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ABSTRACT

Protein-RNA interactions are integral to the biological functions of RNA. It is well
recognized that molecular dynamics (MD) simulations of protein-RNA complexes are more
challenging than those of each component. The difficulty arises from the strong electrostatic
interactions and the delicate balance between various types of physical forces at the interface.
Previously MD simulations of protein-RNA complexes have predominantly employed fixed-
charge force fields. Although force field modifications have been developed to address problems
identified in the simulations, some protein-RNA structures are still hard to reproduce by
simulations. Here we present MD simulations of two representative protein-RNA complexes using
the AMOEBA polarizable force field. The van der Waals parameters were refined to reproduce
accurate quantum-mechanical data of base-base and base-amino acid interactions. It was found
that the refined parameters produced a more stable hydrogen-bond network in the interface. One
of the complexes remained stable during the short simulations, whereas it could quickly break
down in previous simulations using fixed-charge force fields. There were reversible breaking and
formation of hydrogen bonds that are observed in the crystal structure, which may indicate the
difference in solution and crystal structures. While further improvement and validation of the force
fields are still needed, this work demonstrates that polarizable force fields are promising for the

study of protein-RNA complexes.



1. INTRODUCTION

RNA is essential for many biological activities including gene expression and regulation
and catalysis. RNA also has tremendous therapeutic potential for gene therapy, immunotherapy,
and vaccines.!* Most of biologically active RNAs interact with proteins. The interactions with
proteins are crucial for the folding, stability, regulation, transport and localization of RNAs.#¢
Therefore, understanding of the principles of RNA-protein interactions is useful for both
fundamental research and practical applications. The mechanisms of protein-RNA recognition are
highly diverse. Various types of interactions can be found at the protein-RNA interface, such as
electrostatic interactions, hydrogen-bonding, salt bridge, pi-pi interactions and hydrophobic
interactions.” 8 In protein-RNA complexes, proteins either exclusively interact with RNA
backbone or have specific interactions with nucleobases. In addition, protein-RNA interactions
often involve large conformation changes of RNAs.

Experimental techniques including X-ray crystallography and nuclear magnetic resonance
(NMR) have been valuable for the study of protein-RNA complexes. The data generated by such
experiments have enabled the development of software tools for the prediction of protein-RNA
binding. Structural analyses have shown van der Waals (vdW) interactions are more prevalent than
hydrogen bonds,’ and interactions with the RNA backbone are more frequent than interactions
with nucleobases.!? There are also limitations in experimental studies of protein-RNA complexes.
The biomolecules in solution may have more than one conformation, and they may be different
from the crystal structure. NMR experiments are usually conducted in solution, but they are more
ambiguous to interpret than X-ray crystallography.'!

Molecular dynamics (MD) simulations have been widely used to study biomolecular
structures and dynamics as they complement experiments by providing detailed pictures of the
molecules and connecting microscopic structures with macroscopic observations. Some notable
examples include protein structure prediction'? and protein-ligand binding.!> '* However, MD
simulations of protein-RNA complexes are still challenging. The simulation results are very

sensitive to force field parameters!> because of the conformational flexibility of RNAs and the



