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The Bistritzer-MacDonald continuum model (BM model) describes the low-energy moiré bands for twisted

bilayer graphene (TBG) at small twist angles. We derive a generalized continuum model for TBG near any

commensurate twist angle, which is characterized by complex interlayer hoppings at commensurate AA stackings

(rather than the real hoppings in the BM model), a real interlayer hopping at commensurate AB/BA stackings,

and a global energy shift. The complex phases of the AA stacking hoppings and the twist angle together define

a single angle parameter φ0. We compute the model parameters for the first six distinct commensurate TBG

configurations, among which the 38.2◦ configuration may be within experimentally observable energy scales.

We identify the first magic angle for any φ0 at a condition similar to that of the BM model. At this angle, the

lowest two moiré bands at charge neutrality become flat except near the �M point and retain fragile topology but

lose particle-hole symmetry. We further identify a hypermagic parameter regime centered at φ0 = ±π/2 where

many moiré bands around charge neutrality (often 8 or more) become flat simultaneously. Many of these flat

bands resemble those in the kagome lattice and px , py 2-orbital honeycomb lattice tight-binding models.

DOI: 10.1103/PhysRevB.106.115418

I. INTRODUCTION

At certain discrete commensurate twist angles θ0, the

honeycomb lattices of two graphene layers align to form a

perfectly periodic superlattice [1,2]. The simplest such com-

mensurate configuration is θ0 = 0 in which two layers of

graphene are aligned with no twist. Bistritzer and MacDonald

demonstrated that if two layers of graphene are twisted by

a small angle relative to this θ0 = 0 configuration, forming

twisted bilayer graphene (TBG), a moiré superlattice emerges,

and the low energy single particle physics can be described

by a continuum model [3]. Furthermore, at the so called

magic angle, θ ≈ 1.05◦, this model predicts that the lowest

two moiré bands (i.e., the first conduction and valence bands)

at charge neutrality become approximately flat. Moreover,

it has been shown that the two flat bands carry a fragile

topology [4–8], obstructing the construction of maximally

localized symmetric Wannier orbitals [9–14]. In this flat band

regime, the physics is dominated by interactions. Interacting

electronic states such as correlated insulators, superconduc-

tors, and Chern insulators have been observed [15–33], the

mechanisms of which have been studied extensively [34–59].

Flat bands and interacting electronic states are also present

in other two dimensional moiré materials such as twisted

double bilayer graphene [60–63], twisted trilayer and multi-

layer graphene [64–69], ABC trilayer graphene [70–73], and

twisted transition metal dichalcogenides [74–76]. For the pur-

pose of exploring interacting states, the search for more flat

band moiré platforms is important.

In this paper, we search for flat moiré bands in TBG twisted

by a small angle relative to an arbitrary commensurate config-

uration. That is to say, we consider a twist angle θ = θ0 + δθ

where θ0 is a commensurate angle and δθ is small. Without

loss of generality, we can choose 0 � θ0 < π/3 because of the

crystalline symmetries of TBG. When θ0 = 0, the interlayer

hopping couples states near the top and bottom layer K points

only among themselves. This allows one to explicitly derive

the form of the Bistritzer-MacDonald continuum model (BM

model) by computing the interlayer hopping in reciprocal

space and making a few well-justified approximations [3].

However, for all other commensurate configurations, the cal-

culations are more complicated since states near the top and

bottom K points are coupled to many other states. The origin

of this complication is the fact that the commensurate unit cell

contains 4N atoms, where the integer N is 1 when θ0 = 0 but

is 7 or greater for all other commensurate configurations [2].

Assuming that the interlayer hopping is not too strong,

the states far from the top and bottom K points influence

the low energy physics perturbatively. Rather than explicitly

applying perturbation theory, we take an approach based on

symmetry and parameter determination from a microscopic

tight-binding model. We first show, based on an analysis of

the magnitudes of the hopping terms, that the system is ap-

proximated by a continuum model of a certain general form.

We then use the exact unitary and antiunitary crystalline sym-

metries of TBG to constrain the coefficients of this general

model. Near a commensurate twist angle θ0, we arrive at a

TBG continuum model containing four real parameters χ0,

w0, w1, and w2, which are ultimately determined by the mi-

croscopic hopping parameters. We show that w1 controls the

interlayer hopping at the commensurate AB and BA stacking

configurations while w0eiχ0 and w0e−iχ0 control the interlayer

hoppings at the commensurate AA stacking configuration. w2

is simply a global energy shift. When θ0 = 0, the value of χ0
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is negligible because of an approximate mirror symmetry, and

we recover the BM model.

In order to determine the model parameters near general

commensurate configurations, we consider the geometry of

TBG in real space. The key observation is that a small relative

rotation δθ of the two graphene layers can be locally approxi-

mated by an interlayer translation [77]. By carefully taking the

limit δθ → 0, we derive the model for commensurate twist

angle θ0 and interlayer displacement d from the model for

twist angle θ = θ0 + δθ . We then determine the continuum

model parameters from a numerical computation of the mi-

croscopic tight-binding model (without lattice relaxation or

corrugation [78]) at commensurate angle θ0 with two values of

d corresponding to AA and AB stacking configurations. For the

case θ0 = 0, we recover w0 ≈ w1 ≈ 110 meV, χ0 = 0, w2 =
0 in agreement with the BM model. We additionally provide

numerical values of the model parameters for the next five

commensurate configurations in order of the number of atoms

per commensurate unit cell. When determining the continuum

model parameters, we only use numerical tight-binding results

at a single crystal momentum (the commensurate K point) and

two d vectors. However, we find that the continuum model

matches the tight-binding model with high accuracy for all

crystal momenta in the commensurate K valley and all d
vectors. It is worth noting that in the first five nontrivial (i.e.,

θ0 �= 0) commensurate configurations, the new parameters χ0

and w2 are non-negligible. Although we do not consider lat-

tice relaxation or corrugation, we note that these effects can

alter the values of the model parameters, but not the general

form of the continuum model (assuming these effects preserve

the moiré lattice symmetries) [10,78,79]. We note also the

possibility that the model parameters can be altered by the

effects of higher graphene bands which we do not consider.

Next, we compute the moiré band structures of TBG with

twist angle near the first six commensurate configurations. By

both the “tripod model” approximation [3,80] and accurate

numerical computations, we identify the condition for the

first magic angle in any nearly commensurate TBG system

[Eqs. (66) and (67)]. This condition is similar to that of the

original BM model. A further simplification of the generic

TBG continuum model indicates that the moiré band structure

only depends on a single angle variable φ0 = χ0 + θ0/2. At

the first magic angle, the lowest two bands at charge neutrality

in the nearly commensurate TBG model with φ0 �= 0 are flat

in most of the moiré Brillouin zone except in the vicinity of the

�M point. These bands are no longer particle-hole symmet-

ric, though they do retain fragile topology. According to our

model, the first magic angle near any nonzero commensurate

twist angle θ0 (e.g., the magic angle 0.004◦ near θ0 ≈ 38.2◦)

may be too small to be realized experimentally. However, it

is possible that spontaneous commensurate atomic structural

reconstructions (e.g., charge density wave orders), lattice re-

laxation or corrugation, or effective couplings mediated by

higher graphene bands may enhance the moiré potential and

enlarge the magic angles.

Finally, we reveal the existence of a hypermagic regime

centered at φ0 = ±π/2 where several moiré bands (often 8

or more) near charge neutrality become extremely flat simul-

taneously. The second and third magic angles in the chiral

limit [12] are contained in the hypermagic regime, and for

FIG. 1. Illustration of the definitions of quantities in Sec. II A.

(a) The graphene lattice and its primitive unit cell. (b) The reciprocal

lattice primitive vectors, Brillouin zone, and high-symmetry crystal

momenta.

these parameters the lowest two bands at charge neutrality

have fragile topology [4–8]. On the other hand, for many

parameters in the hypermagic regime the lowest bands at

charge neutrality have trivial topology. In such cases, we

expect that the strongly interacting physics may be similar to

that of the Hubbard model with trivial bands and may host

antiferromagnetic states. Interestingly, many of the flat bands

in the hypermagic regime resemble those of the kagome lattice

and px, py 2-orbital honeycomb lattice tight-binding models,

which are known to exhibit flat bands [81,82].

The rest of this paper is organized as follows. Section II

derives the generic form of the low energy TBG continuum

model near commensuration from a microscopic graphene

Hamiltonian. Section III further restricts the form of the TBG

continuum model using crystalline symmetries, and gives the

model parameters for the first six commensurate configura-

tions. In Sec. IV, we discuss the low energy bands (namely,

the first two conduction and valence bands) of commensurate

TBG. Then in Sec. V, we compute the moiré band struc-

ture near several commensurate configurations with the actual

model parameters and give the condition for the first magic

angle. In Sec. VI, we further explore the parameter space of

the nearly commensurate TBG continuum model, reveal the

hypermagic regime, and investigate the topology of the moiré

bands. Finally, we give a high level discussion in Sec. VII.

