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Abstract

Liquid Haskell is a popular verifier for Haskell programs,
leveraging the power of SMT solvers to ease users’ burden of
proof. However, this power does not come without a price:
convincing Liquid Haskell that a program is correct often
necessitates giving hints to the underlying solver, which can
be a tedious and verbose process that sometimes requires
intricate knowledge of Liquid Haskell’s inner workings.

In this paper, we present Liquid Proof Macros, an extensible
metaprogramming technique and framework for simplifying
the development of Liquid Haskell proofs. We describe how
to leverage Template Haskell to generate Liquid Haskell
proof terms, via a tactic-inspired DSL interface for more
concise and user-friendly proofs, and we demonstrate the
capabilities of this framework by automating a wide variety
of proofs from an existing Liquid Haskell benchmark.
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1 Introduction

Liquid Haskell [22] is a popular verifier for Haskell programs,
leveraging the power of SMT solvers [2] (such as Z3 [9] or
CVC4 [1]) to prove the correctness of diverse applications
ranging from optimizations [23] to string matching algo-
rithms [24]. Specifications for these applications are written
in the form of refinement types [11], boolean predicates over
program values.

For concreteness, consider the following min function that
computes the minimum of two natural numbers, defined
inductively:

data N=2Z | SN

min :: N—> N —> N
min Z _ =2
min Z=1

min ES m) (Sn) =S (min m n)

Naturally, we would expect such a function to be associa-
tive, that is:

Ya b c. min (minab) c == mina (minb c)
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In Liquid Haskell, we can specify associativity by defining a
refinement type to encode this property, and we can prove
associativity by defining a term of that type:

{-@ assocMin :: a:N — b:N — c:N —

{_:0 | min (min a b) ¢ == min a (min b ¢)}
@-}
assocMin :: N - N — N — Proof
assocMin = ...

To Haskell, the type of assocMin is simply a function with
three natural number arguments that returns a Proof, which
is just a type synonym for (). To Liquid Haskell, however,
the type of assocMin is much more interesting: its return
type does not only specify that the output is a unit, but refines
it so that associativity of min holds for its input arguments.
In other words, the only interesting thing about the result of
this function is its refinement, which constitutes an “extrin-
sic style” proof of associativity. This is a common enough
pattern that Liquid Haskell supports dropping the “_:()”
part of the refinement for brevity, as we will also do in the
remainder of this paper.

But how does Liquid Haskell decide if the refinement type
is true? By reducing typechecking to verification conditions
that SMT solvers reason about. However, while SMT solvers
are pre-programmed with a wide assortment of facts about
various domains such as integer arithmetic and boolean logic,
they don’t really know anything about user-defined data
types like N or user-defined functions like min. While a di-
rect encoding of such features to SMT is possible in princi-
ple [26], it leads to unpredictable verification, also known as
the “butterfly effect” [13]. To that end, Liquid Haskell lifts
user-defined data types and functions into a representation
that can be handled symbolically by SMT solvers [25]. Still,
many true properties of user-defined data types and func-
tions remain not automatically verifiable: users must guide,
via refined Haskell code, the SMT solver to simpler cases
that can be checked automatically.

Unfortunately, given the lack of interactivity of Liquid
Haskell, it is not always clear what the gap in understanding
between the user and the SMT solver is, which often makes
writing such refined code a tedious and frustrating process.
Consider again associativity for the min function. On paper,
we can informally reason that associativity holds by induc-
tion on the natural numbers that are inputs to min, due to
its simple recursive structure. In Liquid Haskell, the refined
code that finally convinces the SMT solver that the program
typechecks is shown in Figure 1.

All of the branches of pattern matching on a, b, and ¢
must be written out explicitly. Otherwise, the SMT solver
would not know how to simplify the min expressions in the
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{-@ assocMin :: a:N — b:N — c:N —

{min (min a b) ¢ == min a (min b ¢c)} @-}
assocMin :: N - N - N — Proof
assocMin = \a b ¢ —

case a of
Z —
case b of
7 —
case c of
Z — trivial
S c¢' — trivial
Sb'" —
case c¢ of
Z — trivial
S ¢' — trivial
Sa' —
case b of
7 —
case c of
Z — trivial
S ¢' — trivial
Sbhb' —
case c¢ of
Z — trivial

S ¢' — assocMin a' b' ¢

Figure 1. Liquid Haskell proof term for associativity of min

refinement—the only facts it knows are the three equations
that were used in min’s definition: min Z _ = Z, min _

Z = Z,and min (S x) (Sy) =S (min x y). Liquid
Haskell understands the constraints introduced by pattern
matching, and takes them into account in order to discharge
most cases—the non-recursive ones that involve at least one
Z. The proof conclusion in such cases is trivial, which is
again just a synonym for the term-level ().

