Computing Correctly with Inductive Relations

Zoe Paraskevopoulou
z.paraskevopoulou@northeastern.edu

Northeastern University
USA

Abstract

Inductive relations are the predominant way of writing spec-
ifications in mechanized proof developments. Compared to
purely functional specifications, they enjoy increased ex-
pressive power and facilitate more compositional reasoning.
However, inductive relations also come with a significant
drawback: they can’t be used for computation.

In this paper, we present a unifying framework for ex-
tracting three different kinds of computational content from
inductively defined relations: semi-decision procedures, enu-
merators, and random generators. We show how three dif-
ferent instantiations of the same algorithm can be used to
generate all three classes of computational definitions inside
the logic of the Coq proof assistant. For each derived com-
putation, we also derive mechanized proofs that it is sound
and complete with respect to the original inductive relation,
using Ltac2, Coq’s new metaprogramming facility.

We implement our framework on top of the QuickChick
testing tool for Coq, and demonstrate that it covers most
cases of interest by extracting computations for the inductive
relations found in the Software Foundations series. Finally,
we evaluate the practicality and the efficiency of our ap-
proach with small case studies in randomized property-based
testing and proof by computational reflection.

CCS Concepts: « Software and its engineering — Soft-
ware testing and debugging.

Keywords: inductive relations, decidability, Coq, QuickChick

ACM Reference Format:

Zoe Paraskevopoulou, Aaron Eline, and Leonidas Lampropoulos.
2022. Computing Correctly with Inductive Relations. In Proceedings
of the 43rd ACM SIGPLAN International Conference on Programming
Language Design and Implementation (PLDI "22), June 13—-17, 2022,
San Diego, CA, USA. ACM, New York, NY, USA, 15 pages. https:
//doi.org/10.1145/3519939.3523707

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
PLDI 22, June 13—17, 2022, San Diego, CA, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-9265-5/22/06...$15.00
https://doi.org/10.1145/3519939.3523707

Aaron Eline
aeline@umd.edu
University of Maryland, College Park University of Maryland, College Park

USA

966

Leonidas Lampropoulos
leonidas@umd.edu

USA

1 Introduction

In interactive proof assistants like Coq [10] and Agda [27],
specifications are formalized either as inductively defined
relations or as pure functions, each with their own benefits
and limitations. Inductive relations allow for a more liberal
style of writing specifications as they can naturally express
a variety of features that functions in a total language can-
not capture, such as nontermination and nondeterminism.
Moreover, they facilitate compositional reasoning as their
elimination and inversion principles enable proofs by induc-
tion and case analysis.

However, these benefits don’t come without a price. Un-
like functions, inductive relations are not executable, even
though that would be highly desirable in various situations,
from leveraging computation in proofs using reflection [4] to
establishing confidence in the correctness of developments
using QuickCheck-style random testing [9]. Indeed, it is not
uncommon for proof assistant users to write hand-written
functional variants of inductive relations and then prove
their correspondence to ensure that the two artifacts are—
and remain—in sync.

In this work, we focus on the problem of extracting compu-
tational content from inductive relations, as well as mechan-
ically verifying the correctness of derived code post-hoc,
in the style of translation validation [32]. Prior work has
focused on extracting computations for specific aspects of
inductive relations with various degrees of correctness guar-
antees. For example, Tollitte et al. [34] extract total functions
from relations that either check the validity of a fully ap-
plied relation or generate an output that satisfies the relation,
given the rest of its arguments as inputs; Bulwahn [6] enu-
merate inhabitants of a given predicate rather than just a
unique value that satisfies it; Lampropoulos et al. [24] extract
random generators for data that satisfy inductively defined
relations. However, as we will see, these three computational
aspects are interdependent: enumerators and generators that
produce data often need to check whether an inductive rela-
tion holds on a given set of inputs, while a procedure that
checks whether an inductive relation holds might need to
produce (all possible) values that satisfy a premise in order
to handle existentially quantified variables (i.e., ones that are
not bound in the result of a constructor).

In this paper, we present a unifying framework that cap-
tures all of these aspects, deriving both checkers, i.e., semi-
decision procedures that determine whether an inductive
relation holds for a given set of arguments, and producers,

PLDI °22, June 13-17, 2022, San Diego, CA, USA

i.e., functions that produce data that satisfy an inductive
relation either deterministically (enumerators) or randomly
(generators). We target inductive relations P of the form:

Inductive P (A; ...:Type) : Ty — -+ — Prop :=

|C1:Vxl...,(Q1611...)—)...—>P81...en |

where each T; is a first-order type and each Q; is an induc-
tive relation of the same class (or its negation). Crucially,
for each generated computation, we automatically derive
a machine checked proof of correctness that states that the
computation is sound and complete with respect to P. Our
unified approach gives us the ability to handle the interde-
pendencies between checkers and producers, allowing us to
extract computations for a much broader and practical class
of relations than previous work.

We implement this framework on top of the QuickChick
property-based testing tool for Coq [25]. Our unified deriva-
tion procedure is written in OCaml as a Coq plugin; our proof
derivation procedures are written in Ltac2 [29], Coq’s new
metaprogramming language. That is, we developed generic
proof scripts that produce correctness proofs for our derived
procedures, in what is the first large-scale application of
Ltac2 metaprogramming capabilities. Finally, we explore its
applications and we demonstrate its capabilities through a
variety of case studies. Concretely, our contributions are:

e We present an algorithm for deriving semi-decision proce-
dures for a large class of inductive relations, but leaving
out existentially quantified variables (Section 3).

e We generalize this algorithm to also derive producers, a
novel abstraction that unifies enumerators and random
generators. By exploiting the interdependencies between
checkers and producers, this algorithm can handle all in-
ductive relations (Section 4).

e We use a translation validation scheme to prove that each
derived checker or producer is correct—sound and comp-
lete—with respect to the inductive relation it was derived
from. We present a proof sketch of this scheme that also
serves as an informal proof that our algorithm works on
every inductive relation (Section 5).

e We implement all of these on top of QuickChick (publicly
available here), leveraging its extensive generic program-
ming facilities, and evaluate our work on three axes (Sec-
tion 6): (1) we show that we can handle a wide variety
of interesting inductive relations in practice, by target-
ing those in Software Foundations; (2) we evaluate the
efficiency of derived procedures for testing by comparing
against handwritten ones in QuickChick benchmarks with
minimal slowdown (less than 2%); and (3) we demonstrate
how the usefulness of derived checkers for proving with a
small case study in proof by reflection.

We begin by introducing a running example (Section 2), dis-
cuss limitations in Section 8, related work in Section 7, and
conclude by proposing future work in Section 9.

967

Zoe Paraskevopoulou, Aaron Eline, and Leonidas Lampropoulos

2 Example: STLC

Throughout this paper, we will use as our running example
the typing relation for terms in the simply typed lambda
calculus (STLC): a relation ubiquitous amongst programming
languages literature, but also one that is out of reach of prior
approaches that attempt to extract computational content
from inductive relations. Following standard practice, we
represent types and terms of STLC as inductive datatypes:
types (natural numbers N or arrows Arr); and terms (constant
natural numbers Con, additions Add, lambda abstractions in
DeBruijn form Abs, variables Var, or applications App).

Inductive type :
| N : type
| Arr : type -> type -> type.

Type :=

Inductive term : Type :=

| Con : nat -> term

| Add : term -> term -> term
| Var : nat -> term

| App : term -> term -> term
| Abs : type -> term -> term.

We then define an inductive relation that describes the
STLC typing rules, characterizing when a term has a specific
type in an environment (a list of types), where lookup is an
auxiliary inductive relation for indexing into the environ-
ment (elided for brevity).

Inductive typing I' : term -> type -> Prop :=
| TCon : forall n, typing I (Con n) N
| TAdd : forall el e2,
typing ' el N -> typing ' e2 N ->
typing I' (Add el e2) N

| TAbs : forall e t1 t2,
typing (t1 :: T) e t2 >
typing ' (Abs t1 e) (Arr t1 t2)
| Tvar : forall x t,

lookup ' x t -> typing T (Var x) t

| TApp : forall el e2 t1 t2,
typing ' e2 t1 -> typing T' el (Arr t1 t2) ->
typing T' (App el e2) t2.

If we ignore the application case (we will return to it later
in the paper), deciding whether a given term e has a given
type t in an environment T is straightforward:

Fixpoint typing_dec T' e t : bool :=
match e, t with
| Con n, N => true
| Add el e2, N =>
typing_dec T' el N && typing_dec I' e2 N
| Abs t1 e, Arr t1' t2 =>
(t1 = t1')? && typing_dec (t1
| Var x, _ => (lookup I" x t)?
| _, _ => false
end.

