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Abstract

Background: The retention of traditionally underserved students remains a
pressing problem across graduate engineering programs. Disciplinary differ-
ences in graduate engineering identity provide a lens to investigate students'
experiences and can pinpoint potential opportunity structures that support or
hinder progress based on social and personal identities.

Purpose: This study investigates the impact of discipline, gender, race/
ethnicity, advisor relationship, and years in a program on graduate engi-
neering identity variability.

Methods: Cross-sectional survey data from a national sample of doctoral
engineering students were analyzed with multilevel modeling. Multilevel
modeling measured the differences at the individual and discipline levels for
graduate engineering identity and the domains of engineer, researcher, and
scientist. Independent variables included were gender, advisor relationship
score, race/ethnicity, and years in a program.

Results: The engineer identity sub-construct of recognition significantly
varied among engineering disciplines. Traditionally underserved students
(i.e., Women and minoritized racial /ethnic groups) expressed lower engi-
neering recognition levels, with this relationship varying based on discipline.
Overall, our model explained 30% of the variation in engineering recognition
among disciplines.

Conclusions: The disciplinary variation in graduate engineering identity com-
bined with the significance of gender and race/ethnicity indicates traditionally
underserved students do not experience equivalent opportunity structures
compared with their well-represented peers. Modifying traditional opportunity
structures to serve students better may provide the needed changes to engage

and retain traditionally underserved populations.
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1 | INTRODUCTION

Despite mild upticks, Women and traditionally underserved groups remain significantly underrepresented and
marginalized in engineering at the doctoral level (Barthelemy et al., 2016; National Academies of Sciences, Engineering,
and Medicine [NASEM], 2018; Ramirez, 2014; Sallee, 2011; Sowell et al., 2015). In 2015, US citizens and permanent res-
idents of color received 9% of doctoral degrees granted in engineering while representing over 30% of the US population
(National Science Board [NSB], 2018; Sowell et al., 2015; United States Census Bureau [USCB], 2019). Further, Women,
first-generation college students, and minoritized racial and ethnic groups complete engineering doctoral degrees at
lower rates than well-represented group peers (NASEM, 2018; NSB, 2018; National Science Foundation [NSF], 2017,
2019; Sowell et al., 2015). Concerned by this gap in doctoral degree attainment, national agencies have called for signifi-
cant changes to graduate education to adequately prepare the next generation of engineering problem-solvers
(NASEM, 2018; NSB, 2018; NSF, 2017; Sowell et al., 2015). We propose that meaningful change in traditionally under-
served student participation first requires investigation of the current systems that serve students differently. We begin
with the premise that disciplines engage opportunity structures that support and hinder graduate engineering identity
(GE]) development and that strong engineering identity promotes participation in engineering and graduate degree
completion.

Opportunity structures consist of systems, policies, practices, and norms that support or hinder students'
educational pursuits and engagement with the education system (Gray et al., 2018). Opportunity structures often sys-
tematically disadvantage Women and minoritized racial/ethnic identities among other personal and social identity
groups (Bancroft, 2018; Burt et al., 2018; Pawley, 2017, 2019; Pawley et al., 2016; Starobin et al., 2010). Further, these
structures may begin to explain why a gap in engineering doctoral degree attainment exists (Bancroft, 2018). For this
work, we use the term traditionally underserved students rather than “underrepresented minority” to focus on the
ways opportunity structures, specifically the educational structures housed within engineering disciplines, departments,
and programs, need to be redesigned to equitably serve a broader range of students (Bancroft, 2018; Ramirez, 2014;
Sowell et al., 2015). Focusing on disciplines can highlight why some disciplines show higher levels of doctoral degree
attainment for traditionally underserved populations, while others have low levels of degree attainment. For example,
in 2017, Women earned 48.7% and 39.1% of doctoral degrees in environmental and biomedical engineering,
respectively, while only earning 13.6% of doctoral degrees in nuclear engineering (Yoder, 2018).

Traditionally underserved students experience inequity in a variety of ways. Students from underserved groups are
less likely to have faculty, mentors, advisors, or peers who share their personal and social identities (Sowell et al., 2015).
Peer discrimination, microaggressions, and exclusion isolate and punish already oppressed student groups
(Burt et al., 2018; Byars-Winston et al., 2010; McGee, 2016; Robnett, 2016; Wang & Degol, 2017). Finally, underserved
students face unique challenges in conforming and participating in the university structure.

In this work, we seek to identify the differences in GEI among engineering disciplines and propose that these
differences arise from differences in discipline-specific opportunity structures. Further, we assess if gender and race/
ethnicity impact differences in GEI among disciplines. This work uncovers the differences in GEI for Women and
underrepresented racial/ethnic groups based on engineering disciplinary cultures that contribute to continued dispar-
ities in pursuit of doctoral degrees. The results provide the groundwork for further investigation of disciplinary cultures
and opportunity structures to promote support for all students. Further, this work has implications for how graduate
education may benefit from evaluating the impact of opportunity structures on traditionally underserved doctoral stu-
dents. We begin with the premise that disciplines engage opportunity structures that support and hinder GEI develop-
ment and that a strong engineer identity promotes participation in engineering and graduate degree completion
(Bahnson et al., 2019; Bancroft, 2018; Godwin et al., 2016; Gray et al., 2018).

Improvements to the engineering graduate education experience for traditionally underserved students require a
widespread systemic change to existing opportunity structures at the discipline level. To generate knowledge on how
the design of engineering graduate programs is or is not equitable, we examined differences in engineering identity
expression, a contextually responsive marker of students' experiences, across disciplines based on traditionally under-
served student groups by gender and race/ethnicity. This approach to studying graduate engineering disciplines eluci-
dates how professional, personal, and social identities of traditionally underserved students are potentially perceived
and valued within the opportunity structures of engineering doctoral education while concurrently highlighting
potential targets for change.
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2 | CONCEPTUAL AND THEORETICAL FRAMING

Opportunity structures are those aspects of educational environments that support or block student success and
engagement with educational systems (Gray et al., 2018). The opportunity structures concept enables the investigation
of the structural elements of education that support traditionally underserved adolescents' belongingness in schools
(Gray et al., 2018). Opportunity structures are similar to the formal and informal aspects of education or “figured
worlds” that shape identity and identity expression (Holland et al., 1998; McAlpine & Lucas, 2011). Doctoral degree
progress involves identity changes shaped by available opportunity structures (e.g., experiences, relationships, and
intentions for the degree; McAlpine & Lucas, 2011). In other words, opportunity structures can help or hinder students'
identity development and provide a mechanism to examine the ways identity development occurs within graduate
engineering programs, as depicted in Figure 1.

Here, this framework is engaged to conceptualize differences in professional identity among engineering disciplines
with attention to differences expressed by gender and race/ethnicity and the implication these differences may have on
traditionally underserved student persistence through three interactive levels of opportunity structures: interpersonal,
instructional, and institutional (Gray et al., 2018). Interpersonal opportunity structures are facilitated through the social
ties actively created by faculty (Gray et al., 2018). Instructional opportunity structures engage students in ways that
allow them to express their identities within the performance expectations of an academic setting (Gray et al., 2018).
Institutional opportunity structures reflect student experiences of the policies and practices that govern academia, such
as admissions, funding, mentorship, lab assignment, evaluation, and degree completion. While institutional structures
impact students, this work's focus remains on student identity development and the idea that institutional opportunity
structures shape the learning environment that supports or hinders student professional identity development.

Additionally, each level of opportunity structure interacts with the others and has a compounding influence on
identity development (Gray et al., 2018; McAlpine & Lucas, 2011). For instance, interpersonal opportunity structures
may be influenced by institutional structures that define, limit, or support faculty—student interaction. Similarly, institu-
tional requirements for teaching or service hours may limit faculty interpersonal interactions with students. Within the
influence of and interaction among these opportunity structures, students must develop their identities (Pawley, 2019).

However, the implementation of opportunity structures in engineering is often biased or discriminatory,
disadvantaging underrepresented populations (Wang & Degol, 2017). Traditionally served students often find these
structures more natural to navigate, and the structures reflect sociocultural norms in which traditionally served students
are valued and comfortable (Bancroft, 2018; Foor et al., 2007). The inequitable implementation of opportunity structures
can limit identity development (McAlpine & Lucas, 2011), exacerbate issues related to representation (Burt et al., 2018),

Structural factors Opportunity structures
Interpersonal
Instructional
Institutional

Graduate engineering
identity
Engineer
Researcher
Scientist

Individual factors

FIGURE 1 Opportunity structures represent structural factors that can positively or negatively influence graduate engineering identity
and the individual sub-constructs that shape identity development
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and reduce support through challenges for Women and Students of Color (Byars-Winston et al., 2010; McGee, 2016;
Robnett, 2016; Wang & Degol, 2017).

Opportunity structures provide a conceptual mechanism to explain differences in GEI expression for
traditionally underserved students. Interpreting differences in GEI through this lens points to sources of inequity
and provides a mechanism to increase the equity of opportunity structures. Previous works explored aspects of GEI
development (Crede & Borrego, 2012; Perkins et al., 2018a). As summarized in Figure 1, we utilized an opportunity
structures framework to provide a more holistic understanding of the salient factors for graduate students' develop-
ment. The following section defines and synthesizes the history of GEI research related to one's professional
identity.

2.1 | Graduate engineering identity

Seeing oneself as an engineer or having an engineering identity predicts persistence, motivation, and career choice
across multiple engineering contexts (Crede & Borrego, 2013; Godwin, 2016; Godwin et al., 2016; Godwin &
Kirn, 2020). Given this framework's importance, researchers have extended and adapted engineering identity frame-
works (e.g., Godwin et al., 2016) to study engineering graduate students (Choe & Borrego, 2019; Perkins et al., 2017).
Engineering interest, recognition, and competence combined with interpersonal communication skills strongly predict
engineering identity in graduate students (Choe & Borrego, 2020). Further, exploratory work examining engineering
graduate students who debated leaving the field demonstrates that factors related to identity are vital in their intentions
to persist (Berdanier et al., 2020).