II. DERIVATION OF THE GENERIC CONTINUUM MODEL

A. Microscopic Hamiltonian

The honeycomb lattice of monolayer graphene consists of

two sublattices A and B. We will often make the identifications

A = 1 and B = −1 when using A and B in equations. As

shown in Fig. 1(a), the positions of the carbon atoms in sub-

lattice α are given by r + τα for α ∈ {A, B}, r in a triangular

Bravais lattice L, and constant vectors τα . It is convenient to

choose the primitive vectors (a1, a2) for L where a1 = a0

√
3x̂,

a2 = R−π/3a1, a0 ≈ 0.142 nm is the interatomic distance, and

Rφ denotes rotation by angle φ about the ẑ axis. Additionally,

we choose τA = a0ŷ and τB = R−π/3τA so that the origin 0 is

in the center of a hexagon. We define � to be the primitive

unit cell of L and |�| to be its area.

The Bravais lattice P that is reciprocal to L has primitive

vectors (b1, b2) with b1 = R2π/3b2 and b2 = −4π ŷ/(3a0) so

115418-2



MAGIC ANGLES IN TWISTED BILAYER GRAPHENE NEAR … PHYSICAL REVIEW B 106, 115418 (2022)

that b j · ak = 2πδ j,k . Explicitly, the lattices L and P are given

by

L = {n1a1 + n2a2|n1, n2 ∈ Z},
P = {n1b1 + n2b2|n1, n2 ∈ Z}. (1)

We define the Brillouin zone BZ to be the Wigner-Seitz unit

cell of P and |BZ| to be its area. Note that |�||BZ| = (2π )2.

We additionally define the high-symmetry crystal momenta

� = 0,

K =
2

3
b1 +

1

3
b2 =

4π
√

3

9a0

x̂,

K′ =
1

3
b1 +

2

3
b2 = R−π/3K,

M =
1

2
b1 +

1

2
b2 =

1

2
K +

1

2
K′, (2)

which are shown in Fig. 1(b).

We consider a system consisting of two stacked graphene

layers denoted by l ∈ {+,−}. We rotate layer l by the angle

−lθ/2 about the origin 0 and then translate it by an in-plane

vector −ld/2, so that θ and d are the relative rotation and

translation of the two layers. We show in Appendix C that

when θ is not a commensurate angle, a change in the trans-

lation vector d is equivalent to a unitary change of basis, but

this is not generally the case when θ is a commensurate angle.

Let Ll , Pl , and BZl be the real space lattice, reciprocal

lattice, and graphene Brillouin zone of layer l . Explicitly, Ll =
R−lθ/2L, Pl = R−lθ/2P, and BZl = R−lθ/2BZ where we use the

notation RS = {Rs|s ∈ S} for a set S of vectors and an operator

or number R. We will additionally use the notations S1 ∩ S2

and S1 ∪ S2 for the intersection and union of sets S1, S2, as

well as the notations S1 + S2 = {s1 + s2|s1 ∈ S1, s2 ∈ S2} and

s1 + S2 = {s1 + s2|s2 ∈ S2} where s1 is a vector and S1, S2 are

sets of vectors.

We neglect electron spin when describing the single-

particle model because of the weak spin-orbit coupling in

graphene [83]. The spinless pz orbitals |r, l, α〉 for r ∈ Ll ,

l ∈ {+,−}, and α ∈ {A, B} form an orthonormal basis for

the Hilbert space. The orbital |r, l, α〉 is localized at position

r + τ l
α where τ l

α = R−lθ/2τα − ld/2. Note that d enters the

formalism only through the definition of τ l
α .

The Bloch states are defined by

|k, l, α〉 =
1

√
|BZ|

∑

r∈Ll

eik·(r+τ l
α ) |r, l, α〉 (3)

for crystal momentum vectors k ∈ R
2 and satisfy the normal-

ization condition

〈k′, l ′, α′|k, l, α〉

= δl ′,lδα′,α

∑

Gl ∈Pl

δ2(k′ − k − Gl )e
−iτ l

α ·Gl . (4)

Note that the origin for crystal momenta is �, defined in

Eq. (2) and shown in Fig. 1. The Bloch states |k, l, α〉 with

k ∈ BZl form a continuous basis for the Hilbert space. How-

ever, for convenience we will sometimes use the overcomplete

set formed by all Bloch states |k, l, α〉 for k ∈ R
2.

We consider a microscopic single-particle Hamiltonian H

with matrix elements

〈r′, l ′, α′|H |r, l, α〉
= tl ′·l

(

r′ + τ l ′

α′ − r − τ l
α

)

− μδr′,rδl ′,lδα′,α, (5)

where μ is a chemical potential and t± : R
2 → R are rota-

tionally symmetric functions (i.e., t±(r) depends only on |r|)
determining the intra- and interlayer hoppings. We allow the

functions t±(r) to remain unspecified for now. The intralayer

matrix elements are given by

〈k′, l, α′|H |k, l, α〉

= 〈k′, l, α′|k, l, α′〉

⎛

⎝−μ +
∑

r∈L+τα′ −τα

e−i(Rlθ/2k)·rt+(r)

⎞

⎠

(6)

(see Appendix A). If the value of μ is chosen appropriately,

then for crystal momenta near Kl = R−lθ/2K, this matrix ele-

ment can be approximated by a Dirac cone

〈Kl + p′, l, α′|H |Kl + p, l, α〉
= (h̄vF (σ lθ/2 · p)α′,α + O(|p|2))δ2(p′ − p). (7)

Here, σφ = e−i(φ/2)σz (σxx̂ + σyŷ)ei(φ/2)σz is a vector of rotated

Pauli matrices satisfying

σφ · p = σ0 · (Rφp) =
(

0 H.c.

eiφ (px + ipy) 0

)

(8)

and vF is the Fermi velocity, which depends on the function

t+(r). We make the assumption throughout the paper that

vF > 0. See Appendix B for a derivation of Eq. (7) based on

symmetry. The matrix elements for crystal momenta near the

other Brillouin zone corners Rnπ/3Kl for 1 � n � 5 are given

by similar Dirac cone Hamiltonians.

The interlayer matrix elements are given by

〈k′,−l, α′|H |k, l, α〉

=
∑

G−∈P−

∑

G+∈P+

t̂−(k + Gl )

|�|
eiτ−l

α′ ·G−l e−iτ l
α ·Gl δ2(k

+ Gl − k′ − G−l ), (9)

where the hatted functions t̂±(k) are the two dimensional

Fourier transforms of t±(r) (see Appendix A). We see that H

is block diagonal: the Bloch states |k′, l ′, α′〉 and |k, l, α〉 are

in the same Hamiltonian block if and only if

k′ − k ∈ P− + P+. (10)

B. Commensurate configurations

Since layer l is invariant under translation by elements of

the graphene Bravais lattice Ll , the bilayer system is invariant

under translations by elements of L− ∩ L+. Commensurate

configurations are those for which L− ∩ L+ �= {0}, in which

case L− ∩ L+ forms a Bravais lattice called the commensu-

ration superlattice. Let θ = θ0 be a commensurate angle, by

which we mean the twist angle for a commensurate configu-

ration.
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TABLE I. Numerically determined model parameters reported

with three significant figures. For the more accurate parameters used

in Figs. 5 to 7, 15, 16, and 18, see Appendix Table II.

(m, n) θ0 N s χ0 (w0,w1) w2

(1, 0) 0◦ 1 1 0.00◦ (113, 113) meV 0.0 meV

(5, 3) 38.2◦ 7 1 −3.10◦ (959, 1050) μeV −4.44 meV

(7, 3) 27.8◦ 13 −1 125◦ (5.50, 3.62) μeV −4.43 meV

(4, 3) 46.8◦ 19 1 −0.994◦ (33.2, 33.2) μeV −4.32 meV

(11, 3) 17.9◦ 31 1 1.24◦ (653, 653) neV −4.43 meV

(11, 9) 50.6◦ 37 1 −0.862◦ (1300, 1300) neV −4.03 meV

We show in Appendix C that the crystalline symmetries of

TBG allow us to restrict our attention to configurations with

θ0 ∈ [0, π/3). These configurations can be enumerated by a

pair of relatively prime integers m > n � 0 with

θ0 = cos−1

(

3m2 − n2

3m2 + n2

)

(11)

(see Appendix D 1). The commensurate configuration corre-

sponding to the pair (m, n) has 4N atoms per unit cell where

the integer N � 1 is given in Eq. (D12) as a function of m and

n.

As shown in Appendix D 3, if 3|n (i.e., 3 divides n), we

have

K+ − K−, K′
+ − K′

− ∈ P− + P+ (12)

and otherwise

K+ − K′
−, K′

+ − K− ∈ P− + P+, (13)

where Kl = R−lθ/2K and K′
l = R−lθ/2K′. Additionally, in ei-

ther case, we have

K+ − K′
+, K− − K′

− �∈ P− + P+. (14)

If θ0 is a commensurate angle then so is π/3 − θ0, and

the Hamiltonians for these two configurations are unitarily

equivalent (see Appendix C). Furthermore, we show in Ap-

pendix D 4 that among the two configurations corresponding

to θ0 and π/3 − θ0, one must satisfy 3|n while the other

does not. As a result, we assume without loss of generality

that 3|n and Eq. (12) holds. From here on, we will always

assume 3|n unless we explicitly state otherwise. Table I

lists properties of the first six commensurate configurations

in increasing order of N . Figure 2 illustrates the locations

of the atoms in real space for a particular commensurate

configuration.