:) e t2

Computing Correctly with Inductive Relations

This fixpoint closely mirrors the structure of the typing
relation. We match on both the term and the type: a con-
stant always has type N; an addition has type N if both of
its operands also do, an abstraction Abs t1 e has a function
type Arr t1 t2, if its body has type t2 in an extended envi-
ronment recursively; and a variable has type t if that is its
binding in the environment-expressed using the ? notation
that invokes a checker for a property using typeclasses [25].

But even ignoring application, how would one arrive at
such a definition? The answer comes from the structure
of the typing inductive definition itself. For typing T e t
to hold, there must be some constructor that was used to
construct an inhabitant of that type. Therefore we can look
at the conclusion of each constructor to figure out what
shape that constructor expects the input arguments to be.
These shapes become patterns to match inputs against in
the checker; for example, the TAbs constructor expects the
term to be an Abs and the type an Arr. Each precondition in
a constructor then gives rise to an invocation of either the
checker itself (if it is a recursive constraint) or of an external
function that is the (possibly automatically derived) checker
of this precondition.

This suggests a straightforward algorithm for deciding
whether an inductive relation holds automatically: try to see
if there is any constructor that could be used to produce an
inhabitant by matching against the patterns in its conclusion,
and checking whether its preconditions hold. We used this
approach to produce a derived checker for typing, shown in
Figure 1. This checker is, unsurprisingly, more verbose than
the hand-written one, as it has to account for a broad class
of things that can go wrong—deciding whether an inductive
relation holds in the general case is undecidable after all!

The first thorn in the derived checker’s side is nonter-
mination: for Coq to be consistent as a proof assistant, all
functions must be total and therefore terminating; however,
inductive relations can be used to encode nonterminating
computation, and therefore a checker for such a relation can’t
be a total function. To address this, we include two additional
arguments in every checker: a standard size parameter as
fuel to bound the recursion, and a top_size parameter that
serves as fuel for calls to other checkers (such as the one for
lookup in the abstraction case).

But then what should the checker do when it runs out
of fuel? Our solution is to change the output type from a
boolean to a boolean option. In this three-valued type:

1. Some true means that the checker could positively con-
clude that typing T e t holds;

2. Some false means that it could conclude that typing T
e t doesn’t hold;

3. None signifies that it needs additional fuel to reach a con-
clusion one way or another.

As aresult, to compose together multiple checks for recursive
constraints, we need some form of optional conjunction:

968

PLDI °22, June 13-17, 2022, San Diego, CA, USA

Fixpoint rec size top_size I' e t : option bool :=
match size with
| 0=

backtracking [

fun tt => match e, t with
| Con _, N => Some true
| —, _ => Some false
end;
fun tt => None]
| S size' =>
backtracking [
fun tt => match e, t with
| Con _, N => Some true
| -, — => Some false
end;
fun tt => match e, t with
| Add el e2, N =>
rec size' top_size I' el N .&&
rec size' top_size I' e2 N
| _, _ => Some false
end;
fun tt => match e, t with
| Var x, _ =>
check top_size (lookup I' e t)
| _, _ => Some false
end;
fun tt => match e, t with

| Abs t1 e, Arr t1' t2 =>
check top_size (t1 = t1') .8&&
rec size' top_size (t1 :: T) e t2

| _, _ => Some false

end]
end.

Figure 1. Derived checker for typing ignoring App
a .& & b := match a with

| Some false => Some false
| None => None

| Some true => b

Finally, the hand-written checker can afford to be smart
about merging the handling of different constructors in a
single pattern match. On the other hand, the derived checker
is more generic: each constructor gives rise to a handler com-
prising of a pattern match and some additional checks, while
the pattern match returns something other than Some false
in only one case—the one that is prescribed by the conclusion
of the inductive constructor. Each such handler is then tried
via the use of the backtracking combinator, which returns
Some true if any of its options does so, Some false if all of
its options do so, and None otherwise. All of its options are
also thunked, to avoid unnecessary evaluation in a non-lazy
setting. Moreover, one of the options in the base case is None,
to correctly encode running out of fuel.

PLDI °22, June 13-17, 2022, San Diego, CA, USA

Discussion. At a high level, typing_dec is much cleaner
and more optimized compared to the derived checker of Fig-
ure 1. However, the design decisions underlying its deriva-
tion that were described above make it much easier to im-
plement generically, and more importantly to reason about
its correctness with respect to the typing inductive relation.
Still, as we will see later on, the overhead imposed in practice
by these derived checkers is minimal, as any backtracking
that occurs is extremely localized (Section 6.2). Moreover,
the same algorithm can be used to derive proper decision
procedures, albeit in a quite user-unfriendly way (Section 8).

3 Deriving Partial Decidability Procedures

The fully general derivation algorithm is quite intricate, so
we will gradually build up to it in the rest of the paper. In this
section, we will start with a restricted subset of inductive
types, describe how to derive partial decidability procedures
for it, and then slowly build back up to the complete class.

The Derivation Core. We begin by targeting inductive
relations ranging over constructor terms: variables or fully
applied constructors whose arguments are constructor terms.
Additionally, we require that the result of each constructor
does not contain non-linear patterns, i.e., each variable occurs
exactly once in the conclusion, and that all universally quan-
tified variables are bound in it. The grammar is otherwise
the same as the one in the introduction:

Inductive P (A ...:Type) : Ty — --- — Prop =
|C1 :Vxy..., (Q1e11 ...) > ...>Pey ...ep |-

We will relax these constraints later, but this core is simple
enough to describe the essence of our approach, which is
shown in pseudocode as Algorithm 1. We depict the logic
of the algorithm with black, show the produced code in red,
and allow for anti-quoted escapes with blue.

The first thing the algorithm does (lines 3-6) is to iter-
ate through all constructors ctr of P in order to compute a
handler for each one. Each handler ¢ will check whether ctr
can be used to produce a proof of P given the arguments
provided, and is computed by the cTR_rooP helper function,
explained below. After the loop, the variable Cs holds a han-
dler for each constructors, while Bs holds only the handlers
of nonrecursive ones (such as Con).

The rest of DERIVE_CHECKER produces the top-level struc-
ture of the semi-decision procedure, which is always the
same (in red) and is essentially identical to the one depicted
in Figure 1. It is a fixpoint that takes as parameters: a size
that will be used to bound the recursion, a top_size that will
be used as the fuel parameter for all external calls, and any
actual inputs P requires.

If the size is nonzero (lines 13-15), the algorithm iter-
ates through all handlers computed earlier and anti-quotes
the code of the handler, wrapping all of the handlers in a
backtracking combinator, just like the checker of Figure 1.

969

Zoe Paraskevopoulou, Aaron Eline, and Leonidas Lampropoulos

Algorithm 1. Core Checker Derivation Algorithm

1: function DERIVE_CHECKER(P)

2: Bs,Cs « 0

3 for each ctr € P do

4 ¢ « ctr_loop(ctr)

5: Cs—CsUc

6 if not (is_rec ctr) then Bs <« Bs U ¢

7 let fix rec size top_sizein;iny ... in, :=
8 match size with

9: | @ => backtracking [

10: foreach ¢ € Bs do fun tt => c;

11: if Cs # Bs then fun tt => None

12:]

13: | S size’ => backtracking [

14: foreach c € Cs then fun tt => c;

15:]

16: in fun sizeinyiny ... in, =>

17: rec size sizeinginy ... in,

18:

19: function cTR_LooP(ctr)

20: (Vf.Qieil '--e,-ni—>Pel ---ep)<—ctr
21: match iny,iny, ..., in, with

22: | e es....ep=>

23: for each Q; e;; --- e, do

24: if P = Q; then rec size’ ej;...¢ein, .&&
25: else check top_size (Q;eji...ein,) .8&&
26: Some true

27: | , _, ..., _=> Some false

If the size is zero (lines 9-12), the checker ran out of fuel. In
this case, the algorithm will only check if a base (i.e., nonre-
cursive) constructor can be satisfied. Finally, the algorithm
checks if there were recursive handlers that were skipped
(line 11) to quote an additional option to return None (signi-
fying that the checker requires a larger size parameter as
input to make a decision).

The final piece of the puzzle is the implementation of
CTR_LoOP. Assume (line 20) that the constructor we’re try-
ing to check is of the form V x;---x,. Q1 €11 -+ e1n, —

*— Omeémi " * emn,, — Pey -+ ep. The first thing the
algorithm does is to ensure that the inputs to the checker
are of the form described in the constructor’s conclusion
P ey --- ey To do so, it produces a pattern match (lines
21-22) that matches the inputs iny, .. ., in, against those con-
structor terms—since in our restricted setting all terms are
either variables or constructors applied to variables they can
also serve as patterns. For instance, in the STLC example,
the match generated for TAdd would be:

match in1, in2, in3 with
| T, Add el e2, N => ...

IFor presentation purposes, we elided the trivial pattern match on the
environment in Figure 1.