intricate network of interactions in the protein-RNA interface. There have been a lot of progress
in nucleic acid force fields. Two major families of force fields for proteins and nucleic acids are
AMBER and CHARMM.!3-'7 AMBER force fields were first developed in the 1990s'® and have
been continuously refined.!®?* A major focus has been on torsion parameters because the
conformations of nucleic acids are sensitive to torsion parameters and the non-bonded parameters
were found to be sufficient for describing gas-phase interaction energies and hydration free
energies.!” Recently, there have been more studies on refining non-bonded parameters to improve
intramolecular hydrogen bonds, base stacking, protein-nucleic acid binding and other
thermodynamics properties.?**? The revised non-bonded parameter for phosphate of Steinbrecher
et al.3? in combination with the OPC water model could alleviate the excessive binding excessive
binding between 2’-hydroxyl groups and phosphate, while it has issues for other systems.?> 34
Sponer and coworkers proposed hydrogen-bond terms (HBfix and gHBfix)2*25 to selectively fine-
tune the non-bonded interactions, which leads to general improvement for RNA simulations. Shaw
and coworkers developed revised versions of AMBER force fields that include new parameters
for nucleobase charge and vdW to improve base pairing and stacking interactions and the
phosphate vdW parameters of Steinbrecher et al.,’* which necessitates adjustments of torsion
parameters. The parameters were used with the TIP4P-D water model developed by the same
group.?’ Subsequently the phosphate charges and vdW parameters were modified to be compatible
with the DES-Amber protein force field which includes rescaling of ionic charges.*>:3*¢ CHARMM
force fields’”- *® have also been improved over the years.!” The latest version CHARMM36°%’
improved the stability of base pairs by tuning 2’-OH torsion parameters. Common problems for
standard fixed-charge force fields such as AMBER and CHARMM are the over-stabilization of
protein-nucleic acid interactions and the difficulty in modeling ion-specific effects.?’ These
problems have been partially addressed by special vdW parameters.2®: 303

Polarizable force fields provide more accurate description of electrostatics and balanced

interactions in heterogenous environments, so they are promising in addressing the problems of

fixed-charge force field for protein-RNA complexes.**> CHARMM-Drude force field***® and



AMOEBA#-2 are two popular polarizable force fields. AMOEBA showed good accuracy for
various nucleic acid systems, including DNA duplexes in different environment, RNA
tetranucleotide, RNA tetraloops, RNA duplexes, and HIV-TAR.* There have been very few
published studies on MD simulations of protein-RNA interfaces using polarizable force fields,
which is likely due to the computational cost of polarizable force field and the difficulty in
conformational sampling.

In this work, the vdW parameters in AMOEBA nucleic acids force field were refined by
using high-quality quantum-mechanical data. MD simulations for representative protein-RNA

systems were performed with both the original and the refined AMOEBA force field parameters.
2. METHODS

2.1 Molecular dynamics simulations

Two protein-RNA complex systems were selected for molecular dynamics simulations:
U1A protein bound to RNA hairpin®® (PDB code: lurn) and C. elegans Pumilio FBF-2 protein
bound to gld-1 FBEa RNA>* (PDB code: 3k5y). The PDB structure of lurn contains three copies
of the complex. The complex formed by chain B and chain Q was selected for simulations since it
is the only one without missing residues. Both systems have been studied by Krepl et al,®> and more
recently by Tucker et al.*® The crystal structure of U1A contains a 21-nucleotide RNA sequence.
The FBF protein is responsible for the regulation of messenger RNA.> The FBF interface is
composed of interaction between nucleobases and protein, while the RNA backbone is exposed to
the solvent.?
The systems were prepared by using the tleap program in AmberTools.>> All systems were
neutralized and solvated in isometric truncated octahedron boxes with a minimum distance
between solute and box edge of 15 A. KCl ions were added to give a concentration of 150 mM.
The solvated systems were minimized, gradually heated up from 50 K to 300 K in 500 ps NVT
simulations with harmonic position restraint on protein and RNA, and equilibrated at the NPT

ensemble with 300 K and 1 bar for 4 ns, and then the force constant of the position restraints was



gradually reduced from 25 kcal/mol/A? to zero in 6 ns NVT simulations. The production
simulations were NVT simulations at 300 K. The RESPA integrator>® was used with an outer time
step of 2.0 fs. Temperature and pressure were maintained by Bussi thermostat®” and Monte Carlo
barostat,>® respectively. The electrostatics was treated by PME with a real-space cutoff of 7.0 A.
The van der Waals (vdW) was truncated at 12.0 A. Tinker-OpenMM program>® was used for the
simulations. Proteins and nucleic acids were modeled by the original amoebabiol8 parameter and
refined parameters as detailed below. Water and ions were modeled by the default parameters as

described by Ren et al.® and Wang.!