However, in the recursive case of min, the Liquid Haskell
typechecker needs additional help, in the form of a recursive
call to assocMin a' b' c¢', which brings its refinement in
scope for the SMT solver and allows it to conclude that the
induced verification condition holds. Crucially, this refine-
ment is again the only thing that matters: while the structure
of the term gives the appearance of a proof term in the style
of Coq or Agda, the actual return value doesn’t matter. We
could just as well have written something like

snd (assocMin a' b' c¢', ())

and Liquid Haskell would still gladly accept the definition.
In fact, Liquid Haskell’s conjunction operator (&8&&) is de-
fined exactly this way: it takes two Proof's and returns the
second one—its only effect is making the refinement of both
arguments visible to the SMT solver.

Anon.
{-@ assocMin :: a:N — b:N —» c:N —
{min (min a b) == min a (min b ¢)} @-}
[tactic|
assocMin :: N - N —- N — Proof

assocMin a b ¢ = induct a; induct b; induct c

1]

Figure 2. Associativity of min using Liquid Proof Macros

Even in this simple example of associativity of min, the
full verbosity required is cumbersome and obscures the fact
that the underlying argument is a straightforward induc-
tion. In larger developments where the SMT solver might
need to rely on helper lemmas, this problem only becomes
more pronounced. Other proof assistants, such as Coq [21],
Lean [15], or Isabelle [16], rely on interactive tactics in these
situations to aid users’ proof efforts. But developers of these
tactic languages enjoy a transparent API to interact with the
current proof state, and an essentially clean slate to design
metaprogramming capabilities, which has been exploited to
the great benefit of proof assistant users [10, 19, 27].

On the other hand, Liquid Haskell interacts with the SMT
solver in a very opaque manner, and within the Haskell
ecosystem metaprogramming capabilities are already well
established in the form of Template Haskell—but not really
designed with SMT-based verification in mind. So then, what
can we do within the confines of this mature Haskell ecosystem
to aid users? Without interactivity, an interface to concise
proof generators must expand to a proof term all at once
i.e. it must behave like a macro. Therefore, we developed
a macro system for generating Liquid Haskell proof terms,
using the existing metaprogramming tools for Haskell.

Liquid Proof Macros. In this paper, we show how to
leverage the power of Template Haskell to automate proof
term generation for Liquid Haskell. We develop Liquid Proof
Macros, an extensible DSL in which users can write intutive
proofs that resemble automated tactics'of more traditional
proof assistants, including case analysis, induction, condi-
tioning, and proof search. For example, the same proof of
associativity of min using Liquid Proof macros can be seen
in Figure 2.

These macros are expanded to a subset of Haskell that
resembles, or rather is even more complicated than, the one
used in Figure 1. To facilitate typechecking of larger Liquid
Haskell developments, we also augment this subset with
metadata information, and provide a pruning algorithm rem-
iniscent of shrinking in property-based testing [6], simpli-
fying away any unnecessary components that result from
proof search.

1We refrain calling our DSL tactics, as that suggests a notion of interactivity
that is impossible in the current version of Liquid Haskell.
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In this paper we make the following contributions:

o We describe a methodology for using Template Haskell
to automatically construct Liquid Haskell proof terms,
and we develop an extensible framework using this
methodology for automating inductive proofs in Liq-
uid Haskell (Section 2).

o We evaluate our framework against an existing bench-
mark containing a wide variety of Liquid Haskell prop-
erties, and found that our Liquid Proof Macros can be
used to automate all of these properties, leading to a
1.57X reduction in code on average (Section 3)

We then discuss related work (Section 4), before concluding
with a discussion of the limitations of our framework and
directions for future work (Section 5).

2 Liquid Proof Macros

Going from a proof macro like the one we saw earlier in
Figure 2 to a low-level Liquid Haskell proof such as the one
in Figure 1 is a multi-stage process, which we will describe
in detail in this section.

First we introduce the proto-proof language (Section 2.1),
a subset of (surface) Haskell with some annotations that are
necessary for simplification, but which can be straightfor-
wardly erased to obtain valid Liquid Haskell terms. This will
serve as the language that Liquid Proof macros expand to.