Computing Correctly with Inductive Relations

If the pattern match succeeds, the algorithm needs to han-
dle any constraints imposed by the constructor. Each such
constraint Q; e;; - - - e, gives rise to either a recursive call to
the checker being defined (if P = Q;, line 24), or to a checker
for a different inductive relation (if P # Q;, line 25). Going
back to the STLC example, the typing T el N constraint of
TAdd gives rise to arecursive call rec size' top_size T el N,
while the lookup T x constraint of TVar results in a call to
check top_size (lookup I' x t).

Successive constraints are chained together using the
three-valued conjunction .&&. After all constraints have been
processed successfully, only then does the checker return
Some true (line 26), completing the code that handles a par-
ticular constructor.

On the other hand, if the inputs did not match against the
constructor’s patterns (line 27), then the constructor handler
cannot be used to produce an inhabitant of P and the checker
has to return Some false.

3.1 Extending to Full Inductive Relations

The restricted form of inductive relations targeted is useful
enough to capture many interesting inductive datatypes, but
non-linear patterns, function calls in the conclusion of a con-
structor, and existentially quantified variables still need to
be addressed. The first two are similar in nature: by leav-
ing them out, we were able to get away with using the ex-
pressions in the conclusion of constructors as patterns. We
will show how we can add them back by handling these
constraints as additional premises. The last feature is trick-
ier: forall quantifiers in constructors can be used to en-
code existential quantifiers, when variables appearing in the
premises of a constructor but not its conclusion. We will
address this challenge by introducing a way of instantiating
such variables: enumeration.

Non-Linear Patterns. Taking a closer look at the abstrac-
tion case, we can spot a non-linear pattern:

TAbs : forall e t1 t2, typing (t1 :: T) e t2 —>

typing ' (Abs t1 e) (Arr t1 t2)

If we tried to blindly apply Algorithm 1, we would get syn-
tactically invalid code, as Coq’s pattern matching does not
allow for binding the same variable multiple times:

match in1, in2, in3 with
| T, Abs t1 e, Arr t1 t2 => ...

To get around this, we observe that if we convert the
nonlinear pattern to an explicit equality check, we obtain an
equivalent formulation:

TAbs : forall e t1 t2 t1',
t1 = t1' -> typing (t1 :: T) e t2 >

typing ' (Abs t1 e) (Arr t1' t2)

Then, cTr_rooP produces the following handler:

970

PLDI °22, June 13-17, 2022, San Diego, CA, USA

match in1, in2, in3 with
| T, Abs t1 e, Arr t1' t2 =>
check top_size (t1 = t1') .&& ...

which is a perfectly valid checker for the original type of
TAbs! We do this conversion as part of a preprocessing phase
before the derivation process.

Function Calls. To see why function calls pose a similar
problem, consider the following inductive relation, borrowed
from the series Software Foundations [31], that holds when
a natural number is the square of another:

Inductive square_of :
| sq : forall n, square_of n (n * n).

nat -> nat -> Prop :

Once again, if we tried to blindly apply Algorithm 1, we
would get syntactically invalid code in the pattern match:

match in1, in2 with

| n, (n*n) => ...

Just like in the case of non-linear patterns, we can get around
this issue by introducing a fresh variable and an equality con-
straint between it and the function call. Then, for instance,
the sq constructor would be (automatically) rewritten to:

sq : forall nm, n *x n =m -> square_of n m,

which yields a perfectly functional checker. Notice that func-
tion calls are not a problem when they appear in constraints:
if a constraint P (n * n) is encountered, the checker for P
with n * nas its argument can simply be invoked.

Existentially Quantified Variables. Unlike non-linear
patterns and functions calls which posed a problem when
handling conclusions of inductive constructors, existentially
quantified variables are a problem that arises when handling
premises. Recall the typing rule for application:

TApp : forall el e2 t1 t2,
typing ' e2 t1 -> typing T' el (Arr t1 t2) ->
typing I' (App el e2) t2.

As t1 does not occur in the result, when processing the
constraint typing T e2 t1 it will not be instantiated with a
concrete value, which means we can’t simply call the checker
recursively as in Algorithm 1. One possible way of getting
around this issue would be to start enumerating possible
types for t1 and check whether they are a valid depth for the
given tree. Of course, this is too inefficient. What if instead we
could enumerate t1s such that the predicate typing T e2 t1
holds given some concrete values for I and e2? That is pre-
cisely the focus of the following section.

4 Generalizing the Derivation Procedure

Our goal in this section is to generalize the algorithm of
the previous section that derives checkers to also derive pro-
ducers, which can create (enumerate or randomly generate)
arguments such that P e; --- e, holds.

PLDI °22, June 13-17, 2022, San Diego, CA, USA

Producers. Producing structured data lies at the core of
property-based testing, and is usually achieved through gen-
eration [1, 8, 12-14, 21, 23, 28] or enumeration [5, 7, 22,
26]. However, they are usually treated as completely dis-
tinct approaches, with distinct implementations. Rather than
replicating infrastructure for both, we identify a common
monadic core between the two, introducing the notion of
producers: bounded value-producing monadic actions that
admit the same possibilistic reasoning, facilitating maximal
code—and more importantly proof—reuse.

Consider the following types:

MkGen :
MKEnum :

Inductive G A :=
Inductive E A :=

(nat -> Rand -> A) -> G A.
(nat -> List A) -> E A.

The type G A represents generators for some type A, and
is a wrapper around functions from some size parameter
and a random seed to A. Similarly, the type E A represents
enumerators for A and is a wrapper around function from
sizes to (lazy) lists of A.

We implement four monadic operations for both G and E:
return, bind, and two ways of encoding failure: fail,, (signi-
fying failure to produce an inhabitant) and fuel,, (signifying
running out of fuel), each subscripted by m € {G,E}:

ret,, : A -> m option A
bind, :

fail,,, fuel,, : m option A

Monadic operations work on option A instead of just A, as
dictated by established conventions [24].

Example: Type Inference. The key piece of intuition be-
hind this generalization is that checkers and producers for
a given inductive relation P are extremely similar. Consider
the derived enumerator for types t, such that typing T e t
holds for given T and e, depicted in Figure 2. A direct com-
parison with the checker from Figure 1 reveals the high-
level structure to be basically identical. We first match on
size to ensure termination by handling only nonrecursive
constructors; we create a handler for each constructor that
enumerates all possible types it supports; and we group all
handlers together with enumerating—a function that takes a
list of enumerators and concatenates their results. Just like
for checkers, we include fuelg as an option when running
out of fuel (elided for brevity along with the Con and Abs
cases and each handler’s thunks).

Handlers for individual constructors are also similarly de-
rived. Each one still performs a match against the patterns
of the constructor’s result, and then processes any precondi-
tions in order. For example, the handler for TAdd first ensures
that the input term e is of the form Add el e2, and then
makes recursive calls for e1 and e2 to enumerate types t1
and t2 such that typing T el t1 and typing T e2 t2 hold
respectively. These recursive calls are executed in sequence
using the monadic bindg. Finally, t1 and t2 are checked to be

m option A -> (A -> m option B) -> m option B

971

Zoe Paraskevopoulou, Aaron Eline, and Leonidas Lampropoulos

Fixpoint rec size top_size I' e : E (option type) :=
match size with
| 0 => ...
| S size' =>
enumerating [
. Con,Abs handlers elided for brevity ...
match e with
| Add el e2 =>
bindg (rec size' top_size I' e1) $ fun t1 =>
bindg (rec size' top_size I' e2) $ fun t2 =>
if (t1 = N)? && (t2 = N)?
then retg N else failg
| _ => failg end;
match e with

base cases elided for brevity ...

| Var x =>

enumST top_size (fun t => lookup I' e t)
| _ => failg end;
match e with

| App el e2 =>
bindg (rec size' top_size I' e2) $ fun t1 =>
bindg (rec size' top_size I' e1) $ fun t12 =>
match t12 with
| Arr t1' t2 =>

if t1 = t1'? then retg t2 else failg
| _ => failg end
| _ => failg end]
end.

Figure 2. Derived enumerator for typing (simplified).

equal to N, before returning the singleton enumeration N—
the only type TAdd prescribes in its conclusion.

For a nonrecursive example consider the handler for the
TVar constructor. It only makes a single call to another enu-
merator (using the enumST typeclass method), which enumer-
ates t such that lookup I' e t holds. This enumerator can
also be derived automatically using the same algorithm.

Finally, taking a closer look at the handler for TApp reveals
an interesting situation: when processing the typing T el
(Arr t1 t2) constraint, t1 is fixed (from the first recursive
call) while t2 still needs to be enumerated. The derived enu-
merator opts for a recursive call to generate a fresh variable
t12, matches against Arr t1' t2 to create a binding for t2,
and then checks that t1 and t1' are equal (similarly to how
non-linear patterns were handled).

To arrive at such an enumerator automatically, we need
to answer two questions. How can we sequence different op-
erations (producers, checkers, or recursive calls) in a generic
fashion? And how do we decide when we need to call a
producer or a checker when processing a constraint?