2.2 Quantum mechanical calculations

Quantum mechanical (QM) calculations were used to generate reference data to refine the
non-bonded interaction parameters for RNA and torsion parameters for protein. The choice of QM
methods for force field parametrization significantly affects the performance of the resulting force
field. Usually more accurate QM methods lead to better force fields (e.g. the DESRES RNA force
field*”), although due to error cancelation, lower-level QM methods could be better choices in
some cases (e.g. AMBER RNA force fields parmbsc0,2? OL3,%? OL15%'"). Since AMOEBA
incorporated more physical terms including polarization and atomic multipoles, it is less prone to
error cancelation than non-polarizable force fields, and the parameterization of AMOEBA has
relied on high-level QM methods such as MP2 with relatively large basis sets. MP2 with cc-pVTZ
or aug-cc-pVTZ was used in the parameterization of the AMOEBA RNA force field. However,
recent benchmark studies have found that MP2 suffers from large errors for dispersion
interactions,®*%* which are prominent in base-base stacking. Various MP2-based method and DFT
methods have been developed to address this issue. Based on results from previous work,5* 63

DSD-BLYP-D3BJ, a double-hybrid DFT method with empirical dispersion correction, was chosen

for QM calculations due to its excellent accuracy and computational efficiency.



2.3 Optimization of vdW parameters
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Figure 1. Illustration of additional structures for model compounds based on ideal geometry. (a)
for base pairing, Ax = £0.20, £0.10, £0.05 7o, Ay = +0.4 A, and A6, = £20°, where ry is the

equilibrium distance; (b) for base stacking, Ax = +0.20, £0.10 o, Ay = Az = £0.6, £0.3 A; (c) for
base water dimer, Ax = £0.20, £0.10, £0.05 o, Ay = Az = £0.6, £0.3 A.




Model compounds based on ideal geometries were generated for fitting nucleobase vdW
parameters, and models based on PDB geometries were used for testing. The workflow is
demonstrated in Scheme 1. The model compounds include model compounds including
methylated nucleobases (A, T, U, G and C), N-methyl amide (NMA), ethanol (EtOH), acetate,
methylammonium (MeNH3), imidazole and benzene. All interaction energies were calculated at
the DSD-BLYP-D3BJ/def2-QZVP level of theory. The ideal geometries include canonical and
noncanonical base pairing, base-base stacking and base-water dimers. The starting structures were
taken from our previous work>® with the addition of A-G cis-Watson-Crick/sugar-edge pair®® from
the JSCH benchmark database for non-covalent interactions (designated as “G...A 4”).7 The
geometries were re-optimized by using TPSS-D3BJ/def2-TZVP. For each ideal geometry,
additional structures were generated by translation or rotation, as shown in Figure 1. The x-axis
was defined by the closest atom pair; the y-axis represents the principal axis of the interface, which
was chosen manually for base pairing and defined by three atoms in each monomer that are closest
to the interface; the z-axis is orthogonal to the xy-plane.

The PDB geometries include base-base and base-amino acid interactions. The procedure
for selecting representative structures is shown in Scheme 1. A hierarchical clustering algorithm
with average link and a RMSD cutoff distance of 2.5 A was used in the clustering. Spurious bond
lengths, as defined by AMOEBA bond energy greater than 10 kcal/mol, were relaxed by
optimization using AMOEBA with position restraint. Short intermolecular distances (< 1.8 A)
were relaxed by rigid-body distance scan with TPSS-D3BJ/def2-TZVP/PCM. Hydrogen positions
were optimized by TPSS-D3BJ/def2-TZVP/PCM or PM6/PCM. Starting from 5334 PDB
structures of protein-NA complexes, 657 structures for 45 types of dimers were generated.

