, the contract’s code and initial
state are replicated and the transaction is considered committed. Once the described deployment
procedure has been executed, a contract’s code cannot be modified, and each network node will,
from there on, have its own local copy of the contract.

The bottom part (b) of Fig. 2 shows a part of a transaction involving the invocation of a transition
of an already deployed contract C. The transaction is initiated by a message m sent by a user to
another account. Assuming this account belongs to a contract C, the sender also provides a name t
of the transition to be invoked, as well as all necessary parameters as per the contract’s signature.
Each of the involved miners will then (i) validate the incoming message, (ii) fetch the most up-to-
date state o¢ of C as well as external functions necessary for the execution of t, and (iii) invoke
the Scirra interpreter. If successful, the execution will result in an updated state 0'6, as well as
possibly a number of observable events and messages to be sent to other contracts and users. The
order in which messages are processed is predetermined by the protocol semantics. Finally, if all
the subsequently invoked transition executions succeed within the span of this transaction, the
resulting states are stored locally, and thereby replicated by the miners across the blockchain.

2.2 Monadic Interpreter

The semantics of SciLra is implemented via a definitional interpreter written in a monadic style.
Fig. 3 shows a characteristic example of evaluating some expressions from the pure fragment of
Sciira: literals, variables, let-bindings, and cost-annotated GasExpr (g, e'), which will be ex-
plained soon. The definition also features semantics for the typed fixpoint combinator, although the

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 122. Publication date: August 2022.

122:6 Tram Hoang, Anton Trunov, Leonidas Lampropoulos, and llya Sergey

combinator is only accessible to language users through the predefined well-founded fold functions.*
The definition of the monad and its notation are imported from the module EvalMonad.Let_syntax
in line 2. Monadic binding is encoded via the let%bind notation; the meaning of the return is
standard. Using a monadic data type for representing intermediate execution states, the evaluator
keeps track of the following program execution effects:

e whether the execution is successful so far or has failed, and
e the remaining execution budget (so-called “gas”) tracked in the style of State monad.

The actual monad instance used by the evaluator is implemented by the following data type t:

type ('a,'b) result = Ok of 'a | Error of 'b

type nonrec ('a, 'b, 'c) t = (('a, 'b) result -> 'c) -> 'c
which is nothing but a slightly specialized continuation-passing style (CPS) monad.® A pleasant
consequence of using the CPS monad is that it does not have to mention, e.g., the gas-tracking state
component explicitly, as it can be “added” by specializing the return type 'c—a well-known trick
for representing layered monads in CPS (Filinski 1994). Foreshadowing the discussion in Sec. 5, we
have to note that the design choice of using CPS is what made it possible to harness the interpreter
in a modular way for testing static analyses of SciLLA programs.

Taking a closer look at Fig. 3, the

. . . 1 let 1 1 = match ith
reader might have noticed that the in- et rec expeval (e, loc) env = match e wi
. . 2 let open EvalMonad.Let_syntax in
terpreter code is not perfectly monadic: 3 | Literal 1 -> return (1, env)
at some point it has to “cut” the passed 4 lvard > .
. . . 5 let%bind v = Env.lookup env i in return (v, env)
monadic datatype, revealing the inter- 6 | Let (i, _, lhs, rhs) ->
nals of its implementation. Specifically, 7 letxbind lval, _ = wrap_eval lhs env (e, U) in
he i heck h 1 8 let env' = Env.bind env (get_id i) 1lval in
the interpreter must check, at each eval- 9 wrap_eval rhs env' (e, E lval)
uation step, whether the user’s allotted 10 | GasExpr (g, e') ->
1 let thunk () = 1e' i

amount of gas covers the cost of the fu- et thunk O = exp_eval e’ env in .

> . . 12 let%bind cost = eval_gas_charge env g in
ture execution, decreasmg the remain- 13 checkwrap thunk (Uint64.of_int cost)
: : 3 14 ("Insufficient gas")
ing gas in the state component or rais-
K g8 p X 15 | Fixpoint (g, _, body) -> (* Other cases *)
ing an out-of-gas error. To enable thisac- 16
counting in a “big step”-style evaluator, 7 (* Gas accounting)

18 let checkwrap op_thunk cost emsg k remaining_gas =

SciLra programs are pre-processed, 50 19 if remaining_gas > cost then
that all “expensive” expressions are an- 20 op_thunk () k (remaining_gas - cost)

N

else k (Error emsg) remaining_gas

notated with their gas costs by wrapping
them into GasExpr. When processing an
expression of this kind, the interpreter
calls checkwrap in line 13 of Fig. 3, which checks whether the user has depleted their gas resource,
while handling the continuation k explicitly. Finally, lines 7 and 9 of Fig. 3 call the function wrap_eval,
which virtualizes the recursive calls to the evaluator, supplementing them with additional runtime
data (e.g., (e, E lval)), which is ignored during the “normal” evaluation, but will come useful for
testing purposes, as we will show in Sec. 5.

Fig. 3. Fragment of interpreter for ScILLA expressions.