Sequencing computations, generically. Converting the
enumerator of Figure 2 to a generator is trivial: we substitute
the enumerator monadic actions ret, bind, and fail of E

Computing Correctly with Inductive Relations

with the corresponding generator ones, change the typeclass
method called from enumST to its generator variant genST, and
change enumerating for QuickChick’s backtrack combinator
that has an equivalent G-based type.

To unify producers and checkers, the key realization is
that the three-valued conjunction .&& can also be seen as a
bind (or, more precisely, a “then” >>), by treating option bool
as a monad. We also need to sequence computations in
different monads together. For example, let’s finally com-
plete the checker of Figure 1 by constructing the TApp han-
dler. The problem was that when processing the constraint
typing T e2 t1, we could not recursively invoke rec as t1 is
not bound. Using the derived enumerator of Figure 2, we can
produce a t1 that satisfies this constraint, but we would need
to sequence that with the rest of the checker. For that, we use
another combinator bindgc with type E (option A) -> (A
-> option bool) -> option bool, iterating through all enu-
merator results, yielding the following handler:

match e, t with
| App el e2, t2 =>
bindgc (enumST top_size (fun t => typing I e2 t))
$ fun t1 =>
bindc (rec size' top_size I' el (Arr t1 t2))
$ fun _ => retc true
| _, _ => fail¢

We also sometimes need to invoke checkers while deriving
a producer, which requires the converse bindce and bindge
“binds”, which are simple pattern matches like . &&, but whose
continuation is a producer rather than a checker.

Processing constraints. The only thing remaining is to
decide, when processing each constraint, whether we need
to invoke a checker, a producer, or make a recursive call.
To decide that, we will keep track of a mapping vars from
variables to (statically known) information about them. Each
variable can either be: (1) fully instantiated with a value
that is statically unknown but fixed, when it either is a top-
level argument to the fixpoint (such as T or e), a variable in
a pattern match (such as el or e2 in the TAdd case), or the
result of a producer call (such as t1 and t2 in the TAdd case);
(2) undefined, when it is an output to be produced; or (3),
(potentially partially) instantiated via a pattern match (such
as e after performing the match of TAdd, when it is known to
have the form Add el e2, for fixed but unknown e1 and e2).

The vars map is initialized for each constructor by inspect-
ing its result type (after any rewriting to handle non-linear
patterns or function calls), as seen in Algorithm 2. It relies on
a user-provided out_set, a set describing which variables are
meant to be produced (similar to modes in functional-logic
programming). At the end of this procedure each function in-
put in; maps to its corresponding pattern, and every variable
in these patterns is marked either as an input or an output,
propagating the out_set information.

PLDI °22, June 13-17, 2022, San Diego, CA, USA

Algorithm 2. Environment Initialization

1: function INIT_ENV(ctr, out_set)

2 (VXx.Qieir - - ein, > Pey -+ ep) «ctr
3 vars «— 0

4 for each in; € iny, ..., in, do

5: vars < vars U {in; — e;}

6 for each x; € variables(e;) do

7 if in; ¢ out_set then

8 vars « vars U {x; — input}
9 else
10: vars < vars U {x; — output}
11: return vars

Given a mapping vars, let’s assume that we are processing
a constraint Q; e;; - - e;y, for a constructor of a relation P.
If the type constructor Q being handled is not the one being
derived, then it clearly can’t be solved by a recursive call.
In this case, the algorithm looks up whether there exists a
producer or checker typeclass instance that can be used to
instantiate any variables that are still marked as output. It will
favor producers over checkers as in the Tvar case of Figure 2:
using a producer to enumerate ts that satisfy lookup T e t
directly is preferable to enumerating ts arbitrarily and then
checking whether lookup T e t holds.

The interesting case is when the constructor being handled
is P. The essence of this case is to decide: if the arguments
can be used as arguments to a recursive call as is; if some
arguments need to be instantiated before doing so; and if
any arguments are more instantiated than they should be
(tagged as inputs while expected to be outputs). This gives
rise to a notion of compatibility, which takes a variable x
and an expression e, and returns either L (if the expression
imposes constraints on x that can’t be satisfied) or a set of
variables in e that need to be instantiated before a recursive
call can be made, in addition to an (optional) pattern to ensure
produced values agree with potentially partially instantiated
forms (such as in the handling of TApp).

compatible vars x y =
| if vars(x) = vars(y) — (0,-)
| if vars(x) = input,vars(y) = output — ({y},-)
| otherwise — L
compatible vars x (Ce) =
| if vars(x) = output — (0,C e)
| otherwise — (variables(e), -)
compatible vars x (f e) =
| if vars(x) = output — L
| otherwise — (variables(e), -)

Armed with the notion of compatibility there are three pos-
sibilities to consider:

e Every argument to P in the constraint is compatible with
its corresponding argument in the computation being de-
fined, and no variables need additional instantiation. In

PLDI °22, June 13-17, 2022, San Diego, CA, USA

this case, we can just make a recursive call, perhaps fol-
lowed by a pattern match as in TApp.

o There exists some incompatible argument that is more
instantiated than expected. That can only happen when
deriving a producer (as in a checker all arguments need to
be instantiated). In this case, we simply invoke a checker
for the relation (as in the checker for TApp).

e Every argument to P in the constraint is compatible with
its corresponding argument in the computation being de-
fined, but some variables do need additional instantiation.
In this case, we have a choice: we can produce them and
then make a recursive call; or we can make an external
call to a constrained producer. We favor enumeration over
checking (either recursively or by invoking an appropriate
typeclass method should such an instance exist), as that
generally tends to lead to more efficient code.

5 Correctness via Translation Validation

To establish the correctness of derived computations we fol-
low a translation validation approach [32]. Using Ltac2 [29],
we construct, for each derived computation, a proof that it
is sound and complete with respect to the inductive relation
that it was derived from. This approach allows us to generate
proofs inside the Coq proof assistant (as opposed to prov-
ing a meta-theroem about the derivation procedure). Then
these proofs can be used in other Coq proofs, for example
when carrying out proofs by reflection (Section 6.3) or when
using the derived programs as components in larger mecha-
nized developments. Here, we describe the formal properties
that we prove, and then we sketch the translation validation
scheme that we use. This sketch also serves as a metatheo-
rem that our derivation procedure is sound and complete for
all the inductive relations that it handles. In the following
we use typewriter font for Coq code and italics to indicate
metavariables ranging over Coq terms.

5.1 Formal Properties

We formally state and prove that each derived computation
is sound and complete with respect to the inductive relation
it was derived from.

Checkers. For a checker of a predicate P of arity m, sound-
ness means that if it returns true for some fuel parameter s
and some given inputs then the inductive predicate holds on
the given inputs. Or, put formally,

Vs, check s (P e; ... e;y) = Some true — P ey ... ep

Conversely, completeness requires that if the predicate holds
for some given inputs, then there exists some size parameter
for which the checker returns true on these inputs.

Pe ...ep > 3s, check s (P e ... e) = Some true

Checkers should also be monotonic: providing a larger
size parameter should only increase the precision of the
computation. Monotonicity means that once the checker

973

Zoe Paraskevopoulou, Aaron Eline, and Leonidas Lampropoulos

has decided about the validity of the predicate, this decision
cannot be changed. Formally,

V sy sp2 b, s1 <sp —
check s; (P ey ...
check s (P ey ...

Some b —
Some b

em)
em) =
Using monotonicity and completeness one can also derive
soundness for the negations of the checker. That is,

V' s, check s (P e; ...
- (P er ... em)

em) = Some false —

Unfortunately, completeness for negation cannot be derived
and it does not hold in general as the ability of inductive
relations to encode nonterminating computations gets in
the way. Consider the following inductive predicate over
natural numbers that holds for @ and no other number, but
in a rather roundabout way:

Inductive zero :
| Zero
| NonZero :

nat -> Prop :=
: zero O
forall n, zero (S n) -> zero n.

A derived checker for zero will always return None for every
non zero number, no matter how much fuel we give it, even
though the property does not hold. It will keep trying to
satisfy the zero (S n) premise of the NonZero constructor
(which can never be satisfied), until it runs out of fuel.

Producers. Producers satisfy similar properties, but have
more complicated semantics. To reason about them, we use
the set of outcomes semantics that was used by [24] to reason
about generators. In particular, for a producer of elements of
type A, prod: m A, we define [prod] s to be the set of elements
of type A that are produced for the given size.

Producers are also size-monotonic. That is, any element
that can be produced using some size can also be produced
using a larger size.

