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Abstract— In recent years, several deep learning models
have been proposed to accurately quantify and diagnose
cardiac pathologies. These automated tools heavily rely
on the accurate segmentation of cardiac structures in MRI
images. However, segmentation of the right ventricle is
challenging due to its highly complex shape and ill-defined
borders. Hence, there is a need for new methods to han-
dle such structure’s geometrical and textural complexities,
notably in the presence of pathologies such as Dilated
Right Ventricle, Tricuspid Regurgitation, Arrhythmogene-
sis, Tetralogy of Fallot, and Inter-atrial Communication. The
last MICCAI challenge on right ventricle segmentation was
held in 2012 and included only 48 cases from a single
clinical center. As part of the 12th Workshop on Statistical
Atlases and Computational Models of the Heart (STACOM
2021), the M&Ms-2 challenge was organized to promote the
interest of the research community around right ventricle
segmentation in multi-disease, multi-view, and multi-center
cardiac MRI. Three hundred sixty C M R cases, including
short-axis and long-axis 4-chamber views, were collected
from three Spanish hospitals using nine different scanners
from three different vendors, and included a diverse set of
right and left ventricle pathologies. The solutions provided
by the participants show that nnU-Net achieved the best
results overall. However, multi-view approaches were able
to capture additional information, highlighting the need to
integrate multiple cardiac diseases, views, scanners, and
acquisition protocols to produce reliable automatic cardiac
segmentation algorithms.

Index Terms— Cardiovascular magnetic resonance, im-
age segmentation, data augmentation, multi-view segmen-
tation, public dataset.

I. INTRODUCTION

he role of the right ventricle (RV) in circulation has
historically been overshadowed by that of the left ven-

tricle (LV). For years, RV  dysfunction was thought to not
contribute significantly to cardiac output and pressures, while
LV  was considered the key player in cardiac hemodynamics
[3]. This led to RV  receiving limited attention, and often being
described as the ”forgotten ventricle” [4]. However, in the
past few decades, the misconception regarding the lack of
impact of the RV  dysfunction in cardiac function has changed
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TABLE I
AU T O M AT I C C M R  S E G M E N TAT I O N  C H A L L E N G E S  IN F I G U R E S

Challenge

M&Ms-2
RV S C

M&Ms
ACDC
LV S C  [1]
Sunnybrook [2]

Year Cases

2021 360
2012 48

2020 375
2017 150
2011 200
2009 45

Number of
scanners

9
1

5
1
-
1

Target Regions

RV
RV

LV/RV/MYO
LV/RV/MYO

MYO
LV/MYO

Multiview

✓
X

X
X
X
X

Techniques used

Deep Learning
Atlas-based

Deep Learning
Deep Learning

Atlas-based
Atlas-based

Number of
pathologies

8
6

6
5
1
4

Stratified
by pathology

✓
X

X
✓
X
✓

[5]–[10]. A  significant amount of research has progressively
demonstrated the pivotal role of RV  in cardiac function, and
its implication and prognostic value in high-burden diseases,
such as heart failure and/or pulmonary hypertension [11]–
[13], dilated cardiomyopathy [14], tricuspid regurgitation [15],
tetralogy of fallot [16], to name a few.

Given the prognostic significance of RV, the clinical interest
has shifted in recent years from a simple visual inspection
of the RV  from cardiac magnetic resonance imaging (CMR),
the reference modality for RV  assessment [17], to extracting
quantitative RV  parameters by first segmenting the structure.
Despite this renewed interest of the medical community to
quantitatively assess the RV  [18], the artificial intelligence
community has lagged in providing fully automated solutions
for RV  segmentation from CMR, that are as accurate as for
LV  [19], and in benchmarking deep learning (DL) algorithms,
the current state-of-the-art in medical imaging.

More precisely, the last challenge focused on RV  segmen-
tation using CMR data was the Right Ventricle Segmentation
Challenge Dataset (RVSC) [20]. Prior to the RVSC,  challenges
solely focused on the myocardium and LV  (Table I). Despite
its significance, the RV S C  challenge was organized back in
2012 when DL was still in its early development and not yet
adopted for CMR segmentation [21]. Therefore, none of the
seven participants in the challenge used DL. Three approaches
were atlas-based, two prior-based, and the other two based
on cardiac motion without needing prior information. The
best semi-automated methods achieved a dice accuracy of
80% and a Hausdorff distance of 1 cm. At the same time,
automated approaches demonstrated a similar performance at
the expense of higher computational costs. At those times, this
performance level was competitive, but it is now considered
far from what the current state-of-the-art DL-based models
could achieve.

The early application of DL in CMR segmentation using
a Fully Convolutional Network (FCN) by Tran [22] showed
improved results compared to prior CMR segmentation meth-
ods in RVSC,  LVSC,  and Sunnybrook datasets. At the same
time, the U-Net [23] architecture, which added a symmetric
decoding path to the FCN architecture, started gaining inertia
along the biomedical imaging segmentation community. How-
ever, Lieman et al. [24] shown that there was no statistical
difference in CMR segmentation performance between the two
architectures, with FCN outperforming U-Net in LV  volume
prediction using a large sample size of 1,143 subjects. This
was further validated by Bai et al. [25] in a large-scale study

using 4,875 cases for the bi-ventricular segmentation task.
In recent CMR segmentation challenges such as the Au-

tomated Cardiac Diagnosis Challenge (ACDC) [21] and the
MMs challenge [19], the U-Net architecture has emerged as
the dominant choice. In the ACDC, research by Baumgartner et
al. [26] showed that U-Net outperformed the Fully Con-
volutional Network (FCN) in all proposed segmentation tasks,
except for the RV  end diastolic average symmetric surface dis-
tance. The early stages of the nnU-Net framework [27], which
is capable of optimizing preprocessing, network architecture,
training, inference, and post-processing automatically without
manual intervention, were also demonstrated by Isensee et al.
[28] in such challenge. The Top-3 participants in the MMs
challenge [19] used nnU-Net.