3 GENERATION OF SCILLA PROGRAMS IN QUICKCHICK

The main building block of our system is the generation of well-typed lambda terms for the core
calculus of ScirLa. Generation of well-typed lambda terms is a rich research area, with Patka
et al. (2011) paving the way by finding bugs in Glasgow Haskell Compiler’s strictness analyser by
generating well-typed terms in simply-typed lambda calculus. In this work, Palka et al. invert the

4Remember this fact, as it will make an appearance in Sec. 6.1, where we will discuss found bugs.
>The most general CPS monad type (*a -> ’c) -> ’c is not used for performance reasons.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 122. Publication date: August 2022.

Random Testing of a Higher-Order Blockchain Language (Experience Report) 122:7

traditional reading of typing rules using them as generation rules. Given a context I and a type ,
we can generate a well-typed expression e by selecting at random a typing rule that can be used
to conclude that an expression has the type 7, and then building up the expression in a way that
satisfies the premises of the rule. For example, consider the standard typing rule for products:

F'reg:y Tre:n

TProOD

'+ (61,62) 1T X Ty
In order to generate an expression with a product type 7; X 75, we need to construct a pair of two
expressions e; and e,. Looking at the premises of the rule, these expressions need to be recursively
generated so that they each have types 7; and 7, respectively.

Unlike the work of Patka et al., the core of SciLLA is based on System F, not the simply typed
lambda calculus. The additional layer of abstraction provides an interesting challenge, particularly
when trying to generate type applications. Consider then, again standard, typing rules for type
abstraction and application, where the context I" keeps track of the types of variables in scope, and
the context A keeps track of type variables that have been introduced through type abstraction:

I''Aare:t I';Avre:Var

TTyABs n n TTyArp
;A FAae:Var IAvret :t[t'/al

Viewing the type abstraction rule as a generation rule is straightforward: in order to generate an
expression of type Va.r, we simply need to generate a type abstraction Aa.e, while recursively
generating e in an expanded context that also contains the type variable a. The type application
rule proves much more challenging: in order to generate an expression of some type o, we would
need to generate two types, r and 7/, such that o is the result of the substitution [z’ /], for some
type variable a. Our solution to this problem is a generation process we called unsubstitution.

Unsubstitution. The key intuition behind unsubstitution is that we traverse our target type o,
looking for a closed syntactic sub-type 7’ that appears somewhere in the tree structure of . Then,
we traverse o again and replace (with some probability) any occurrences of 7’ we find with a fresh
type variable a. The resulting type 7 will satisfy the desired substitution equation 7[7’/a] = o
by construction. While at a high level unsubstitution appears straightforward, the devil lies in
the details, and the details, in this case, are in implementing and fine-tuning the distribution of
generated (7, 7’) pairs to avoid generating degenerate cases of type substitution too often.

The trickiest part of unsubstitution, by far, is generating a closed sub-type 7’ of a given type o.
Implementing such a generator recursively requires to not only select a random sub-type, but also
to keep track of information that ensures closedness and allows for fine-tuning the distribution. To
that end, the return type of this recursive process is a triple: the generator itself, the number of
sub-types that this generator can produce (to fine tune the distribution), and a set of type variables
(if any) that need to be abstracted over before the type becomes closed. This is shown in Figure 4.

Generating a closed sub-type of a type variable « is impossible; therefore gClosed does not return
a generator (L) but returns the set {«a} to signify that a type abstraction over « is needed before
the potential sub-type becomes closed. For the rest of the base cases (such as various fixed-width
integers, byte-strings, etc), we can just return the singleton generator that always produces this
type (written as {1 — 7}), and the empty set signifying that no type abstractions are needed.

In the type abstraction case Va.z, we first recursively call gClosed on 7 to obtain a triple (g, n, s).
Then, we need to decide if Va.7 is a closed subtype—the case when the only free variable that
appears in 7 is a, in which case s would be the singleton set {«}. In this case, we construct a
generator that with — of the time produces V.7, and with 14, of the time defers to the generator

1+n

for closed subtypes of 7 (which can produce n subtypes, as signified by its result). This way, we

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 122. Publication date: August 2022.

122:8 Tram Hoang, Anton Trunov, Leonidas Lampropoulos, and llya Sergey

gClosed a = (L,0, {a}) Type variable case
gClosed = ({1 7},1,0), Other base types
gClosed (Va.7) = Type abstraction case

let (g, n,s) = gClosed 7 in
if s = {a} then ({1 > Va.z} U{n— g},1+n,0)
else ({n+— g},n,s/a)
gClosed (op 7;) = Other recursive type constructions
let (gi, nj, si) = gClosed 7; in
if Vi,s; =0 then ({1 op7;} U;{ni > gi}, 1+ X n;,0)
else (U;{ni = gi}, X ni, Usi)

Fig. 4. Generation of closed sub-types

maintain the invariant that generation is uniform in the number of closed sub-types possible. On the
other hand, if there are still type variables that need to be abstracted, we simply propagate the
inner result, making sure to remove a from the set of abstractions remaining to achieve closedness.
Finally, in the rest of the recursive cases (such as arrow types, sums, and products), which we
group together in Figure 4 as op 7;, we operate similarly, calling gClosed for all types z;, and then
combining the results including op 7; in the result only if all 7; are closed (and therefore their
corresponding s; are the empty set).