We saw in Eq. (10) that the microscopic Hamiltonian is

block diagonal in accordance with the lattice P− + P+. We

show in Appendix D 2 that when the system is commensu-

rate, P− + P+ is the reciprocal lattice of the commensuration

superlattice L− ∩ L+. We see that the block diagonality can be

attributed in this case to translation symmetry with respect to

the commensuration superlattice. Each Hamiltonian block has

a basis consisting of Bloch states with N nonequivalent crystal

momenta in each layer, for a total dimension of 4N . As an

example, Fig. 3(a) illustrates the crystal momenta involved in

the Hamiltonian block containing K+ and K− for a particular

commensurate configuration. We show in Appendix D 5 that

FIG. 2. The real space structure of commensurate TBG with

(m, n) = (5, 3) and d = 0, in which case θ0 ≈ 38.2◦ and N = 7. The

top (bottom) atoms are represented by dots (circles) and the A (B)

sublattices in each layer are colored blue (red). The purple rhom-

bus is an example of a primitive unit cell for the commensuration

superlattice. This unit cell contains 4N = 28 atoms. Note that this

configuration has AA stacking as described in Appendix D 6.

L− ∩ L+ =
√

NL and P− + P+ = P/
√

N so that the Brillouin

zone BZ0 corresponding to the commensuration superlattice

is a regular hexagon.

FIG. 3. (a) Illustration of the crystal momenta involved in the

Hamiltonian block containing K+ and K− for the commensurate

configuration with (m, n) = (5, 3). The top (bottom) Brillouin zone

boundaries are shown in blue (red) and the boundary of the Brillouin

zone BZ0 corresponding to the commensuration superlattice is shown

in green. The N = 7 top (bottom) layer momenta are marked with

blue dots (red circles). All shown crystal momenta in a given layer

differ by elements of P− + P+ and are contained in the given layer’s

Brillouin zone. (b) Illustration of the set Bl,q defined in Sec. II D for

l = + or l = −, some large value q, and some small value δθ . There

is a lattice of crystal momenta near each point in (a).
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C. Incommensurate configurations

We now consider an incommensurate twist angle θ . We

show in Appendix E that in this case P− + P+ is a dense

subset of R
2. As a result, the block diagonality of H given

by Eq. (10) cannot be directly used to define a band structure.

In this section, we will construct a notion of distance between

Bloch states that can be used in place of block diagonality to

analyze H .

We show in Appendix D 1 that since θ is incommensurate,

we have P− ∩ P+ = {0}. It follows that for any l ∈ {+,−} and

crystal momentum vectors k, k′ with k′ − k ∈ P− + P+ there

are unique vectors G− ∈ P−, G+ ∈ P+ such that

k + Gl = k′ + G−l . (15)

This pair of vectors G−, G+ determines the interlayer matrix

element in Eq. (9). Since t̂−(k) depends only on |k|, the mag-

nitude of 〈k′,−l, α′|H |k, l, α〉 depends only on |k + Gl |. We

assume that t̂−(k) monotonically decreases with |k|, so that

interlayer matrix elements with large magnitude correspond

to small values of |k + Gl |. Similarly, the intralayer matrix

element in Eq. (6) is zero unless k′ − k ∈ Pl . As a result,

〈k′, l, α′|H |k, l, α〉 is only nonzero when k and k′ are related

as in Eq. (15) with |G−l | = 0.

With this motivation, we define a function d that quantifies

the magnitude of the matrix elements of H

d (k, l, k′, l ′) =

⎧

⎨

⎩

∞ if k′ − k �∈ P− + P+
|k + Gl | if l ′ = −l and Eq. (15)

|G−l | if l ′ = l and Eq. (15)
. (16)

We show in Appendix F that d satisfies

(1) d (k, l, k, l ) = 0,

(2) d (k, l, k′, l ′) = d (k′, l ′, k, l ),

(3) d (k, l, k′′, l ′′) � d (k, l, k′, l ′) + d (k′, l ′, k′′, l ′′),
so that d defines a notion of distance on the set R

2 × {+,−}.1
Suppose we define the distance between Bloch states |k, l, α〉,
|k′, l ′, α′〉 to be d (k, l, k′, l ′). Then by construction, the mi-

croscopic Hamiltonian H described by Eqs. (6) and (9) is local

with respect to this notion of distance.

D. Continuum model for incommensurate configurations

We now take

θ = θ0 + δθ, (17)

where θ0 is a commensurate angle as in Eq. (11) and δθ is

small. We assume that θ is an incommensurate angle so that

the distance function d from Sec. II C is defined. We are

interested in the single particle physics of H near the Fermi

level at charge neutrality, as this determines the low energy

excitations of the many-body Hamiltonian. In this section, we

will derive a continuum model that approximates the relevant

energies and eigenvectors of H .

We will make use of the following characterization of the

distance function d that applies when θ = θ0 + δθ . Let L0
l =

1Technically, d is not a metric because it assumes the value ∞ and

d (k, l, k′, l ′) = 0 whenever l ′ = −l , k ∈ Pl , k′ ∈ P−l or l ′ = l , k′ −
k ∈ Pl . Nonetheless, it is useful to think of d as a distance function.

R−lθ0/2L, P0
l = R−lθ0/2P, and recall from Sec. II B that L0

− ∩
L0

+ is the commensuration superlattice corresponding to twist

angle θ0 and P0
− + P0

+ is its reciprocal lattice. Define the set

Q(k, l, k′, l ′) = −δl ′,lk′ +
(

k + P0
l

)

∩
(

k′ + P0
−l

)

(18)

and the operator

D(δθ ) = Rδθ/2 − R−δθ/2 = 2 sin(δθ/2)Rπ/2. (19)

Let k ∈ R
2, l ∈ {+,−}, and define k0 = Rlδθ/2k. Then for any

pair (k′, l ′) with d (k, l, k′, l ′) < ∞, there are unique vectors

k′
0 ∈ k0 + P0

− + P0
+ and Q ∈ Q(k0, l, k′

0, l ′) such that

k′ = R−l ′δθ/2k′
0 − lD(δθ )Q. (20)

Additionally, we have |Q| = d (k, l, k′, l ′) so that

|Rl ′δθ/2k′ − k′
0| = 2| sin(δθ/2)|d (k, l, k′, l ′). (21)

Conversely, if k′ is given by Eq. (20) for some k′
0 ∈ k0 + P0

− +
P0

+ and Q ∈ Q(k0, l, k′
0, l ′) then d (k, l, k′, l ′) = |Q|. These

claims are proved in Appendix G.

Since monolayer graphene has Dirac cones at the K and

K′ points (i.e., graphene has two valleys), the single-particle

physics of H near the Fermi level at charge neutrality is

dominated by Bloch states with crystal momenta near K± or

K′
±. Consider two momenta k = Kl , k′ = K′

l ′ from opposite

graphene valleys. Then k0 = K0
l and Rl ′δθ/2k′ = K′0

l ′ where

K0
± = R∓θ0/2K and K′0

± = R∓θ0/2K′. By Eqs. (12) and (14),

K′0
l ′ �∈ K0

l + P0
− + P0

+ so there is some minimal value κ > 0

taken by the quantity |K′0
l ′ − k′

0| for k′
0 ∈ k0 + P0

− + P0
+. By

Eq. (21),

d (Kl , l, K′
l ′ , l ′) �

κ

2| sin(δθ/2)|
, (22)

which diverges as δθ → 0. This implies that for small δθ , the

spectrum of H splits into two nearly uncoupled valleys cor-

responding to K and K′. We will neglect intervalley coupling

and focus on the K valley, noting that time-reversal symmetry

interchanges the valleys (see Appendix I).

For any q > 0, define U (k, l, q) to be the subspace gen-

erated by all Bloch states |k′, l ′, α′〉 with d (k, l, k′, l ′) < q,

and note that U (k, l, q) is finite dimensional. To compute the

eigenstates and energies of H in the K valley, we consider the

projection of H into U (Kl + p, l, q) for a small vector p and

a large value q. Let Bl,q be the set of pairs (k′, l ′) such that

k′ is given by Eq. (20) with k = Kl , k′
0 ∈ BZ0

l ′ = R−l ′θ0/2BZ,

and |Q| < q. Then for all vectors p small enough, the set of

Bloch states |k′ + p, l ′, α′〉 with (k′, l ′) ∈ Bl,q forms a basis

for U (Kl + p, l, q). The set Bl,q is illustrated in Fig. 3(b).

Recall from Sec. II B that we can write L0
− ∩ L0

+ =
√

NL

and P0
− + P0

+ = P/
√

N where 4N is the number of atoms in

the primitive unit cell of L0
− ∩ L0

+. When N > 1 and q is

large enough, there are elements (k′, l ′) ∈ Bl,q for which the

value of k′
0 is not K0

l ′ [e.g., the points shown in Fig. 3(b)].

The corresponding Bloch states in U (Kl + p, l, q) have ex-

pected energies with respect to the intralayer Hamiltonian

that are far from the Fermi level at charge neutrality. Assum-

ing that |t̂−(K)| is not too large, these Bloch states can be

treated perturbatively. There is then some effective Hamil-

tonian supported only on the subspace generated by Bloch

states |k′ + p, l ′, α′〉 such that (k′, l ′) ∈ Bl,q and the value
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of k′
0 is K0

l ′ . Note that these conditions are equivalent to

k′ + p = Kl ′ + p′, where

p′ = p − lD(δθ )Q (23)

and Q ∈ Q(K0
l , l, K0

l ′ , l ′) with |Q| < q. For convenience, we

define

Q+ = Q(K0
+,+, K0

−,−)

= Q(K0
−,−, K0

+,+)

= (K0
− + P0

−) ∩ (K0
+ + P0

+), (24)

Q− = −Q+, (25)

Q0 = Q(K0
+,+, K0

+,+)

= Q(K0
−,−, K0

−,−)

= P0
− ∩ P0

+. (26)

We will now describe a class of continuum models that

approximate these effective Hamiltonians. We introduce con-

tinuum states |p, l, α〉c for p ∈ R
2, l ∈ {+,−}, α ∈ {A, B} in

a new Hilbert space, satisfying the normalization condition

〈p′, l ′, α′|cp, l, α〉c = δl ′,lδα′,αδ2(p′ − p). (27)

Although p is allowed to range over all of R
2, |p, l, α〉c

represents the Bloch state |Kl + p, l, α〉 when p is small.