Nonetheless, both aforementioned challenges were focused
on cardiac multi-structure segmentation, and the best perfor-
mance was achieved for the LV  and the myocardium. The
reduced accuracy in the RV  segmentation can be explained by
the additional challenges posed by the complex geometry and
appearance of the RV. These include its irregular shape, the
heterogeneity in the appearance and thickness of its free wall,
and its complex trabeculations [20]. As a result, several works
have been recently proposed to improve RV  segmentation.
[25], [29]–[37]. Nonetheless, the scarcity of relevant public
CMR data has resulted in the vast majority of current state-of-
the-art methods using the data provided by the RV S C
challenge which comprises solely 48 cases from a single
clinical center. Moreover, while the cohort includes diverse
pathologies, the considered diseases are not directly related
to the RV. Lastly, the complementary long-axis 4-chamber
views, particularly helpful for improving RV  apical and basal
slices segmentation, were not released. Other relevant works
using larger datasets, such as that of Chen et al. [38] based
on 145 cases, although important, rely on private cohorts and,
therefore, do not allow for benchmarking.

In response to the gap in public datasets and evalua-tion
frameworks for computational approaches focused on
automated RV  segmentation from CMR, the Multi-Disease,
Multi-View & Multi-Center Right Ventricular Segmentation
Challenge (M&Ms-2) was organized as part of the Statistical
Atlases and Computational Models of the Heart (STACOM)
Workshop held in conjunction with the MICCAI  2021 Confer-
ence. This is the first work to provide a public multi-center,
multi-disease, multi-view CMR dataset, associated contours,
and an evaluation framework to benchmark DL algorithms
for RV  segmentation. Moreover, the dataset complements the
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Fig. 1.     Visual appearance of short-axis (SA) and long-axis (LA) views of
pathological (upper row) and healthy (lower row) subjects. Dashed lines
(white) correspond to the projection of SA slices into the LA view. The
red dashed line corresponds to the projection of the SA slice shown
in the first column. The yellow line corresponds to ground truth
delineations.

dataset of the challenge’s first edition [19], a reference dataset
for multi-structure segmentation, by providing multi-view in-
formation and other diseases relevant to RV  dysfunction. In
total, the M&Ms-2 challenge dataset comprises CMR data
from 360 participants originating from three Spanish hospitals.
The data were acquired by nine different scanners from three
different vendors (Siemens, Philips, and General Electric).
The dataset was built in close collaboration with clinicians
and accounts for seven different pathologies, while it also
includes a control group of 75 healthy participants. It should
be noted that the short-axis studies were annotated using
the same Standard Operation Procedure (SOP) as previous
reference challenges, while the complementary long-axis 4-
chamber acquisitions for precise basal and apical delineation
were also made publicly available.

In this paper, we present and discuss the results of the
M&Ms-2 challenge in detail. The obtained results show the
challenging nature of the task of automatically segmenting
the RV  from CMR images and the promise of the proposed
solutions. Moreover, the findings of the challenge highlight
the need for further research to build tools that can integrate
multi-view cardiac information for the RV  segmentation task
in the presence of a diverse set of pathologies.

II. C H A L L E N G E F R A M E WO R K

A. Data preparation

A  total of three clinical centers from Spain contributed
to this challenge by providing several CMR studies with
different left and right ventricular pathologies, namely:

Dilated Left Ventricle (DLV): LV  is considered dilated
when the LV  end-diastolic volume measured in CMR is
>214mL (>105mL/m2) in men or 179mL (>96mL/m2) in
women.

Dilated Right Ventricle (DRV): RV  is considered dilated
when RV  end-diastolic volume measured in CMR is >250mL
(>121mL/m2) in men or 201mL (>112mL/m2) in women.

Hypertrophic cardiomyopathy (HCM) is an inherited
heart disease defined by increased LV  wall thickness (>15mm
in one or more LV  myocardial segments) that cannot be
explained by abnormal loading conditions. In CMR, left
ventricular mass typical values are 62-176g in men and 56-
140g in women, and right ventricular mass typical values are
25-57g in men and 50-56g in women.

Arrhythmogenic cardiomyopathy (ARR)  , inherited heart
disease with a loss of myocytes and fibrofatty replacement
of right ventricular myocardium; biventricular involvement is
often observed. Diagnosis includes global RV  dilatation and
regional wall motion abnormalities with or without a decreased
ejection fraction.

Tetrology of Fallot ( FA L L )  is characterized by the fol-
lowing four features: a nonrestrictive ventricular septal de-
fect, overriding aorta; right ventricle outflow tract obstruction
and/or branch pulmonary artery stenosis; and consequent RV
hypertrophy.

Inter-atrial communication (CIA) , a defect in the septum
that separates the two atria. CMR is rarely required but may
be useful for assessment of RV  volume overload, identification
of inferior sinus venous defect in the long-axis 4-chamber
view, quantification of pulmonary to systemic flow ratio, and
evaluation of pulmonary venous connection.

Tricuspid regurgitation (TRI)  consists of the insufficiency
of the tricuspid valve, causing blood flow from the RV  to the
right atrium during systole. In CMR, TRI  appears as one or
more flow jets emanating from the tricuspid valve and
projecting into the RV. Jets are often holosystolic and readily
apparent on the long-axis 4-chamber view.

In total, 360 studies were included. Images were acquired
with different scanners, field strengths, and resolutions for
both short-axis (SA) and long-axis 4-chamber (LA) views.
Most images were acquired from scanners with magnetic
strength of 1.5T and a small fraction of 3.0T. The specific
vendors are 1) Siemens (Siemens Healthineers, Germany)
– including Avanto (AVA), Avanto Fit (AVF), Symphony
(SYM), SymphonyTim (SYT), and TrioTim (TRT) scanners;
2) Philips (Philips Healthcare, Netherlands) – including
Achieva (ACH) scanners; and 3) General Electric (GE, GE
Healthcare, USA) – including Signa Excite (EXC), Signa
Explorer (EXP), and Signa HDxt (HDXT) scanners. More
specific details on the collected studies are given in Table III.

The subjects included in this multi-disease study were
selected among groups of the aforementioned cardiovascular
diseases and healthy volunteers (NOR). The distribution of
pathologies within the dataset partitions and scanners are
specified in Table II  and Figure 2.

Each CMR imaging study was annotated manually by an
expert clinician from the corresponding center, with clinical
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performed at the basal region.
c) The RV  must have a larger volume at the ED time frame

compared to ES.
d) Additionally, long-axis view is used as a reference to

delimit the basal and apical regions, as stated above.

Fig. 2.     Distribution per pathology and scanner along train, validation,
and test sets.

TABLE II
N U M B E R O F  S T U D I E S  P E R  PA T H O L O G Y  IN E A C H  D AT A S E T  PA R T I T I O N

Number of studies

Pathology Training Validation Test

Normal subjects 40 5 30
Dilated Left Ventricle 30 5 25
Hypertrophic Cardiomyopathy 30 5 25
Congenital Arrhythmogenesis 20 5 10
Tetralogy of Fallot 20 5 10
Interatrial Communication 20 5 10
Dilated Right Ventricle                           0 5 25
Tricuspidal Regurgitation                       0 5 25

Fig. 3. Data collection and pre-processing pipeline.