Armed with gClosed, to complete unsubstitution we only need to traverse the type once more,
looking for occurrences of 7’ to abstract over. Since multiple such occurrences can exist, we only
replace one with « probabilistically. This also ensures that sometimes the resulting substitution is a
trivial one as with a small probability & will not exist in the resulting type.

Statements, transitions, and contracts. Using the generation of System F terms as a building block,
the next step is to generate programs for the imperative fragment of the contract language that
involves generating statements, events, and transitions. We implemented a goal-oriented approach
to ensure that each transition finishes by either (1) raising an event, (2) sending a message, or (3)
calls a helper function leading to one of the previous two outcomes. Both events and messages are
quite similar - we simply need to generate a record that has some predefined fields and (potentially)
some additional ones. To populate these records we follow an approach inspired from generation-
by-execution (Hritcu et al. 2016): we keep track of an abstraction of the state of the program at any
given point and generate statements one-by-one, ensuring that each one makes sense according to
this abstraction. We also keep track of an environment containing all valid identifiers and use this
environment to seed the functional fragment generator.

Inputs to contracts. After generating a contract, calling it with different inputs is a straightforward
task. We can simply pick one of the transitions of the contract and invoke it with appropriately
typed parameters using, once again, the generator of System F terms as the basic building block. The
one caveat is that each contract in Scirra also comes with a number of invariants that are expected
to hold on to its parameters (e.g., a transition takes a list of unique keys). For our experiments,
these invariants were also generated randomly. Most of them had to do with application-specific
boolean constraints on a contract’s parameters and fields. For those, the generator only produced
small boolean expressions, which were straightforward to satisfy most of the time. This is why
the generate-and-filter approach for data satisfying those invariants was effective. More intricate
invariants, such as, for instance, ensuring that certain byte-strings have a fixed length, would
indeed be almost impossible to generate-and-filter for; luckily we could trivially enforce them via
ordinary SciLLA types (e.g., ByStr20). In the future, should these invariants prove too unwieldy

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 122. Publication date: August 2022.

Random Testing of a Higher-Order Blockchain Language (Experience Report) 122:9

to satisfy in this manner, we might need to turn to smarter methods of generation that take the
structure of these invariants into account. Finally, to amortize the (non-trivial) cost of generating a
contract, we re-use it to generate multiple inputs to invoke it with.®

4 TESTING BASIC LANGUAGE PROPERTIES

With the generation infrastructure described in the previous section in place, we proceeded to test
various basic properties. Whenever developing generators as large as the ones required for this
project (~1500 lines), it is imperative to establish confidence in the correctness of generation itself
before testing language properties.

Property 1 (Correctness of Program Generation): Given a generator, all terms produced by the
generator are well-typed in an empty environment.

In principle, every single term produced by a generator should be well-typed if we follow the
algorithm outlined in the previous section. Any violations of this property then, would most likely
imply an error in the implementation of the generator, which allows it to produce ill-typed terms.
As an aside, the dual mistake, where a generator never produces some particular element of its
intended co-domain is much more insidious and can’t be ruled out through testing: the only known
way would be to prove the generator’s completeness (Lampropoulos et al. 2018), but that would be
an extreme undertaking compared to its expected benefit. Sometimes, however, a violation of the
property above can reveal an error in type checking, as the generator might produce a term that is
wrongly rejected by the type system. Such errors do not lead to safety concerns while making the
type system more restrictive than necessary. We didn’t discover such errors in our case studies.

Property 2 (Type Soundness): For all well-typed terms e, e should evaluate to a value v of the same
type without error, given sufficient gas.

This property is the SciLra version of the famous mantra: “well-typed programs don’t go wrong”.
Given enough fuel to perform the necessary reductions, term evaluation should always succeed in
producing a value of the same type. This property revealed the majority of the bugs described in
Sec. 6. The gas accounting aspect has turned out to be quite important for discovering subtle bugs
resource accounting implementation of SciLLA. In our tests, we used a conservatively heuristic,
allocating roughly an amount of gas quadratic in (the size of the program) X (the product of integers
it manipulates with) X (the number of nested folds), assuming no reasonable computation should
exceed this amount. With this strategy, an out-of-gas error helped to discover a gas accounting
bug #9 (c¢f Tab. 1), which we describe in more detail in Sec. 6.1.

5 TESTING STATIC ANALYSES WITH A STATE-COLLECTING INTERPRETER

In the previous section, we have outlined the properties of a language implementation, whose
checking does not require any extra harness besides the definition of the property itself, as the
corresponding artifacts: program generator, interpreter, and type checker are immediately available.

Checking the correctness of more intricate components, such as control-flow analysis, is a
bit less straightforward and requires an additional harness for the definitional interpreter. The
reason for that is that in higher-order languages the result of control- and data-flow analyses is
typically defined as an over-approximation of the program’s outcome in operational state-collecting
semantics (Shivers 1991). Therefore, in order to test an analysis for soundness, the collecting

%As an aside note, generating state constraints randomly is a challenging research problem in its own right! A random
collection of constraints is, with very high probability, either trivially satisfiable or trivially unsatisfiable. Producing such
collections that are both satisfiable and hard to randomly satisfy (and then using them as transition invariants to generate
inputs for) is an intriguing avenue for future work—but well beyond the scope of this paper.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 122. Publication date: August 2022.