Two identity domains (mathematics and physics) comprise undergraduate engineering identity with the
sub-constructs of recognition, performance/competence, and interest (Cass et al., 2011; Godwin, 2016; Godwin
et al., 2013; Godwin et al., 2016). Performance/competence is an individual's sense of being good at and ability to
complete domain-specific tasks (e.g., I am confident that I can understand MATH in class). The interest sub-
construct represents the individual's interest in a specific identity domain (e.g.,I enjoy conducting SCIENCE). The
recognition sub-construct represents an individual's perception of how others evaluate them (e.g., My peers see me
as a PHYSICS PERSON). The recognition sub-construct is highly influential for undergraduate student persistence
in engineering (Godwin et al., 2013). See the article by Godwin et al. (2016) for a full review of the developmental
history of this framework.

To understand how this framework translates to graduate contexts, Kirn and colleagues utilized a
mixed-methods approach, including qualitative interviews, focus groups, and survey testing, when developing the
domains of GEI Intensive qualitative interviews and analyses uncovered three unique domains that influenced
graduate conceptions of what it means to be an engineer and belong in engineering (Perkins et al., 2017; Perkins
et al., 2018a). Kirn and colleagues validated the identity domains of researcher, scientist, and engineer through
focus groups exploring each identity domain and graduate student experiences more generally. Qualitative inter-
views and focus groups preceded and guided the development of a 15-min survey focused on each of these domains
(Cass et al., 2017; Miller et al., 2017; Perkins et al., 2017; Perkins et al., 2018a; Tsugawa-Nieves et al., 2017). The
development of a quantitative measure of GEI for each of these domains followed procedures outlined in previous
identity work (Godwin, 2016). Subsequent piloting of these measures occurred with students at two geographically
diverse institutions (Perkins et al., 2018a). Pilot testing established a satisfactory level of validity and reliability for
the survey (Perkins et al., 2018a).

The three identity domains of GEI, researcher, scientist, and engineer, each have the sub-constructs of recognition,
performance/competence, and interest (Perkins et al., 2017; Perkins et al., 2018a). The identity domains of GEI reflect
the focus of engineering graduate education on research and scientific discovery. This distinction indicates that GEI's
role, while similar to undergraduate engineering identity, contributes uniquely to student development at the graduate
level. The sub-constructs of recognition, performance/competence, interest remained relevant to graduate students in
each domain. However, distinct manifestations of these sub-constructs emerged. For instance, graduate students dem-
onstrated performance/competence as a graduate student in classes, in the lab, and in comprehensive exams. Similarly,
recognition from friends and family was less critical for graduate students as their specialization within engineering
fields increased. This model of GEI aligns closely with other models of graduate student engineering identity developed
within specific institutional contexts (Choe & Borrego, 2019, 2020).
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Previous works utilizing measures of advisor and peer interactions show that lab composition bolsters GEI
(Crede & Borrego, 2012; Perkins et al., 2018b); advisor and peer relationships influence researcher and scientist
recognition (Bahnson et al., 2018); and research experiences positively contribute to GEI (Bahnson et al., 2019).
While this body of work explores the different structures that influence GEI, it has not examined the ways oppor-
tunity structures foster or hinder GEI development. Utilizing opportunity structure concepts and GEI constructs
together, we examine how structural and individual factors concurrently contribute to stronger GEI
development.

Our approach to discipline differences research utilizes individual identity as a reflection of the cultures,
institutions, norms, and practices of the individual's discipline. These aspects of each discipline work together as active
agents in the socially constructed professional identity of GEI. We did not measure the discipline-as-institution in this
work; rather, we focus on the individual experience of the environment the discipline fosters. Student-level identity pro-
vides a window to quantify the impact of the discipline environment on the development of students. Here we use
these ideas to explore differences in GEI among disciplines and the influence of graduate education experiences on GEI
(advisor relationship, gender, race/ethnicity, and years in a program).

2.2 | Influences on graduate education experiences

The literature supports many variables as contributors to graduate engineering student success (NASEM, 2018).
Conceptually, successful GEI development relates to the opportunity structures that support and hinder GEI develop-
ment such that successful engagement with opportunity structures leads to stronger GEI development that then leads
to increased persistence or reduced attrition. We focus on three independent variables due to their demonstrated
impact on students, particularly traditionally underserved students' development and differential experience of opportu-
nity structures: gender, race/ethnicity, and advisor relationship. First, including gender allows for measurement of
meaningful variation around the experiences of Women (Pawley et al., 2016). For instance, Women experience gender
bias in STEM and engineering spaces that negatively affect STEM self-concepts (Erickson, 2012; Robnett, 2016; Wang &
Degol, 2017). Further, Women benefit from strong female advisor relationships leading to increased degree completion
(Main, 2018).

Second, race/ethnicity requires similar attention due to established differences in the experience of the
educational environment for Students of Color. For example, African American and Latino/a students experience
barriers, bias, and racism in STEM environments, lowering their STEM self-concept and persistence in college edu-
cation (Burt et al., 2018; Byars-Winston et al., 2010; McGee, 2016). Gender and race/ethnicity are important factors
in discipline differences in representation, participation, stereotypes, motivation, and choice of engineering field
(Brawner et al., 2012; Hartman & Hartman, 2009; Kirn & Benson, 2013; Lattuca et al., 2010; Shivy &
Sullivan, 2005; Trytten et al., 2005; Verdin et al., 2018). Traditionally underserved gender and racial/ethnic identi-
ties lack access to traditional opportunity structures in engineering (Bancroft, 2018), leading to lower engineer
identity and increased risk of attrition.

Third, advisor (and mentor) relationships significantly impact the experience and persistence of doctoral students
based on their level of access and working relationship (NASEM, 2018) and represent a significant opportunity struc-
ture for students as these relationships are tied to persistence and attrition in graduate education. Students' relationship
to their dissertation chair, often the primary advisor, exerts significant influence on completion of the doctoral degree
(Bégin & Gérard, 2013; Gittings et al., 2018). Traditionally underserved students often do not have access to advisors or
mentors who share their identities and experiences (NASEM, 2018; Sowell et al., 2015). In examining intersecting
gender and race/ethnicity identities, differences in experience emerge (Ro & Loya, 2015; Verdin et al., 2015). For
instance, when Women of Color reported positive advisor relationships, they benefited more than white Women
(Perkins et al., 2020).

Also, we include a fourth independent variable (year started program) in recognition that GEI evolves throughout
the doctoral degree and involves identity trajectory changes in the experiences, relationships, and intentions for the
degree (McAlpine & Lucas, 2011). As students advance through doctoral training, their performance abilities and feel-
ings of competence should increase. Students demonstrate their abilities to perform the tasks of a professional engineer,
scientist, and researcher by completing doctoral milestones such as comprehensive exams, the dissertation proposal,
and dissertation defense. Including the year a participant started their doctoral program compensates for the expected
changes students experience as they progress to degree.
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3 | RESEARCH QUESTIONS AND HYPOTHESES

Our research questions (RQs) sought to identify if and where variation occurs in GEI based on engineering discipline.
To do so, we explored if and how disciplinary differences, advisor relationship, gender, minority status, and years in a
program relate to GEI, providing insight into necessary changes in opportunity structures. The answers to these ques-
tions provide an exploratory basis to understand the current landscape of differences in GEI between discipline and
institutional, programmatic, and disciplinary action to develop opportunity structures that support traditionally
underserved students. Specifically, our research questions were as follows:

RQ1la. Are there disciplinary differences in GEI domains (engineer, researcher, scientist)?

RQ1b. For GEI domains with significant differences by discipline, are there disciplinary differences in GEI identity
domain sub-constructs (recognition, performance/competence, interest)?

RQ1lc. For GEI domains and sub-constructs with significant differences by discipline, how are disciplines different
from other disciplines in GEI sub-construct expression?

RQ2. What are the within-discipline differences (main effects) for advisor relationship, gender, race/ethnicity
minority status, or years in a program among GEI domains or sub-constructs?

RQ3. Do the main effect relationships of gender and race/ethnicity vary among engineering disciplines?

RQ4. How much within-discipline and between-discipline variability in GEI is explained by advisor relationship,
gender, race/ethnicity minority status, and years in a program?

To explore these questions, we used multilevel modeling as it allows for exploration of the variation among individuals
within a discipline and variation among disciplines to be addressed in one model (Raudenbush & Bryk, 2002). Using
multilevel modeling, we investigated the differences due to individual factors compared with membership in a group
(here, an engineering discipline).

4 | METHODS

This analysis is part of a larger research project investigating engineering graduate students' social identities, role
identities, future time perspectives, identity-based motivations, and graduate school experiences (Cass et al., 2017;
Perkins et al., 2018a). Here participant selection, analytic methods, and variables considered for the research
questions are described. The variables considered are highlighted in detail to demonstrate the connections between the
conceptual and theoretical frameworks and previous graduate education research.

4.1 | Positionality

The sensitivity of our research topic requires careful consideration of our place as researchers in posing and attempting
to answer questions that investigate experiences and social identities we do not share with our participants. We have
chosen to present a positional statement to assist in framing our approach to this project and data analysis. The authors
of this work are predominantly white, with both the first author and primary investigator identifying as cisgender
white gay men. Two authors, including the first author, are psychologists and all other authors are engineers. As a
group, we have experienced various forms of oppression even while benefiting from opportunity structures not equally
available to our participants. In recognition of this, we approach this research as an attempt to contribute to equity in
engineering while providing empirical research to educational institutions to combat and disrupt the inequitable
availability of opportunity structures.