Second, we formally introduce the proof macro language
in which users write proofs (Section 2.2), an extensible col-
lection of high-level constructs (such as induct) that facil-
itate SMT reasoning. We show how a proof macro can be
expanded into a proto-proof term, which is then cached, em-
bedded in Haskell, and spliced in place of the original proof
macro.

Then, we extend this language to allow for binding-based
conditional expansion of macros (Section 2.3), a way of orga-
nizing branches proofs based on variables introduced during
the expansion process.

Finally, we describe how cached terms are repeatedly
pruned by using the metadata annotations in the proto-proof
language syntax (Section 2.4), removing potentially unnec-
essary proof terms by using Liquid Haskell as the validity
oracle.

2.1 The proto-proof language

The proto-proof language is at its core a subset of Haskell
expressions with some additional metadata. Figure 3 depicts
its syntax, which contains lambdas, pattern matching with
case, if statements, Liquid Haskell’s conjunction (&8&8&) and
trivial, as well as a special construct Auto that keeps track
of three lists of arbitrary Haskell expressions for simplifica-
tion purposes.

With the exception of Auto, terms in the proto-proof lan-
guage can be directly embedded into Haskell. In turn, Auto
can be embedded by translating the kept and init lists of
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decl-proto == f :: typ
f = expproto:
exp-proto ::= A name — exp-proto
| case exp of pat — exp-proto;
| if exp then exp-proto else exp-proto

| exp &&& exp-proto

| trivial

| Auto {
init = [exp,],
kept = [exp, ],

]
pruned = [exp,]}

exp := Haskell expression
pat := Haskell pattern
typ = Haskell type (monomorphic)
f,x = Haskell name
neN

Figure 3. Syntax of the proto-proof language

expressions to sequences of Liquid Haskell conjunctions—we
will expand on this when discussing pruning later in this
section. That is:

Auto { init = [al, ..., aM]
, kept = [b1, ..., bNI]
, pruned = _ }

is embedded into Haskell as:

al &&& ... 8&&& aM &8& b1 88&& ... &&& bN

2.2 The proof macro language

The proof macro language defines a collection of proof macros
that aim to concisely describe the high-level structure of a
Liquid Haskell proof. This collection is designed to be extensi-
ble, so that new proof macros can be added easily by adding
a new constructor to the proof macro language and then
defining its expansion. The syntax for proof macro language
appears in Figure 4, and consists of atomic macros that can
be sequenced together. Liquid Haskell users can write such
sequences of proof macros, like the three inducts in Figure 2,
which are then expanded into the proto-proof language.

To expand each proof macro, we need to take into ac-
count the expansion of any macros that preceded it in the
sequence. To that end, we introduce two contexts, a typing
context I' which associates variables to Haskell types, and a
recursion context P which associates arguments of the top-
level declaration to a (potentially empty) set of subterms that
can be used to instantiate recursive calls without triggering
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decl-macro ::= f = typ

fyi = exp-macro;

exp-macro ::= induct x
| destruct exp
| assert exp
| dismiss exp
| condition exp
| auto [x] n
| use exp

| trivial

exp := Haskell expression
typ := Haskell type (monomorphic)
f,x,y; == Haskell name
neN

Figure 4. The proof macro language

an infinite loop. We formalize this expansion as a 4-place
relation

PET w t

which states that a proof macro T in the contexts I' and
P expands to a proto-proof term ¢. We allow this term ¢ to
contain holes that will be filled in by expansion of subsequent
macros, but in potentially updated contexts I'” and P’. We
annotate each hole with these contexts, writing Or.p. This
expansion process is formalized in Figure 5, and we can
broadly identify two types of proof macros: control-flow and
evidence macros.

Control-Flow macros. Control flow macros correspond
to proof terms that alter the control flow of the program, such
as pattern matching. The first five constructs from Figure 5
exhibit such functionality:

e induct x, destruct e:

Given a variable x that has type « in a context T,
induct x creates a pattern match on x, with a branch
for every constructor of a. The body of each branch is a
hole Or, p,, with the typing context updated to include
the (fresh) pattern variables {y;;} and their bindings,
and with the recursion context updated to signify that
any y;; could be used to make terminating recursive
calls. Similarly, given a well typed Haskell expression
e with type « in a context I', destruct e also creates a
pattern match where each branch body is a hole. The
only difference from induct is that it does not modify
the recursion context, but gets to operate on arbitrary
expressions.