122:10 Tram Hoang, Anton Trunov, Leonidas Lampropoulos, and llya Sergey

semantics, which keeps intermediate execution states, needs to be implemented, ideally, with the
minimal changes introduced to the main codebase.

5.1 Embedding Collecting Semantics to SciLLA Evaluator

Luckily for us, the implementation of SciLLA interpreter in a monadic form allows for introducing
such changes in a modular way by piggy-backing on the original interpreter’s structure (Sec. 2.2).
In essence, the main additions that need to be done are (a) to refine the result type of the used
CPS monad so, in addition to keeping track of gas, it would also collect the intermediate execution
states, and (b) change the logic of wrap_eval accordingly. Instrumenting the evaluator with a
state-collecting machinery follows the implementation of gas accounting in the original interpreter.

As previously mentioned, implementation of gas accounting is done by elaborating the con-
tinuation’s return type 'c into uint64 — 'd, where ’d is another abstract type, and uint64 is an
OCaml 64-bit integer representing the remaining amount of gas for the ongoing computation.
By elaborating the type signature of the evaluator further to include another state component
CollectedStates as an argument (i.e., transforming uint64 — 'dto uint64 — CollectedStates —
'd), we can add the state-collecting component. The actual state accounting is handled by the
wrap_eval function, which now records the current expression being evaluated at the corresponding
evaluation stage, as well as some additional information passed along with it.

A note on related work. The idea of property-based testing of static analyses as a particular
component of a compiler pipeline is, of course, not new. Prior work addressed validation of
static analyses for soundness and precision by performing differential testing of an abstract and
concrete execution (Klinger et al. 2019) and by using SMT solvers to obtain the most precise
results, which are compared to the actual analysis outcomes (Taneja et al. 2020). Several works
have even employed QuickCheck-inspired methodology to validate monotonicity of abstract state
transformers as well as algebraic properties of the abstract domain on randomly generated abstract
state components (Madsen and Lhotak 2018; Midtgaard and Mgller 2015). That said, we are not
aware of any work that uses randomly-generated programs to test soundness of Shivers-style static
analyses for higher-order languages against state-collecting semantics.

The idea of implementing a collecting semantics, as a particular instance of a monad used to
define a small-step of definitional evaluator has been explored before (Darais et al. 2017; Sergey
et al. 2013), albeit not in the context of an OCaml implementation, and only for toy functional
languages. Those approaches also showed how to define a static analysis semantics by picking a
suitable monad instance, assuming an interpreter-based style of the analysis definition a la Might
(2010). That analysis formulation, however, does not immediately support a more traditional way
of defining a higher-order analysis (used, in particular, in the SciLLA compiler) as a solution to a
system of data-flow constraints (Nielson et al. 1999, Chapter 3).

The novelty of our work is, therefore, in adopting the idea of a monadic collecting semantics for
testing soundness of a constraint-based analysis for a higher-order language.

5.2 Testing Runtime Type Conformance and Type-Flow Analysis

We use the state-collecting evaluator to test two properties: runtime type conformance and the
type-flow analysis implemented as a pass of the SciLra to LLVM compiler (Nagaraj et al. 2020).”

5.2.1 Testing Type Conformance. The type checker correctness outlined in Sec. 4 ensures that
the result of a functional expression in ScILLA is consistent with its inferred type. In the context
of imperative executions, it is also important to check that intermediate variables and function

"The compiler is not fully finished and has not yet been made an official part of the ZiLriga blockchain client.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 122. Publication date: August 2022.

Random Testing of a Higher-Order Blockchain Language (Experience Report) 122:11

parameters only get assigned values consistent according to their declared types—a property
whose violation might result in runtime errors produced by a type-driven compiler. The collecting
evaluator makes defining this property straightforward; the only noteworthy aspect to mention is
that the conformance is checked with respect to runtime types, i.e., at the moment when the type
variables are already instantiated with ground types. While relatively simple, this check allowed us
to discover a previously unknown bug in SciLLA type checker, which we describe in Sec. 6.1.

5.2.2 Testing the Type-Flow Analysis. The compiler from SciLLa to LLVM takes the full advantage
of the closed-world setup, in which smart contracts are deployed, meaning that the sources of all
used libraries are known at the compile time (cf. Sec. 2.1). This allows for an aggressive whole-
program optimizations, such as, e.g., full monomorphization of polymorphic definitions in the style
of the MLton compiler of Standard ML (Weeks 2006). Unlike Standard ML and like System F, SciLrLa
features rank-k polymorphism for arbitrary k, thus monomorphization in it requires a carefully
designed type-flow analysis that would allow to conservatively determine, which type variables are
instantiated with what ground types (i.e., types without variables) at runtime, in order to generate
specialized implementations for type-polymorphic functions.