Two notes on our nomenclature and how our nomenclature represents how we think about diversity, equity, and
inclusion and our position as advocates for social justice: First, we choose to include Asian-identified participants in
our concept of People of Color. Asian people experience microaggressions and discrimination in US culture, despite
being well-represented in engineering and not included in underrepresented minorities as defined by NSF. Second, we
chose to capitalize Women, Women of Color, and Men of Color and other socially constructed gender, race and eth-
nicity groups to center the experiences of the People who live in these marginalized categories while not capitalizing
white or man to de-emphasize these privileged identities.
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4.2 | Recruitment

Utilizing the American Society for Engineering Education's (ASEE's) list of doctorate-granting engineering programs,
we generated a nationally representative sample of doctoral-granting engineering programs based on geography, disci-
pline, and program size. Geography referred to the state in which the program resides, discipline came from the list of
engineering graduate programs (ASEE, 2015), and the number of doctoral degrees granted by each program in 2014
represented program size (Yoder, 2015). Probability proportional to size sampling, a sampling technique where the
probability of being included is proportional to the frequency similar codes appear in the population, was used to select
programs. For instance, large construction engineering programs in California and Texas comprise approximately 2%
(n = 27) of the national population of 1382 programs and 2% (n = 5) of the final list of 263 programs invited to partici-
pate. Programs were randomly selected from the population list to maintain proportionality. A replacement program
was randomly selected if a previously chosen program declined participation.

Selected programs received an email request to participate in the survey. Programs that participated submitted a list
of graduate engineering student emails or forwarded an invitation email with participation requirements, confidenti-
ality information, and an embedded survey link to their engineering graduate students. Participants completed the
survey online through the Qualtrics platform. The primary investigators' Institutional Review Board approved this
research (NCSU 6053; UNR 770030-21).

4.3 | Participants

Of the 263 programs invited to participate, 98 Ph.D.-granting engineering departments in the United States participated
(n = 2348). Individual participants were eliminated if they did not complete at least 50% of the survey, resulting in 1754
engineering graduate students for analysis. A large portion of the eliminated participants stopped participating when
asked to identify their university. We have interpreted this as a fear of reidentification and retribution for involvement
in the survey. This trend presents an opportunity for future research to explain this pattern better. We cannot defini-
tively account for the drop-out at the university question nor for how these participants may differ from those analyzed
here. For this analysis, only engineering Ph.D.-seeking students were used, eliminating “other field Ph.D.” and all
Master's degree-seeking participants. We removed participants from the analysis with missing responses to one or more
variables of interest (described below), resulting in a final sample of 944 participants. We chose not to impute data due
to the nature of the variables as identities. While imputation would provide a reasonable statistical approximation for
the numerical values, the process cannot truly reproduce individual identity variables.

Participant demographics (Table 1) show that most participants identified as white (55.9%) or Asian (32%), male
(63.3%), originated from the United States (62%), and heterosexual (92%). Participants indicated gender by selecting one
or more of seven options (n = 1092; 97 missing). Participants indicated their race/ethnicity by selecting one or more of
eight categories (n = 1046; 143 missing). Of participants who provided complete demographic responses, more than
half of the US participants represent the traditionally underserved student groups of white Women (n = 193) or Stu-
dents of Color (» = 109) and most non-US participants represent traditionally underserved students: white Women
(n = 16) or Students of Color (n = 327). Year started Ph.D. ranged from 1999 (n = 1) to 2017 (n = 292), with 89.3%
starting since 2012. As expected, most participants were within 5 years of starting the Ph.D. program (see Figure S1).
We used the Statistical Package for the Social Sciences for descriptive statistics (IBM, 2017). To examine the representa-
tiveness of our study sample in terms of race/ethnicity and gender, we used chi-square tests to compare our sample to
the NSF's reports of recent engineering Ph.D. recipients (Cornell Statistical Consulting Unit [CSCU], 2018; NSF, 2013;
Pawley, 2017). This NSF report on doctoral engineering student demographics provides the best available population
estimates for comparison to measure the representativeness of our sample. Given the limited availability of national
data sets (NASEM, 2018), this comparison was limited as we were comparing two different experiences: earned doctoral
degrees and enrollment in doctoral programs. As chi-square tests are sensitive to sample size (Tabachnick &
Fidell, 2013), we evaluated the standardized residuals (SR) instead of p values when detecting significant differences.
Previous work recommends that residuals greater than three are meaningful (e.g., residuals between j3j and j5j are
small, j5j and j7j are moderate, etc.; CSCU, 2018). The results of this analysis indicated the overrepresentation of multi-
racial students (SR = 11.46) and white students in our sample (SR = 3.22). Asian and Latinx students were moderately
underrepresented (SRs = -5.71 and-3.96, respectively). The percentages of men and Women did not differ
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TABLE 1 Student-reported gender identity and race/ethnicity

Domestic students International students
Gender Gender
Another Another
Race/ Women Men identity =~ Total Women Men identity =~ Total
ethnicity, n (%) n (%) n (%) n (%) n (%) n (%) n (%) n (%) n (%) Total
American Indian 0 0 0 0 0 0 0 0 0
or Alaska
Native
Asian 31(12.8) 29 (8) 0 60 (9.8) 74 (64.9) 182 (69.2) O 256 (67.7) 316 (31.9)
Black or African 7(2.9) 8(2.2) 0 15 (2.5) 0 5(1.9) 0 5(1.3) 20 (2.0)
American
Middle Eastern or 2(0.8) 3(0.8) O 5(0.8) 16 (14) 25 (9.5) 0 41 (10.8) 46 (4.6)
Native African
Native Hawaiian 0 1(0.3) 0 1(0.2) 0 0 0 0 1(0.1)
or other Pacific
islander
White 193 (79.8) 306 (84.3) 3(0.5) 502 (82.2) 16 (14) 34(12.9) 1(2.0) 51 (13.5) 553 (55.9)
Hispanic, Latino, 7(2.9) 14 (3.9) 0 21 (3.4) 0 0 0 0 21 (2.1)
or Spanish
origin
Another race/ 2(0.8) 2(0.6) 3(0.5) 7(1.1) 3(2.6) 7(2.7) 0 10 (2.6) 17 (1.7)
ethnicity not
listed
Total 242 (39.6) 363 (59.4) 6(1.0) 6112 114 (30.2) 263 (69.6) 1(0.3) 3782 989

Note: Participants could select multiple races or ethnicities.
aTwo hundred participants did not provide race/ethnicity and/or gender.

significantly (p = .151). These results suggest that, with few exceptions, our sample displays similar demographic trends
as the national population of doctoral degree earners.

4.4 | Instrument

The GEI survey was developed based on the mixed-methods process described previously. This process indicated that
GEI focuses on areas beyond engineering and should include research and science. Viewing oneself as belonging or not
belonging in graduate school was particularly important in the qualitative interviews. We added the item “I see myself
as a/n ... Scientist/Engineer /Researcher” to assess self-beliefs about belonging in each domain directly. This item
reflects a similar item used by Godwin et al. (2016) to measure overall identity self-concept: ‘I see myself as a [math or
physics] person” (p. 318).

Exploratory factor analysis on pilot survey responses indicated the three domains consistently loaded with the sub-
constructs of recognition, performance/competence, and interest with sufficiently high Cronbach's alpha to merit inclu-
sion (Perkins et al., 2018a). Scientist domain items included some low scores with the Cronbach's a ranging from .354
to .883 (Perkins et al., 2018a). Engineer domain items ranged from .410 to .904, and researcher domain items from .469
to .958 (Perkins et al., 2018a). Retaining items with low but acceptable Cronbach's alphas allowed for consistency of
questions across domains (Perkins et al., 2018a). Items that did not load in the exploratory factor analysis were elimi-
nated to maintain consistency of questions across domains (Perkins et al., 2018a). The pilot survey included a wide
range of students, like the sample analyzed here. However, the instrument would benefit from additional validation
with traditionally underserved students to ensure the items and constructs function similarly across demographic
groups.
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The survey asked participants about the identity domains of researcher, scientist, and engineer on Likert-type scales
(1, strongly disagree to S, strongly agree; Table 2). Within each identity domain (engineer, scientist, researcher), items
for each sub-construct (recognition, performance/competence, interest) were included, resulting in 45 total GEI items
(Appendix A). All identity domain and sub-construct scales had high internal reliability in confirmatory factor analysis
as measured by Cronbach's alpha with consistent factor loadings to the pilot study (Table 2). Cronbach's alpha calcu-
lated for all participants, white Women, and People of Color indicates the strong function of the scales across groups,
including traditionally underserved groups (Table 2). Each identity domain was measured by averaging all domain-
specific items and by averaging domain: sub-construct items. For example, the engineering domain had one overall
score and three sub-construct scores for engineer: recognition, engineer: performance/competence, and engineer:
interest. The resulting identity scores allowed for independent exploration of the GEI domains and sub-constructs.

4.4.1 | Variables

Dependent variables

Graduate engineering identity: The GEI scale resulted in nine sub-construct scores, one for each domain: sub-construct
from the mean of domain: sub-construct items (Perkins et al., 2020). Cronbach's alpha for each sub-construct was
consistent with norms (a between .88 and .96).

Level variables

We used two levels of variables as follows: (1) engineering disciplines and (2) individual student variables. Participants
entered text responses to indicate their major field of study. Text responses were grouped into 24 disciplines to reduce
the total number of entries and correct spelling, typos, and abbreviations (see Appendix B). “Acoustic Engineering” and
‘Engineering Education” were added to the “Engineering, Other” group due to low participant numbers in those
groups, resulting in 22 disciplines used in the analyses. The resulting discipline groups represented broad disciplines of
study within engineering (e.g., industrial, nuclear, mechanical).