Anon.

e condition e, assert e, dismiss e:
These three macros all expand into if statements with
the given boolean expression e as its condition. The
difference lies in the holes produced in this expansion:
condition creates a hole Or;p for both the then and
the else branches; assert only creates such a hole for
the then branch with the else branch being trivial;
and dismiss is the dual of assert.

Evidence Macros. Evidence macros are processed into
terms that provide evidence to the Liquid Haskell typechecker,
such as introducing a lemma to the refinement context.

e trivial:

This macro expands into Liquid Haskell’s trivial

with type Proof in the resulting Haskell term. Since

trivial = () and Proof = (), using this macro effec-

tively means that the SMT solver can discharge any

remaining obligations.

® use exp:

This macro makes the refinement type of the expres-
sion available to the SMT solver using Liquid Haskell’s
conjunction &&8&, similar to how, in Figure 1, a call
to assocMin a' b' c' was needed to conclude the
proof.
auto [x] n:
Finally, the auto macro is the core of our framework’s
automation. It takes two optional parameters, a se-
quence x of hints, and a natural number n, and it gen-
erates all well-typed neutral forms of type Proof up
to height n that use variables from the current context
or the hints. To ensure recursive calls are terminating,
we keep track of a separate recursion context that is
specially constructed in the rest of the proof.

Armed with the expansion relation for a single proof
macro, we can formalize the expansion of a macro sequence
(Figure 6). The empty proof macro sequence is expanded
into a trivial —as that has no effect on SMT resolution.
To expand a sequence T;Ts in some contexts I' and P, we
expand T to some proto-proof term ¢, and for every hole
Or,p, in t, we recursively expand the sequence T's in the up-
dated context, and replace the hole with the result. That is,
whenever proof macros introduce multiple branches, the rest
of the sequence of proof macros is expanded into each such
branch, unlike traditional proof assistants. We will return to
this point when discussing conditional expansion of macros
below (Section 2.3).

Finally, before expansion of a sequence we preprocess
it: if it does not end in an evidence macro, then a default
auto macro with no hints and height 3 will be implicitly
included at the end of the sequence. That is, the proof macro
of Figure 2 is equivalent to the following one that includes
an explicit auto [] 3 macro:

induct a; induct b; induct c; auto [] 3

410
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T'tx:a
L= (T U{y: Bij})

x> Q€eP

Conference’17, July 2017, Washington, DC, USA

I‘I—c,—:Ej—> a

P; :=P[x = {y;; : fij}]

I;P+ induct x v case x of ¢; y;; — Orp;;

T'rte:a

Fl-cl-:E-j—> a

Ii =T U {yi; : fij}

I';P + destruct e w case e of ¢; y;; — Or,p;

I'+e:Bool

I';P+ condition e ~s if e then Orp else Orp

T+ e:Bool

T+ e:Bool

I';PF assert e m» if e then Opp else trivial

I';Pdismiss e~ if e then trivial else Orp

I'+e:Proof

I';P+ trivial »» trivial

neN

T'rFxica

[P+ use {e} » e &&& Orp

is = generate(I" U {x;}, P, Proof, n)

T;P + auto [x;] n > Auto{init = is, kept = [], pruned = []} &&& Or.p

{trivial}

{fal

generate(T, P, a, 0)
generate(T,P, f,1+n) =

C

an |Trfiag— -
{rai -~ an|Trriag —---

— ap, — f, a; € generate(I,P,a;,n)}
—a, — f, a; €P;, x; » P; € P}

Figure 5. Proof macro semantics

Extended Example. For concreteness, consider the fol-
lowing predicate which states that if a number x is an el-
ement of a list xs, then x is also in the list xs++ys for an
arbitrary list ys, along with a corresponding Liquid Haskell
theorem that is proved with a short Liquid Proof macro. *

concatElemP N — [N] — [N] — Bool
concatElemP x xs ys

| elem x xs = elem x (xs ++ ys)

| otherwise =T

{-@ concatElem :: x:N — xs:[N] — ys:[N] —
{concatElemP x xs ys} @-}
[tactic|
concatElem N — [N] — [N] — Proof
concatElem x xs ys =
assert {elem x xs};
induct xs

1]

At a high level, what this proof macro does is condition
on the expression elem x xs, pattern match on xs, and
search for ways to complete the proof, potentially using the
tail of xs for a recursive call. This is achieved by expanding

ZFor the sake of readability, we used the usual list notations such as (++)

for list append, rather than their refined list counterparts.