An outcome of the type-flow analysis is a map from all unique type variables in a SciLLA program
to the sets of ground types they can be instantiated with. Equipped with the collecting interpreter, we
can test the correctness of the analysis by checking whether those sets contain all type instantiations
witnessed at run-time. For example, given a type function that takes a type variable 'X, the analysis
may predict that 'X might be instantiated with types Uint32 or Bool. Evaluating the function and
dynamically collecting what type expressions are passed as arguments to the function confirms
whether 'X is indeed instantiated with Uint32 and Bool types.

6 DISCOVERED BUGS

Tab. 1 catalogues the bugs in various components of SciLLa implementation that have been discov-
ered and rediscovered with the help of the framework. Some of the listed issues are marked as known:
they have been previously discovered and fixed; we have reproduced them using QuickCHICK-
powered automated program generation on the corresponding implementation snapshots. All of
the newly found issues have been disclosed to the developers, who have fixed them and updated
the version of SciLra implementation shipped with the Z1LriQa blockchain client by the time of
submission of this manuscript. Below, we elaborate on some of the most interesting issues discov-
ered in each component of the language implementation. The test generator and the instructions
for reproducing the bugs can be found in the accompanying artifact (Hoang et al. 2022).

6.1 Bugs in the Type Checker and the Evaluator

The definitional evaluator and the type checker outlined in Sec. 2 are the most critical pieces
of the language implementation, as they are directly run by the miners who validate newly-
deployed contracts and execute contract-involving transactions. Any bugs in these components are
immediately marked as show-stoppers, as they can lead to potential exploits of the system.

The newly-discovered issues #3 and #4 both violate a particular aspect of SciLLa type safety:
non-serializable functional values (e.g., closures) may not be hashed by the contracts, as their
internal representation (and, hence, the result of hashing) can be a subject of future changes. We
have checked the contracts deployed on the Z1LLIQA mainnet so far, and, luckily none of them have
relied on this behaviour that is now disallowed. The type checker bug #5 is of an unusual nature
and has been discovered thanks to the collecting semantics described in Sec. 5.2.1. The issue arose
from the fact that values of fixed-length sub-types of ByteString (e.g., ByStr32) were implicitly

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 122. Publication date: August 2022.

122:12 Tram Hoang, Anton Trunov, Leonidas Lampropoulos, and llya Sergey

Tab. 1. Discovered and rediscovered bugs in SciLLA implementation, grouped by category

ID Short bug description Status
Type checking and type inference
#1 Closure values could be used as map keys known
#2 Type variables were not properly shadowed; the bug allowed for encoding non well-formed recursion known
#3 Type checker allowed for hashing closure values new
#4 Type checker allowed for hashing polymorphically-typed values new
#5 Sub-types of address type ByteString were implicitly up-cast to type ByteString new
Definitional interpreter
#6 Conversion between bech32 and ByStr20 datatypes threw an exception new
#7 Cryptographic built-in operations ecdsa_verify and ecdsa_recover_pk were throwing exceptions new
#8 Cryptographic built-in ecdsa_recover_pk could abort Scilla interpreter with an OS-level exception new
#9 The interpreter inadequately charged gas for the power arithmetic operation new
Type-flow analysis
#10 Type-flow analysis does not terminate on programs that make use of impredicative polymorphism known

up-cast to ByteString. While this bug did not compromise the safety of contract execution, it might
have potentially affected the correctness of the compiler.

The issues #7-#8 in the evaluator have to do with built-in conversions of primitive data types
(e.g., byte-strings) as well as handling cryptographic signatures. According to the design of SciLLa,
those operations return a result of the type Option, that is, a failed value conversion or validation
of a cryptographic signature results in returning None, which can be handled accordingly by the
client code. In contrast, the evaluator threw exceptions in all those cases, resulting in the rollback
of the corresponding transaction code and allowing for potential denial-of-service attacks.

The issue #9 is specific to smart contracts. For computing an exponential of a natural number, the
implementation of the interpreter charged the cost logarithmic in the size of the exponent, while
the implementation was linear. The bug was discovered due to the test case exceeding the allocated
gas cost upon its execution. As the fix, the implementation has been changed to the efficient one,
adequate to the gas cost to avoid possible gas-related exploits (Perez and Livshits 2020).

Finally, of the previously known issues #2 is particularly severe, as it undermined the runtime
guarantees of SciLLa, allowing to encode non-well-founded recursion by implementing fixed-point
combinator. This bug has been discovered a members of the SciLLA development team using a
carefully designed example featuring rank-2 polymorphism. QuickCHICK was capable to generate
a much more compact yet illuminating test case featuring arbitrary type instantiations, which
were the root cause of the bug, resulting in run-time errors for seemingly well-typed programs. An
example of a randomly generated ScirLa function reproducing the bug is given below:

let a =
let b =
let ¢ =
let d = tfun 'V= fun (vl : 'V) = tfun 'V = vl
in @d (ByStr32)

in
let e = 0x0002
in c e
in @b (forall 'V. Nat)
in @a Nat

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 122. Publication date: August 2022.