The interaction energies based on the ideal geometries were used to refine the nucleobase
vdW parameters, while the PDB geometries were used for validation. The data points were
assigned Boltzmann weights at 1000 K relative to the corresponding lowest energy points. The

Trust Region Reflective algorithm in SciPy with bounds and quadratic restraint was used for the



parameter fitting. The bounds were +5% for vdW diameter and £20% for well depth within the
initial parameters. The restraint was chosen based on 5-fold cross validation. Two sets of optimized
vdW parameters were obtained: param1, in which the atom types are the same as in amoebabiol8,
and param2, in which Guanine does not share parameters with other nucleobases. The RMSEs of
these parameters as well as the original amoebabiol8 are summarized in Table 1. A breakdown of
the mean error and root mean squared error (RMSE) to different types of base pairs is shown in
Figure 2 and Figure 3. For both base-pairing and base-stacking interactions, amoebabiol8 has
generally positive errors. This is in part due to the deficiency of the MP2 method which was used
in the parameterization of amoebabio18. The mean errors are significantly reduced in the param1
and param?2 results. The improvement in RMSEs can be found in most types of base pairing and
only a few types of base stacking (namely CU and GQ), since the RMSEs of base stacking energy
were relatively small. For paraml, base pairs involving guanine have more positive errors than
other base pairs, which was a motivation for the additional atom types for guanine in param2.
Indeed, param?2 has overall better accuracy than param1 for the training set (Table 1).

The two sets of parameters were evaluated on the interaction energy from the PDB geometries
(Table 1), which was not used in the parameter fitting. The accuracy for base-base interactions
were significantly improved in both sets of parameters. The accuracy for base-amino acid
interactions were also improved, although the training set contains no amino acids. Contrary to the
performance for the training set, param?2 has slightly larger errors than param! for the test set,
despite having more adjustable parameters. The combination of small training error and large test

error is characteristic of overfitting. Therefore, param1 was chosen for simulations.
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Figure 3. Distribution of errors of AMOEBA force fields for base pairing interaction in each type

of base pairs.

Table 1: Weighted RMSE of AMOEBA parameters on base-base and base-amino acids
interactions (kcal/mol).

Model Training set Test set
Base Base Base Base-Amino
stacking | pairing Acid
Amoebabiol8 | 1.466 3.775 1.895 1.309
Paraml 0.860 1.317 0.829 1.193
Param?2 0.887 1.033 0.856 1.194

The optimized vdW parameters are listed in Table 2. The changes in parameters are less than 5%
from amoebabiol8. The vdW radii are smaller in all optimized parameters than in amoebabiol8,
since the base-pair interactions in amoebiol8 are too weak. In param2, the vdW radii of guanine

are also smaller than those of the corresponding atoms in other nucleobases.
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Table 2: Nucleobase vdW sigma (A) and epsilon (kcal/mol) in amoebabiol8 and optimized
parameters.

Vdw type Atom amoebabiol8  Paraml Param?2

54 U/T N3, CNI1 3.700 0.127 3.600 0.124  3.700 0.127
(154) G N1 3.560 0.127
50 A N3/N1,CN3 3.640 0.127 3.5300.124  3.560 0.120
(150) G N3 3.500 0.125
49 A N7 3.640 0.127 3.5300.124  3.560 0.120
(149) G N7 3.500 0.125
58 C 02, U/T 02/04 3.3500.129 3.2500.124 3.2500.124
(158) G 06, 3.200 0.120
53 A H6, C H4 2.650 0.020 2.620 0.018  2.650 0.020
(153) G H2

Nucleobase-protein vdW parameters

The hydrogen bonds between Asp/Glu side chains and nucleobases are a common motif in
protein-nucleic acid interfaces. It was found that even with the optimized nucleobase vdW
parameters, some of these hydrogen bond interactions still have relatively large errors. This may
be attributed to the partial covalent bonding nature of these interactions. As in our previous work
on phosphate-binding proteins,®® pairwise vdW parameters between carboxylate O and NH were
included to improve the accuracy for these interactions. The training set structures were obtained
by geometry optimization (TPSS-D3BJ/def2-TZVP) of model compounds from the PDB
geometries (Scheme 1). For each optimized structure, two additional structures were generated by
rigid-body translation, resulting in intermolecular distances of 0.9 and 1.1 times the equilibration

distance. The performance for the training set and the test set are shown in Figure 4.
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interactions.