[[']](DI‘;P) =trivial
I'PHT ~ t
Or;p; €1 [[TS]](DD‘;P,-) =1
[T;Ts]|(orp) = t[ti/Or.p,]

Figure 6. Proof Macro Sequence Expansion

these macros back into the proto-proof language as shown
in Figure 7.

Based on the declaration of concatElem inside the quasi-
quoter, we can initialize the typing context with the types for
X, xs, and ys.> Similarly, the recursion context is initialized
with the empty set for all of the function arguments. The
proof macro sequence is then preprocessed and, since it
doesn’t end with an explicit evidence macro, an auto [] 3
is appended at its end.

The first proof macro in the sequence is assert {elem
X ys}, which creates an if statement whose condition is
elem x ys and whose else branch is simply trivial. The
then branch is a hole Or;p, which will be filled by expanding
the rest of the sequence, beginning with induct xs.

3Types of local bindings cannot be inferred with Template Haskell, so the
type signature is in fact necessary.
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Anon.

I'={x:N, xs:[N], ys:[N]}
P={x— 0, xs > 2, ys — 2}

[assert {elem x xs}; induct xs; auto [] 3](T;P)

= 1if elemx xs then
[induct xs; auto [] 3](T;P)
else trivial
= if elemx xs then
case xs of
[1 - [auto [] 3](T:P)

Cons x’ xs” — [Jauto [] 3T U {x” : N,xs’ : [N]};P[xs — {x’ : N,xs’ : [N]}])

else trivial
= if elemx xs then
case xs of

[1 — generate(T, P, Proof, 3) &&& trivial

Cons x’ xs” — generate(I' U {x’ : N,xs’ : [N]},P[xs > {x” : N,xs’ : [N]}],Proof, 3) &&& trivial

else trivial
= 1if elemx xs then
case xs of
[] = trivial &&& trivial
Cons x’ xs’ —
Auto
{init =
[ concatElem x’ xs’ xs’
, concatElem x’ xs’ ys
, concatElem x xs’ xs’
, concatElem x xs’ ys |
, kept =[]
, pruned = [] } &&&
trivial
else trivial

Figure 7. Step-by-step Expansion of a Proof Macro

The induct xs macro expands into a pattern matching
with two cases, one for the empty list and one for a nonempty
list x':xs"', for fresh variables x' and xs'. Both branch
bodies are holes to be filled by the expansion of an auto
macro, but at different contexts. The empty list branch did
not introduce any new variables, and as a result both contexts
remain unchanged. In the nonempty branch, the variables x '
and xs ' are added to both the typing and to the the recursion
context for the second argument position, since xs is in the
second argument position.

Finally, the auto macros are expanded using the generate
metafunction, which yields just trivial in the empty case,
and a bunch of different potential recursive calls in the
nonempty case, as there are several neutral forms available:

concatElem x' xs' xs
concatElem x' xs' ys
concatElem x xs' xs'

concatElem x xs' ys

All of these recursive calls are potentially valid, as they all
have at least one argument from the recursion context at
that argument position: xs '. This list of neutral forms can
be seen in init field of the Auto structure in the final step
of Figure 7.

2.3 Variables and Conditional Expansion

The final piece of the puzzle involves the treatment of vari-
ables that are introduced during macro expansion. From the
proof macros defined above, such variables can only be intro-
duced by induct and destruct. These control flow macros
do not, by default, give the user the ability to name the in-
troduced variables — the generated names are fresh via Tem-
plate Haskell. Extending our framework with this capability
is just a matter of changing the induct and destruct con-
structors from Figure 4 to include optional name annotations
with the following syntax:
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induct e as [x;/7;/ - - ]
destruct e as [X;/yi/ - ]

That is, we allow users to specify names for the variables
introduced by different branches using the same syntax as
Coq’s Ltac [10]. However, given the strictly sequential nature
of our proof macro language, this introduces a new problem:
what happens when a macro refers to a variable that is only
introduced in some branches? Potential but unsatisfactory
solutions would include failing to expand (which is overly
restrictive) or silently expanding to trivial (which would
lead to accepting proof macros with typos). Instead, we opted
to see this problem as an opportunity to explore a new point
in the design space by introducing conditional expansion.