Clinical delineations and subsequent corrections were per-
formed using the cvi42 software (Circle Cardiovascular Imag-
ing Inc., Calgary, Alberta, Canada). All studies were provided
in DICOM format, and contours were extracted in cvi42
workspace format (.cvi42ws). In-house software was then used
to create the contours and transform the images into NIFTI
format, and this final file format was delivered to the challenge
participants. The inter-view correspondence was preserved
during pre-processing. Figure 3 presents the data collection
and pre-processing pipeline.

Total 160 40 160 B. Model training and validation

experience ranging from 3 to over 10 years. The annotation
process involved marking the short-axis and long-axis 4-
chamber views at both end-diastolic (ED) and end-systolic
(ES) phases, which correspond to the phases used to calcu-
late clinically relevant biomarkers such as ejection fraction
and myocardial mass, for cardiac diagnosis and monitoring.
Furthermore, the basal slice of the RV  at ED/ES was inferred
from the position of the tricuspid annulus as defined on the
long-axis 4-chamber view at ED/ES. The apical slice was
defined as the last slice with a detectable ventricular cavity.
Three main regions were provided: the left and right
ventricular cavities and the left ventricle myocardium (MYO).
However, the evaluation was performed exclusively on the RV.
Two additional researchers performed a detailed revision of
the provided segmentation to reduce inter-observer and inter-
center variability in the contours, particularly in the apical
and basal regions. Discrepancies were resolved by consensus
between the observers. Such observers applied the same SOP
across all CMR datasets to obtain the final ground truth. To
generate consistent annotations, we chose to apply the SOP
that was already used by the ACDC and M&Ms challenges
with an additional rule (d) as follows:

a) The LV  and RV  cavities, including the papillary muscles,
must be completely covered.

b) No interpolation of the myocardial boundaries must be

The 360 CMR studies were divided into training, validation,
and testing, as detailed in Table II. The participants received
the 160 training cases with annotations for short and long-
axis views and 40 validation cases without annotation on May
10th, 2021. Two pathologies, DRV and TRI, were excluded
from the training dataset to test the generalization capability of
the models to unseen pathologies. In order to optimize the
models, the participants were allowed to automatically
inspect their models’ performance against 40 validation CMR
cases, i.e. 5 from each of the pathologies, and publish their
validation scores using the Codalab platform [39]. A  maximum
of 20 submissions per team were allowed during the validation
process. Note that it was not permitted to use any external
datasets or pre-trained models during training.

C.  Model evaluation
The testing phase started on July 1st, 2021, and concluded

on July 20th, 2021. The participants were forced to evaluate
their models remotely to ensure the unseen test set was
hidden from the segmentation methods. The organizers’ GPU
server infrastructure with five NVIDIA 3090 RT X  GPUs was
provided to evaluate the submissions. The participants were
asked to assess their models by submitting their trained models
to the Codalab platform and executing them using a Docker1

image.

1https://www.docker.com/
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TABLE III
AV E R A G E  S P E C I F I C AT I O N S  F O R  T H E  I M A G E S  A C Q U I R E D  IN T H E  D I F F E R E N T  C E N T E R S .

Center*

A
B
B
B
C
C
C
C
C

Vendor

Philips
GE
GE
GE
Siemens
Siemens
Siemens
Siemens
Siemens

Model

Achieva
Signa Excite
Signa HDxt
Signa Explorer
Avanto
Avanto Fit
Symphony
SymphonyTim
TrioTim

In-plane res.
(mm) (SA/LA)

1.18/1.19
1.40/1.58
0.98/1.08
0.78/0.78
1.21/1.15
1.13/1.24
1.27/1.27
1.34/1.24
1.15/1.20

In-plane dim.
(pixels)

332±32/288 ±  38
270±28/258 ±  6

420±124/420 ±  124
512±0/512 ±  0

232±24/240 ±  20
234±24/234 ±  24
232±24/240 ±  18
230±36/238 ±  26
234±24/238 ±  18

Slice
thickness (mm)

10
9.8
10
10
14
9.9
9.7
9.7
8.6

Number
of slices

10
12
12
13
9

11
10
12
13

Field Strength (T)

1.5
1.5

1.5/3.0
1.5
1.5
1.5
1.5
1.5
3.0

Number
of studies

88
27
25
1
5

37
21

151
5

* A: Clınica Sagrada Familia, B: Hospital Universitari Dexeus, C: Hospital Vall d’Hebron.

TABLE IV
L I S T  A N D D E TA I L S  O F  T H E  PA R T I C I PAT I N G  T E A M S  IN T H E  C H A L L E N G E .

Team Institution
P1 University of Colorado Boulder
P2 ImViA Laboratory, Universite Bourgogne Franche-Comte
P3 Dept. of Radiology and Diagnostic Imaging, University of Alberta
P4 School of Data Science, Fudan University
P5 Department of Radiology, Leiden University Medical Center
P6 Eindhoven University of Technology
P7 Department of Computer Science, Rutgers University
P8 Department of Electrical Engineering, Syed Babar Ali School of Science and Engineering
P9 Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho

P10 Data Science Department, EURECOM
P11 Department of Computer Engineering and Mathematics, University Rovira i Virgili
P12 School of Data Science, Fudan University
P13 Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford
P14 Charite - Universitatsmedizin Berlin,
P15 Department of Computing, Imperial College London

Location
Boulder, USA
Dijon, France
Edmonton, Canada
Shanghai, China
Leiden, Netherlands
Eindhoven, Netherlands
Piscataway, USA
Lahore, Pakistan
Braga, Portugal
Sophia Antipolis, France
Tarragona, Spain
Shanghai, China
Oxford, UK
Berlin, Germany
London, UK

To assess the quality of the automatic segmentations (P )
against the ground truth (G), two measures were used:

(i) Dice similarity coefficient (D S C )  – degree of overlap-
ping of two volumes:

D S C ( P , G )  =  
|P| +  |G|

(1)

(ii) Hausdorff distance (H D )  – largest disagreement be-
tween the contours, useful for identifying small outliers:

H D ( P , G )  =  max     sup d(p, G), sup d(g, P ) (2)
p�P g�G

where sup represents the supremum, inf the infimum, and

d(a, B ) =  inf d(a, b) (3)

quantifies the distance from a point a �X to the subset B  �X.
These metrics were computed for the RV  segmentation from

both S A  and L A  views, resulting in 4 measures for each
cardiac phase. If one participant had a prediction missing for a
specific subject, a zero value was assumed for DSC. A  distance
of 50mm was considered for HD, 10mm above the maximum
HD distance computed across all participants and cases.