2.4 Optimization of Asn torsion parameters

During initial MD simulations of the U1A protein-RNA interface using amoebabiol8, it
was found that the rotamer conformation of some Asn residues in the interface was different from
those in the crystal structures, which disrupted the hydrogen-bond network. Therefore, the torsion
parameters of Asn were revisited. Conformations were generated by (1) one-dimensional torsion
scan of Asn 1 and 2 torsions at 30 deg interval, with backbone torsion fixed at either alpha-helix
or beta-sheet conformation, which leads to 48 conformations in total, and (2) 3-by-3 two-
dimensional scan of y1 and y2 torsions at -30, 0 and 30 deg based on each of the 11 rotamers from
the backbone dependent rotamer library,® for a total of 99 conformations. All the conformations
were optimized at the ®B97Xd/6-311++g(2d,2p) level of theory with backbone and side chain
torsions frozen, and the energies were calculated by DSD-BLYP-D3BJ/def2-QZVP. The Trust
Region Reflective algorithm was used in the least-square fitting. The RMSE was reduced from

2.06 kcal/mol for amoebabiol8 to 1.60 kcal/mol for the optimized parameters (paraml). The
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improvement is more noticeable when tested on the conformations sampled from the initial MD
simulations of Ul A. As shown in Figure 5, amoebabiol8 has large errors in the relative energies
of these conformations; specifically, it predicted similar energies for the low-energy and high-
energy conformers, while the two conformers differ by about 4 kcal/mol according to QM (DSD-
B3LYP-D3BJ/def2-QZVP). The optimized parameters could correctly rank the low-energy and
high-energy conformers. The side chain torsion parameters of the original AMOEBA protein force
field were fitted to MP2/CBS energy of one-dimensional torsion, with backbone fixed at alpha-
helix and beta-sheet conformations.”® Both MP2 and DSD-B3LYP-D3BJ are very accurate for
conformation energies.®> ® The main difference between this work and the original
parameterization is in the conformers. The training set structures were generated by using a
general procedure rather than tailored to the issue of U1 A simulations, so the optimized parameters

are expected to be a general improvement over the original parameters.
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Figure 5. Correlation between QM and MM relative energies for the Asn conformers sampled from

MD simulations of UTA.
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3. RESULTS AND DISCUSSIONS

3.1 U1A simulations

FBF N
1
L > { < ‘ {1 e

Figure 6. Crystal structure of the UL A (PDB code: 1urn) and FBF (PDB code: 3kSy) protein-RNA

complexes.

The U1A protein-RNA complex has been well studied by experiments and MD simulations.* 7!
73 1ts interface consists of two parts, one between the stem region of the RNA hairpin (including
U7, U8, G9 and G16) and two loops of the protein, and the other between the loop region of the
RNA (including C10, A11 and C12) and a loop of the protein. The stability of the protein-RNA
interface during the simulations is measured through the distances between several hydrogen-bond
donor and acceptors (Figure 7), and the hydrogen bond is considered to be maintained if the
distance is below 4 A. During the simulations using the amoebabiol8 parameters, the hydrogen
bond between U8(N3) and Asnl6(ODI1) was quickly lost within 20 ns in four out of five

simulations. This is accompanied by the rotation of the Asnl6 yl torsion and the loss of the
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hydrogen bond between U8(04) and Lys80. This can be clearly seen in Figure 7 where the average
distance for the two hydrogen bonds in the last 20 ns of 60 ns simulations are around 6 A. The two
hydrogen bonds with U8 could reform briefly and then break multiple times during extended 100-
ns simulations (Figure 8), which indicates that there is only a small free energy difference between
the native structure and the disrupted structures. Among the conformations with disrupted
hydrogen bond between U8(0O4) and Lys80(NZ), there are water-mediated interactions when the
distance is between 4 and 5 A. The other part of the protein-RNA interface represented by the
hydrogen bond between A11(N1) and Ser91(OG) remained relatively stable in the simulations.