When p is large, these states cannot be identified because they

satisfy different normalization conditions, namely Eqs. (4)

and (27). Because of Eq. (7), we take the part of the con-

tinuum Hamiltonian due to intralayer coupling to be H̃intra =
∫

d2p|p〉cHintra(p)〈p|c, where

Hintra(p) = h̄vF

(

σθ/2 · p 0

0 σ−θ/2 · p

)

(28)

and

|p〉c = (|p,+, A〉c |p,+, B〉c |p,−, A〉c |p,−, B〉c)

(29)

is a row vector of states. Because of Eq. (23), we take the part

of the continuum Hamiltonian due to interlayer coupling to be

H̃inter =
∫

d2p′d2p|p′〉cHinter(p′, p)〈p|c, where

Hinter(p′, p)

=
∑

Q∈Q0

(

S+
Q 0

0 S−
Q

)

δ2(p′ − p − D(δθ )Q)

+
∑

Q∈Q+

(

0 TQ

0 0

)

δ2(p′ − p − D(δθ )Q)

+
∑

Q∈Q−

(

0 0

TQ 0

)

δ2(p′ − p − D(δθ )Q). (30)

Here, TQ and Sl
Q denote complex 2 × 2 matrices, which are

functions of δθ and the translation parameter d. Note that

since H̃inter is Hermitian, we have

T
†

Q = T−Q,
(

Sl
Q

)† = Sl
Q. (31)

The full continuum Hamiltonian is given by H̃ = H̃intra +
H̃inter.

FIG. 4. The Q+ and Q0 lattices for the commensurate config-

uration with (m, n) = (5, 3), in which case s = 1. The elements of

Q+ (Q0) are denoted by purple circles (green dots) and the elements

of both lattices with minimal norm are labeled. The top (bottom)

Brillouin zone boundaries are shown in blue (red).

We show in Appendix D 5 that

Q+ = s
√

NK +
√

NP,

Q0 =
√

NP, (32)

where s = ±1 is given by Eq. (D43). Furthermore, the ele-

ments of Q+ with minimal norm are

Q1 = s
√

NK, Q2 = R2π/3Q1, Q3 = R4π/3Q1. (33)

The lattices Q+ and Q0 and the vectors Q1, Q2, and Q3 are

shown in Fig. 4.

We now observe that H̃ is block diagonal: the states

|p′, l ′, α′〉c and |p, l, α〉c are in the same Hamiltonian block

if and only if

(p′ + l ′q1) − (p + lq1) ∈ D(δθ )Q0, (34)

where

q j = D(δθ )Q j for j ∈ {1, 2, 3}. (35)

More explicitly, we have

q1 = 2 sin(δθ/2)s
√

N |K|ŷ,

q2 = R2π/3q1, q3 = R4π/3q1. (36)

We refer to D(δθ )Q0 as the moiré reciprocal lattice and

p + lq1 as the moiré quasimomentum for |p, l, α〉c. The

Wigner-Seitz unit cell of the moiré reciprocal lattice is BZM =
D(δθ )

√
NBZ and it is called the moiré Brillouin zone. Addi-

tionally, we define the high-symmetry moiré quasimomenta

XM = D(δθ )s
√

NX (37)

for X ∈ {�, K, K′, M} and note that

�M = 0, KM = q1, (38)
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and

|KM | = 2| sin(δθ/2)|
√

N |K|. (39)

To further explicate the moiré translation symmetry, we

transform to real space. We define states

|r, l, α〉c =
1

2π

∫

d2pe−ip·r |p, l, α〉c , (40)

which satisfy the normalization condition

〈r′, l ′, α′|cr, l, α〉c = δl ′,lδα′,αδ2(r′ − r). (41)

Defining the row vector of states

|r〉c = (|r,+, A〉c |r,+, B〉c |r,−, A〉c |r,−, B〉c),

(42)

we can rewrite the Hamiltonian in the form H̃intra =
∫

d2r|r〉cHintra(r)〈r|c and H̃inter =
∫

d2r|r〉cHinter(r)〈r|c,

where

Hintra(r) = −ih̄vF

(

σθ/2 · ∇ 0

0 σ−θ/2 · ∇

)

,

Hinter(r) =
(

S+(r) T (r)

T †(r) S−(r)

)

, (43)

and

T (r) =
∑

Q∈Q+

TQeir·D(δθ )Q,

Sl (r) =
∑

Q∈Q0

Sl
Qeir·D(δθ )Q. (44)

We interpret H̃ as the Hamiltonian for a system of Dirac elec-

trons moving through the spatially varying potentials T (r),

S+(r), and S−(r). Note that these potentials are periodic (up to

a phase) with respect to the moiré superlattice D(δθ )−1L/
√

N ,

which is reciprocal to D(δθ )Q0.

E. Continuum model for commensurate configurations

As in Sec. II D we take θ = θ0 + δθ , where θ0 is a

commensurate twist angle, δθ is small, and θ is an incommen-

surate angle. Since the microscopic Hamiltonian is continuous

with respect to twist angle, we can take the limit δθ → 0 to

derive a continuum model for the commensurate configuration

with twist angle θ0.

In this section, we use TQ(δθ, d), Sl
Q(δθ, d), T (r, δθ, d),

and Sl (r, δθ, d), to denote the TQ and Sl
Q matrices and the

T (r) and Sl (r) potentials with twist angle θ = θ0 + δθ and

translation vector d. To determine the correct definition of

TQ(0, d), note that

R−lδθ/2r = r − lδθRπ/2r/2 + O(δθ2)

= r − lD(δθ )r/2 + O(δθ2). (45)

This implies that the pattern of atoms near position r with

θ = θ0 + δθ and d = 0 is the same to first order in δθ as the

pattern with θ = θ0 and

d = D(δθ )r = 2 sin(δθ/2)Rπ/2r. (46)

Taking into account the phase shift accrued by the continuum

momentum states when the translation vector d is changed

(see Appendix H), we must then have

ei cos(θ/2)K·D(δθ )rT (r, δθ, 0)

= T (r, 0, D(δθ )r) + O(δθ2) (47)

and

Sl (r, δθ, 0) = Sl (r, 0, D(δθ )r) + O(δθ2). (48)

It follows that

ei cos(θ/2)K·D(δθ )r
∑

Q∈Q+

TQ(δθ, 0)eir·D(δθ )Q

=
∑

Q∈Q+

TQ(0, D(δθ )r) + O(δθ2) (49)

and
∑

Q∈Q0

Sl
Q(δθ, 0)eir·D(δθ )Q

=
∑

Q∈Q0

Sl
Q(0, D(δθ )r) + O(δθ2). (50)

Taking r = D(δθ )−1d and then taking the limit as δθ → 0

with d fixed, we find
∑

Q∈Q+

TQ(0, 0)eid·(cos(θ0/2)K−Q) =
∑

Q∈Q+

TQ(0, d)

∑

Q∈Q0

Sl
Q(0, 0)e−id·Q =

∑

Q∈Q0

Sl
Q(0, d). (51)

Taking δθ → 0 in Eq. (30) then gives Hinter(p′, p) =
H0

interδ
2(p′ − p), where

H0
inter =

(

S+
0 (d) T0(d)

T
†

0 (d) S−
0 (d)

)

(52)

and

T0(d) =
∑

Q∈Q+

TQ(0, 0)eid·(cos(θ0/2)K−Q),

Sl
0(d) =

∑

Q∈Q0

Sl
Q(0, 0)e−id·Q. (53)

We see that in the commensurate case, the continuum Hamil-

tonian describes four energy bands, approximating the bands

nearest the Fermi level at charge neutrality.

Note that T0(d) and Sl
0(d) are periodic (up to a phase) with

respect to the lattice L0
− + L0

+ = L/
√

N which is reciprocal

to Q0 (see Appendixes D 2 and D 5). As a result, for θ = θ0

the continuum Hamiltonian H̃ is periodic in d (up to unitary

equivalence) with respect to L0
− + L0

+. It is worthwhile to

note that the microscopic Hamiltonian H has the exact same

periodicity in d (see Appendix C).

III. SYMMETRY CONSTRAINTS AND MODEL
PARAMETERS

We now consider the constraints that can be put on the TBG

continuum model at twist angle θ = θ0 + δθ based on the

symmetries of TBG, and explicitly determine the parameters

of the TBG continuum model near various commensurate

angles.
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Note that the continuum model is fully determined by the

TQ and Sl
Q matrices with d = 0 in both the commensurate

(δθ = 0) and incommensurate (δθ �= 0) cases. We therefore

make the assumption that d = 0 throughout this section. For

θ �= 0, the valley preserving symmetries of the microscopic

Hamiltonian H are generated by the unitary operators C3z

(rotation by 2π/3 about ẑ), C2x (rotation by π about x̂),

and the antiunitary operator C2zT (time-reversal followed by

rotation by π about ẑ). The representations of these symmetry

operators on the |k, l, α〉 and |p, l, α〉c states are given in

Appendix I.