To obtain the final ranking, HD was min-max normalized
across all subjects (H D )  to get a number between 0 and 1 for
ED and ES  phases in both S A  and L A  views independently.
Due to the difference in dimensionality between S A  and
L A  views, a weighted average was performed. The weighted
metric, M, was obtained as follows:

M =  
0.75(D S C S A  +  H D S A )  +  0 .2 5 ( D S C L A  +  H D L A )      

(4)

where D S C  and H D  are the average of the corresponding
metrics in ED and ES:

D S C  =  
D S C E D  +  D S C E S  and H D  =  

H D E D  +  H D E S

(5)
The normalized metrics returned a performance between 0

and 1, being 1 the value that a team would obtain if it had
perfect results for every metric.

III. PA R T I C I PAT I N G M E T H O D S

More than 120 teams registered to download the M&Ms-2
training dataset, 17 submitted a solution for the final testing
phase, and 15 teams presented their methodology as a paper
to the STACOM Workshop (see Table I V  for the participant
details). Table V  summarizes the main features of the sub-
mitted techniques, which are described in more detail in the
following subsections.

A. Backbone architectures
There is a degree of diversity in the backbone architectures

employed by the various participants (as depicted in Table V).
This subsection will provide a comprehensive overview of the
various architectures implemented by the participants.
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TABLE V
C H A R A C T E R I S T I C S  O F  PA R T I C I PAT I N G  M O D E L S .  S PAT I A L  AU G M E N TAT I O N I N C L U D E S  R O TAT I O N S ,  FL I P P I N G , S C A L I N G ,  A N D D E F O R M AT I O N S .

I N T E N S I T Y  AU G M E N TAT I O N I N C L U D E S  G A U S S I A N N O I S E , B R I G H T N E S S ,  G A M M A, A N D C O N T R A S T

Architecture
Method Backbone Additional Features

Data Augmentation
Multiview Spatial Intensity Other

P1 [40]
P2 [41]
P3 [42]
P4 [43]
P5 [44]
P6 [45]
P7 [46]
P8 [47]
P9 [48]

P10 [49]

P11 [50]

P12 [51]

P13 [52]
P14 [53]

P15 [54]

nnU-Net
nnU-Net
nnU-Net
nnU-Net
nnU-Net
nnU-Net

DLA
U-Net
xU-Net

U-Net

U-Net

U-Net

AttU-Net
U-Net

MPFP+ViT

Deformable Bayesian Convolutions
Dropout + Batch Normalization
Default configuration
Cross-view ROI detection L A  → S A
Spatial and temporal Multi-channel input
ROI detection, Intensity-based Multi-channel input
Cross-view refinement network
Shared Bottleneck between views
3D Unit + 2D Unit with cross-view mid-fusion
OoD detection and refinement
(Convolutional Autoencoder)
Single 2D network. Expansion,
depth-wise, projection block
Tranformer encoder in the bottleneck,
cross-view consistency loss
ROI detection, cross-over Attention
Multi-view 3D mesh reconstruction
Multi-scale Feature Pyramid,
Geometric Spatial Transformer

X ✓ ✓
X ✓ ✓ MRI-Specific
X ✓ ✓
✓ ✓ ✓
X                    ✓                 ✓             Label propagation
X                    ✓                 ✓             SPADE Synthesis
✓ ✓ ✓ Histogram Matching
✓ ✓ X
✓ ✓ ✓ Test Time Augmentation

X X X

X ✓ X Test Time Augmentation

✓ ✓ ✓

✓ ✓ ✓ Histogram Matching, Fourier
✓ X X

✓ ✓ ✓ In-painting

1) nnU-Net architectures: Six teams used the nnU-Net [55]
framework as their baseline segmentation models (P1–P6). The
nnU-Net framework includes 2D, 3D and cascaded 2D/3D U-
Net [56] architectures. The choice of base architecture for a
specific segmentation problem is left to the user. In the case
of 3D short-axis (SA) volumes, the variations among P1-P6
models were primarily in terms of the input dimensionality,
with some additional minor modifications to the base archi-
tecture. All of these methods produced separate models for
each view.

P1 adopted a 2D nnU-Net for both S A  and L A  views and
replaced its bottleneck convolutions with deformable Bayesian
convolutions. Deformable convolutions enable an increased
and adaptable receptive field without requiring additional
convolution layers, while Bayesian convolutions improve gen-
eralisability and training speed.

P2 used a 3D nnU-Net for the S A  view and a 2D nnU-Net
for L A  views and added batch normalisation instead of the
default nnU-Net instance normalisation. P2 also added dropout
of 0.2 to the intermediate layers of the network.

P3 used an ensemble of 2D and 3D nnU-Nets for the S A
segmentation task and a regular 2D nnU-Net for the L A  view.
The default nnU-Net architectures were used.

P4 trained a default 2D nnU-Net for L A  views and used
its output to delimit S A  views along the z axis and trained a
default 3D nnU-Net with the extracted region of interest.

P5 and P6 used multi-channel late fusion approaches in their
independent default 2D nnU-Nets for both S A  and L A  views.

P5 used stacks of three registered CMR consecutive images
to train a three input channel 2D nnU-Net. While spatial and
temporal information were porposed to generate the S A  stacks,
the L A  stacks only incorporated temporal information.

P6 used six filtered versions of each 2D image as input for
2D nnU-Net with six input channel. The images feeded to this
network were pre-processed extracting the region of interest
by means of a regression CNN that delimited them to their

bounding box.
2) U-Net architectures: Seven participants (P8–P14) con-

structed their architectures on top of a traditional U-Net.
P8 generated a multi-view SA-LA  model consisting of two

2D U-Net structures with a shared bottleneck. Each of the out-
of-plane 2D S A  slices belonging to the same subject received
the same complementary L A  view and their features were
concatenated in the bottleneck, training simultaneously both
S A  and L A  views in a single end-to-end model.