Random Testing of a Higher-Order Blockchain Language (Experience Report) 122:13

In the example above, the type of d is forall 'V. 'V — forall 'W. 'V.That is, the type 'V of the
result value v1 might be different from the type 'W of its closest bound type variable. However,
since both bonds type variables in the definition share the same name 'V, the bug occurs, as the rest
of the program demonstrates. The definition of ¢ instantiates the first type variable with ByStr32,
and the definition of ¢ subsequently applies the function to the correct argument byte-string e.
The definition of a instantiates the second type variable in the definition of d with forall 'V. Nat.
Finally, a itself is instantiated with Nat, which should be detected as a type error, as the type of a is
ByStr32, not forall 'V. Nat! However, due to the type checker not performing alpha-renaming of
nested bound type variables upon substitution, this error was not caught until runtime.

6.2 Type-Flow Analysis: Soundness and Precision

As mentioned in Sec. 5.2.2, we have used the state-collecting version of ScirLA interpreter to
validate the soundness of the type-flow analysis by checking that the set of ground types used to
instantiate each type variable at runtime is a subset of the types predicted by the analyser.

The problem of designing a sound type-flow analysis for languages with higher-ranked poly-
morphism has been studied by Fluet (2012) in a more general setting that assumed polymorphic
recursion, making the space of run-time types potentially infinite, and requiring an intricate abstract
domain to soundly approximate them. Even though ScirrLa does not have polymorphic recursion,
designing a simple yet finite abstract domain for its type-flow analysis appears to be challenging
due to the possibility to, e.g., dynamically convert “flat” integers into polymorphically-typed Church
numerals. To keep things simple, the type-flow analysis currently implemented in ScirLa compiler
follows the constraint-based approach based on the standard definition of context-insensitive
higher-order control-flow analysis adapted for System F. The analysis is somewhat conservative
in that it rejects a small class of programs that introduce “expansive” polymorphic types that can
grow arbitrarily large at runtime. This restriction has been introduced to address a subtle (but, alas,
already known) bug #10 in the analysis design, which we have reproduced using our framework.

The bug was caused by programs that aggressively use System F’s impredicativity, such as, e.g.,
exponentiation of typed Church numerals—a program, in which a higher-kinded type is used to
instantiate another higher-kinded type. The initial version of the analysis would not terminate
when solving constraints introduced by such programs, and fixing this issue properly would require
introducing a more complex abstract domain akin to the one by Fluet. It has been observed that
(a) programs of this kind are extremely rare in practice and (b) an attempt to monomorphize them
would result in an exponential explosion of the generated code in size. Luckily, the fix was relatively
easy, and boiled down to detecting “expansive” cycles in the generated analysis constraints (which
can be done in linear time in the size of the source program) and rejecting such programs altogether.

Other than that, the implementation of the type-flow analysis turned out to be surprisingly robust,
and we did not manage to discover any new bugs. Somewhat curiously, our test revealed that on
randomly-generated programs the analysis is amazingly precise: for almost all randomly generated
programs it has inferred the exact set of ground types for the corresponding type variables. This
precision can be explained by the fact that in many test programs generated by QuickCHICK a type
abstraction has been syntactically instantiated exactly once, although often not immediately, e.g.,
after being passed as a function parameter. In a small fraction of generated programs, several type
instantiations took places in disjoint branches of a match-expression; this, obviously, has lead to a
proper over-approximation with respect to a concrete collecting execution, which only visited one
branch. Our testing framework discovered no bugs in such over-approximations.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 122. Publication date: August 2022.

122:14 Tram Hoang, Anton Trunov, Leonidas Lampropoulos, and llya Sergey

7 DISCUSSION AND FUTURE WORK

Distribution of Efforts. We believe, our application of QUICKCHICK is the largest to date, in terms
of the size of the covered OCaml codebase and of the generator/shrinker development. That said,
our choice to use QUICKCHICK to test OCaml code was a double-edged sword. On the one hand, we
were able to leverage its automation facilities to get a head start with generation, printing, and
shrinking. On the other hand, the interoperability between OCaml and Coq proved surprisingly
brittle, with a lot of manual effort put into maintaining this connection. For instance, we could not
automatically port OCaml definitions of SciLLA syntax to Coq, so we had to do so manually. We
attempted to apply Coq-of-OCaml (Claret 2021) for automating this task, but discovered that it
does not work so well with OCaml functors, which are used extensively in SciLLa implementation
for representing syntax with various annotations for different checking and interpretation phases.

Future Directions. While integrating QuickCHICK-powered property-based testing has been a
considerable effort, now that this infrastructure is in place, we will use it for testing more interesting
language properties, focusing specifically on multiple static analyses featured in the ScrLrA tool
suite, such as gas usage and cash-flow analyses (Sergey et al. 2019, §§ 5.1 and 5.2). With a suitable
definition of the abstraction function, we should be able to provide a similar validation procedure
for the CoSpLIT analysis that derives contract signatures for sharding of contract-manipulating
transactions executed on Z1LLiQA blockchain (Pirlea et al. 2021). Finally, we are hopeful that our
integration of QUICKCHICK into a fairly sizeable and actively maintained OCaml development will
provide a rich case study for future approaches contributing to the state of the art in property-based
testing, fuzzing, and random generation of higher-order and effectful programs.