Preliminary simulations using the optimized vdW parameters suffered from similar issues for the
hydrogen bonds around Asnl6 (see Supporting Information). The stability of the interface was
significantly improved after the introduction of the optimized Asn torsion parameters. The two
hydrogen bonds with U8 were well maintained in all five simulations (Figure 7). The hydrogen
bond between A11(N1) and Ser91(OG) was also stable in the majority of simulations, although
there was a larger variation between simulations compared to the simulations with amoebabiol8.
The variations in the hydrogen bonds with A11 was largely due to the conformations of the C-
terminal residues. The C-terminal of the UL A protein consists of a short five-residue alpha-helix,
followed by unstructured residues Met97 and Lys98. Short alpha-helices are generally not very
stable in aqueous solution. In addition, the last residue Lys98 is missing in the crystal structure,
and is not included in this work and previous work.”* The C-cap residue could affect the

electrostatic interactions with RNA.

15



[ amoebabio18

[ This work ¢
¢

6
<
8 °r
E ¢
.0
0O 4+

3—!'" ';"— = =

1 1 1 1 1 1
G9(06)- G16(OP)- AT1(N1)- U7(N3)- UB(N3)- U8(04)-
Asn16(N) Leud9(N)  Ser91(0G)  GIu19(OE) Asn16(0D1)  Lys8O(NZ)

Figure 7. Average distances between selected hydrogen-bonds donors and acceptors in the UTA
complex during MD simulations. The average is calculated over the last 20 ns of each of the five

60-ns simulations.

15.0 *  G9(06)-Asn16(N)
©  G16(0P)-Leud9(N)

12.5F s A11(N1)-Ser91(0G)
pora ©  U7(N3)-Glu19(OE)
; 100 U8(N3)-Asn16(0D1)
o ’ U8(04)-Lys80(NZ)
© ; 3"
» 75F
o

50

25F

15.0 -
__125f
<
o 10.0f
o
5
B 75F
=) "

50 (S

Fx iR
25p (AR

Time (ns)

Figure 8. Evolution of selected hydrogen-bond distances in two extended simulations of UTA with

the original AMOEBA parameters.

16



Previous simulations had difficulty in keeping all the native hydrogen bonds in the UTA
interface. Simulations with AMBER ff99bscOyOL3 for RNA and ff99SB or ff12SB for protein led
to an altered hydrogen-bond network.® Simulations with ff99SB did not maintain several hydrogen
bonds with U7, U8, G9 and G16. Simulations with ff12SB which includes a reparameterization of
side-chain torsion parameters did not bring significant differences in the simulations. It is worth
noting that four simulations with ff12SB behaved similarly as those with ff99SB; in two other
simulations, the disruption of hydrogen bonds with U8, G9 and G16 were reversible and the
A11(N1)-Ser91(OG) bond was disrupted.’ Coincidently, the two ff12SB simulations were similar
to the AMOEBA param1 simulations (Figure 7), except that U7(N3)-Glul9(OE) bond was very
stable in AMOEBA simulations. Sponer and coworkers identified some deficiencies of the
AMBER force fields through QM/MM calculations, especially for the solvent-exposed hydrogen
bonds G9(N7)-Asn15(ND) and U8(0O4)-Lys80(NZ).” A structure-specific force field term for the
hydrogen bonds (HBfix) could help stabilize the interface.?* This idea was further explored for
simulations of other RNA systems.?* 23 In the simulations using AMBER ff12SB yOL3 with
HBfix, the overall interface remained stable during 1000-ns simulations, and there were reversible
breaking of G9(N7)-Asnl15(ND), U7(N3)-Glul9(OE) and U8(0O4)-Lys80(NZ), which were also
observed in some of the AMOEBA simulations.

Tucker et al. reported 50-microsecond simulations of several protein-nucleic acid
complexes including U1A and FBF, using modified versions of AMBER force field.* It was found
that a reparameterization of nonbonded parameters for the nucleic acid backbone (mainly 2’-
hydroxyl and phosphate oxygen) based on experimental data substantially improved the
simulations of some protein-nucleic acid complexes. However, the re-parameterized force field
(DES-Amber 3.20) and their previous force field (DES-Amber) have similar results for UL A. The
overall RMSD went up to 4-5 A after a few microseconds, indicating that some hydrogen bonds
were possibly disrupted at a very long timescale.