We require that H̃ commutes with these symmetry opera-

tors. H̃intra commutes with the symmetry operators identically

so we need only consider H̃inter. Assuming δθ �= 0, the sym-

metry constraint [C2zT , H̃inter] = 0 is equivalent to

σxTQσx = TQ, σxSl
Qσx = Sl

Q, (54)

[C3z, H̃inter] = 0 is equivalent to

ei(2π/3)σz TQe−i(2π/3)σz = TR2π/3Q,

ei(2π/3)σz Sl
Qe−i(2π/3)σz = Sl

R2π/3Q, (55)

and [C2x, H̃inter] = 0 is equivalent to

σxT
†

Qσx = TRxQ, σxS−l
Q σx = Sl

−RxQ, (56)

where we use the notation M for the complex conjugate of a

matrix M. By continuity, these equations also hold for δθ = 0.

Since t̂−(k) monotonically decreases with |k|, we expect

that the magnitudes of TQ and Sl
Q decay rapidly with |Q|. We

therefore neglect TQ and Sl
Q for all Q with nonminimal norm.

Recall that the elements of Q+ of minimal norm are Q1, Q2,

and Q3 which are given in Eq. (33). The elements of Q− with

minimal norm are −Q1, −Q2, and −Q3, and the only element

of Q0 of minimal norm is 0. See Fig. 4 for an illustration of

the Q1, Q2, and Q3 vectors.

By Eq. (31), it suffices to determine the matrices TQ1
, TQ2

,

TQ3
, S+

0 , S−
0 which correspond to minimal norm momenta.

By expanding these matrices in the Pauli basis and applying

Eqs. (54) to (56) we find

TQ j
= w0eiχ0σz + w1(σx cos ζ j + σy sin ζ j ),

S+
0 = S−

0 = w2σ0 (57)

for real model parameters χ0, w0, w1, and w2 with w0 � 0

and χ0 ∈ [0, 2π ). Here, we have used ζ j = 2π ( j−1)

3
for j ∈

{1, 2, 3} and σ0 for the 2 × 2 identity matrix. Note that the

model parameters χ0, w0, w1, and w2 depend on θ0 and δθ but

not on d.

In the special case θ = 0 (i.e., no twist), there is an

additional valley preserving unitary mirror symmetry My

(reflection across the xz plane). The symmetry constraint

[My, H̃inter] = 0 is equivalent to

∑

Q∈Q+

[TQ, σx] =
∑

Q∈Q0

[

Sl
Q, σx

]

= 0 (58)

(see Appendix I). When θ = 0, Eq. (58) implies χ0 = 0.

Therefore, if the twist angle is near 0 (i.e., θ0 = 0, θ = δθ ≈
0) one will find χ0 ≈ 0 because of the approximate My sym-

metry. This agrees with the Bistritzer-MacDonald model for

small angle TBG [3].

In Appendix J, we show that when δθ = 0, the model

parameters can be determined from numerical computations

of the Hamiltonian block containing K± using Eqs. (6) and

(9). Additionally, Appendixes D 6 and J show that the χ0, w0,

and w2 parameters determine the band structure of AA stacked

commensurate configurations, while the w1 and w2 param-

eters determine the band structures of AB and BA stacked

commensurate configurations. For numerical computations,

we choose the t±(r) functions in Eq. (5) to be those used in

Refs. [77,78,84] and described in Appendix K. Table I shows

approximate values of the model parameters derived from

these functions for the first six commensurate configurations

in order of the number of atoms per unit cell. Appendix Ta-

ble II lists these parameters with more significant figures.

Appendix Fig. 15 shows that the continuum models with

parameters in Appendix Table II are accurate low energy ap-

proximations of the microscopic Hamiltonian for all d vectors.

Additionally, Appendix Fig. 16 compares the band structures

for each commensurate configuration in Table I with the band

structure derived from the microscopic Hamiltonian, and we

see very good agreement. We note that we do not include

any lattice relaxation or corrugation effects here in the mi-

croscopic model, nor do we include coupling mediated by

higher graphene bands. Such effects may alter the true model

parameters.

IV. COMMENSURATE MODELS: BAND STRUCTURES

By Eqs. (28), (52), and (53), the continuum model cor-

responding to commensurate twist angle θ0 and translation

vector d is H̃ =
∫

d2p|p〉cH0(p)〈p|c, where the explicit

Hamiltonian matrix is

H0(p) = w2I +
(

h̄vF σθ0/2 · p T0(d)

T
†

0 (d) h̄vF σ−θ0/2 · p

)

, (59)

T0(d) =
3

∑

j=1

TQ j
eid·(cos(θ0/2)K−Q j ). (60)

The matrices TQ j
are given in Eq. (57) and I is the 4 × 4

identity matrix. Recall that σφ is the Pauli matrix vector de-

fined in Eq. (8), Q j is defined in Eq. (33), and the momentum

space basis |p〉c is defined in Eq. (29). Using Eqs. (43) and

(44) we can also describe this model in real space as H̃ =
∫

d2r|r〉cH0(r)〈r|c, where the Hamiltonian matrix takes the

form

H0(r) = w2I +
(

−ih̄vF σθ0/2 · ∇ T0(d)

T
†

0 (d) −ih̄vF σ−θ0/2 · ∇

)

(61)

and the real space basis |r〉c is defined in Eq. (42).

Figure 5 shows the low energy band structures of the model

in Eqs. (59) and (60) for the first two commensurate con-

figurations in Table I, namely (m, n) = (1, 0) (the untwisted

configuration with θ0 = 0) and (m, n) = (5, 3) (θ0 ≈ 38.2◦).

For both configurations, we show three translation vectors d,

and use the parameters in Appendix Table II. Similar band

structures for the other commensurate configurations in Ta-

ble I are shown in Appendix Fig. 16. We compare the band
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FIG. 5. Commensurate band structures using the model in

Eqs. (59) and (60) with parameters in Appendix Table II. The vector

p ranges linearly from −3p0/2 to 3p0/2, where h̄vF p0 = 3|w0|x̂. The

first and second columns correspond to commensurate configurations

with (m, n) = (1, 0) (θ0 = 0◦) and (m, n) = (5, 3) (θ0 ≈ 38.2◦), and

the first and second rows correspond to AA and AB stackings, respec-

tively (see Appendix D 6).

structures of untwisted bilayer graphene and commensurate

TBG in the following cases.

(1) At AA stacking where d = 0. In this case, un-

twisted bilayer graphene is gapless at momentum |p| = |p0| =
3|w0|/(h̄vF ) at charge neutrality as in Fig. 5(a). In contrast,

commensurate TBG develops a gap at |p| = |p0| at charge

neutrality as in Fig. 5(b), due to the relative rotation angle

between the Dirac fermions in different layers and the nonzero

value of χ0. Specifically, the gap at |p| = |p0| is given in

general by

12|w0| min(| cos(φ0/2)|, | sin(φ0/2)|) (62)

where φ0 = χ0 + θ0/2. In the θ0 ≈ 38.2◦ commensurate

configuration, the charge neutrality gap in Fig. 5(b) is approxi-

mately 1.6 meV, which should be experimentally measurable.

(2) At AB stacking where d = s√
N

a0ŷ (recall that s = ±1

was introduced in Eq. (32)). In this case, both untwisted

(Bernal) bilayer graphene, shown in Fig. 5(c), and commen-

surate TBG, shown in Fig. 5(d), have gapless quadratic Dirac

band touchings [85] at charge neutrality.

(3) At generic asymmetric stackings such as d = s√
N

a0x̂.

Untwisted bilayer graphene remains gapless as in Fig. 5(e). In

contrast, commensurate TBG has a tilted band gap at charge

neutrality as in Fig. 5(f), but there may not be an indirect gap.

Although the above observations are made at exactly com-

mensurate angles, they may also hold for local measurements

(e.g., scanning tunneling microscopy experiments) near the

corresponding stackings if the angle θ is close enough to a

commensurate angle θ0. In particular, when θ0 is significantly

far from zero, one expects to observe a local charge neu-

trality gap at AA stacking positions (e.g., a 1.6 meV gap at

θ0 ≈ 38.2◦). However, we note that the local charge neutrality

at AA stacking is generically different from the global charge

neutrality of an incommensurate angle, due to local charge

transfers between AA stacking regions and AB stacking re-

gions. This can be seen in Fig. 7(c), by noting that the moiré

bands at global charge neutrality are close to the conduction

band energy at AA stacking in Fig. 5(b).

V. CONTINUUM MODELS NEAR COMMENSURATION:
MOIRÉ BAND STRUCTURES AND MAGIC ANGLES

The continuum model corresponding to twist angle

θ = θ0 + δθ and translation vector d = 0 is described by

Eqs. (28), (30), and (57). Note that when δθ �= 0, the micro-

scopic Hamiltonians for different choices of translation vector

d differ only by a unitary transformation (see Appendix C)

so it is sufficient to consider the case d = 0. In this section,

we further develop the continuum model Hamiltonian and

investigate its moiré band structures and magic angles using

the parameters determined in Sec. III.