V s1 s2, s1 < sg — [[prod]s, € [prod]s,

To specify correctness, we first define the set of elements
that can be generated for any size parameter as

[prod] def {x | 3s, xe[prod]s}

Now, let prod be a producer for the i-th argument of a predi-
cate P with arity m, and lete; ... ei—1 ei+1 ... en be inputs
for the rest of the arguments. We say that the producer is
sound if every generated x satisfies the predicate, and com-
plete if any x that satisfies the predicate can be generated.
Formally,

V x, x € [prod] & P e ... ei-1 X €it1 ... €m

5.2 Proof Derivation

Our Ltac2 scripts automatically derive proofs for the formal
properties we stated in the previous section. The transla-
tion validation scheme is expected to succeed for all gen-
erated programs. The only exception to that is inductive

Computing Correctly with Inductive Relations

predicates that have constructors with one or more negated
premises. As we explain below, in such cases we cannot de-
rive a completeness proof, unless the negated predicate is
fully decidable. We only outline the proofs of soundness and
completeness for checkers; the proofs for producers follow
the same principles.

LetP:T; — --- — T, — Prop be an inductive predicate
of arity m for which the derivation algorithm generates a
semi-decision procedure of the form

Fixpoint rec (size top_size :
match s with
| @ => backtrack [... 1 | S n => backtrack [...]
end.

nat) (iny : Ty) ... :

where size is the decreasing size argument and top_size the
size parameter for external calls to already defined checkers
and producers.

To proceed, we need a specification for the backtrack com-
binator. This states that backtrack returns true if and only if
there exist some checker in its input list that returns true.

V 1, backtrack 1 = Some true <
d ch, ch € 1 A ch tt = Some true

5.2.1 Soundness. First, we focus on the soundness proof.
Assuming rec size top_size inj ... inp = Some true, we
need to show that P in; ... in,. The proof proceeds by
induction on the size argument size.

The proof strategy is mostly the same in both the zero
(size = 0) and successor (size = S size') cases. In both
cases, we know that backtrack [chy; ... 1 = Some true for
a list of checkers, and we need to show that P in; ... inp,,
holds. We apply the specification of backtrack to the hy-
pothesis and we obtain that there is some chin [chy; ...]
such that ch tt = Some true. Therefore, we need to show
that for any ch;, if ch; tt = Some true then P in; ...
Each ch; is either a checker that was produced by cTr_roop
and checks whether a particular constructor of the type can
be used to satisfy P with the current inputs, or the trivial
checker fun _ => None, that is appended to the list of check-

inp.

ers when when the size is @ and P has recursive constructors
that are not checked. The latter case is trivial: it follows by
contradiction, as Some true = None can’t hold.

To prove the rest of the cases we perform an iterative
process that examines the shape of the checker in the hy-
pothesis. Each case in the loop matches a construct generated
by cTR_LOOP.

e Pattern matching. The hypothesis is of the form:

match x with
| Cpy ... pp = ch
end = Some true

| _ => Some false

The pattern matching checks whether an input or an enu-
merated variable has the right form. By case analysis on

974

PLDI °22, June 13-17, 2022, San Diego, CA, USA

x, we know that it has to be of the form C p; ... p;, other-
wise we derive a contradiction. We are now left with the
hypothesis ch = Some true.

Checker matching. The hypothesis is of the form:
check top_size Q .&& ch = Some true

where check top_size Q checks the validity of Q, which
is a premise of the constructor that is currently checked.
From this we obtain that Q holds (using the soundness
proof for the checker of Q) and that ch = Some true.
Checker matching (negation). When —Q is a premise of
the constructor the hypothesis will be of the form:

~(check top_size Q) .&& ch = Some true

where ~ maps Some true (resp. Some false) to Some false
(resp. Some true), and leaves None unaffected. From this
we obtain that check top_size Q = Some false and that
ch = Some true. Using the soundness for the negation of
the checker (which, as we explain in section 5.1, we can
derive for free), we can conclude —Q.

Recursive call. The hypothesis is of the form:

rec size' top_size e; ... ep .8&& ch = Some true

that performs a recursive call to the checker. We conclude
that rec size' top_size e; ... e, = Some true and that
ch = Some true. Using the induction hypothesis, we obtain
that P e; ... ep.

Enumeration. The hypothesis is of the form :

bindgc (enumST top_size (fun t => Q t))
(fun x => ch) = Some true

where bindgc is the combinator that sequences enumer-
ation and checker operations as in the previous section.
From this hypothesis we derive that there exist some x in
the set of outcomes of enumST top_size (fun t => Q t)
such that ch x = Some true. From the soundness property
of the enumerator we also derive that Q x holds.

We repeat this process until the checker in the hypothesis
has been reduced to Some true. At this point, all the premises
that are required to satisfy the constructor that the current
ch; checks will be in the context and all of the inputs will
match the result of the constructor, concluding the proof.

5.2.2 Completeness. To show completeness we need to
prove that if P in; ... inp, there exists a parameter size
such that rec size size in; ... = Some true. We proceed
by induction on the derivation of P in; ... ing,. It suffices
to show that there exists some size parameter such that
rec (S size) size iny ... in, = Some true, which further
simplifies to backtrack [chy; ...; chyp 1 = Some true.

We apply the specification of backtrack, and we just need
to prove that there exists some chinthelist[chy; ...; chm 1,
such that ch tt = Some true. Depending on which construc-
tor was used to derive the hypothesis P in; ... in,, we can
figure out which of the handlers ch; to choose as a witness for

PLDI °22, June 13-17, 2022, San Diego, CA, USA

ch. Then we can prove that ch tt =
applying the following process.

Some true by iteratively

e Pattern matching. The goal is of the form:

3 size, match C e; ... g with
| Cp1 ... pp = ch | _ => Some false
end = Some true

The input being pattern matched already has the right
form, as its constructor corresponds to the handler we
provided as a witness. Therefore, the goal simplifies to
ch = Some true, where all pattern variables p1, ..., p;
have been substituted with the corresponding sub-expre-
ssions ey, ..., e of the scrutinee.

e Checker matching. The goal is of the form:

3 size, check size Q .&& ch = Some true

where Q is an inductive relation that is a premise of the rule.
Because both checkers check size Q and ch are monotonic
in the size parameter, we can find witnesses for the size
parameter independently: the maximum of the two is then
used as a witness for the outer size. Therefore, it suffices
to show that 3 size, check size Q = Some true and that
3 size, ch = Some true. The solve the former obligation,
we use the completeness of the checker together with
proof of Q should be present be present in the context as
it is a premise of the constructor that is currently handled.
To solve the latter goal we proceed recursively.

e Checker matching (negation). The goal is of the form:

3 size, ~(check size Q) .&& ch s = Some true

where Q is an relation whose negation is a premise of
the constructor we are currently examining. Again, it suf-
fices to show that 3 size, check size Q = Some false
and that 3 size, ch = Some true. The latter goal is han-
dled recursively. For the former, a proof of -Q must have
been generated in our context from the induction. How-
ever, as we discuss in section 5.1, completeness for the
negation of our semi-decision procedures does not gener-
ally hold. We can obtain completeness for negation if Q
is a fully decidable proposition (a common case for this
is when Q is equality for a decidable type). Therefore, we
can show completeness for this case only if a decidability
procedure has been provided for Q.

e Recursive call. The goal is of the form

3 size, rec size size e; ... ey .&& ch = Some true

As before, we need to show that 3 size, rec size size e;

. em = Some true and that 3 size, ch = Some true. As
usual, the latter is being handled recursively. To solve
the former goal, we use the hypothesis P e; ... e, which
should be in the context.

e Enumeration. The goal is of the form

3 size, bindgc (enumST size (fun t => Q t))
(fun x => ch) = Some true

975

Zoe Paraskevopoulou, Aaron Eline, and Leonidas Lampropoulos

To handle this case, we must show that there exists some
x such that there exists some size for which x is in the
set of outcomes of enumST size (fun t => Q t), and that
3 size, ch = Some true. Since a proof for Q x for some x
should already be in our context, generated by the induc-
tion, we derive the former goal using completeness of the
enumerator. The latter case is handled recursively.

This process is repeated until the goal is of the form
3 size, Some true = Some true, which is trivial.

5.3 Proof Engineering

We briefly discuss our experience using Coq’s new tactic
language, Ltac2. We found Ltac2 to be an indispensable tool
in our arsenal. Compared to regular Ltac, it gives a much
more comprehensive ability to inspect and construct Coq
terms, which makes it a powerful metaprogramming facility.
Unlike Ltac, Ltac2 is typed, which made it substantially eas-
ier to identify errors. However, we also encountered some
limitations. Ltac2 does not provide a way of finding the cur-
rent goal number, e.g., after performing induction or case
analysis. As a result, we could not immediately select the
witness ch in the proof of completeness by indexing into
the list, but we have to check if the proof succeeds for each
one of the checkers. Naturally, this hurts the efficiency of
our proof scripts that becomes quadratic in the number of
constructors instead of linear.

Our proof engineering heavily relies on Coq’s typeclass
mechanism [33] to resolve proof obligations for previously
derived procedures. In particular, we turn monotonicity and
correctness into typeclasses and derive instances of these
typeclasses using our Ltac2 scripts. This way, the correctness
and monotonicity proof obligations generated by our trans-
lation validation proof scripts can be resolved automatically
without having to apply specific lemmas.