P9 combined a 2D U-Net with a 3D U-Net in a unified
model. In order to achieve this goal, both views are centered
around the mean position of their original centroids. Moreover,
both images are rotated to align their axes, where the LAx
image is rotated to make its Y-axis match the Z-axis of the
SAx stack. To take advantage of the complementary spatial
context offered by both aligned views, a set of 3 cross-view
modules were placed at the end of the three lowest levels in
the compression path. Each cross-view module concatenated
S A  and L A  information and retrieved a new set of spatially
significant features using a 1x1 convolution layer. At inference
time, S A  and L A  views were reoriented to their original pose.

P10 implemented for each view two 2D U-Nets and a 2D
autoencoder. The architecture used in the implementation of
the U-Net networks corresponds to the best methods pre-
sented in [19] and [21], while the architecture used in the
implementation of the autoencoder network can be found in
[57]. While the segmentation network used pairs of input
images and their manual delineations, the autoencoder was
trained to reconstruct delineations of the training set. The
autoencoder loss was used as a quality control measure,
being backpropagated to the U-Net when a poor quality was
detected. At inference time, the best segmentation network was
selected for each subject, taking in consideration the quality
assessment of the autoencoder.

P11 used a single 2D U-Net for both views and replaced the
standard convolutional blocks of its decoder with expansion,



nsed use limited to: UNIVERSITY OF COLORADO. Downloaded on April 18,2023 at 14:04:19 UTC from IEEE Xplore. Restrictions apply.Authorized lice
© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.See https://www.ieee.org/publications/rights/index.html for more information.



´

nsed use limited to: UNIVERSITY OF COLORADO. Downloaded on April 18,2023 at 14:04:19 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in IEEE Journal of Biomedical and Health Informatics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2023.3267857

MARTIN-ISLA et al.: DE E P  LEARNING SEGMENTATION OF THE RIGHT VENTRICLE  IN CARDIAC MRI: THE M&MS CHALLENGE 7

depth-wise, and projection blocks. These blocks extract help-
ful information with less computational complexity and thus
allowed to increase the number of channels in the decoding
stage. Channels are then combined via depthwise convolutions
and finally collapsed to the original depth in the projection
stage. Additionally, P11 added residual blocks to the standard
U-Net skip connections.

P12 proposed co-training a pair of 2D U-Nets end-to-end.
The main modification of the backbone U-Net architecture
used in each branch consist of the addition of an transformer
module to the bottleneck that established self-attention mecha-
nisms on high-level convolutional features. At training time, a
S A  slice and its complementary L A  view were simultaneously
fed to the paired U-Net. The segmentations obtained were
then mapped between views using their complementary affine
transformations. The final loss consisted of a combination of
per-view standard DSC score and the co-segmentation S A  to
L A  and L A  to S A  inter-view DSC scores.

P13 used Attention U-Net [58] as backbone. Initially, two
2D Attention U-Nets were utilized to extract the heart’s
location in both L A  and S A  views. The information from
both views was then combined into one volume. For L A
segmentation, the cropped L A  slice and three mid-cavity S A
slices were joined together. For S A  segmentation, the cropped
S A  slice is combined with the cropped L A  slice, allowing
access to additional anatomy information in the basal and
apical heart regions. Finally, each volume is processed as a
multi-channel input through a separate Attention U-Net to
produce the final segmentation masks for each view.

P14 used independent 2D U-Nets for L A  and S A  views
and combined them into a 3D deformable model to improve
quantification and volumetry. An initial 3D deformable model
was triangulated directly from the S A  segmentation contour
points obtained from the network. S A  apical and basal planes
were estimated from the obtained L A  segmentation and used
to reconstruct the final S A  volume.

3) Other architectures: P7 used 2D Deep Layer Aggrega-
tion (DLA) networks as a backbone for both S A  and L A
views. Being the backbone the same presented in [59]. The
implementation consists of two stages: initially, two individual
networks were employed to segment the S A  and L A  images
independently. In the following stage, the results are then
jointly refined using two additional networks. Four networks
were trained independently in total, all having a similar
structure except for the refinement networks, whose input com-
prised the original image, the respective 2D segmentation, and
the aligned segmentation obtained from the complementary
SA/LA view. Both stages were trained independently.

P15 propose a new hybrid 2D/3D geometric spatial Trans-
former Multi-Pass feature pyramid to simultanenously segment
S A  and L A  views. The architecture consists of 2D SA/LA fea-
ture pyramid [60], independent 3D (SA) and 2D (LA) branches
and finally a geometric spatial transformer (GST). The feature
pyramid receives individual 2D in-plane complementary slices
for both the S A  and L A  as inputs and extracts features at differ-
ent downsampling levels. Then, the S A  features are regrouped
in a 3D S A  stack, and a segmentation is obtained by means of a
simple 3D convolutional residual block. L A  features pyramids

follow the same procedure on its 2D counterpart.
The GST takes as input the pre-computed affine matrix and

the complementary L A  and S A  views. After projecting S A
volume to its complementary L A  view, both are concatenated
and merged via a 2D convolutional block to obtain a refined
L A  prediction.

B. Data augmentation

Data augmentation (DA) is a widely utilized technique that
helps to enhance the performance of deep learning algorithms
through improved generalization and regularization. Its utiliza-
tion in the medical imaging field has been well documented
[61], and it has been consistently shown that incorporating
DA can greatly benefit segmentation tasks in cardiovascular
magnetic resonance imaging [19], [62].

All participants in the challenge (except P10 and P14) used
some form of data augmentation to enhance their models.
Specifically, two kinds of data augmentations were considered:
(1) spatial transformations to increase sample size through flip-
ping, rotation, scaling, or deformation of the original images;
(2) intensity-driven techniques, which maintain the spatial
configuration of the anatomical structures but modify their
image appearance. Both augmentation families seem partic-
ularly relevant for the M&Ms-2: while spatial transformations
can reduce the gap between seen and unseen anatomies and
pathologies, intensity-driven techniques are useful in the pres-
ence of heterogeneous imaging protocols and scanner vendors.
Two teams performed data augmentation using only spatial
transformations (P8, P11). Nine teams utilized intensity-based
augmentations using standard image transformations such as
blurring, change in brightness and contrast, or addition of
Gaussian noise (P1–P9, P12–P13, P15). P3, P6 and P7 added
histogram matching to their pool of intensity transformations.
Additionally, P2 used MRI-specific augmentations such as
random bias fields, random ghosting, and random motion
artifacts to increase the textural variability of the images.

P5 and P6 added more sophisticated augmentations to their
pipeline, and both methods used multi-channel inputs.