Since δθ is small, we approximate the rotation angles ±θ/2

of the Dirac cones in Eq. (28) by ±θ0/2. This is a common

approximation in the literature [3]. Additionally, we approx-

imate the χ0, w0, w1, and w2 parameters by their values at

angle θ0 (i.e., with δθ = 0), which can be determined using

the method described in Sec. III. The continuum model then

becomes H̃ =
∫

d2p′d2p|p′〉cH(p′, p)〈p|c, where the Hamil-

tonian matrix is

H(p′, p) = w2Iδ2(p′ − p)

+ h̄vF

(

σθ0/2 · p 0

0 σ−θ0/2 · p

)

δ2(p′ − p)

+
3

∑

j=1

(

0 TQ j

0 0

)

δ2(p′ − p − q j )

+
3

∑

j=1

(

0 0

T
†

Q j
0

)

δ2(p′ − p + q j ) (63)

and the matrices TQ j
are defined in Eq. (57). Recall that σφ

is the Pauli matrix vector defined in Eq. (8), q j is defined in

Eq. (35), and the momentum space basis |p〉c is defined in

Eq. (29). Note that w2 only provides a constant energy shift.
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Using Eqs. (43) and (44), we can also describe this model

in real space by H̃ =
∫

d2r|r〉cH(r)〈r|c, where

H(r) = w2I +
(

−ih̄vF σθ0/2 · ∇ T (r)

T †(r) −ih̄vF σ−θ0/2 · ∇

)

,

T (r) =
3

∑

j=1

TQ j
eir·q j , (64)

and the real space basis |r〉c is defined in Eq. (42).

Following Refs. [3,12], we introduce the dimensionless

parameter

α =
|w1|

h̄vF |KM |
=

|w1|
2| sin(δθ/2)|h̄vF

√
N |K|

. (65)

Recall that 4N is the number of atoms in each commensurate

unit cell at twist angle θ0. Note that α−1 ∝ |δθ | when δθ is

small.

As a first step in the search for magic angles, we cut off the

continuum model in Eq. (63) to a subspace of four quasimo-

menta, namely p and p − q j for j ∈ {1, 2, 3}. This truncation

is known as the tripod model approximation [3,80] and it

yields an approximate k · p model at the KM point at charge

neutrality. Generically, the lowest bands of this model have a

Dirac fermion spectrum with Fermi velocity vM . In this tripod

model approximation, it can be shown (see Appendix O) that

the velocity vM reaches its minimum (which is generically

nonzero unless θ0 = 0) near

α−1 ≈
√

3, (66)

given that the energy E at the KM point satisfies |E−w2|
h̄vF |KM | � 1.

Note that the energy E − w2 at the KM point is generically

nonzero when θ0 is nonzero. It is also known that the magic

angle condition in Eq. (66) generically requires w0 � |w1|
to avoid hybridization with the remote bands [80], and this

is also true here (see Fig. 19 for examples illustrating this

point). By Eq. (65), we conclude that the first magic angle

occurs at

δθ = δθmagic ≈ ±
√

3w1

h̄vF

√
N |K|

. (67)

The tripod model approximation, however, does not give the

higher (i.e., second, third, etc.) magic angles.

Figures 6(a) and 6(b) show numerical results for Dirac ve-

locities vM and the bandwidth of the lowest two moiré bands at

charge neutrality, near the commensurate configurations with

(m, n) = (1, 0) (θ0 = 0◦) and (m, n) = (5, 3) (θ0 ≈ 38.2◦),

respectively. The blue curves show vM/vF values computed

from the tripod model, and have a minimum around the angle

in Eq. (67). The red curves show the accurate vM/vF val-

ues computed using 768 moiré bands (see Appendix M and

Fig. 17). In both cases, the value of vM/vF is computed by

numerical differentiation in the q1 direction at KM . Intrigu-

ingly, at θ0 ≈ 38.2◦, the accurate Fermi velocity vM at the first

magic angle δθmagic is almost zero and much smaller than that

found in the tripod model. The black curves show the total

bandwidth (in units of h̄vF |KM |) of the lowest two bands at

charge neutrality using 768 moiré bands. From the accurate

vM/vF (red) and bandwidth (black) curves, we clearly see the

FIG. 6. The red, blue, and black curves show properties of the

spectrum of the continuum Hamiltonian in Eq. (63) as a function of

δθ . The red and blue curves show vM/vF (vM is the Dirac velocity

at the KM point at charge neutrality), while the black curve shows

the bandwidth (in units of h̄vF |KM |) of the two lowest bands at

charge neutrality. The purple dashed lines indicate δθ = δθmagic, at

which point the bandwidth is minimized. The blue curves use the

8 band tripod model analyzed in Appendix O while the red and

black curves use the more accurate 768 band model illustrated in

Appendix Fig. 17. The bandwidth shown in the black curve is the

difference between the highest conduction energy and the lowest va-

lence energy among the points �M , KM , MM , KM/2, MM/2, −MM/2

in BZM . (a) and (b) correspond to the commensurate configurations

with (m, n) = (1, 0) (θ0 = 0◦) and (m, n) = (5, 3) (θ0 ≈ 38.2◦), re-

spectively, and use the parameters in Appendix Table II.

first magic angle around the value in Eq. (67). There are higher

(i.e., smaller) magic angles near θ0 ≈ 38.2◦ as well, where the

lowest two bands become flat.

Figures 7(a) and 7(c) show the moiré band structures at

the first magic angle δθ = δθmagic the commensurate config-

urations with (m, n) = (1, 0) (θ0 = 0◦) and (m, n) = (5, 3)

(θ0 ≈ 38.2◦), respectively. The band structure with θ0 = 0◦

shows the usual magic angle moiré bands of small angle TBG

studied in [3]. At θ0 ≈ 38.2◦, the band structure is clearly not

symmetric across the Fermi level, indicating the absence of

both particle-hole symmetry P [5,45,86] and chiral symmetry

C [12] (see definitions in Appendix L). The lowest two moiré

bands at charge neutrality are still approximately flat near the

KM and −KM points, and are energetically shifted close to a

remote conduction band. The two bands are however not quite

flat near the �M point.
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FIG. 7. Moiré band structures using the model in Eq. (63) with δθ = θ − θ0 = δθmagic (where the bandwidth is minimal in Fig. 6) and the

quasimomentum truncation illustrated in Appendix Fig. 17. The horizontal axes follow the moiré quasimomentum trajectory �M → KM →
MM → �M → −MM → −KM . The two bands nearest charge neutrality are shown in blue and red while all other bands are shown in black.

(a) and (b) correspond to the commensurate configurations with (m, n) = (1, 0) (θ0 = 0◦) and (m, n) = (5, 3) (θ0 ≈ 38.2◦), respectively and

use the parameters in Appendix Table II. The parameters for panels (b) and (d) are the same as those for (a) and (c) except with the values of

w0 reduced by 20%. Similar plots for the other commensurate configurations in Table I are shown in Appendix Fig. 18.

It is known that in small angle TBG, lattice relaxation has

the effect of slightly reducing the value of w0 [10,78,79].

Although we do not here consider relaxation from first prin-

ciples, it is nonetheless worthwhile to consider the effect of a

reduction in w0 on the moiré band structure. Figures 7(b) and

7(d) show moiré band structures using the same parameters

as in Fig. 7(a) and 7(c), but with w0 reduced by 20%. In both

cases, we see that the two lowest bands at charge neutrality

develop a gap from the higher bands, but are otherwise quali-

tatively similar. Moiré band structures at the first magic angle

in Eq. (67) near the other commensurate configurations listed

in Table I are shown in Appendix Fig. 18. Additionally, other

example moiré band structures near the first magic angle can

be found in Figs. 10 and 19.

Appendix Table II shows the values of δθmagic for the first

six commensurate configurations. Due to the small magnitude

of w0 and w1 for nonzero commensurate angles, the corre-

sponding values of δθmagic are so small that they likely cannot

be achieved experimentally. However, we note the possibility

that atomic structural reconstructions (e.g., charge density

wave orders) may occur in large twist angle TBG and enhance

the effective interlayer hoppings w0 and w1. Additionally,

lattice relaxation or corrugation or couplings mediated by

higher graphene bands could also change these parameters.

Provided these perturbations do not break the symmetries of

the moiré superlattice (translation, C3z, C2zT , and C2x), the

form of effective continuum model will not change, and we

may arrive at larger first magic angles in nearly commensurate

TBG.

VI. FLAT BANDS IN THE CONTINUUM MODEL
PARAMETER SPACE: THE HYPERMAGIC REGIME

Regarding the possibility that the actual model parameters

may change due to atomic structural reconstruction, lattice

relaxation or corrugation, or couplings mediated by higher

graphene bands, we now investigate the band structure of the

TBG continuum model near commensuration in Eq. (63) with

arbitrary parameters. We reveal the existence of a remarkable

hypermagic regime centered at φ0 = ±π/2 where many moiré

bands (often 8 or more) become extremely flat simultaneously.