6 Evaluation
6.1 Practicality: Software Foundations

To evaluate whether the class of inductive relations handled
is useful in practice, we target a large body of represen-
tative relations: the Software Foundations series of online
textbooks. In particular, we extract and verify checkers and
producers from inductive relations found in the first two vol-
umes (Logical Foundations—LF [31] and Programming Lan-
guage Foundations—PLF [30]). These volumes contain a par-
ticularly appealing body of relations to target, ranging from
predicates on lists and natural numbers to regular expres-
sion matchers, and from stateful evaluators for imperative

Table 1. Derived computations from Software Foundations.

Inductive | Computations Baseline
Relations Derived (Algorithm 1)
LF 38 30 11
PLF 71 67 25

Computing Correctly with Inductive Relations

12000
-0.51%

10000 -1.18%
8000
6000
4000
2000
0

BST IFC

-0.82%

STLC

Tests/second

Figure 3. Throughput of QuickChick case studies using handwritten or

languages to typing relations for lambda calculi. Moreover,
as part of an introductory textbook for Coq, they showcase
diverse ways of writing down a relation to stress test the
robustness of our implementation to stylistic changes.

For each inductive relation defined in the first two vol-
umes, (including exercise solutions), we automatically derive
checkers and producers as well as proofs of their correctness
and completeness. We only made a single change, converting
the representation of Maps (used for environments) from func-
tions to association lists. Generating or checking predicates
over functions is beyond the scope of this work—how would
one, for example, check equality between two functions over
natural numbers? Table 1 shows the number of inductive
relations found in both volumes, and the number of them
for which we were able to derive enumerators, checkers,
and proofs of correctness. Furthermore, as a baseline, we
report how many inductive relations could be handled by
Algorithm 1. Out of the 38 inductively defined relations
found in LF and the 71 found in PLF, 30 and 67 of them
respectively do not involve any computations over higher
order data, and are therefore within scope of the algorithm
presented in this paper. Our implementation could handle all
of them correctly. In contrast, Algorithm 1 can only handle
11 and 25 respectively, showing that being able to handle the
interdependencies between producers and checkers is vital
to capture a practical fragment of inductive relations.

6.2 Random Testing

The primary motivation behind this line of work was to
facilitate testing in Coq using QuickChick by establishing
confidence in a design before attempting a proof. To that
end, testing feedback should be quick and require less effort
than proving. However, if users write specifications using
inductive relations, requiring them to also write checkers
to obtain such feedback is a non-starter. On the other hand,
automatically deriving (correct!) checkers is helpful, even if
they are slightly less efficient than handwritten ones.

To evaluate the efficiency of our derived procedures we
turn to QuickChick’s microbenchmark suite, consisting of
three case studies from the literature that target: binary

976

Tests/second

PLDI 22, June 13-17, 2022, San Diego, CA, USA

12000

1219
1.21% -1.74%
10000 =%

8000
6000
4000
2000

0

BST STLC

checkers (left) and generators (right).

search trees [20], information flow control abstract machines
[18, 19], and STLC [15]. These cover diverse verification
domains (data structures, security, and type systems), and
exercise all interesting features of inductive relations not
handled by prior work (such as nonlinear patterns, func-
tion calls, negation, and existentials), making them excellent
candidates to evaluate the performance of our derived com-
putations. In addition, they already come with handcrafted
generators and checkers to serve as the baseline.

We first evaluate the efficiency of the derived checkers.
To do that, we use the same handcrafted generator to pro-
duce hundreds of thousands of test inputs, and use both
handcrafted and derived checkers to test whether a given
property holds. All such properties were already proved to
be correct in Coq, and therefore the only metric of interest
is throughput: the number of tests per second that can be
executed. The left-hand of Figure 3 shows this throughput
for the three benchmarks using both handwritten (in blue)
and derived (in) checkers. In all three benchmarks,
the slowdown is minimal, showing less than 2% decrease
in performance—a small price to pay to avoid writing and
verifying additional code.

We then evaluate the efficiency of the derived generators.
Just like before, we use the same handcrafted checker to
decide whether a property holds, and compare the through-
put of the handcrafted and derived generators. The results
appear in the right-hand side of Figure 3. The decrease in
performance is slightly larger than the derived checkers (be-
tween 1% and 3.5%), as the derived generators are more likely
to perform some backtracking locally, but still very much
worth the cost to avoid handcrafting generators.

At the same time, for a fair comparison, it is important
to ensure that the distributions of test data produced by
the two generators are similar. Anecdotally, upon manual
inspection, their structure seems similar (as expected). How-
ever, mechanically demonstrating this similarity remains an
open problem in property-based testing. Still, can instead
show that the generators are similarly effecting at finding
bugs, by leveraging the second component of QuickChick’s

PLDI °22, June 13-17, 2022, San Diego, CA, USA

microbenchmark suite—injecting mutations that cause prop-
erties to fail. In particular, the suite introduces errors in: the
insertion function in binary search trees (causing the result of
an insertion to sometimes violate the search tree invariant);
the substitution and lifting functions of the STLC (causing
violations of preservation); and in the label propagation of
the information flow control abstract machines (causing vio-
lations of noninterference). After running both handwritten
and derived generators against these microbenchmarks, we
found that their mean tests to failure were indistinguishable.
Benchmarking was carried out in a Dell workstation running
17-8700 @ 3.2GHz with 16GB of RAM.

6.3 Computational Reflection

Another application of derived checkers is to facilitate verifi-
cation, allowing for quick proofs by computational reflection.
Proof by computational reflection [4] is a technique that is
commonly used in proof assistants in order to reduce the
size of proof terms and, consequently, the time of typecheck-
ing. To demonstrate how checkers can help, consider the
following Sorted predicate on lists:

Inductive Sorted : list nat -> Prop :=
| Sorted_nil : Sorted []

| Sorted_sing : forall x, Sorted [x]

| Sorted_cons : forall x y 1, x <=y ->

Sorted (y :: 1) -> Sorted (x :: y :: 1).

Let’s try to prove that the list repeat 1 2000, consisting of
the number 1 2000 times is sorted. A straightforward proof
repeatedly applies the suitable Sorted constructor.

Lemma sorted_2000 :
Proof. time (repeat
(first [eapply Sorted_cons; [apply le_n |]
| eapply Sorted_sing 1)).
(* ... 11.202 secs (11.171u,0.019s) ... *)
Time Qed. (* ... 16.283 secs (16.23u,0.03s) ... *)

Sorted (repeat 1 2000).

Unfortunately, the proof term produced this way is huge:
constructing it takes 11.202 seconds and typechecking it
16.283 seconds! The standard solution is to write a decision
procedure for Sorted, prove it sound, apply the soundness
theorem to the goal, and compute the value of the decision
procedure for the list. Using our framework, writing and
proving correct such a procedure can be fully automated. We
only have to write the following commands:

1. Derive a checker for Sorted:
Derive DecOpt for (Sorted 1).
2. Derive its proof of soundness:

Instance Sort_sound 1 : DecOptSoundPos (Sorted 1).
Proof. derive_sound. Qed.

3. Use the sound typeclass method in the proof:

977

Zoe Paraskevopoulou, Aaron Eline, and Leonidas Lampropoulos

Lemma sorted_2000' : Sorted (repeat 1 2000).

Proof. time (eapply sound with (s := 2000);
compute; reflexivity).

(* ... 0.05 secs (0.05u,0.s) ... *)

Time Qed. (* ... 0.059 secs (0.058u,0.s) ... *)

Constructing and typechecking the proof term now take less
than 60 milliseconds each, with minimal user effort!

7 Related Work

As mentioned throughout the paper, extracting forms of
computation from inductive relations has received a lot of
attention. While we would have liked to evaluate our derived
computations against prior work, the closest one is no longer
maintained. Instead, in this section, we thoroughly discuss
the most directly relevant approaches. At a high level, the
key distinguishing feature of our work is that by unifying the
treatment of checkers and producers in the same framework,
we are able to leverage the interdependency between them
and significantly expand the class of inductive relations tar-
geted, while providing strong fully mechanized correctness
guarantees (including both soundness and completeness).
We also maximize code and proof reuse, simplifying the
maintenance of the implementation in the process.

Checkers and Functional Content. Arguably, the clos-
est line of work is the pioneering work of Catherine Dubois’
group. Delahaye et al. [11] present a method for extracting
functional content from Coq to OCaml out of a fragment
of inductive relations using mode analysis, and present a
metatheoretic proof of its soundness. Tollitte et al. [34] adapt
this approach to extract functions inside the logic of Cogq,
with mechanized soundness proofs. In their work, functions
can either be partial mode (single output-multiple inputs) or
full mode (i.e., a checker). Our work generalizes this approach
by extending partial-mode functions to sound and complete
enumerators, allowing for a broader class of inductive rela-
tions to be checked. Existential variables can only be handled
if they are arguments to a premise that has a partial mode
in that argument. But if this premise is not deterministic in
that argument, then the extracted full mode is necessarily
incomplete (i.e., the full mode might return false when the
relation holds). Other limitations of this work that are not
present to ours are that it requires inductive relations to
be structurally recursive in order to handle nontermination
(which excludes, for example, substitution-based evaluation
relations), non-linear patterns, and negated premises.