P5 registered temporal (SA and L A  views) and spatial
(z-axis S A  view) and propagated the label information to
unlabeled temporal phases to increase the training set. As
described in the previous subsection, triplets of consecutive
unlabeled images were effectively used to pretrain each S A
and L A  multi-channel net, taking as ground truth a registered
label from an annotated cardiac phase. Since the propagated
masks are not as accurate as the manual segmentations, the
network was fine-tuned using the real labeled images and the
adjacent registered cardiac phases.

P6 applied advanced image synthesis by using Generative
Adversarial Networks (GANs). In particular, P6 used the
method proposed in SPADE [63] to increase the number of
samples per vendor and per cardiac region in an anatomically
consistent way. The augmentation consisted of morphological
manipulations of the segmentation masks to obtain synthetic
images with the desired RV  cavity shape. Multi-channel aug-
mentations were then applied on top of synthesis, as a stack of
intensity transformed channels and the the original (real or
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synthetic) image. The transformed images were obtained using
Laplacian, posterization, and edge-preserving filters.

On the other hand, P6 also proposed two data balancing
strategies: (1) For S A  stacks, the mid-ventricular slices cover
most of the 3D volume, generating unbalance between basal,
mid-ventricular and apical regions when using a 2D segmen-
tation model. Approaches such as [64] alleviated this effect
using balanced batches of the different short axial regions i.e.
apical, basal and mid-ventricular regions. Following the same
principle, P6 generated synthetic basal samples from randomly
deformed segmentations.

(2) Since the provided dataset is acquired using 9 different
scanners with a different number of samples per scanner and
vendor, it is appropriate to consider some degree of unbalance
related to domain shifts. Approaches such as [65], [66] tried
to minimize the domain shift negative effects using domain
adversarial training. P6 instead identified a set of outliers for
each vendor based on the computed RV  cardiac indices. Then,
each vendor was synthetically augmented up to 1000 times,
incorporating a 50% of outliers and a 50% of regular cases.

Finally, P13 added Fourier Domain Adaptation [67] to
alleviate vendor differences.

IV. R E S U LT S

As shown in Table II, a diverse testing set integrating
nine scanners and eight cardiac pathologies was prepared for
evaluating the final submissions with a total of 160 subjects.
We show the obtained results per team, per cardiac region,
per pathology and per clinical indices. Additionally, we show
some qualitative results.

To understand and analyse the participating methods in
this challenge, we have performed the following experimental
comparisons. Firstly, we rank the participants exactly as it was
presented during the challenge workshop. Secondly, we further
dissect the results to emphasize different aspects and qualities
of cardiac segmentation, such as pathological groups, cardiac
regions or clinical indices. Thirdly, we perform a qualitative
comparison of the approaches of the participants.

A. Team Ranking

The results of the challenge, as displayed in Table VI,
present the evaluation of all participants using two relevant
segmentation metrics (DSC and HD) for both S A  and L S
acqusitions. Additionally, the average inference time is in-
cluded in terms of volumes per second for S A  acquisitions and
images per second for L A  acquisitions . The inference time for
methods using an unified model whose inference time could
not be computed independently (P8, P9 and P15) for each
view present a single inference time . Lastly, a Welch’s t-test
was conducted to determine statistical significance between
participants’ evaluation performance.

B. Results per Pathology

Figure 4 summarizes the average DSC per pathology ac-
cording to equations (4) and (5). This dissection is particular
relevant since accurate segmentation of different pathologies

is critical for several clinical applications, including diagnosis,
treatment planning, and monitoring disease progression.

In order to evaluate the ability of the proposed methods to
generalize to new, unseen pathological groups, subjects with
Dilated Right Ventricle and Tricuspidal Regurgitation were
omitted from the training phase. A  Mann-Whitney U rank
test, with a significance level of 0.05, was conducted for each
participant to compare their segmentation DSC scores for
known and unknown pathologies. The results of this analysis
are presented in Figure 5 in an organized manner, separated
by imaging view and cardiac phase.

0 . 9 5

0 . 9 0

0 . 8 5

P a t h o l o g y

D R

V  0 . 8 0

H C M

A R R

0 . 7 5

C I A

F A L L

0 . 7 0

D L V

T R I

0 . 6 5

N O R

Fig. 4.     Weighted average D S C  per pathology according to equations
(4) and (5).

C.  Results per Cardiac Region

The examination of various segments of the heart, including
the apical, basal, and mid-ventricular regions, is crucial for
determining the individual impact each region may have on
the segmentation error. To illustrate such impact, Figure 6
shows the average performance of P1–P5 in S A  volumes
from basal to apical planes. Further analysis is presented in
relation to the detection of the basal plane, whose contribution
to segmentation accuracy is greater than another regions:
detection rate of the basal plane, as shown in Figure 7, presents
the number of subjects per participant where there was a
disagreement regarding the manual delineation in the detected
first basal slice.

D. Clinical Measurements

In the assessment of cardiac function, clinical metrics such
as End-Diastolic and End-Systolic Volumes, and Right Ventri-
cle Ejection Fraction (RVEF) are commonly utilized indices.
However, geometrical metrics, such as DSC and HD, may not
always correlate with these indices. This lack of correlation is
attributed to the scalar, rather than spatial, nature of the clinical
indices, which can result in good estimations of volumes
and RV E F  even when the contour is not accurately defining
the cardiac structures. For such reason, the beforementioned
clinical measurements are presented in Table VII,  in term of
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TABLE VI
D S C  A N D HD, M E A N A V E R A G E  V O L U M E  E R R O R  A N D I N F E R E N C E  T I M E F O R  T H E  FI N A L S U B M I S S I O N S  O F  A L L  PA R T I C I PA N T S .  HD I S  M E A S U R E D  IN

M I L L I M E T E R S .  VO L U M E E R R O R  I S  M E A S U R E D  IN M I L I L I T R E S .  I N F E R E N C E  T I M E I S  M E A S U R E D  IN S E C O N D S  P E R  V O L U M E .