TABLE 2 Number of items, Cronbach's alpha, and examples for each domain and sub-component scale

Identity domain Cronbach's alpha
Identity Number of White People
sub-component items All Women ofColor Exampleitems
Engineer 14 94 94 .93 I see myself as an ENGINEER
Recognition 5 91 92 .89 My advisor(s) sees me as an ENGINEER
Performance- 6 92 .92 .90 I am confident I can understand ENGINEERING outside
competence of class
Interest 3 88 91 .90 I enjoy learning ENGINEERING
Scientist 15 92 92 .88 I see myself as a SCIENTIST
Recognition 7 92 92 .88 My department faculty see me as a SCIENTIST
Performance- S .88 .87 .86 I can overcome setbacks when learning SCIENCE
competence
Interest 3 95 .96 .96 I find satisfaction when learning SCIENCE concepts
Researcher 16 96 .93 .93 I see myself as a RESEARCHER
Recognition 7 95 .90 .90 I want to be recognized for my contributions
to RESEARCH
Performance- 5] .89 .85 .84 I am confident that I can design a RESEARCH study
competence
Interest 4 94 .89 .90 I find satisfaction when doing RESEARCH
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Individual independent variables

1. Gender: Participants selected one or more of seven options with a write-in option to indicate their gender identities.
Nearly all the discipline categories had zero or one self-identified nonbinary gender participants (n = 7), creating a
large number of zero cells. Multilevel modeling handles small cell sizes well, and some zero cells (Raudenbush &
Bryk, 2002). However, the inclusion of nonbinary gender participants violated the minimum cell sizes needed for
multilevel modeling assumptions. As such, binary categories of men and Women were used for the gender variable.
Gender of participants was dummy coded (men = 0 and Women = 1). Dummy coding allows for a reference group
when variables are not continuous (Raudenbush & Bryk, 2002). Here, we compared Women's experience to men's
experience.

2. Advisor relationship score: Participants rated the quality of their primary research advisor relationship from
1 (strongly disagree) toS (strongly agree) on eight Likert-type items (Appendix A; e.g., My Advisor ... is knowledgeable
about my research). The scale has a strong Cronbach's reliability (@ = .92). The average of these items provided an
advisor relationship score.

3. Race/Ethnicity: Participants self-identified their race/ethnicity by selecting one or more of eight options, including a
write-in option. Race/ethnicity variables were included in two ways, first with six categories (white, Asian, African
American/Black, Hispanic/Latinx, Middle Eastern, and all other self-identified race or ethnicity [American Indian
or Alaska Native, Native Hawaiian or Other Pacific Islander, or more than one race or ethnicity identity]). Second,
exploratory analyses measured if minoritized status would influence the model with the race/ethnicity items dichot-
omized to white (white = 0) and Students of Color (all others = 1). The categories of Asian, American Indian or
Alaska Native; Black or African American; Hispanic; Latino/Latina/Latinx or Spanish origin; Middle Eastern or
North African; Native Hawaiian or Other Pacific Islander were small when engineering discipline was included, and
thus the models could not converge on a solution.

However, these students' experiences must be better understood for engineering to be successful in supporting a
more racially and ethnically diverse population. In our analysis, we chose to include race/ethnicity as a binary to illus-
trate that minoritized racial/ethnic groups experience engineering identity development and graduate engineering edu-
cation differently from their overrepresented peers. Further, we chose not to capitalize “white” to reflect the difference
in minoritized experiences for People of Color and the lack of a coherent “white” identity. Minoritized race/ethnicity
and some engineering disciplines had significantly smaller representation in our data but were handled well by multi-
level modeling (Raudenbush & Bryk, 2002). The possibility remains that extreme inequity in some discipline cell sizes
has some undue influence on the model fit.

The inherent weakness and limitations of the dichotomization of gender and race/ethnicity are discussed below.
Asian student experiences of underrepresentation are not the same as other Students of Color. However, the sample
size remained too small to include Asian students as a third group within the multilevel model. We have reported on
the differences in Asian students' GEI, advisor, and peer relationships elsewhere (Perkins et al., 2020).

4. Year started: Participants provided the year they started their Ph.D. program in an open-ended text box.

Independent continuous variables were centered, ensuring that the lack of true-zero referents did not influence
model interpretations (Raudenbush & Bryk, 2002). Centering is a standard procedure and facilitates comparisons
among variables of different scales (Raudenbush & Bryk, 2002). For example, using the year a participant started in
school does not have a meaningful zero, which makes the intercept uninterpretable. The advisor relationship score and
year started in a program were group-mean centered by discipline type. Group-mean centering created a variable rep-
resenting each person's deviation from the average of the group. Finally, previous analyses indicated data were missing
at random for the variables used here, and thus it is safe to proceed with analyses (Perkins et al., 2019).

5 | ANALYSIS
5.1 | Multilevel modeling

Multilevel modeling allowed us to measure differences among individual engineering students and the differences
caused by grouping variables (tau; 7, in these analyses, engineering discipline) (see Figure S1; Raudenbush &
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FIGURE 2 Representation of multilevel modeling measures variance of nested variables

Bryk, 2002). Concurrently, multilevel modeling measures the levels or intercepts of the dependent variable represented
by beta (B). Multilevel modeling measures variation shared by disciplines to account for variation in the effect of
independent variables on the dependent variable (such as individual student experiences; Figure 2).

Group membership can cause members to have similarities beyond random chance, causing nonindependence of
observations (Field, 2019). Nonindependence of observations violates assumptions of more common analyses such as
analysis of variance (ANOVA) and linear regression (Raudenbush & Bryk, 2002). Multilevel modeling analyses measure
nonindependence to detect the influence of group membership on the dependent variable. Raudenbush and
Bryk's (2002) modeling steps and notation served to guide these analyses.

5.2 | Data analysis

For multilevel modeling, we use the MIXED Procedure (ProcMixed) in SAS/STAT 9.2 (SAS, 2008). The first step of
multilevel modeling is to measure differences at both levels (discipline and individual) in GEI (the dependent variable).
The difference at each level was measured for the GEI domains of engineer, researcher, and scientist. Next, differences
in the sub-constructs of recognition, performance/competence, interest were measured within each domain that dis-
played significant differences. Lastly, independent variables at the individual level were added to measure the main
effects of gender and race/ethnicity status while controlling for advisor relationship and years in a program. Gender
and race/ethnicity main effects are the focus of this analysis. Advisor relationship and years in a program significantly
impact identity development for doctoral students and were controlled for in the analysis (McAlpine & Lucas, 2011).

To answer RQ 1c, ANOVAs provided the opportunity to explore how domain sub-constructs differed among
disciplines with pairwise post hoc comparisons. ANOVAs were conducted for sub-constructs with significant variation
by discipline in the multilevel modeling analyses. ANOVAs included covariates of gender, race/ethnicity, advisor
relationship score, and year started in a program.

6 | RESULTS

For RQ1la and RQ1b, the model identified limited variations at each level of GEI. The engineer identity domain showed
significant differences among disciplines (o0 = .06, Table 3). Scientist and researcher identity sub-construct analyses
are not reported due to nonsignificant variation among disciplines at the domain level (Domain (7o0); Table 3). Without
significant variation among disciplines, additional multilevel modeling analyses were not warranted. Within the engi-
neer domain, only the engineer: recognition sub-construct differed significantly among engineering disciplines
(Too = 0.09, Table 4). With race/ethnicity in six categories, race/ethnicity was not significant for any sub-construct

(Table 5). Male participants scored higher on engineer: recognition (81 = -0.21, Model 3a) and engineer: performance/
competence (81 = -0.19, Model 3b, Table 5). Stronger advisor relationships related to stronger scores for all three sub-
constructs (82 = 0.23; 0.12; 0.11, Table 5). It was surprising to see no significant results for race/ethnicity in the context

of past research (e.g., Burt et al., 2018; Perkins et al., 2020) that has shown race/ethnicity does influence the experience
and engineering identity of students.
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TABLE 3 Unstandardized coefficients (and standard errors) of null multilevel models of engineer identity and graduate engineering
identity domains

Model la Model 1b Model 1c
(Engineer) (Scientist) (Researcher)
Fixed effects
Model, Bo
Intercept, oo 4.16*** (0.06) 4.06*** (0.04) 4274 (0.02)
Random effects
Discipline (7o0) 0.06* (0.03) 0.02 (0.01) 0.00 (0.00)
Individual (0?) 0.49+* (0.02) 0.37** (0.02) 0.39*** (0.02)
ICCa Level 2 11% 4% <1%

alnterclass correlation coefficient.
*p<.05; **p<.01; **p<.001.

TABLE 4 Unstandardized coefficients (and standard errors) of null multilevel models of engineer identity sub-constructs

Model 2a Model 2b Model 2c
(Engineer: (Engineer: Performance- (Engineer:
Recognition) competence) Interest)

Fixed effects
Eng: Identity, Bo
Intercept, yoo 3.95%* (0.08) 4.33% (0.05) 421 (0.07)

Random effects

Identity
Discipline (Too) 0.09* (0.04) 0.02 (0.02) 0.07 (0.04)
Individual (0?) 0.76*** (0.03) 0.53*** (0.02) 0.7*** (0.03)
ICCa discipline 10% 4% 9%
Individual 90% 96% 91%

alnterclass correlation coefficient.
*p<.05; **p <.01; ***p<.001.

When dichotomized, race/ethnicity was significant in the engineering domain. The model identified significant
unique effects of gender, race/ethnicity, and advisor relationships, addressing RQ2. Participants who were men
(81 = -0.20) or white (83 = -0.16) scored higher on engineer: recognition (Table 6, Model 3a). Higher advisor relation-
ship scores (82 = 0.23) positively related to higher engineer: recognition sub-construct scores (Table 6, Model 3a). Time
spent in the program (Year Started, fB4) was not significantly related to engineer: recognition scores. The results partially
addressed RQ4 and explained 30% of the difference in engineer: recognition sub-component scores among engineering
disciplines (see Table 6, Model 3a). This model explained 6.6% of individual differences.

Engineer: performance-competence results supported significant main effects but did not support discipline
variance, nor did they explain significant amounts of variance in the model. The main effects were similar to engineer:
recognition main effects in that engineer: performance-competence scores were higher for men (8; = -0.19) and white
participants (83 = -0.11; Table 6, Model 3b). Advisor relationship scores (82 = 0.13) positively related to engineer:
performance-competence (Table 6, Model 3b). Year started in a program was significantly related to engineer:
performance-competence scores such that the more time someone was enrolled, the higher they scored (84 = -0.03;
Table 6, Model 3b). However, engineer: performance-competence scores did not differ among disciplines, and the
model did not explain a significant portion of the individual or discipline-level differences.