In particular, tactic languages in traditional proof assis-
tants can follow a tree-like pattern. For example, in Coq, one
can write:

t; [t1]t2]t3]

and that will execute the tactic t, followed by executing the
tactics t1, t2, and t3 in each of the three subgoals produced
by t. Unfortunately, that can introduce a lot of repetition
across similarly handled branches.

To counter this repetition, we allowed for optionally pre-
pending variable name annotations to proof macros, which
causes them to only be expanded when those variable names
are in scope. So, for example, if a user wants to induct on
alist1 [N] and then destruct on the head of the list
they can write the following:

induct 1 as [ / x xs];
[x:] destruct x

Moreover, by reusing names, more complicated expansion
structures can be achieved. For instance, if we were dealing
with a sequence data structure that has both its first and
last element exposed (as is the case in finger trees [5]), we
could selectively destruct the first (or last!) element of it after
induction. That is, given the following Seq datatype:

data Seq a = Nil | Unit a | More a (Seq a) a

the following proof macro would only be expanded in the
Unit and More cases:

induct s as [ / x / x s' y]l;
[x:] destruct x

Anecdotally, when carrying out our evaluation, we found
this binding-based conditional expansion to be particularly
useful in organizing our macros and avoid redundancy in
proofs.

2.4 Pruning

Of course, it turns out that not all of these terms are needed
for a valid proof. The pruning process, uses the rest of the
Auto record to safely prune such unnecessary terms.
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For each Auto structure in a proto-proof term, each exp
in its init field is attempted to be pruned one at a time.
This is done by moving the exp from the init field to the
pruned field, embedding and splicing the new proto-proof
term into the original Haskell file in place of the original
proof macro, and then running Liquid Haskell to check if this
prune was safe. If it was, pruning continues with the rest of
the exps in the init fields of the Auto structures; otherwise
this prune is undone, and the exp that was attempted to be
pruned is instead moved to the kept field before continuing
pruning. This process is very similar to shrinking in the style
of QuickCheck [6] from the property-based testing literature.

Recall the proto-proof term that resulted from process-
ing the proof macro used to prove concatElem. There is an
Auto structure that clearly has a few exps that can be pruned
since they are unnecessary for the proof. The subset of nec-
essary exps is found via the linear pruning procedure, trying
to remove each exp one at a time to see which can be safely
removed. After pruning, the final resulting proto-proof term
can be embedded into Haskell a last time and presented to
the user as a valid proof:

N — [N] — [N] — Proof
concatElem = \x xs ys —
if elem x ys then

concatElem ::

case xs of
Nil — trivial
Cons x' xs' — concatElem x xs' ys
else

trivial

Note that this is the minimal proof a user would need to
write in Liquid Haskell to convince its typechecker that
concatElem is well typed.

3 Design, Evaluation, and Usage

In this section, we focus on the choices that influenced our
design (Section 3.1), we evaluate these choices in an existing
Liquid Haskell benchmark of programs (Section 3.2), and
demonstrate the usage of our tool with a small example
(Section 3.3).

3.1 Design Choices

When designing Liquid Proof Macros, we wanted users to
benefit along the following three axis:

Conciseness. Extrinsic proofs are mostly written in a par-
ticular subset of Haskell, the proto-proof language. Using
metaprogramming to generate terms in this subset we would
expect proofs to be shorter than when written out explicitly.
Moreover, as most proof assistant users are familiar with,
often many different branches of a proof can be handled
by the same proof strategy. Rather than requiring users to
replicate the same proof term in each branch, proof macros
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Figure 8. LoC across benchmarks of Liquid Proof Macros (in blue), the expanded splice (in

Haskell proof term (in gray)

allow for writing such strategies once and applying them
across all branches.

Modularity. Even though many proofs can be encapsu-
lated by the same proof strategy (e.g. simple induction),
vanilla Liquid Haskell requires that strategy to be written
out in full verbosity in each instance (e.g. pattern match-
ing on a list of a natural numbers, and then supplying the
tail or predecessor to the recursive call in the second cases
respectively). The proof macro system allows the user to
modularly encode proof strategies in such a way that the
same sequence of proof macros can be used to prove a wide
variety of similar theorems that use the same proof strategy.

Practicality. The style of proof search used by our proof
macro system is very inefficient, verily because it includes all
generatable neutral forms (using a limited) context without
using any sort of guided search. The secondary pruning pro-
cess, which is performed on a passing proto-proof term after
proof search is complete, aims to recover a minimal proof
term for the sake of readability and efficient re-checking.