Electrostatic interactions also play roles in the association and stability of the UIA

complex. It was shown by mutagenesis experiments that while Lys20, Lys22 and Lys23 all affect
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the association rate, Lys20 has minimal effect on the complex stability.”® In the crystal structure,
Lys22 has a salt bridge with the backbone phosphate group, and Lys20 and Lys23 have no direct
contact with the RNA. The interactions of these Lys residues during the AMOEBA simulations
are generally consistent with the crystal structure: Lys20 had transient salt bridges with the
phosphate group of U3 or G4, and Lys23 remained away from the RNA. In a previous simulation
with AMBER ff99 force field, Lys20 and Lys23 formed stable salt bridges with phosphate
groups.” So the fixed-charge force field seems to overestimate the electrostatic interactions

between Lys and phosphate, while AMOEBA has more balanced electrostatic interactions.

3.2 FBF simulations

10
¢’ [ amoebabio18
o] [ This work
8
‘ * *

1 1 1 1 1 1
U1(N3)- U1(02)- U1(N3)- U1(02)- A9(02')- G2(N1)- UB(N3)-
Asn500(0D1) Asn500(ND2) GIn504(NE2) Lys557(NZ) Lys201(NZ) Glud57(OE) Asn244(0OD1)

Distance (A)

w A~ O O

Figure 9. Average distances between selected hydrogen-bonds donors and acceptors in the protein-
RNA interface during MD simulations of FBF. The average is calculated over the last 40 ns of

each of the four 120-ns simulations.
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FBF with the optimized parameters.

The FBF protein-RNA complex has an elongated interface composed of interactions
between nucleobases and protein, while the RNA backbone is exposed to the solvent (Figure 6).
The distances between hydrogen bond donors and acceptors at the two ends (U1, G2 and A9)
during the simulations are shown in Figure 9. The optimized AMOEBA parameter has a significant
improvement over amoebabiol8 for the hydrogen bonds at the 5’-terminal of the RNA strand,
including UI(N3)-Asn500(0D1), U1(02)-Asn500(ND2), U1(04)-GIn504(NE2), UI1(04)-
Lys557(NZ) and G2(N2)-Ser453(OG). Even with the optimized parameters, there were rapid
reversible breaking of the terminal hydrogen bonds, particularly U1(O4)-Lys557(NZ) and
A9(02’)-Lys201(NZ) (Figure 10). Both hydrogen bonds are solvent-exposed and associated with
flexible Lys side-chains, so their existence in the crystal structure might be due to the crystal
packing effect. Apart from the two hydrogen bonds with Lys, other hydrogen bonds were fairly
stable during simulations with the optimized parameters. For both the original and optimized

parameters, the 5’-terminal (U1) interface is less stable than the 3’-terminal (A9) interface. An
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explanation is that the A9(02’)-Lys201(NZ) bond is stronger than the U1(04)-Lys557(NZ) bond
due to the electrostatic interaction between Lys201 and the RNA backbone, and the stacking
between A9 and Tyr245 is also stronger than the stacking between U1 and Tyr501.

Previous simulations with AMBER {f99bscOyOL3 for RNA and ff99SB or {f12SB for
protein could not stabilize the interface.’ The terminal hydrogen bonds with U1l and A9 were lost
within 50 ns, followed by the loss of hydrogen bonds with G2 and U8 after 300 ns. The interruption
of the interface was mainly caused by the conformational changes of the RNA.> Furthermore, the
interface could not be stabilized by simulations with distance restraints on hydrogen bonds with
Ul and U8. Based on these results, Krepl et al.> concluded that crystal packing might play a role
in the stabilization of the structure. In the simulations with DES-Amber and DES-Amber 3.20
force fields, the FBF complex was stable throughout 50-microsecond simulations. The backbone
RMSDs were between 2-3 A and there was no sign of dissociation. Since the optimized AMOEBA
parameters and DES-Amber 3.20 achieved higher stability of the protein-RNA interface compared
to previous versions of force fields, the crystal structure of the FBF complex could be either stable

or metastable in solution.