Engineer: interest sub-construct scores did not significantly vary among discipline types and did not have significant
relationships for gender, race/ethnicity minority status, or year started in a program. However, advisor relationship
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TABLE 5 Unstandardized coefficients (and standard errors) of multilevel models of influences on engineer identity sub-constructs

Model 3a Model 3b Model 3c
(Engineer: (Engineer: Performance- (Engineer:
Recognition) competence) Interest)
Fixed effects
Eng: Identity, Bo
Intercept, Yoo 3.96*** (0.19) 4.21** (0.15) 4.23** (0.18)
Gender, B1
Intercept -0.21*** (0.06) -0.19*** (0.05) -0.08 (0.06)
Advisor relationship, 2
Intercept 0.23*** (0.03) 0.12*** (0.03) 0.11*** (0.03)
Ethnicity, Bs
Black/African American intercept 0.06 (0.27) 0.07 (0.22) -0.03 (0.26)
Hispanic/Latinx intercept 0.03 (0.18) 0.26 (0.18) 0.26 (0.21
Middle East intercept 0.09 (0.21) 0.31(0.17 0.05 (0.20)
Asian intercept -0.01(0.18) 0.08 (0.15) -0.16 (0.17)
White intercept 0.14 (0.18) 0.24 (0.15) 0.08 (0.17)
Other intercept 0.21 (0.23) 0.35 (0.2) 0.24 (0.23)
Year Started, B4
Intercept -0.01 (0.01) -0.03*(0.01) -0.00 (0.01)
Random effects
Identity
(T00) 0.08* (0.05) 0.02 (0.02) 0.08 (0.06)
(r11) 0(-) 0.00 (0.01) 0.01 (0.02)
Gender
(T10) 0.00 (0.02) 0.01 (0.01) -0.01 (0.03)
Within-program variation (02 0.71*** (0.03) 0.50*** (0.02) 0.67*** (0.03)

*p < .05; **p < .01; ***p < .001.

(B2 = 0.11) related to engineer: interest (RQ2; Table 6, Model 3c). The model explained a large portion (33% Table 6,
Model 3c) of the discipline-level variance, although variance among disciplines on engineer: interest was not significant
(Too = 0.14 Table 6, Model 3c). The model did not explain a significant portion of the variance within disciplines.

The relationship between gender and identity sub-constructs was allowed to vary among engineering disciplines to
enable exploration of the ways the relationship between gender and identity sub-constructs may be different among
engineering disciplines. Similarly, the relationship between race/ethnicity minority status and identity sub-constructs
also varied among disciplines. Gender and race/ethnicity minority status were not different in their relationship to any
identity sub-construct in any analysis, indicating the relationships for gender and race/ethnicity minority status to GEI
sub-constructs were stable across disciplines, addressing RQ3.

Engineer: recognition was the only sub-construct with significant variation based on discipline in multilevel
modeling analyses. Table 7 contains the results for the engineer: recognition sub-construct ANOVA. Using the test
statistic Pillai's trace, engineer: recognition significantly varied with this set of variables. Table 8 presents post hoc
pairwise comparisons of engineer: recognition. The upper diagonal presents the mean difference (MD) for the
pairwise disciplines. The lower diagonal shows significant differences among disciplines with indications for
p< .05, p< .01, and p < .001. Pairwise comparison of disciplines for engineer: recognition indicates 78 significant
differences (Table §).
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TABLE 6 Unstandardized coefficients (and standard errors) of multilevel models of influences on engineer identity recognition

Fixed effects

Eng: Identity, Bo
Intercept, yoo

Gender, B1
Intercept

Advisor relationship, 2
Intercept

Minoritized ethnicity, B3
Intercept

Year Started Program, fs
Intercept

Random effects

Eng: Identity
(700)
(m11)
(r22)

Gender
(T10)

Minoritized ethnicity
(T20)

(721)

Within-discipline variation (09

2
R between

2
R within

*p<.05; #p < .01; **p<.001.

Model 3a
(Engineer:
Recognition)

4.11%* (0.10)

-0.20*** (0.06)

0.23** (0.03)

-0.16* (0.06)

-0.01 (0.01)

0.15* (0.09)

0(-)

0.03 (0.03)

0.04 (0.03)

-0.07 (0.05)

0.005 (0.03)

0.71%* (0.04)
30%
6.6%

TABLE 7 Engineer recognition ANOVA with Pillai's trace

Engineer recognition
Discipline

Main effects
Gender
Race/ethnicity
Advisor
Year started

Discipline

F
6.676

6.757
0.011
57.289
1.379
4.647

DF
27, 1038

1,1038
1,1038
1,1038
1,1038

23, 1038

Model 3b

(Engineer: Performance-

competence)

445+ (0.06)

-0.19*** (0.05)

0.13** (0.03)

-0.11%(0.04)

-0.03*(0.01)

0.03 (0.03)
0.002 (0.01)
0(-)

1.01 (0.01)

-0.01(0.01)

-0.01(0.01)

0.50%* (0.02)
7.8%
5.7%

<.001

.009
917
<.001
241
<.001

n2
0.148

0.006
0.000
0.052
0.001
0.093

Model 3c
(Engineer:
Interest)

4307 (0.1)

-0.07 (0.07)

0.11%** (0.03)

-0.07 (0.09)

-0.00 (0.01)

0.14 (0.08)

0.02 (0.03)

0.09 (0.049)

0.01 (0.03)

-0.09 (0.07)
-0.03 (0.04)
0.71%* (0.04)
33%
4%

AR?
0.126

Abbreviations: ANOVA, analysis of variance; AR, adjusted R squared; DF, degrees of freedom; F, F-statistic; p, p value; n?, eta squared, effect size.

6.1 | Results summary

A summary of our results aids the discussion of the results in relation to our research questions (Table 9). Our first
research question asked if there are disciplinary differences in GEI domains and domain sub-constructs. The mixed

2SUDDIT SUOWWO)) AT d[qearjdde oy Aq pauIdA0F oIe SIINIE V() SN JO SA[NI 10§ AIRIqI] UIUQ AS[IA UO (SUOHIPUOI-PUR-SULI}WOD" AIAM AIRIqIouI[uo//:SdPY) SUORIPUO) pue SwId L dy) 93§ “[€207/40/81] U0 Areiqry aunuQ AIA “LTH0Z 220/2001°01/10p/wod Ka[im Areiqiaurjuo//:sdpy woiy papeojumod b ‘1707 ‘0868917



TABLE 8 Engineer recognition discipline pairwise comparison %
Engineer recognition 1 2 3 4 5 6 7 8 9 10 11 12 §
Engineering discipline Mean 4.143 4.324 4.236 3.827 3.786 3.997 4.076 4'334 3.745 4.094 3.981 4.085 §

1 Acoustic 4.143 0.181 0.093 -0.316 -0.358 -0.1496 -0.067 0.191 -0.398 -0.049 -0.162 -0.058 3
2 Aerospace 4.324 0.778 -0.088 -0.496 -0.538 -0.327 -0.248 0.010 -0.579 -0.230 -0.343 -0.239
3 Ag. and Biolog. 4.236 0.884 0.694 -0.409 -0.451 -0.239 -0.160 0.098 -0.491 -0.142 -0.255 -0.151
4 Biomedical 3.827 0.614 0.010 0.018 -0.042 0.170 0.249 0.506 -0.083 0.267 0.154 0.258
5 Chem./Biomol. 3.786 0.586 0.052 0.088 0.861 0.211 0.291 0.548 -0.041 0.309 0.196 0.300
6 Chemical 3.997 0.815 0.079 0.150 0.164 0.365 0.079 0.337 -0.252 0.097 -0.016 0.088
7 Civil and Env. 4.076 0.915 0.193 0.348 0.052 0.218 0.501 0.257 -0.332 0.018 -0.095 0.009
8 Comp. Eng. 4.334 0.770 0.970 0.700 0.026 0.068 0.128 0.251 -0.589 -0.239 -0.352 -0.249
9 Comp. Science 3.745 0.528 0.005 0.010 0.588 0.870 0.081 0.026 0.014 0.350 0.237 0.340
10 Comp. Sci. and Eng. 4.094 0.940 0.381 0.570 0.231 0.299 0.653 0.935 0.405 0.137 -0.113 -0.009
11 Elec. and Comp. 3.981 0.800 0.130 0.225 0.385 0.461 0.927 0.585 0.168 0.218 0.653 0.104
12 Electrical 4.085 0.926 0.203 0.370 0.040 0.200 0.440 0.942 0.262 0.020 0.966 0.544
13 General 3.727 0.699 0.505 0.568 0.910 0.949 0.760 0.693 0.502 0.984 0.684 0.776 0.685
14 Eng. Education 4.507 0.734 0.837 0.760 0.440 0.424 0.562 0.624 0.847 0.388 0.646 0.554 0.631
15 Physics 3.313 0.258 0.019 0.029 0.207 0.296 0.091 0.060 0.022 0.295 0.079 0.114 0.056
16 Environmental 3.705 0.495 0.009 0.016 0.518 0.770 0.112 0.048 0.018 0.847 0.137 0.217 0.041
17 Geological 2.591 0.035 <0.001 <0.001 0.002 0.008 <0.001 <0.001 <0.001 0.005 0.001 0.001 <0.001
18 Industrial 4.023 0.851 0.204 0.338 0.307 0.386 0.887 0.777 0.240 0.175 0.784 0.852 0.737
19 Materials Sci. 3.541 0.334 <0.001 <0.001 0.014 0.288 <0.001 <0.001 <0.001 0.146 0.010 0.008 <0.001
20 Mechanical 4.174 0.960 0.411 0.703 0.003 0.091 0.095 0.384 0.463 0.002 0.707 0.247 0.408
21 Nuclear 3.479 0.295 <0.001 <0.001 0.040 0.238 0.001 <0.001 0.001 0.152 0.012 0.015 <0.001
22 Ocean 4.775 0.405 0.336 0.243 0.034 0.044 0.080 0.118 0.362 0.024 0.158 0.087 0.122
23 Petroleum 4.391 0.714 0.836 0.621 0.054 0.086 0.171 0.278 0.868 0.032 0.385 0.193 0.289
24 Systems 4.333 0.791 0.982 0.803 0.173 0.192 0.360 0.487 0.998 0.120 0.561 0.365 0.500
13 14 15 16 17 18 19 20 21 22 23 24
Engineering discipline Mean 3.727 4.507 3.313 3.705 2.591 4.023 3.541 4.174 3.479 4.775 4.391 4.333
1 Acoustic 4.143 -0.416 0.364 -0.830 -0.438 -1.552  -0.120 -0.602 0.031 -0.664 0.632 0.248 0.190 e
2 Aerospace 4.324 -0.597 0.183 -1.011 -0.619 -1.733 -0.301 -0.783  -0.150 -0.845 0.451 0.067 0.009 m
3 Ag. and Biolog. 4.236 -0.509 0.271 -0.923 -0.531 -1.645 -0.213 -0.695 -0.062 -0.757 0.539 0.155 0.097 m
4 Biomedical 3.827 -0.100 0.680 -0.514 -0.122 -1.236 0.196 -0.287 0.347 -0.348 0.947 0.564 0.505
5 Chem. /Biomol. 3.786 -0.058 0.722 -0.472 -0.080 -1.194 0.238 -0.245 0.389 -0.307 0.989 0.605 0.547 8