ACKNOWLEDGMENTS

We thank Vaivaswatha Nagaraj for his help with testing the ScirLa to LLVM compiler. We are
grateful to Andreea Costea, Kiran Gopinathan, and George Pirlea for their feedback on drafts of
this paper. We also thank the ICFP’22 anonymous PC and AEC reviewers for their constructive and
insightful comments on the paper and the artifact.

The work by Sergey was supported in part by Singapore MoE Tier 1 Grant No. IG18-SG102. The
work by Lampropoulos was supported in part by NSF award #2107206 “Efficient and Trustworthy
Proof Engineering”. Any opinions, findings and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the views of the NSF.

REFERENCES

Sam Blackshear, Evan Cheng, David L. Dill, Victor Gao, Ben Maurer, Todd Nowacki, Alistair Pott, Shaz Qadeer, Rain, Dario
Russi, Stephane Sezer, Tim Zakian, and Runtian Zhou. 2019. Move: A Language With Programmable Resources. Available
at https://developers.diem.com/papers/diem-move-a-language-with-programmable-resources/2019-06-18.pdf.

Ethan Cecchetti, Sigiu Yao, Haobin Ni, and Andrew C. Myers. 2021. Compositional Security for Reentrant Applications. In
42nd IEEE Symposium on Security and Privacy. IEEE, 1249-1267. https://doi.org/10.1109/SP40001.2021.00084

Koen Claessen and John Hughes. 2000. QuickCheck: a lightweight tool for random testing of Haskell programs. In ICFP.
ACM, 268-279. https://doi.org/10.1145/351240.351266

Guillaume Claret. 2021. Cog-of-OCaml, A Compiler from OCaml to Coq. Available at https://formal.land/docs/coq-of-
ocaml/introduction.

Michael Coblenz. 2017. Obsidian: A Safer Blockchain Programming Language. In ICSE (Companion). IEEE Press, 97-99.
https://doi.org/10.1109/ICSE-C.2017.150

David Darais, Nicholas Labich, Phuc C. Nguyen, and David Van Horn. 2017. Abstracting Definitional Interpreters (Functional
Pearl). PACMPL 1, ICFP (2017), 12:1-12:25. https://doi.org/10.1145/3110256

Ankush Das, Stephanie Balzer, Jan Hoffmann, Frank Pfenning, and Ishani Santurkar. 2021. Resource-Aware Session Types
for Digital Contracts. In CSF. IEEE, 1-16. https://doi.org/10.1109/CSF51468.2021.00004

Ethereum Foundation. 2018. ERC20 Token Standard. https://en.bitcoinwiki.org/wiki/ERC20 Online.

Andrzej Filinski. 1994. Representing Monads. In POPL. ACM Press, 446-457. https://doi.org/10.1145/174675.178047

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 122. Publication date: August 2022.

Random Testing of a Higher-Order Blockchain Language (Experience Report) 122:15

Matthew Fluet. 2012. A Type- and Control-Flow Analysis for System F. In IFL (LNCS, Vol. 8241). Springer, 122-139.
https://doi.org/10.1007/978-3-642-41582-1_8

Jean-Yves Girard. 1972. Interprétation fonctionnelle et élimination des coupures de l’arithmétique d’ordre supérieur. Thése
d’Etat. Université de Paris VII, Paris, France.

Harrison Goldstein, John Hughes, Leonidas Lampropoulos, and Benjamin C. Pierce. 2021. Do Judge a Test by its Cover -
Combining Combinatorial and Property-Based Testing. In ESOP (LNCS, Vol. 12648). Springer, 264-291. https://doi.org/10.
1007/978-3-030-72019-3_10

Emin Giin Sirer. 2016. Reentrancy Woes in Smart Contracts. http://hackingdistributed.com/2016/07/13/reentrancy-woes/

Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer, Michael Holman, Dan Gohman, Luke Wagner, Alon
Zakai, and J. F. Bastien. 2017. Bringing the web up to speed with WebAssembly. In PLDI. ACM, 185-200. https:
//doi.org/10.1145/3062341.3062363

Tram Hoang, Anton Trunov, Leonidas Lampropoulos, and Ilya Sergey. 2022. Random Testing of a Higher-Order Blockchain
Language (ICFP 2022 Artifact): Code and Commentary. https://doi.org/10.5281/zenodo.6610599

Catalin Hritcu, Leonidas Lampropoulos, Antal Spector-Zabusky, Arthur Azevedo de Amorim, Maxime Dénés, John Hughes,
Benjamin C. Pierce, and Dimitrios Vytiniotis. 2016. Testing Noninterference, Quickly. 7. Funct. Program. 26 (2016), e4.
https://doi.org/10.1017/50956796816000058

IOHK Foundation. 2019. Plutus: A Functional Contract Platform. https://testnet.iohkdev.io/en/plutus/ Online; accessed 23
February 2022.

Christian Klinger, Maria Christakis, and Valentin Wiistholz. 2019. Differentially testing soundness and precision of program
analyzers. In ISSTA. ACM, 239-250. https://doi.org/10.1145/3293882.3330553

Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott Owens. 2014. CakeML: a verified implementation of ML. In
POPL. ACM, 179-192. https://doi.org/10.1145/2535838.2535841

Leonidas Lampropoulos. 2018. Random Testing for Language Design. Ph.D. Dissertation. University of Pennsylvania.