SA L A

ED ES                                                            ED                              ES

Method DSC HD

P1                0.934        9.610
P2                0.932       10.078
P3                0.940       10.122
P4                0.933       10.563
P5                0.937       10.879
P6                0.927        9.941
P7                0.932       10.517
P8                0.923       11.258
P9                0.924       11.327
P10              0.916       11.681
P11              0.909       15.275
P12              0.844       15.495
P13              0.873       16.682
P14              0.883       17.024
P15              0.852       19.430

DSC HD

0.910       10.032
0.910        9.782
0.914        9.987
0.907       10.050
0.913       10.300
0.897       10.307
0.903       10.880
0.897       11.062
0.898       11.447
0.890       11.347
0.880       14.606
0.821       16.750
0.791       18.499
0.838       17.803
0.821       19.117

Inference (s)

1.72
0.86
1.8

2.22
2.43
2.74
4.11
2.23
2.89
2.12
0.67
2.34
3.12
4.27
1.54

DSC HD DSC HD

0.935        6.227        0.904        5.935
0.935        6.028        0.905        6.188
0.931        6.337        0.904        5.976
0.930        6.246        0.902        6.097
0.935        6.056        0.903        6.031
0.907        8.444        0.883        7.265
0.923        7.371        0.902        6.019
0.910        7.757        0.882        6.933
0.922        7.173        0.900        6.391
0.923        7.846        0.894        6.970
0.888        9.323        0.854        8.347
0.887        9.733        0.851        9.659
0.852       11.325       0.829        9.591
0.839       13.303       0.809       13.716
0.814       18.629       0.781       17.198

Inference (s)

0.34
0.11
0.42
0.54
0.17
0.56
1.23

--
0.34
0.18
0.42
0.30
0.67

-

Boldface numbers are the best results for each column. Blue numbers represent results are not significantly different
compared to the top-performing method for each column (p-value >  0.01 for Welch’s t-test)

TABLE VII
C L I N I C A L  M E T R I C S  F O R  T H E  15 PA R T I C I PAT I N G  M E T H O D S .

P h a s e

Volume E D Volume E S RV E F
5

E D

Method corr. mae corr.
E S

val. mL           val.
V i e w

4

P1                 0.949       11.94       0.967 
S A                                                                                                                                                                                                                                                                                                                                                                                                                                                                       

P2                 0.952       11.14       0.967
L  A P3 0.963 10.16 0.967

3

P4 0.958 11.07 0.965
P5 0.955 10.83        0.97

2 P6 0.915 13.49 0.936
P7 0.951 11.61 0.964
P8                  0.95 11.94 0.954

1 P9 0.954 12.12 0.959
P10 0.944 14.55        0.93
P11               .913 15.79 0.917

0  P12 0.744 32.18 0.823
P13 0.883 21.37 0.865
P14 0.898 16.99 0.886
P15 0.732 23.10 0.825

mae corr. mae
mL           val.            %

7.63 0.878 4.81
7.63 0.873 4.54
7.63 0.891 4.4
8.3           0.87          4.67

7.22        0.892        4.36
9.16        0.864        4.77
8.52        0.892        4.64
9.04        0.855        5.26
8.93        0.871        4.74

10.98       0.764        6.65
11.01       0.772        4.96
15.24       0.491       11.45
17.06       0.674        9.06
13.00       0.671        7.74
14.87        0.55          11.7

bias
%±σ

-0.31±6.9
0.89±6.7
0.65±6.2
-0.02±6.8
0.18 ±6.5
-0.14±7.5
-0.63±6.4
0.36±8.0
0.41 ±6.6
0.6±9.7

1.38 ±9.3
-7.88±15.0
1.42±13.2
-1.1 ±11.7
4.19±18.1

Fig. 5. Statistical difference according to the Mann-Whitney U rank test
for D S C  scores between seen and unseen pathologies. The red dashed
line stands for the 0.05 significance threshold.

i) correlation (corr), ii) mean average error (mae), and iii)
bias. Note that, it may be the case where ED volume is
not accurately predicted. In such case the RVEF,  defined as
(V o l E D  −  V o lE S )/V o l E D  can increase considerably or be
infinite. In such cases a RV E F  of 100% was considered.

Outliers play a crucial role on integrating automatic segmen-
tation methods in clinical practice, as a single missed case or
a significant discrepancy in a few instances can have a
greater impact than a small average improvement that may not
make a noticeable difference in diagnostic tasks. In Table VIII,
the number of cases exhibiting an RV  ejection fraction above
various thresholds is presented, alongside the number of cases
in which computation was not feasible due to a missing
segmentation in some of the cardiac phases.

Boldface numbers are the best results for each column. Blue numbers
represent results that are not significantly different compared to the
top-performing method for each column (p-value >  0.01 for Welch’s t-test)

TABLE VIII
N U M B E R O F  PAT I E N T S  A B O V E  D I F F E R E N T  R V E F  E R R O R  T H R E S H O L D S .

RV  Ejection Fraction Mean Average Error

Method ≥  5% ≥  10% ≥  15% ≥  20% Missing

P1 60 19 6 3 0
P2 59 16 4 2 1
P3 55 16 5 2 0
P4 57 14 4 3 0
P5 47 17 4 1 0
P6 49 15 7 3 0
P7 52 19 5 2 0
P8 58 22 9 6 0
P9 67 12 1 1 0
P10 59 34                13 8 1
P11 59 20 6 3 0
P12                   116 70                36                14 1
P13 87 49                29                18 1
P14 79 37                15                11 2
P15 67 34                23                23                 16
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E.  Qualitative results
Figure 8 provides some visual examples from different

teams to discuss the possible limitations and strengths of the
implemented methods. In the first row, complex basal regions
for short-axis views are correctly captured by various multi-
view approaches. All of these examples were not segmented
by the top 5 non-multi-view strategies. In the second row,
a pathological subject with a high degree of remodeling in
the RV  is not correctly segmented by the best-performing
methods, capturing the surrounding tissue instead of the
cardiac structure. P10 captured the cardiac structure as well as
the surrounding tissue. P13 and P8 delineated only the
cardiac structure with different degrees of accuracy. These
methods merged S A  and L A  views in their networks without
additional cross-view affine projections. Finally, the last two
rows show highly remodeled right ventricular cavities correctly
segmented by top-performing methods.

V. D I S C U S S I O N

This study presents a comprehensive evaluation of vari-
ous automatic deep learning-based methods for multi-disease,
multi-view, and multi-center right ventricular segmentation in
cardiac magnetic resonance imaging (CMR). The 15 partici-
pants employed a diverse range of methodologies, including
the choice of backbone architecture, number of stages, multi-
view fusion, and data augmentation strategies. In addition to a
large training sample of 160 cases, the authors were given 20
opportunities to optimize the parameters and characteristics
of their models during the validation process using a well-
stratified validation set of 40 cases. A  Codalab-based auto-
matic submission system was provided to allow for public
comparison of performance and promote fair and dynamic
competition between participants.