(Continues)
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TABLE 8 (Continued) y
13 14 15 16 17 18 19 20 21 22 23 24 —
Engineering discipline Mean 3.727 4.507 SESIS 3.705 2.591 4.023 3.541 4.174 3.479 4.775 4.391 4:333 u
6  Chemical 3.997 -0.270 0510 -0.684 -0.292 -1.406 0.026  -0.456 0.177  -0.518  0.778 0.394 033 M
7 Civil and Env. 4.076 -0.349 0.431 -0.763 -0.371 -1.485 -0.053 -0.536 0.098 -0.597 0.698 0.315 0.256 im
8 Comp. Eng. 4.334 -0.606 0.173 -1.021 -0.629 -1.743 -0.311 -0.793 -0.160 -0.855 0.441 0.057 -0.001
9 Comp. Science 3.745 -0.017 0.763 -0.432 -0.040 -1.153 0.278 -0.204 0.429 -0.266 1.030 0.646 0.588
10 Comp. Sci.and Eng. 4.094 -0.367 0.413 -0.781 -0.389 -1.503 -0.071 -0.554 0.080 -0.615 0.681 0.297 0.238
11 Elec. and Comp. 3.981 -0.254 0.526 -0.668 -0.276 -1.390 0.042 -0.441 0.193 -0.502 0.793 0.410 0.351
12 Electrical 4.085 -0.358 0.422 -0.772 -0.380 -1.494 -0.062 -0.544 0.089 -0.606 0.690 0.306 0.247
13 General 3.727 0.780 -0.414 -0.022 -1.136 0.296 -0.187 0.447 -0.248 1.047 0.664 0.605
14 Eng. Education 4.507 0.530 -1.194 -0.802 -1.916 -0.484 -0.967 -0.333 -1.028 0.268 -0.116  -0.175
15 Physics SESIS 0.666 0.215 0.392 -0.722 0.710 0.228 0.861 0.166 1.462 1.078 1.019
16 Environmental 3.705 0.980 0.368 0.361 -1.114 0.318 -0.164 0.469 -0.226 1.070 0.686 0.627
17 Geological 2.591 0.238 0.046 0.195 0.009 1.432 0.949 1.583 0.888 2.184 1.800 1.741
18 Industrial 4.023 0.741 0.587 0.098 0.177 0.001 -0.482 0.151 -0.544 0.752 0.368 0.309
19 Materials Sci. 3.541 0.832 0.271 0.572 0.361 0.017 0.008 0.633 -0.062 1.234 0.850 0.792
20 Mechanical 4.174 0.612 0.705 0.033 0.009 <0.001 0.401 <0.001 -0.695 0.601 0.217 0.159
21 Nuclear 3.479 0.780 0.247 0.693 0.299 0.034 0.012 0.696 <0.001 1.296 0.912 0.854
22 Ocean 4.775 0.287 0.784 0.014 0.022 <0.001 0.109 0.005 0.176 0.005 -0.384 -0.442
23 Petroleum 4.391 0.471 0.899 0.026 0.034 <0.001 0.254 0.003 0.447 0.003 0.459 -0.058
24 Systems 4.333 0.523 0.854 0.056 0.112 0.001 0.432 0.030 0.664 0.026 0.434 0.897
Note: Means and pairwise comparison significant difference based on ANOVA. p <.05 Italics; p <.01 Underlined; p <.001 Bold.
Abbreviations: Ag. and Biolog., Agricultural and Biological; Chem./Biomol., Chemical and Biomolecular; Civil and Env., Civil and Environmental; Comp. Eng., Computer Engineering; Comp. Science, Computer
Science; Comp. Sci. and Eng., Computer Science and Engineering; Elec. and Comp., Electrical and Computer; Materials Sci., Materials Science.
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TABLE 9 Results summary

Domain

Research question Sub-construct Engineer Researcher Scientist

RQ1la. Are there disciplinary Yes No No
differences in GEI domains?

RQ1b. For GEI domains with Recognition Yes = =
significant differences by i No _ _
discipline, are there
disciplinary differences in Fetor) Comg hle - -

GEI identity domain sub-
constructs?
Engineer sub-construct
Advisor Race/ Years in
relationship Gender ethnicity a program

RQ2. What are the within- Recognition  Positive relationship Males Higher =~ White Higher =~ None

discipline differences (main Interest Positive relationship None None None

effects) for additional o . . . . . . . .
variables on GEI domains or Perfor/Comp  Positive relationship Males Higher =~ White Higher  Positive relationship
sub-constructs?

RQ3. Do the main effect No—Main effects are stable across disciplines
relationships of gender and
race/ethnicity vary among
engineering disciplines?

Engineer sub-construct

Between Within
RQ4. How much within-discipline and Recognition 30% 6.60%
between-discipline variability in GEI is Interest 7.8%2 5.7%a
CXplairca py ddvisor rerauonsp, genacr,
Perfor/Comp 33% 4%

race/ethnicity, and years in a program?

Note: Basic findings of the research for each research question.
Abbreviations: GEI, graduate engineering identity; Perfor/Comp, performance/competence.
aNonsignificant result.

result showed a significant difference in the engineer domain and the engineer: recognition sub-construct. Each of the
additional variables of interest in RQ2 demonstrated significant main effects: higher advisor relationship scores had a
positive relationship with higher GEI engineer domain sub-construct scores; males reported higher recognition and
performance/competence scores than their female peers; similarly, white participants reported higher recognition
and performance/competence scores than Students of Color; and more years in a program positively related to higher
performance/competence scores. The lack of variation among disciplines in the main effects found in RQ2 showed that
the main effects were stable across disciplines and answered RQ3. The answer to RQ4 focused on the recognition sub-
construct of the engineer domain such that the model explained a large and significant portion of the between-
discipline variation. The post hoc comparison of disciplines for engineering: recognition identified 78 significant
pairwise differences (Table 8).

7 | DISCUSSION

RQ1 has a relatively uncomplicated answer: the engineer domain of GEI varies among engineering disciplines.
Primarily, the result indicates the need for additional research and exploration to ascertain how and then why identity
varies among disciplines, as reflected in our additional research questions. Additional analyses and research are
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required to identify the meaning behind these variations. For instance, biomedical engineers reporting different
engineering identity than that reported by nuclear engineers does not indicate the value of the difference—a difference
may be appropriate given the difference in goals, approaches, and problems each discipline seeks to solve.

However, when male students and white students report higher recognition and performance/competence (RQ2)
and that relationship is stable across engineering disciplines (RQ3), the difference implies that minoritized gender and
race/ethnicity-based experiences negatively impact engineering identity recognition and performance/competence.

These results indicate a systemic problem impacting most engineering disciplines: Women and People of Color (and
likely other traditionally underserved student groups) lack the support and opportunities provided to the men and
white students in their disciplines. Finally, the large and significant amount of between-discipline variance explained
by the model indicates that the combination of all measured variables does point to meaningful differences among
disciplines. This may be that individual variables do not explain variation (no main effect variation in RQ2), but in
combination do explain variation among disciplines. Additional research is needed to explore and explain the
relationships between these variables and discipline differences (see future work below).

The significant variation for engineer: recognition in the multilevel modeling results is supported by the significance
of the ANOVA and a large number of significant pairwise differences in engineer: recognition. With 78 significant
differences, meaningful interpretation of these pairwise differences requires more detailed analysis than is possible
here. Generally, significance is clustered around geological engineering, materials science and engineering, and nuclear
engineering. The significance of these clusters may indicate that recognition of another professional identity outweighs
engineer identity—for instance, geologist for geological or physicist for nuclear.

As an example, the largest doctorate-granting discipline of mechanical engineering (Yoder, 2018) demonstrates
some interesting examples of pairwise differences in engineering: recognition (Table 8). Mechanical engineering
engineering: recognition is significantly different from several other disciplines: biomedical (MD 0.347, p = .003), com-
puter science (MD 0.429, p = .002), physics (MD 0.861, p = .033), environmental (MD 0.469, p = .009), geological (MD
1.583, p < .001), materials science (MD 0.633, p < .001), and nuclear (MD 0.695, p < .001; Table 8). The differences may
reflect the interdisciplinary nature of these disciplines with strong nonengineering influences on the discipline's histor-
ical development. For instance, computer science has generally lower engineer identity, reflecting a discipline that
developed from and continues to incorporate aspects of information systems/business, mathematics, and technology as
well as electrical engineering (Bailey et al., 2000).

Opportunity structures often mirror established cultural norms and represent ways in which the education system
enables or disables students to participate and succeed. Disparate opportunity structures may influence and support
students' GEI development in unique ways. In turn, these cultural and structural influences may contribute to
inequality and inequity in GEI reported by Women and minoritized racial/ethnic groups. Significant differences and a
large amount of explained disciplinary variance (30%) in the engineering domain of GEI support the idea that
engineering graduate students experience opportunity structures in graduate education differently depending upon
their engineering discipline.