A. Model simplification

We first simplify the continuum model in Eq. (63) by

applying a unitary transformation of the basis from |p〉c to

|p〉′c = |p〉cUθ0
, where

Uθ0
=

(

e−i(θ0/4)σz 0

0 ei(θ0/4)σz

)

. (68)

Such a transformation removes the rotation angles ±θ0/2 for

the Dirac cones, and transforms the Hamiltonian into H̃ =
∫

d2p′d2p|p′〉′cH′(p′, p)〈p|′c, where the Hamiltonian matrix is

given by

H′(p′, p) = w2Iδ2(p′ − p)

+ h̄vF

(

σ · p 0

0 σ · p

)

δ2(p′ − p)
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+
3

∑

j=1

(

0 T ′
Q j

0 0

)

δ2(p′ − p − q j )

+
3

∑

j=1

(

0 0

T
′†

Q j
0

)

δ2(p′ − p + q j ). (69)

Here, σ = σxx̂ + σyŷ is a vector of Pauli matrices, and

T ′
Q j

= ei(θ0/4)σz TQ j
ei(θ0/4)σz . (70)

More explicitly,

T ′
Q j

= w0eiφ0σz + w1(σx cos ζ j + σy sin ζ j ), (71)

where ζ j = 2π ( j−1)

3
for j ∈ {1, 2, 3}, and we have defined

φ0 = χ0 +
θ0

2
. (72)

This implies that the angles χ0 and θ0 do not have fully

independent effects on the band structure. We are left with

a single angle variable φ0 in the continuum model of Eq. (69),

occurring in the matrices T ′
Q j

in Eq. (71). We note that the

angle φ0 in Eq. (72) also occurs in the expression for the

energy gap in the commensurate AA stacking configuration in

Eq. (62). This can also be understood via the transformation

in Eq. (68).

The model can similarly be written in the transformed real

space basis

|r〉′c = |r〉cUθ0
. (73)

The Hamiltonian then becomes H̃ =
∫

d2r|r〉′cH′(r)〈r|′c,

where the Hamiltonian matrix is given by

H′(r) = w2I +
(

−ih̄vF σ · ∇ T ′(r)

T ′†(r) −ih̄vF σ · ∇

)

, (74)

and where we have defined

T ′(r) =
3

∑

j=1

T ′
Q j

eir·q j (75)

in terms of the matrices T ′
Q j

in Eq. (71).

By the results of Appendix L, we can assume without loss

of generality that s = 1 [recall that s affects the direction of

q j , see Eqs. (33) and (35)], and

φ0 ∈
[

0,
π

2

]

, w0 � 0, w1 � 0, δθ � 0. (76)

In addition, since w2 simply shifts the energy bands globally,

we assume w2 = 0 hereafter. As shown in Appendix L, the

moiré band structures at angle φ0 and angle −φ0 are particle-

hole transformations of each other, while the moiré band

structures at angle φ0 and angle π − φ0 are equivalent.

We note that in the chiral limit w0 = 0 [12], the continuum

model in Eq. (69) is independent of the angle φ0. This is

revealed as a symmetry of the TBG continuum model in the

chiral limit in Ref. [14].

B. Changing φ0 in the first magic manifold

We first describe the evolution of the flat bands with respect

to the angle variable φ0 defined in Eq. (72) with the magic

angle criteria α−1 ≈
√

3 and 0 � w0/w1 � 1 [see Eq. (66)].

Following Ref. [80], we refer to the parameter space sat-

isfying these conditions and minimizing the bandwidth of

the lowest two bands at charge neutrality as the first magic

manifold.

Figure 8 contains three heat maps showing the base 10

logarithm of the bandwidth (in units of h̄vF |KM |) of the two

lowest bands at charge neutrality. The first magic manifold

appears in Fig. 8(b) (where φ0 = 0) as a dark nearly horizontal

curve on the left of the plot. In the first magic manifold

with φ0 = 0, the lowest two flat bands at charge neutrality

are symmetric about zero energy due to an anticommuting

particle-hole symmetry P defined in Appendix L [5]. Band

structures for parameters in the first magic manifold with

φ0 = 0 can be found in Fig. 7(a), 7(b), and 10(a).

For a fixed w0/w1 and with α−1 ≈
√

3, tuning φ0 away

from 0 shifts the two flat bands at charge neutrality away

from zero energy (breaking the particle-hole symmetry P),

and gradually increases the bandwidth of the flat bands. As

shown in Fig. 8(a), the bandwidth around α−1 =
√

3 increases

as φ0 increases from 0 to π/2, but still shows a local minimum

near α−1 =
√

3. The precise value of α−1 that minimizes

the bandwidth decreases as φ0 increases. The increase of the

bandwidth is mostly due to band curvature at the �M point.

This can be seen in Figs. 7(c), 7(d), and 10(b)–10(d). In par-

ticular, the lowest two bands at charge neutrality remain quite

flat near the KM and −KM points in the first magic manifold

for small φ0. See Appendix Figs. 18 and 19 for additional band

structures in the first magic manifold.

Figures 11(a) and 11(b) show the real space wave functions

at �M corresponding to the flat bands in Figs. 10(a) and 10(b).

We see that when φ0 is increased from 0 in the first magic

manifold, the annular shape of the real space wave functions

remains unchanged.

C. The hypermagic regime

One may have noticed that in the bandwidth plot of

Fig. 8(a) (where w0/w1 = 0.8) there are three dark spots at

φ0 = π/2 near α−1 = 0.7, 0.4, and 0.3, indicating parameters

with very small bandwidths for the lowest two bands at charge

neutrality. The situation is identical at φ0 = −π/2, which is

related to φ0 = π/2 by a particle-hole transformation P (see

Appendix L).

To investigate what happens to the flat bands at φ0 =
±π/2, we compute the bandwidth of the lowest two bands at

charge neutrality at angle φ0 = π/2, as a function of α−1 and

w0/w1. The result is given in Fig. 8(c), where we find a small

bandwidth region containing three curves with α−1 values

around 0.7, 0.4, and 0.3 when 0 � w0/w1 � 3. These curves

start at w0/w1 = 0 and extend to at least w0/w1 = 5. The

upper two curves merge around w0/w1 = 0.2, α−1 = 0.45

and contain the so-called second magic angle in the chiral

limit at w0/w1 = 0, α−1 = 0.45 [12]. The third magic angle in

the chiral limit at w0/w1 = 0, α−1 = 0.267 lies on the lowest

curve.

Figures 10(e) and 10(f) show example moiré band struc-

tures at points on each of the upper two dark curves in

Fig. 8(c). Surprisingly, in both cases, we find several ex-

tremely flat bands in addition to the lowest two bands at
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FIG. 8. Heat maps showing the base 10 logarithm of the band-

width (in units of h̄vF |KM |) of the two bands nearest the Fermi level

at charge neutrality. As in Fig. 6, the bandwidth was computed as

the largest difference between a conduction energy and a valence

energy in the lowest two bands at charge neutrality among the points

�M , KM , MM , KM/2, MM/2, −MM/2 in BZM . For this computation,

we use the model in Eq. (69) with the quasimomentum truncation

illustrated in Appendix Fig. 17. (a) shows the logarithm of the

bandwidth as a function of α−1 [defined in Eq. (65)] and φ0/(2π )

while w0/w1 is fixed at 0.8. The nearly horizontal dark curve near

α−1 =
√

3 is part of the first magic manifold (see Sec. VI B). (b) and

(c) show the logarithm of the bandwidth as a function of α−1 and

w0/w1 while φ0 is fixed at 0 and π/2, respectively. In panel (b),

the nearly horizontal dark curve at α−1 ≈
√

3 and 0 � w0/w1 � 1

corresponds to the first magic manifold of small angle TBG. In

(c), the three nearly horizontal dark curves around α−1 = 0.7, 0.4,

and 0.3 contain many simultaneous flat bands and are part of the

hypermagic regime discussed in Sec. VI C.

FIG. 9. Heat maps showing the base 10 logarithm of the band-

width (in units of h̄vF |KM |) of the third and eighth narrowest bands

among the first 20 conduction bands and the first 20 valence bands

at charge neutrality for φ0 = π/2 and π/4. The bandwidth was

computed with the points �M , KM , MM , KM/2, MM/2, −MM/2 in

BZM . For this computation, we use the model in Eq. (69) with the

quasimomentum truncation illustrated in Appendix Fig. 17. The dark

regions indicate parameters in the hypermagic regime discussed in

Sec. VI C. See Appendix Fig. 20 for similar heat maps with φ0 = 0,

π/8, and 3π/8.
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FIG. 10. Moiré band structures using the model in Eq. (69) with w0/w1 = 0.8, w2 = 0, and the quasimomentum truncation illustrated

in Appendix Fig. 17. The horizontal axes follow the moiré quasimomentum trajectory �M → KM → MM → �M → −MM → −KM . The

two bands nearest charge neutrality are shown in blue and red while all other bands are shown in black. The first four band structures have

parameters in the first magic manifold (see Sec. VI B) with varying φ0. The last two band structures take parameters from the top two dark

curves in Fig. 10(c).

charge neutrality. In total, there are at least seven flat bands

in Fig. 10(e) and nine flat bands in Fig. 10(f)! Additional

moiré band structures with parameters lying on the curves in

Fig. 8(c) are given in Fig. 21. All of the plots show multiple

flat bands, including those in Figs. 21(i) and 21(j), which

correspond to the second and third magic angles in the chiral

limit.

To further investigate this multiple flat band phenomenon,

we plot in Fig. 9 the bandwidth of the third and eighth nar-

rowest bands among the first 20 conduction bands and the

first 20 valence bands at charge neutrality for φ0 = π/2 and

π/4. In Fig. 9(a), we see that for φ0 = π/2 there is a large

region (the dark diagonal band rising from the bottom left of

the plot) in which there are 3 or more flat bands. Additionally,

Fig. 9(b) shows that the region in which there are 8 or more

flat bands is nearly as large as the region in which there are

3 or more flat bands. Figures 9(c) and 9(d) show that when

φ0 is decreased to π/4 the flat bands are often still present

though less narrow. Appendix Fig. 20 shows similar heat maps

for the angles φ0 = 0, π/8, and 3π/8. At φ0 = 0, there are

very few parameters for which there are more than two flat

bands. We call the parameter region centered at φ0 = ±π/2 in

which there are many simultaneous flat bands the hypermagic

regime.