Similarly, Berghofer and Nipkow [3] provide a way of
executing a fragment of higher-order logic in the context
of Isabelle inside the logic itself. Later, Berghofer et al. [2]
adapt this approach using mode analysis to transform Is-
abelle predicates to functional equations, which can in turn
be used for code generation [16]. However, they only justify
their approach metatheoretically (i.e., no mechanized proofs

Computing Correctly with Inductive Relations

of correctness), they can’t mix functions and predicates arbi-
trarily, and their translation amounts to unrestricted depth-
first search which can lead to nonterminating computation
(something that is ruled out conclusively by a completeness
proof such as the one in Section 5.2.2).

Enumerators. The most prominent line of work on de-
riving enumerators from inductive relations is Bulwahn [6]
in Isabelle’s QuickCheck [5]. Bulwahn presents a view of
Isabelle specifications as logic programs that allows for enu-
merating data directly satisfying the preconditions of such
specifications. Using such enumerators greatly reduces the
number of tests needed to falsify properties compared to sim-
pler type-based approaches. However, there is no correctness
reasoning (even informally), inviting subtle errors: for in-
stance, only a single size parameter is used to limit the depth
of their enumeration, which can lead to incompleteness.

In the simply typed world, Yakushev and Jeuring [36] use
generic programming based on spine views [17] to enumer-
ate GADTs, such as well-typed terms. However, GADTs are
far less expressive than inductive relations and there is nat-
urally no mechanized proof of correctness (though proof
assistants like Liquid Haskell [35] could be used to that end).

Random Generators. The other closely related line of
work is that by Lampropoulos et al. [24] on deriving ran-
dom generators for an inductive relation, along with a proof
of correctness (using the same notion of correctness that
originated from Dybjer et al. [12]). However, their derived
generators rely on chekers written and verified manually.
Moreover, their approach was to construct proof terms in
OCaml using the same generic code that derived the gen-
erators themselves. This significantly complicated the code,
posing a maintenance nightmare which ultimately lead to
leaving the proof derivation component out of the Coq CI
when QuickChick became a core package. In contrast, by
unifying generators, enumerators, and checkers, we provide
a framework that fully subsumes their work, all while greatly
simplifying the code and proof base, and allowing users to
leverage it not only to fully automate their testing workflow,
but also incorporate it into their proof scripts.

8 Limitations and Discussion

While our approach handles a much broader class than prior
work, there are still certain limitations, besides the quadratic
(in the number of constructors) completeness proof terms
discussed in Section 5.3. To begin with, the class we target it-
self does not allow for let expressions between different
premises (a feature that Coq Inductives allow). While it
seems straightforward to simply substitute the body of a
let in the subsequent premises, we have not yet explored
the implications of removing expression sharing. Moreover,
our algorithm currently processes constraints sequentially,
which means their order matters: switching premises around

978

PLDI °22, June 13-17, 2022, San Diego, CA, USA

could instantiate variables in a different order, resulting in
potentially different performance. We leave figuring out how
to best traverse constraints for future work.

Finally, the implementation does not currently support
two features that the algorithm does in principle: mutually
inductive types and multiple producer outputs. The former
is a direct result of our choice to rely on Coq’s typeclasses:
while this choice significantly aided proof automation, since
Coq’s typeclasses cannot be mutually recursive, neither can
our derived checkers and producers that rely on them. The
latter was a pragmatic choice: we didn’t have a use case
for it and it would take a non-trivial engineering effort to
implement; still, this shouldn’t be a fundamental limitation,
as the algorithm already supports this through out_set.

On the other hand, deriving decision procedures directly
(instead of semi-decision ones) should be straightforward
to implement using a minor variation of the algorithm pre-
sented. Simply removing the fuel parameter and converting
each enumerative producer to a functional version (by us-
ing an Identity monad instead of E option), would yield a
decision procedure in many cases of interest. However, the
result would be quite user-unfriendly, as as in many cases at-
tempting such a derivation would result in Coq’s termination
checker failing on a program the user didn’t write. Taking
also into account that arguably the most appealing aspect of
inductive relations is to precisely encode features that don’t
allow for total and elegant decision procedures (e.g. nonter-
mination, nondeterminism, etc.), we chose not to pursue this
endeavor. Instead, we focused on handling as large a class of
inductives as possible, while keeping things compositional
enough to allow for automatic proof construction.

9 Conclusion and Future Work

In this paper, we described a generic algorithm for deriving
computational content from inductive relations and showed
that our framework handles many practical and useful cases
of interest. In the future, we would like to explore how to sup-
port user-defined datatype refinements (such as a function-
based representation in proofs with an efficient implemen-
tation used in computations) and how deep the connection
is between generators and enumerators, and whether there
are other useful forms of producers.

Acknowledgments

We thank Harrison Goldstein, Antal Spector-Zabusky, Ben-
jamin Pierce, Michael Hicks, and the anonymous reviewers
for their helpful comments. This work was supported by NSF
award #2107206, Efficient and Trustworthy Proof Engineering
and NSF award #2030859 to the Computing Research Associ-
ation for the CIFellows Project (any opinions, findings and
conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the
views of the NSF).

PLDI °22, June 13-17, 2022, San Diego, CA, USA

References

(1]

—_
(=)
—

(10]

(11]

[12

—

(13]

(14]

Thomas Arts, Laura M. Castro, and John Hughes. 2008. Testing Erlang
Data Types with QuviQ QuickCheck. In 7th ACM SIGPLAN Workshop
on Erlang (Victoria, BC, Canada). ACM, 1-8. https://doi.org/10.1145/
1411273.1411275

Stefan Berghofer, Lukas Bulwahn, and Florian Haftmann. 2009.
Turning Inductive into Equational Specifications. In 22nd Inter-
national Conference on Theorem Proving in Higher Order Log-
ics (Lecture Notes in Computer Science, Vol. 5674). Springer, 131~
146. http://www4.in.tum.de/~haftmann/pdf/turning_inductive_into_
equational_specifications_berghofer_bulwahn_haftmann.pdf

Stefan Berghofer and Tobias Nipkow. 2002. Executing Higher Order
Logic. In International Workshop on Types for Proofs and Programs
(TYPES) (Lecture Notes in Computer Science, Vol. 2277). Springer, 24-40.
http://www4.in.tum.de/publ/papers/TYPES2000.pdf

Yves Bertot and Pierre Castéran. 2004. * Proof by Reflection. Springer
Berlin Heidelberg, Berlin, Heidelberg, 433-448. https://doi.org/10.
1007/978-3-662-07964-5_16

Lukas Bulwahn. 2012. The New Quickcheck for Isabelle - Random,
Exhaustive and Symbolic Testing under One Roof. In 2nd International
Conference on Certified Programs and Proofs (CPP) (Lecture Notes in
Computer Science, Vol. 7679). Springer, 92-108. https://www.irisa.fr/
celtique/genet/ACF/Bibliolsabelle/quickcheckNew.pdf

Lukas Bulwahn. 2012. Smart Testing of Functional Programs in Isabelle.
In 18th International Conference on Logic for Programming, Artificial
Intelligence, and Reasoning (LPAR) (Lecture Notes in Computer Science,
Vol. 7180). Springer, 153-167. http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.229.1307 &rep=rep 1&type=pdf

Harsh Raju Chamarthi, Peter C. Dillinger, Matt Kaufmann, and Panagi-
otis Manolios. 2011. Integrating Testing and Interactive Theorem Prov-
ing. In 10th International Workshop on the ACL2 Theorem Prover and
its Applications (EPTCS, Vol. 70). 4-19. http://arxiv.org/abs/1105.4394
Koen Claessen, Jonas Duregard, and Michal H. Patka. 2014. Generating
Constrained Random Data with Uniform Distribution. In Functional
and Logic Programming (Lecture Notes in Computer Science, Vol. 8475).
Springer, 18-34. https:/doi.org/10.1007/978-3-319-07151-0_2

Koen Claessen and John Hughes. 2000. QuickCheck: a lightweight
tool for random testing of Haskell programs. In 5th ACM SIGPLAN
International Conference on Functional Programming (ICFP). ACM,
268-279. http://www.eecs.northwestern.edu/~robby/courses/395-495-
2009-fall/quick.pdf

The Coq Development Team. 2021. The Coq Proof Assistant. https:
//doi.org/10.5281/zenod0.4501022

David Delahaye, Catherine Dubois, and Jean-Frédéric Etienne. 2007.
Extracting Purely Functional Contents from Logical Inductive Types. In
20th International Conference on Theorem Proving in Higher Order Logics
(TPHOLS) (Lecture Notes in Computer Science, Vol. 4732). Springer, 70—
85. http://cedric.cnam.fr/~delahaye/papers/pred-exec%20(TPHOLs’
07).pdf

Peter Dybjer, Qiao Haiyan, and Makoto Takeyama. 2004. Random
Generators for Dependent Types. In First International Colloquium
Theoretical Aspects of Computing (Lecture Notes in Computer Science,
Vol. 3407). Springer, 341-355. https://doi.org/10.1007/978-3-540-31862-
025

Burke Fetscher, Koen Claessen, Michal H. Palka, John Hughes, and
Robert Bruce Findler. 2015. Making Random Judgments: Automatically
Generating Well-Typed Terms from the Definition of a Type-System. In
24th European Symposium on Programming (Lecture Notes in Computer
Science, Vol. 9032). Springer, 383-405. http://users.eecs.northwestern.
edu/~baf111/random-judgments/

Milos Gligoric, Tihomir Gvero, Vilas Jagannath, Sarfraz Khurshid,
Viktor Kuncak, and Darko Marinov. 2010. Test generation through
programming in UDITA. In 32nd ACM/IEEE International Conference on
Software Engineering. ACM, 225-234. https://doi.org/10.1145/1806799.