Mirroring western cultures, traditional opportunity structures in engineering tend to favor white men from higher
socioeconomic and well-educated backgrounds (Bancroft, 2018). The differences in engineering sub-constructs of recog-
nition and performance/competence highlight that traditional opportunity structures do not serve female and racial/
ethnic minority students in the same ways as their male or white peers. The structures that exist may perpetuate norms
of recognizing and measuring performance/competence, which values male and white standards of academic
performance (Pawley, 2019). Structural change is necessary to engage traditionally underserved students fully.

Strong advisor and peer relationships positively influence recognition and performance/competence sub-constructs
in engineering identity (Perkins et al., 2020). Significant variation among disciplines may indicate how advisor and peer
influence is applied unevenly and inequitably among disciplines, with some disciplines more successful in promoting
supportive relationships than others (Artiles & Matusovich, 2020). Differences exist between Women and men and
white students and Students of Color in feeling recognized and performance/competence, but not in their engineering
interest. This finding indicates the need to abandon cultural anecdotes that Women or Students of Color leave due to a
lack of interest (e.g., McArdle, 2008). Lower recognition and performance/competence scores for Women and Students
of Color did not significantly vary among disciplines, indicating the differences for these groups were consistent across
disciplines. Engineering has room to improve equity in recognizing traditionally underserved graduate students and
supporting their performance/competence. While significant difference occurs at the disciplinary level in the engi-
neering domain, the consistent pattern of lower GEI for traditionally underserved students at the sub-component level
points to inequity that exists across disciplines.
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While the significant results for Women and Students of Color are similar, the issues faced are distinct and
multifaceted. For example, Hispanic/Latinx students complete STEM degrees at higher rates than their Black or African
American peers (Sowell et al., 2015). In this analysis, the aggregation of the minority racial/ethnic groups complicates
the finding that minoritized students express different levels of GEI sub-constructs. When analyzed separately, Asian
students' GEI sub-constructs were lower, but not significantly so, than other People of Color (Table 5). However, Asian
student GEI scores were closer to Peers of Color than to their white peers.

Asian students are often not considered a minoritized group in STEM due to the National Science Foundation
designations of racial/ethnic minority student groups (NSF, 2017). However, the Asian demographic marker is
problematic, given the number of cultures, ethnicities, countries, and geographic areas the term is intended to cover.
Further, Asian Women continue to be underrepresented, while Asian men are well-represented in engineering
(NSB, 2018). When students enter spaces in which Asians are not a minority group, the salient distinctions of nation-
ality and culture may result in feelings of isolation, minority status, and compound stereotypes of Asian Women
(Sambamurthy et al., 2016). While well-represented, Asian students still bring cultural and social experiences of racism
with them into graduate engineering education spaces. Asians experience discrimination in the general public and high
levels of microaggressions in academia (Berk, 2017; Ong et al., 2013).

As an interpersonal opportunity structure, the advisor-advisee relationship plays a distinct role in graduate student
development and success. Therefore, the significant positive correlation between advisor relationships and all three engineer
sub-constructs should not be surprising. Good advisor relationships are a vital support to engineering graduate students as
they navigate the transition into and through doctoral studies (NASEM, 2018). These relationships reflect the socialization of
students into graduate and professional roles (Golde, 1998). Indeed, the socialization process for graduate students is both
gendered and raced, marginalizing students who do not fit the mold (Baird, 1990; Turner & Thompson, 2017).

Further, these relationships are a primary source of recognition and performance/competence evaluations for graduate
students. The level of access to an advisor, the close working relationship with that advisor, and the advisor's constructive
engagement with students' research experiences strongly influence doctoral persistence (Blume-Kohout, 2017;
NASEM, 2018). The best advisors allow for student independence while providing consistent and constructive advice (Zhao
et al., 2007). However, the advisor role may be filled by multiple mentors who together contribute to the success of the
student (Higgins, 2000). A doctoral student's relationship to their dissertation chair, often the primary advisor, exerts signifi-
cant influence on the completion of their doctoral degree (Bégin & Gérard, 2013; Gittings et al., 2018). Unfortunately,
traditionally underserved students often do not have access to advisors or mentors who share their experiences
(Sowell et al., 2015), creating a knowledge and experience gap advisors need to overcome to facilitate interpersonal opportu-
nity structures. Addressing faculty members' limited knowledge and experiences of traditionally underserved students is a
mechanism for institutions to alter existing opportunity structures to ensure equity for all students.

The expected significant relationship between year started in a program and the engineering domain sub-construct
of performance/competence matches findings that indicate the positive development of doctoral student identities
through advanced experiences, relationships, and clearly defined intentions for the degree (McAlpine & Lucas, 2011).
Broadly, existing opportunity structures reward the performance/competence of students by socializing doctoral
students into the inequitable defaults of academic engineering culture. However, we must also consider that higher
performance/competence scores may represent those who survived their program longer and may represent the
attrition of students with lower performance/competence or identifications (Berdanier et al., 2020).

Differences in GEI by discipline, gender, and race/ethnicity highlight how opportunity structures are inconsistently
applied across students, particularly traditionally underserved students. We propose that institutions of higher educa-
tion engage across institutional boundaries to create, implement, and evaluate opportunity structures that can better
serve traditionally underserved students. Through opportunity structures, institutions of higher education can engage
with traditionally underserved students to facilitate their participation and persistence in engineering graduate
education. Intervention across all three interactive levels of opportunity structures (individual, instructional, and
institutional) is necessary to effect lasting change (Gray et al., 2018).

8 | IMPLICATIONS: ADDRESSING DISPARITIES WITH OPPORTUNITY
STRUCTURES

Individual opportunity structures are those that enable students to engage successfully with faculty, staff, and peers.
Discipline-based individual opportunity structures may include the norm for social or extracurricular interaction
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between advisors and graduate students. Similarly, they may promote or discourage student interaction with faculty at
discipline conferences. The results suggest that educators should work to ensure that when they facilitate social ties, it
is done with intention and care to engage all students involved in social interaction. Further, students who may not be
familiar with or comfortable in the traditional academic structure could be actively engaged and supported when devel-
oping individual opportunity structures. The advisor relationship, gender, and race/ethnicity results suggest that fos-
tering social ties can be accomplished through the establishment of mentorship roles that extend beyond those
traditionally filled by one's advisor. Having a dedicated mentor early in one's doctoral program may help students
express and explore their GEI beyond their primary advisor's influence (Artiles & Matusovich, 2020; NASEM, 2018).
Intentional development and explanation of the purpose and goals of these mentorship relationships may ensure the
active engagement of both faculty and students.

Instructional opportunity structures can encourage students to engage their cultural and personal backgrounds in
their engineering work if engineering shifts to instructional defaults that embrace students' personal and cultural back-
grounds (e.g., service-learning and community research). By creating these shifts, a broader set of students can receive
support (Bosman et al., 2017; Ricks et al., 2014). Some disciplines may find engaging cultural and personal backgrounds
more “natural” or that doing so fits more easily within the broader discipline culture. For instance, civil or environ-
mental engineering may find incorporating student-identified problems easier while covering course material or devel-
oping dissertation research topics. In comparison, some disciplines may require more effort to incorporate students'
cultural or personal backgrounds, such as physics or nuclear engineering. The promotion of other opportunities, such
as industry engagement, may support competence and interest in engineering (NASEM, 2018).

Additionally, instructional practices could intentionally engage students in ways that allow them to incorporate
their cultural meaning into academic activities. Intentionally engaging a diverse curriculum represents an instructional
opportunity structure that could support interest and performance/competence (Du & Kolmos, 2009; Mejia & Wilson-
Lopez, 2015; Wilson-Lopez et al., 2016). Experiments that intentionally consider gender in diversifying representations
in the engineering curriculum in project-based learning environments show positive impacts on the learning process
for both men and Women and aid in the persistence of Women in engineering classrooms (Du & Kolmos, 2009).
Culturally engaging instructional opportunity structures could support GEI sub-constructs of recognition and
competence as engineers by valuing personal and social identities such as gender and race/ethnicity.

Societies, conferences, and professional affiliation groups may be in prime positions to influence their disciplines as
institutions—for example, investigating discipline culture and practices to evaluate how practices, assumptions, or
norms support men and white people more readily than other groups. Similarly, disciplines may perpetuate culture
into academic departments: engineers within a specific discipline expect their academic department to function in spe-
cific ways with norms for student—faculty interaction and engagement with students' personal and cultural
backgrounds—or rather, the norm to ignore them.

Traditionally defined institutions (colleges, departments) can also engage in improving institutional opportunity
structures. Institutional opportunity structures could be changed to allow faculty the time required to fulfill their obliga-
tions to doctoral students. As demonstrated in this research, the advisor relationship is meaningful across GEI domains
and sub-constructs as such institutions need to provide systematic training and support to allow advisors to be better
mentors (NASEM, 2018). Mentoring training provided by an institution could allow for engagement in the development
of models that can better support traditionally underserved students and address gaps in the skills of doctoral advisors
(NASEM, 2018). Mentoring workshops for advisors could develop new avenues for advisor—doctoral student
engagement.

Other institutional opportunity structures could address the experiences of traditionally underserved students
within the institution (Kumashiro, 2000). Minority or diversity offices are not enough. While they can provide essential
and necessary services to the institution, engineering departments must not deflect the responsibility for traditionally
underserved students solely onto these offices. The entirety of the institution needs to engage in efforts to increase the
success of traditionally underserved students (Jones, 2016; Newman, 2016).

Institutional opportunity structures exist in ways that are hard to see for those accustomed to the academic system
and can become embedded in academic cultures and discipline-specific practices. Disciplinary differences in GEI indi-
cate some disciplines may be better at addressing these inequities than others. Highlighting the exemplary practices of
disciplines that have shown high levels of success in supporting traditionally underserved students such as industrial or
biomedical engineering serves to model potential change efforts for a broad range of programs, professional societies,
and national institutions (e.g., Brawner et al., 2012). All institutional levels need to support institutional opportunity
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structures through policy and action to engage a more comprehensive group of students to participate and persist in
engineering graduate education.