A. Summary of the challenge results
It can be concluded that the performance of the different

proposals, and in particular for P1-P5, is relatively comparable.
Statistical analysis has shown limited significant differences

1 . 0
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0 . 0 %                                                   1 2 . 5 %                                     2 5 . 0 %                                     3 7 . 5 %                                     5 0 . 0 %                                     6 2 . 5 %                                     7 5 . 0 %                                     8 7 . 5 %
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Fig. 6.     Average performance of the top 5 ranked methods in SA from
basal (0%) to the apical (100%) regions.
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Fig. 7. Number of not segmented slices at basal region. In blue, multi-
view approaches. In orange, non-multi-view approaches.

between the methods, with no clear advantage for any of the
participants.

From a general point of view, our study supports several
observations found in the previous edition of the challenge
and other studies based on different CMR datasets. Specifi-
cally, the results confirm that end-diastolic segmentations are
more accurate than end-systolic segmentations for the right
ventricle. Additionally, the accuracy of segmentation decreases
in the basal regions that are susceptible to under-segmentation
and also is impacted in the apical regions due to their smaller
size relative to the rest of the ventricular cavity.

The accuracy of segmentation is more stable across cardiac
phases in comparison to previous challenges such as MMs-1
or ACDC, with an improvement of 0.042 in average DSC over
MMs-1 and a comparable performance with ACDC (+0.004
average DSC), despite being MMs-2 a heterogeneous cohort.

B. Analysis of Pathologies
One of the relevant aspects of the challenge consists on

evaluating the generalization capacity of the proposed methods
to new, unseen pathologies. For this reason, the participants
trained their models without access to subjects belonging to the
Dilated Right Ventricle and Tricuspidal Regurgitation groups.
Figure 4 shows that unseen pathologies perform consistently
worse with exception of Inter-atrial communication. It is
remarkable that three out of the ten subjects belonging to this
group had a closure device visible in the basal region of the
image.

We investigated in more detail the statistical differences
between both, seen and unseen groups by analyzing indepen-
dently the two annotated cardiac phases and the two views
available in each study. The results in Figure 5 present some
degree of statistical significance between seen and unseen
pathologies for both S A  and L A  end-diastolic phases. This
finding reveals the need for including diverse cardiac mor-
phologies to improve model generalisability.
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Fig. 8.     Prediction examples for some of the presented methods. The first row shows satisfactory segmentations at conflictive basal regions for SA
images that were missed by non-multi-view approaches but correctly captured by multi-view methods. The second row shows a pathological subject
with severe right ventricular dilation that was only correctly captured by multi-view methods. The last two rows show pathological subjects from
unseen pathologies correctly segmented by top-ranked methods. Color correspondence: ground truth (green), prediction (red).

C.  Single- versus Multi-view Models

Regarding multi-view approaches, eight out of fifteen partic-
ipants utilized the complementary information between views.
Although a definitive conclusion cannot be drawn on the
general benefits, the evaluation suggests that multi-view meth-
ods have the potential to improve basal plane detection in
certain circumstances. Specifically, participants P9, P14, and
P4 achieved a lower number of not-segmented basal slices.
Additionally, some of the multi-view approaches presented a
better RV E F  stability. The solution proposed by P9 obtained
the lowest number of cases with a RV E F  error ≥  10%, improv-
ing significantly the results obtained by P1-P5, as expressed in
Table VIII.  Further research is required to incorporate multi-
view techniques into thoroughly optimized frameworks such
as nnU-Net.

D. Impact on clinical indices

We also assesed the participating methods by computing the
clincal indices derived from the generated segmentations. The
results were consistent with the ranking presented in Table VI,
with almost any statistical difference between the Top-10
ranked methods. Interestingly, the multi-view approach P9
presented a more consistent Ejection Fraction across patients,
with fewer cases with RV E F  error greater than 10%. This point is
specially relevant for diagnostic tasks.

E.  Further considerations

Due to the high heterogeneity of the presented dataset, one
could argue that there are many sensible parameters affecting
the segmentation performance. Different image dimensions,
in-plane resolutions or field strengths may be critical parame-
ters for a DL segmentation algorithms.

Field strenght: only five out of twelve samples obtained
using 3T scanners were included in the test set. Despite the
small sample size, there were no substantial differences in the
segmentation performance between 1.5T and 3T acquisitions.

In-plane resolution: In Table III, we presented a wide range
of in-plane resolutions and volume dimensions directly related
to the acquisition scanners. When comparing the average per-
formance of P1-P5 across different scanners, we obtain a stable
DSC of 0.912±0.016 for long-axis 4-chamber images and
0.922±0.011 for short-axis volumes. Interestingly, the learning
methods were able to generalise correctly to the heterogeneous
set of scanners, resolutions and protocols present during the
training stage.

F. Future work

In addition to the analyses and results presented in this
paper, we also provide the M&Ms-2 dataset open-access for
the community, which can be downloaded from the M&Ms-2
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website2. In conjunction with M&Ms-1, it represents the most
heterogeneous dataset ever compiled in CMRs image analysis,
comprising CMRs from various imaging protocols and cardi-
ology units. It also includes a wide range of cardiovascular
diseases and multi-view information. It is anticipated that the
scientific community will embrace the dataset as a comprehen-
sive resource to support a wide range of automated cardiac
imaging research initiatives, including automatic pathology
assessment, multi-scanner and multi-view image registration,
multi-structure segmentation, cardiac imaging quantification,
strain and motion analysis, and image synthesis. Further efforts
will focus on incorporating 2-chamber and 3-chamber long-
axis views to fully leverage the multi-view aspect of cardiac
magnetic resonance studies. The integration of diverse disease
characterization with these various views will also be pivotal in
facilitating automatic evaluation and diagnosis.

VI. C O N C L U S I O N S

To summarize, the key conclusions are:
1) The main findings correlate with the obtained results in

previous CMR segmentation challenges: end-systolic
phase and basal and apical cardiac regions are more
conflictive than their counterparts.

2) nnU-Net based approaches proved to be more effective
overall. Additional effort is required to incorporate com-
plex models into optimized frameworks such as nnU-Net
for a fair evaluation of different architectural proposals.

3) Further research is needed regarding generalisation: it
is essential to develop methods that can generalize
well across a wide range of pathologies and patient
populations.The results highlight the need to integrate
a variety of cardiac diseases, centers, scanners, and
acquisition protocols to generate robust DL approaches
in the biomedical imaging analysis domain.

4) Regarding multi-view methods, it cannot be definitively
concluded that they bring a significant improvement to
the CMR RV  segmentation problem. However, further
study is necessary in order to perform a conclusive
assessment of their impact and potential.
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