4. CONCLUSIONS

The AMOEBA RNA force field was refined to improve the accuracy for modeling protein-
RNA interfaces. Accurate DFT methods were chosen as a reference for the intermolecular
interactions between nucleobases, water and small organic molecules. The nucleobase parameters
were optimized by fitting to a large QM dataset including both optimized and non-ideal geometries
and validated by cross-validation and separate test sets. Special vdW pair parameters were
included to better represent hydrogen-bond interactions between nucleobases and carboxylate
groups. The Asn torsion parameters were optimized based on conformations from torsional scan
and rotamer library. The optimized AMOEBA parameters achieved better accuracy for the
problematic protein-RNA interfaces identified in previous work. Since the reparameterization was

based on a large QM dataset, the optimized parameters should represent a general improvement in
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describing protein-RNA interactions. Nevertheless, further tests on more systems are needed.
Adjustment in torsion parameters might also be necessary to be compatible with the new vdW
parameters.

Simulations with the optimized parameters correctly reproduced the important hydrogen
bonds in the U1 A protein-RNA interface, which was recently achieved by using AMBER force
field with a structure-specific force field term. The AMOEBA simulations are also more realistic
for the interactions between Lys side-chains and backbone phosphate groups. For the FBF protein-
RNA complex, the AMOEBA simulations produced a stable binding interface except for reversible
disruptions of some solvent-exposed hydrogen bonds between terminal nucleotides and Lys side-
chains. Overall, the AMOEBA force field is promising for modeling the complex hydrogen-bond

network and electrostatic interactions in protein-RNA interfaces.

5. ASSOCIATED CONTENT

Additional text for the simulation methods for DNA and RNA systems; Summary of model
compounds with PDB geometry (Table S1); comparison of original and optimized parameters for
DNA and RNA systems (Table S2); Correlation of QM and MM energies in Asn torsion fitting
(Figure S1); Evolution of selected hydrogen-bond distances in simulations of U1 A and FBF with

different parameters (Figure S2-4); parameter file in Tinker format.
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Simulations of RNA and DNA systems

The optimized parameters were tested on several RNA and DNA systems following the procedure
in our previous work.! Three 1000-ns simulations were performed for tetranucleotides AAAA and
GACC. Two 500-ns simulations were performed for 2JXQ, 2KOC and INAJ. The AAAA
simulations had slightly lower percentage of A-form conformation compared to the simulations
with the original AMOEBA parameters, while the GACC system had slightly higher percentage
of A-form. Simulations of an RNA duplex, an RNA hairpin and a DNA duplex resulted in slightly

higher RMSDs to the crystal structure than simulations with the original parameters.
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Table S1. Numbers of model dimer structures for protein-nucleic acid interactions with PDB

geometry
A T U G C
A 15
T 14 10
U 29 2 15
G 35 19 34 25
C 25 15 25 21 16
NMA 19 17 17 16 19

EtOH 7 8 9 9 9
Acetate 10 12 11 11 12
MeNH3 6 4 4 5 4
Imidazole 14 12 12 14 12
Benzene 16 17 17 18 16

Table S2. Root mean squared deviations (A) of DNA and RNA systems in AMOEBA simulations.

RMSD(amoebabiol8) RMSD(this work)

Non- Heavy- Non- Heavy-
Type PDB  terminal atom terminal atom
RNA duplex 2JXQ 1.25 1.98 1.588 2.598
1.41 2.38 1.416 2.385
RNA hairpin 2KOC 1.72 1.78 1.93 1.983
1.9 1.95 1.901 1.977
B-DNA duplex  INAJ 1.29 2.54 1.439 2.17
1.532 2.343

For each system, the results of two independent simulations are listed.
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Figure S1. Correlation between QM and MM relative energies for the Asn conformers generated

from one-dimensional torsion scan and rotamer library.
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Figure S2. Evolution of selected hydrogen-bond distances in simulations of U1 A with optimized

vdW parameters.
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Figure S3. Evolution of selected hydrogen-bond distances in simulations of U1 A with optimized
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Figure S4. Evolution of selected hydrogen-bond distances in simulations of FBF with original

AMOEBA parameters.
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