979

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

Zoe Paraskevopoulou, Aaron Eline, and Leonidas Lampropoulos

1806835

Harrison Goldstein, John Hughes, Leonidas Lampropoulos, and Ben-
jamin C. Pierce. 2021. Do Judge a Test by its Cover - Combining
Combinatorial and Property-Based Testing. In Programming Lan-
guages and Systems - 30th European Symposium on Programming,
ESOP 2021, Held as Part of the European Joint Conferences on The-
ory and Practice of Software, ETAPS 2021, Luxembourg City, Luxem-
bourg, March 27 - April 1, 2021, Proceedings (Lecture Notes in Com-
puter Science, Vol. 12648), Nobuko Yoshida (Ed.). Springer, 264-291.
https://doi.org/10.1007/978-3-030-72019-3_10

Florian Haftmann and Tobias Nipkow. 2010. Code Generation via
Higher-Order Rewrite Systems. In Functional and Logic Programming,
Matthias Blume, Naoki Kobayashi, and German Vidal (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 103-117.

Ralf Hinze, Andres Loh, and Bruno C. d. S. Oliveira. 2006. "Scrap
Your Boilerplate” Reloaded. In Functional and Logic Programming, 8th
International Symposium, FLOPS 2006, Fuji-Susono, Japan, April 24-
26, 2006, Proceedings (Lecture Notes in Computer Science, Vol. 3945),
Masami Hagiya and Philip Wadler (Eds.). Springer, 13-29. https:
//doi.org/10.1007/11737414_3

Catalin Hritcu, John Hughes, Benjamin C. Pierce, Antal Spector-
Zabusky, Dimitrios Vytiniotis, Arthur Azevedo de Amorim, and
Leonidas Lampropoulos. 2013. Testing Noninterference, Quickly. In
18th ACM SIGPLAN International Conference on Functional Program-
ming (ICFP). ACM, 455-468. http://prosecco.gforge.inria.fr/personal/
hritcu/publications/testing-noninterference-icfp2013.pdf

Catalin Hritcu, Leonidas Lampropoulos, Antal Spector-Zabusky,
Arthur Azevedo de Amorim, Maxime Dénés, John Hughes, Ben-
jamin C. Pierce, and Dimitrios Vytiniotis. 2016. Testing Noninterfer-
ence, Quickly. Journal of Functional Programming (JFP); Special issue
for ICFP 2013 26 (April 2016), e4 (62 pages). https://doi.org/10.1017/
$0956796816000058 Technical Report available as arXiv:1409.0393.
John Hughes. 2019. How to Specify It! 20th International Symposium
on Trends in Functional Programming (2019).
Casey Klein and Robert Bruce Findler. 2009.
ing in PLT Redex. In Workshop on Scheme and Functional Program-
ming (SFP). http://www.eecs.northwestern.edu/~robby/pubs/papers/
scheme2009-kf.pdf

Ivan Kuraj and Viktor Kuncak. 2014. SciFe: Scala framework for
efficient enumeration of data structures with invariants. In Proceedings
of the Fifth Annual Scala Workshop. ACM, 45-49. https://doi.org/10.
1145/2637647.2637655

Leonidas Lampropoulos. 2018. Random Testing for Language Design.
Ph.D. Dissertation. University of Pennsylvania.

Leonidas Lampropoulos, Zoe Paraskevopoulou, and Benjamin C.
Pierce. 2018. Generating good generators for inductive relations.
PACMPL 2, POPL (2018), 45:1-45:30. https://doi.org/10.1145/3158133
Leonidas Lampropoulos and Benjamin C. Pierce. 2018. QuickCHick:
Property-Based Testing In Coq. Electronic textbook. http://www.cis.
upenn.edu/~bcpierce/sf

Max S. New, Burke Fetscher, Robert Bruce Findler, and Jay A. McCarthy.
2017. Fair enumeration combinators. j. Funct. Program. 27 (2017), e19.
https://doi.org/10.1017/50956796817000107

Ulf Norell. 2008. Dependently Typed Programming in Agda. In Pro-
ceedings of the 6th International Conference on Advanced Functional
Programming (Heijen, The Netherlands) (AFP’08). Springer-Verlag,
Berlin, Heidelberg, 230-266.

Manolis Papadakis and Konstantinos F. Sagonas. 2011. A PropEr in-
tegration of types and function specifications with property-based
testing. In Proceedings of the 10th ACM SIGPLAN workshop on Er-
lang, Tokyo, Japan, September 23, 2011. 39-50. https://doi.org/10.1145/
2034654.2034663

Pierre-Marie Pédrot. 2019. Ltac2: Tactical Warfare. The Fifth In-
ternational Workshop on Coq for Programming LanguagesCoqPL.

Randomized Test-

Computing Correctly with Inductive Relations

[30]

(31]

(32]

(33]

https://www.pédrot.fr/articles/coqpl2019.pdfpdf

Benjamin C. Pierce, Arthur Azevedo de Amorim, Chris Casinghino,
Marco Gaboardi, Michael Greenberg, Catalin Hritcu, Vilhelm Sjoberg,
Andrew Tolmach, and Brent Yorgey. 2018. Programming Language
Foundations. Electronic textbook, Version 5.5. http://www.cis.upenn.
edu/~bcpierce/sf

Benjamin C. Pierce, Arthur Azevedo de Amorim, Chris Casinghino,
Marco Gaboardi, Michael Greenberg, Catalin Hritcu, Vilhelm Sjoberg,
and Brent Yorgey. 2018. Logical Foundations. Electronic textbook,
Version 5.5. http://www.cis.upenn.edu/~bcpierce/sf

Amir Pnueli, Michael Siegel, and Eli Singerman. 1998. Translation
Validation. In Tools and Algorithms for Construction and Analysis of
Systems, 4th International Conference, TACAS 98, Held as Part of the
European Joint Conferences on the Theory and Practice of Software,
ETAPS’98, Lisbon, Portugal, March 28 - April 4, 1998, Proceedings (Lecture
Notes in Computer Science, Vol. 1384), Bernhard Steffen (Ed.). Springer,
151-166. https://doi.org/10.1007/BFb0054170

Matthieu Sozeau and Nicolas Oury. 2008. First-Class Type Classes. In
Proceedings of the 21st International Conference on Theorem Proving in

980

[34]

[35]

[36]

PLDI °22, June 13-17, 2022, San Diego, CA, USA

Higher Order Logics (Montreal, P.Q., Canada) (TPHOLs *08). Springer-
Verlag, Berlin, Heidelberg, 278-293. https://doi.org/10.1007/978-3-
540-71067-7_23

Pierre-Nicolas Tollitte, David Delahaye, and Catherine Dubois. 2012.
Producing Certified Functional Code from Inductive Specifications. In
Second International Conference on Certified Programs and Proofs (CPP)
(Lecture Notes in Computer Science, Vol. 7679). Springer. http://cedric.
cnam.fr/~delahaye/papers/relext-c0q%20%28CPP%2712%29.pdf

Niki Vazou. 2016. Liquid Haskell: Haskell as a Theorem Prover. Ph.D.
Dissertation. University of California, San Diego, USA. http://www.
escholarship.org/uc/item/8dm057ws

Alexey Rodriguez Yakushev and Johan Jeuring. 2010. Enumerating
Well-Typed Terms Generically. In Approaches and Applications of
Inductive Programming, Ute Schmid, Emanuel Kitzelmann, and Ri-
nus Plasmeijer (Eds.). Lecture Notes in Computer Science, Vol. 5812.
Springer Berlin Heidelberg, 93-116. https://doi.org/10.1007/978-3-
642-11931-6_5