9 | LIMITATIONS AND FUTURE WORK

A few limitations to this project should be mentioned. First, the sample population, like engineering, is mostly white
and male. The GEI construct and conclusions made based on this research may not fit well with People of Color,
Women, or other traditionally underserved students, and especially for intersectional identities such as Women of
Color. Similarly, our data do not represent nonbinary gender identifying individuals who may experience engineering
identity development and expression in unique ways. Further research is needed to investigate the impact of existing as
a traditionally underserved student in engineering on GEI expression and development. A focused intersectional
analysis would provide the opportunity to more deeply explore the intersection of gender, race/ethnicity, and GEIL

Further, these intersections create an increased burden from inequitable social structures. International students
face multiple layers of burden, particularly for international students who are also Women of Color (Dutta, 2015). Our
sample did not allow for including a comparison between international and domestic students in our analysis. The
intersection among gender, race, international, and domestic identifiers reduced the cell sizes for many disciplines to
zero, resulting in an inability to make any comparisons. Future work would benefit from attention to the ways
international students experience engineering disciplines differently.

While opportunity structures are used as a conceptual framework to understand how engineering contributes to
identity development, we did not directly measure opportunity structures or any proxy variable specific to the opportu-
nity structure constructs. Future research would benefit from including direct measures of opportunity structures to
determine their impact on graduate students and GEI development specifically. Direct measures of opportunity
structures could then guide improvements in engineering educational structures to better support students and the
development of GEI.

Master's degree-seeking students were not included in this model. The high number of engineering Master's
degree-seeking students and degree holders points to the importance of investigating this group as an independent
set of engineers. The intentions of doctoral work are different from Master's work (Council of Graduate Schools
[CGS], 2013; NASEM, 2018), which may lead to a differential meaning of GEI domains and sub-constructs. Future
work should explore how these students are similar to or different from doctoral students in their expression and
development of GEI.

Additional research is needed to measure the impact of other factors on graduate student identity development. For
instance, the importance of lab group composition (Crede & Borrego, 2013; Perkins et al., 2018b), research experience
(Bahnson et al., 2019), and the impact of other faculty mentors other than academic advisors could guide future ana-
lyses. For instance, does a strong relationship with a non-advisor mentor serve a similar function in supporting GEI
development? Research to explore the different impacts of relationships and the quality of those relationships will help
support our understanding of how faculty can support GEI development.

Work on engineering identity and GEI proposes that high engineering identity benefits students, increases the
likelihood of degree completion, and should be supported by educators (Berdanier et al., 2020; Choe & Borrego, 2020;
Crede & Borrego, 2013; Godwin, 2016; Godwin et al., 2016; Godwin & Kirn, 2020). The work reported here investigates
the disciplinary differences in GEI with the proposal that disciplinary differences point to opportunity structures that
may harm traditionally underserved students. We note that variation in GEI may be related to differences in disci-
plinary emphasis. For instance, multidisciplinary fields such as biomedical engineering may draw students with a sci-
ence focus rather than an engineering focus. This type of variation may be inherent to the undergraduate identity work
of the students and the priorities of the discipline. Future work should investigate disciplinary differences in GEI
expression while controlling for students' prior experiences (e.g., undergraduate degree, prior research experience).
Finally, comparisons among all disciplines used in this analysis lack meaning without explicit consideration of disci-
plinary context and priorities. The high number of significant differences limits the amount of meaning-making pos-
sible in one discussion. Future work can compare smaller groups of disciplines while considering their contexts and
priorities to investigate specific differences among disciplines in GEI. One option would be to explore differences in dis-
ciplines that already share overlap in many engineering departments, such as computer and electrical or civil and envi-
ronmental. Another option would be to explore differences among disciplines with large differences identified in this
work—that is, to explore what makes geology, materials, and nuclear different from other disciplines. In addition,
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future work could more directly investigate connections between disparities in engineer: recognition and traditionally
underserved student participation and degree completion rates by discipline. These approaches would also allow
for more nuanced and thorough comparisons of where differences exist among disciplines, including additional
individual-level variables. Future work should look at smaller groups of disciplines.

10 | CONCLUSIONS

GEI varies among engineering disciplines, reflecting differences in opportunity structures for Women and race/ethnicity
minority students. ANOVA results confirm the significance of differences in engineer recognition identity measures,
thereby supporting the concept that graduate engineering students develop engineer identity differently based on their
discipline. Differences in identity development in recognition may reflect the disparity in support systems for students
equitably engaging in all disciplines. However, the ANOVA results do not provide the level of support multilevel modeling
does for the indication that traditionally underserved students do not receive equitable recognition across disciplines. The
engineer: recognition sub-construct shows significant variation among disciplines and is significantly influenced by
gender, advisor relationship, and racial/ethnic status, explaining 30% of the variation among engineering disciplines. The
variation indicates that engineering graduate students may experience sexism and racism within their engineering educa-
tion. Institutions can use this information to better support the development of strong GEI with interventions targeted to
their discipline and the needs of their specific subfield. Intentionally developed opportunity structures to support tradi-
tionally underserved students in their fields would improve their experiences and potentially persistence to a degree. The
importance of advisor relationships indicates the need to develop individual opportunity structures to support the
advisor-advisee relationship. Doctoral engineering students represent the leaders in their fields and fill leadership roles
within and beyond academia. Increasing equity at the engineering graduate student level will help increase equity in the
field at large through improved representation of traditionally underserved students. Special attention to improving
equity in recognition and performance/competence for traditionally underserved students should be a priority in response
to long-standing calls for increased participation of traditionally underserved students in engineering.
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APPENDIX A

Complete list of graduate engineering identity and advisor relationship items; Responses 1—Disagree Strongly to
S5-Agree Strongly; See Table 2 for Cronbach's alpha for each domain and sub-construct.

Scientist items
Q: To what extent do you disagree or agree with the following statements:
(Recognition Items)
1. I'see myself as a SCIENTIST.
My department faculty see me as a SCIENTIST.
My peers see me as a SCIENTIST.
[ have had experiences in which I was recognized as a SCIENTIST.
[ want to be recognized for my contributions to SCIENCE.
My advisor(s) see me as a SCIENTIST.
7. Other scientists see me as a SCIENTIST.
(Interest Items)
8. Ifind satisfaction when learning SCIENCE concepts.
9. I am interested in learning SCIENCE concepts.
10. Ienjoy learning SCIENCE.
(Performance /Competence Items)
11. I can overcome setbacks when learning SCIENCE.
12. I am confident that I can understand SCIENCE in class.

oG hwho
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13. I am confident that I can understand SCIENCE outside of class.
14. I can perform well when my SCIENCE knowledge is tested (for instance, in exams or defenses).
15. Tunderstand concepts [ have studied in SCIENCE.

Engineer items
Q: To what extent do you disagree or agree with the following statements:
(Recognition Items)
1. I'see myself as an ENGINEER.
My department faculty see me as an ENGINEER.
[ have had experiences in which I was recognized as an ENGINEER.
Others ask me for help with ENGINEERING.
[ want to be recognized for my contributions to ENGINEERING.
My advisor(s) sees me as an ENGINEER.
7. Other engineers see me as an ENGINEER.
(Interest Items)
8. I find satisfaction when doing ENGINEERING.
9. Ienjoy learning ENGINEERING.
(Performance /Competence Items)
10. I am confident I can understand ENGINEERING in class.
11. I am confident I can understand ENGINEERING outside of class.

ok who

12. I can perform well when my ENGINEERING knowledge is tested (for instance, in exams or defenses).

13. Tunderstand concepts [ have studied in ENGINEERING.
14. I am confident [ can apply ENGINEERING to solve problems.

Researcher items
Q: To what extent do you disagree or agree to the following statements:
(Recognition Items)
1. I'see myself as a RESEARCHER.
My department faculty see me as a RESEARCHER.
My peers see me as a RESEARCHER.
[ have had experiences in which I was recognized as a RESEARCHER.
[ want to be recognized for my contributions to RESEARCH.
My advisor(s) see me as a RESEARCHER.
7. Other researchers see me as RESEARCHER.
(Interest Items)
8. Ifind satisfaction when learning about my RESEARCH topic.
9. I am interested in learning more about how to do RESEARCH.
10. T enjoy conducting RESEARCH.
(Performance /Competence Items)
11. I find satisfaction when doing RESEARCH.
12. I can publish RESEARCH results in my field.
13. I can present RESEARCH related topics to relevant audiences.
14. [ am confident that I can network with other RESEARCHERS.
15. Tunderstand the concepts needed to analyze and interpret data.
16. T am confident that I can design a RESEARCH study.

ok who

Advisor relationship items

Q: To what extent do you disagree or agree with the following statements:

My advisor ...
1. ... has clearly stated his or her expectations for satisfactory participation in my program.
2. ...1s easy to approach.
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.. is knowledgeable about my research.
.. encourages and supports my research.
.. values my work.

.. provides advice in a timely manner.

.. is also my mentor.

.. and [ have a positive relationship.

® Nk w

APPENDIX B

Engineering disciplines

Acoustic Engineering (included in Engineering, Other)
Aerospace Engineering

Agricultural and Biological Engineering
Biomedical Engineering

Chemical and Biomolecular Engineering
Chemical Engineering

Civil and Environmental Engineering
Computer Engineering

Computer Science

Computer Science and Engineering

. Electrical and Computer Engineering

. Electrical Engineering

. Engineering, Other

. Engineering Education (included in Engineering, Other)
. Engineering Physics

. Environmental Engineering

. Geo Engineering

. Industrial Engineering

. Material Science and Engineering

. Mechanical Engineering

. Nuclear Engineering

. Ocean Engineering

. Petroleum Engineering

. Systems Engineering

® NGk W=
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