3.2 Evaluation

To evaluate our design, we turned to a prior benchmark suite
of 80+ Liquid Haskell proofs [12], that consists of a collection

Expanded

Anon.

Pruned

}, and the minimal Liquid

of boolean predicates over natural numbers, lists, and binary
trees, ranging from very simple facts to inductive properties
that require auxiliary lemmas. All proofs take advantage of
both proof macros, and proof by logical evaluation [25], a
complementary technique for delegating some equational
reasoning to the SMT solver.

Using Liquid Proof Macros we were able to concisely prove
(< 16 LoC* for all and < 10 LoC for all but two). Figure 8
shows the lines of code across all such benchmark using
(1) Liquid Proof Macros (2) the expanded proof term (3) the
pruned minimal proof term. We found that in all cases proof
macros where smaller than the Liquid Haskell proof terms,
with a (geometric) average of 57% reduction in LoC compared
to the minimal pruned version. Moreover, to give an estimate
of the cost of proof search, the unpruned expanded splice
generated by Template Haskell was 2.88X larger on average.

3.3 Usage Example

Figure 9 shows the user’s workflow when proving a theorem
such as assocMin from the introduction (Figure 2). It shows
three screenshots of VSCode with proof macro processing in
progress. First, the user must invoke our tool 1h-tactics,

4Measured from the signature of the top-level function to the last line of
the macro sequence or proof term.
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(b) The user waits for the 1h-tactics
tool to complete. During this time, the
tool will overwrite the input file on each

pruning attempt.
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(a) The user writes the proof macro and
runs the 1h-tactics command line tool
on the input file, which exists inside of a
stack project that is configured to use the
LiquidHaskell as a plugin.

(¢) Once pruning has completed, the final

proof macros that generated it are left in a
comment immediately above.

Figure 9. Usage example of the proof macros tool.
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which then parses the proof macro, expands it, and repeat-
edly prunes it until a minimal proof term is reached (see
Figure 1).

4 Related Work

The formal verification and proof assistant literature is vast.
Here, we discuss the most directly relevant related work, fo-
cusing on automation and metaprogramming in such frame-
works.

Meta F*. Arguably the closest related work is Meta-F* [14],
the tactics and metaprogramming framework for the F* lan-
guage [20]. In this work, Martinez et al. face the same issues
that Liquid Haskell users face: how to reconcile the auto-
matic but black-box nature of SMT-aided program verifiers
with the expressive tactic-based facilities of interactive the-
orem provers. Their approach is similar in nature to ours,
but enjoys the benefit of developing the metaprogramming
framework with the particular use case of verification in
mind. In contrast, we showed how one can work within the
already established constraints and limitations of the Haskell
ecosystem, using Template Haskell to provide a more stream-
lined user experience.

Interactive Tactics. In the land of interactive proof assis-
tants like Coq [21], Lean [15], or Isabelle [16], tactics are the
primary way by which users interactively manipulate the
systems proof state. Tactics are usually written in a meta-
language that is built with the explicit purpose of developing
proofs, often evolving along the proof assistant. For exam-
ple, Coq’s tactic language Ltac [10] has been the target of
multiple enhancement attempts, such as Mtac [27] that en-
forced a typing discipline, or Ltac2 [19] which provides more
advanced metaprogramming capabilities [17]. Such tactics
operate on the underlying representation of the proof state
in a proof assistant, and are therefore inherently more ex-
pressive in the capabilities they provide. In this work, we
drew inspiration from the kind of reasoning that tactics al-
low for, to give Liquid Haskell users the ability to write more
concise and modular proofs.

Moreover, hammers have been developed for proof as-
sistants such as Coghammer [7, 8] for Coq or Sledgeham-
mer [3, 18] for Isabelle, which aim to bring the benefits of
automated verification to the interactive setting. Hammers
give the users the ability to directly discharge their current
goal, but suffer from the same drawback as program verifiers
like Liquid Haskell: there is little the user can do if the ham-
mer fails, without resorting back to tactic-based reasoning.