Leonidas Lampropoulos, Michael Hicks, and Benjamin C. Pierce. 2019. Coverage guided, property based testing. Proc. ACM
Program. Lang. 3, OOPSLA, 181:1-181:29. https://doi.org/10.1145/3360607

Leonidas Lampropoulos, Zoe Paraskevopoulou, and Benjamin C. Pierce. 2018. Generating good generators for inductive
relations. PACMPL 2, POPL (2018), 45:1-45:30. https://doi.org/10.1145/3158133

Leonidas Lampropoulos and Benjamin C. Pierce. 2018. QuickChick: Property-Based Testing In Coq (Software Foundations
series, Volume 4). Electronic textbook. https://softwarefoundations.cis.upenn.edu/

Xavier Leroy. 2006. Formal certification of a compiler back-end or: programming a compiler with a proof assistant. In POPL.
ACM, 42-54. https://doi.org/10.1145/1111037.1111042

Andreas Loscher and Konstantinos Sagonas. 2017. Targeted Property-Based Testing. In ISSTA. ACM, 46-56. https:
//doi.org/10.1145/3092703.3092711

Magnus Madsen and Ondrej Lhotak. 2018. Safe and sound program analysis with Flix. In ISSTA. ACM, 38-48. https:
//doi.org/10.1145/3213846.3213847

Jan Midtgaard, Mathias Nygaard Justesen, Patrick Kasting, Flemming Nielson, and Hanne Riis Nielson. 2017. Effect-driven
QuickChecking of compilers. Proc. ACM Program. Lang. 1, ICFP (2017), 15:1-15:23. https://doi.org/10.1145/3110259

Jan Midtgaard and Anders Mgller. 2015. QuickChecking Static Analysis Properties. In ICST. IEEE Computer Society, 1-10.
https://doi.org/10.1109/ICST.2015.7102603

Matthew Might. 2010. Abstract Interpreters for Free. In SAS (LNCS, Vol. 6337). Springer, 407-421. https://doi.org/10.1007/978-
3-642-15769-1_25

Vaivaswatha Nagaraj, Jacob Johannsen, Anton Trunov, George Pirlea, Amrit Kumar, and Ilya Sergey. 2020. Compiling a
Higher-Order Smart Contract Language to LLVM. CoRR abs/2008.05555 (2020). https://arxiv.org/abs/2008.05555

Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. 1999. Principles of Program Analysis. Springer. https://doi.org/10.
1007/978-3-662-03811-6

Michat H. Patka, Koen Claessen, Alejandro Russo, and John Hughes. 2011. Testing an optimising compiler by generating
random lambda terms. In AST. ACM, 91-97. https://doi.org/10.1145/1982595.1982615

Daniel Perez and Benjamin Livshits. 2020. Broken Metre: Attacking Resource Metering in EVM. In NDSS. The Internet
Society.

George Pirlea, Amrit Kumar, and Ilya Sergey. 2021. Practical Smart Contract Sharding with Ownership and Commutativity
Analysis. In PLDI. ACM, 1327-1341. https://doi.org/10.1145/3453483.3454112

John C. Reynolds. 1974. Towards a theory of type structure. In Programming Symposium (LNCS, Vol. 19). Springer, 408-423.
https://doi.org/10.1007/3-540-06859-7_148

Franklin Schrans. 2018. Writing Safe Smart Contracts in Flint. Master’s thesis. Imperial College London.

Ilya Sergey, Dominique Devriese, Matthew Might, Jan Midtgaard, David Darais, Dave Clarke, and Frank Piessens. 2013.
Monadic Abstract Interpreters. In PLDI. ACM, 399-410. https://doi.org/10.1145/2491956.2491979

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 122. Publication date: August 2022.

122:16 Tram Hoang, Anton Trunov, Leonidas Lampropoulos, and llya Sergey

Ilya Sergey, Vaivaswatha Nagaraj, Jacob Johannsen, Amrit Kumar, Anton Trunov, and Ken Chan Guan Hao. 2019. Safer
smart contract programming with Scilla. PACMPL 3, OOPSLA (2019), 185:1-185:30. https://doi.org/10.1145/3360611
Olin Shivers. 1991. Control-Flow Analysis of Higher-Order Languages or Taming Lambda. Ph.D. Dissertation. School of
Computer Science, Carnegie Mellon University.

Jubi Taneja, Zhengyang Liu, and John Regehr. 2020. Testing static analyses for precision and soundness. In CGO. ACM,
81-93. https://doi.org/10.1145/3368826.3377927

Tezos Foundation. 2018. Michelson: the language of Smart Contracts in Tezos. https://tezos.gitlab.io/whitedoc/michelson.
html Online; accessed 23 February 2022.

Stephen Weeks. 2006. Whole-Program Compilation in MLton. In Proceedings of the 2006 Workshop on ML. ACM. https:
//doi.org/10.1145/1159876.1159877

Gavin Wood. 2014. Ethereum: A Secure Decentralized Generalised Transaction Ledger.

Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and understanding bugs in C compilers. In PLDI. ACM,
283-294. https://doi.org/10.1145/1993498.1993532

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 122. Publication date: August 2022.