Liquid Haskell Automation. Naturally, we are not the
first to attempt automating Liquid Haskell proof generation.
First, Vazou et al. [25] introduced proof by logical evaluation, a
proof search technique inspired by abstract interpretation to
automate equational reasoning in Liquid Haskell, by increas-
ing the burden on the SMT solver. This is largely orthogonal
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to Liquid Proof Macros, as it operates on function definitions
while our macros are focused on structural reasoning and
searching for hints. More recently, Hafidi [12] developed a
quasiquoter that allows Liquid Haskell to use different “tech-
niques”, such as induction, during SMT solving. However,
as we saw in the evaluation section Liquid Proof Macros
completely subsume all of its functionality, while allowing
for finer control over proof generation. Finally, Haskell users
can gain access to proof-assistant-based reasoning by using
HS-to-Coq [4], a tool that translates Haskell programs to
Coq ones. In this work, we instead tried to bring some of
the advantages of that style of reasoning within the Haskell
ecosystem.

5 Conclusion

In this paper, we demonstrated how we can operate within
the bounds of the existing Haskell ecosystem, and provide a
light weight solution to proof automation in Liquid Haskell
by leveraging Template Haskell functionality. While our
framework can already handle a wide variety of properties
of interest, there are still many reasonable extensions to
consider, requiring varying degrees of implementation effort.

Simple Extensions. The proof macro system currently

only supports simple pattern matching via the destruct

and induct macros. However, tactic languages in proof
assistants demonstrate how deeper pattern matching can be
given a convenient interface and be very useful. Such pattern
matching features can easily be implemented in the proof
macro language by expanding them to a sequence of existing
Liquid Proof Macros.

In the same spirit, there is currently no way to define
an abstract macro that expands into a sequence of macros,
resulting in needless redundancy where many proofs contain
the same sequence of macros, differing only in the particular
argument given. Such sequences are again straightforward to
implement at the framework level, as proof macro language
is easy to extend. However, providing such functionality at
the user level is a more ambitious endeavor that we leave
for future work.

Finally, our auto macro is implemented in the minimally
complex way while still being useful: it simply generates
every neutral form it can up to a certain syntactic height.
However, more specific kinds of similar searches in the space
of neutral terms can be allowed, such as a refined — auto
macro that take as input a neutral form with holes in place
of some of its (perhaps nested) arguments. Then, the macro
system would generate all neutral forms that correspond
to the original neutral form with its holes filled by neutral
forms. For example,

refined-auto {assocMin (f mn) (f _ _)} [1 3

where f N—> N— Nmn N, would generate all
neutral forms of the form assocMin (f m n) (f 1 k)
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where 1, k N range over all neutral forms constructed
from values in context (including valid recursions) up to a
certain syntactic height.

Engineering Challenges. In addition to the simple ex-
tensions described above, our framework could currently be
improved with some investment in a non-trivial but straight-
forward engineering effort. In particular, the user interface to
Liquid Haskell has been developed into a plugin that works
in tandem with the Haskell stack build system. Currently,
the proof macro system requires the user to run an external
tool on proof macros for pruning purposes. User experience
would be greatly improved if the proof macro system was
integrated into the existing Liquid Haskell plugin, and run
automatically when the project is built.

Similarly, Template Haskell splices code implicitly during
compilation, in such a way that the splices are never actually
displayed inline with the user’s original code. Currently,
Template Haskell is not well-supported by Liquid Haskell,
and our external tool explicitly splices the pruned code in for
efficiency purposes. It would be interesting to further explore
this interaction between Template and Liquid Haskell to see
if can can get the best of both worlds: the conciseness of
proof macros with the efficient compilation of the pruned
proof terms.

Moreover, the current auto macro cannot handle polymor-
phism, because as Template Haskell only provides support
for syntactic equality when checking if an value’s type is
compatible with the type expected for an argument in a neu-
tral form being generated. Supporting polymorphism would
require writing a simple unification function at the Template
Haskell level, which would fit nicely with the rest of our
framework.

Research Challenges. Outside of the aforementioned im-
plementation drawbacks that can easily be overcome, there
remain two significant research questions that limit the us-
ability of our current approach.

First, the pruning algorithm used is guaranteed to find the
subset of the auto-generated exps that make the proof pass,
if such a subset exists, but it is a slow process. As shown
in Figure 8, sometimes the number of exps generated is too
large to be pruned in a reasonable amount of time. A smarter
approach would need to be devised to scale the minimization
to larger case studies.

Second, Liquid Proof Macros still suffer from the lack of
interactivity, which limits their usefulness compared to their
tactic counterparts in traditional proof assistants. To enable
such interactivity, we need to fundamentally rethink the
way Liquid Haskell communicates with the underlying SMT
solver. Until then, Liquid Proof Macros are a very useful
abstraction to reduce the burden of Liquid Haskell users.
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