Taking a closer look at the moiré bands around charge

neutrality in Figs. 10(e) and 10(f), we see groups of three

connected bands in which one band is very flat, there are

Dirac cones at KM and −KM between the other two bands,

and there is a quadratic band touching at �M between the

flat band and one of the other bands. The second to fourth

valence bands at charge neutrality in Figs. 10(e) and 10(f) are

examples of this pattern. Each such group of three connected

bands resembles those of a tight-binding model on the kagome

lattice [82,87,88]. Furthermore, the corresponding real space

wavefunctions at �M in Figs. 11(e) and 11(f) show a kagome

lattice pattern and the Wilson loop bands in Fig. 13(f) are

consistent with exponentially localizable Wannier functions

[89,90]. Intriguingly, there is a band inversion transition along

the lowest dark curve in Fig. 8(c) around w0/w1 = 0.86,

α−1 = 0.3. For w0/w1 slightly below 0.86, the lowest two

moiré bands at charge neutrality are part of a group of three

kagome-like bands while for w0/w1 just above 0.86, they

form a pair of two isolated bands. This transition is illustrated

in Figs. 12(a)–12(c).

In addition to the groups of three connected bands, we

also see groups of four connected bands in which the top

and bottom bands are very flat, there are Dirac cones at

KM and −KM between the middle two bands, and there are

two quadratic band touchings at �M , each involving one flat

band. The second to fifth conduction bands at charge neu-

trality in Figs. 10(e) and 10(f) are examples of this pattern.

These groups of four bands resemble those of the px, py

2-orbital honeycomb lattice tight-binding model [81,82]. Fur-

thermore, the corresponding real space wave functions at �M

in Fig. 11(c) show a honeycomb lattice pattern and the Wilson

loop bands in Fig. 13(d) are consistent with exponentially

localizable Wannier functions [89,90]. We note that similar

groups of three or four bands were also observed in a recent

study of twisted Kitaev bilayers in Ref. [91]. Additional moiré

band structures with parameters in the hypermagic regime
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FIG. 11. Real space wave-function plots at �M using the model

in Eq. (69) with w0/w1 = 0.8 and the quasimomentum truncation

illustrated in Appendix Fig. 17. Each plot shows the sum of the

squares of the norms of the wave functions at �M in the indicated

bands, as a function of space. See Appendix N for more details.

Light colors indicate large values and dark colors indicate small

values, but the color scales in each plot are independent. The valence

(conduction) bands are denoted with negative (positive) integers, so

the highest (lowest) valence (conduction) band is denoted −1 (1).

The white hexagons indicate the hexagonal primitive unit cell of

the moiré superlattice. (a) and (b) correspond to Figs. 10(a) and

10(b) while (c)–(f) correspond to Fig. 10(e).

including some with φ0 < π/2 can be found in Appendix

Fig. 22.

The continuum model in Eq. (69) (with w2 = 0) at φ0 =
±π/2 clearly has neither the particle-hole symmetry P nor the

chiral symmetry C (see Appendix L for the definitions of these

operators), due to the asymmetry between conduction bands

and valence bands, for example in Refs. 10(e) and 10(f). As

shown in Appendix L, conjugation by P maps the Hamiltonian

H̃ at angle φ0 to −H̃ at angle −φ0, while keeping the other

parameters invariant. In contrast, conjugation by C maps H̃

at angle φ0 to −H̃ at angle φ0 − π , while keeping the other

parameters invariant. Therefore the continuum model at angle

φ0 = ±π/2 has a combined CP symmetry:

[CP, H̃ ] = 0 when φ0 = ±
π

2
. (77)

No other values of φ0 possess this symmetry unless w0 = 0.

D. Band topology

Lastly, we discuss the band topology of the lowest two

moiré bands at charge neutrality. It is known that in the BM

model for small angle TBG [3], which corresponds to φ0 = 0

here [see Eq. (72)], the lowest two moiré bands carry a frag-

ile topology protected by C2zT symmetry, provided the two

bands are disconnected from all other bands [4–8,92–94]. It

was further shown in Ref. [86] that in the presence of both

C2zT symmetry and the anticommuting particle-hole symme-

try P, the fragile topology becomes stable. See Appendix L

for the definition of the P operator and recall that particle-hole

symmetry is present only when φ0 = 0.

The fragile topology in the lowest two moiré bands

at charge neutrality can be detected by computing their

Wilson loop winding number modulo 2 [5,86,89,90]. See Ap-

pendix M for an explanation of the Wilson loop matrix and its

band structure. Figure 13(a) shows the Wilson loop bands of

the lowest two moiré bands using parameters corresponding

to small angle TBG at the first magic angle. We find a wind-

ing number of 1, indicating nontrivial fragile topology. Away

from φ0 = 0, the system no longer has particle-hole symmetry

P, so the fragile topology of the lowest two moiré bands can

potentially be lost.

We find that the fragile topology of the lowest two moiré

flat bands at charge neutrality remains robust for any φ0 ∈
[0, π/2] in the first magic manifold (see Sec. VI B) as long

as they are gapped from the remote bands. Two examples of

Wilson loop bands in the first magic manifold (with w0/w1 =
0.8) are given in Figs. 13(b) and 13(c) and both have a winding

number of 1.

Computing Wilson loop bands in the hypermagic regime,

we find that among parameters for which the lowest two

bands are gapped from the higher bands, it is possible for the

lowest two bands to have either trivial topology or nontrivial

fragile topology. In order to transition from one of these

possibilities to the other, there must be a gap closing between

the lowest two bands and the higher bands. We illustrate one

such gap closing in Figs. 12(d)–12(f). The gap closing occurs

in Fig. 12(e) near the crossing between the upper two dark

curves in Fig. 8(c). The parameters in Fig. 12(d) are near the

second magic angle in the chiral limit and as a result the lowest

two bands at charge neutrality have fragile topology [4–8]. In

contrast, the bands in Fig. 12(f) are topologically trivial and

resemble those of a honeycomb lattice tight-binding model.

The Wilson loop bands corresponding to Figs. 12(d) and

12(f) are given in Figs. 13(g) and 13(h) and have Wilson loop

winding numbers of 1 and 0, respectively. Figures 13(e) shows

the Wilson bands corresponding to the lowest two bands

at charge neutrality in Fig. 10(e) which are topologically

trivial.
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FIG. 12. Zoomed plots of moiré band structures near charge neutrality using the Hamiltonian in Eq. (69) and the quasimomentum trun-

cation illustrated in Fig. 17. The horizontal axes follow the moiré quasimomentum trajectory �M → KM → MM → �M → −MM → −KM .

The two bands nearest charge neutrality are shown in blue and red while all other bands are shown in black. (a)–(c) show a band inversion

transition near the lowest dark curve in Fig. 8(c). In (a), the lowest two moiré bands at charge neutrality form two of a group of three connected

kagome-like bands. In contrast, in (c), the lowest two moiré bands at charge neutrality are gapped from the remote bands. A larger band

structure with the same parameters as (a) is shown in Appendix Fig. 22(b). (d)–(f) show a gap closing transition between the lowest two bands

at charge neutrality and the remote bands around the crossing of the upper two dark curves in Fig. 8(c). At this crossing, the topology of the

lowest two bands changes from fragile topological in (d) to trivial in (f). The Wilson bands corresponding to (d) and (f) are shown in Figs. 13(g)

and 13(h).

VII. DISCUSSION

We have derived an effective low energy continuum model

for TBG at angle θ = θ0 + δθ near generic commensurate

angles θ0. The model is characterized by complex interlayer

hopping amplitudes w0eiχ0 and w0e−iχ0 at commensurate AA

stackings, a real interlayer hopping amplitude w1 at commen-

surate AB/BA stackings, and a global energy shift w2. The

twist angle θ0 and the phase χ0 combine into a single angle

parameter φ0 = χ0 + θ0/2 which affects the band structure of

the effective continuum model in Eq. (69). Unless θ0 = 0, as

in small angle TBG, φ0 is generically nonzero. Taking the

δθ → 0 limit yields a low-energy model for commensurate

TBG, which gives a nonzero charge neutrality gap in the

AA stacking case if φ0 �= 0 (mod π ), and gapless quadratic

band touching in the AB/BA stacking cases. For commen-

surate angle θ0 ≈ 38.2◦, the gap in the AA stacking case is

around 1.6 meV and is therefore experimentally detectable.

Away from commensurate angles, we find the first magic

angle δθmagic near a generic commensurate angle θ0 is still

approximately given by α−1 =
√

3 with α defined in Eq. (65).

When φ0 �= 0 at the first magic angle, the lowest two moiré

bands at charge neutrality are generically flat except in the

vicinity of the �M point.

We have also revealed a hypermagic parameter regime

centered at φ0 = ±π/2, in which several moiré bands (often 8

or more) become flat simultaneously. The hypermagic regime
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FIG. 13. Wilson loop bands for various connected groups of

energy bands using the Hamiltonian in Eq. (69) and the quasimo-

mentum truncation illustrated in Fig. 17. See Appendix M for an

explanation of Wilson loop band structure. The valence (conduction)

bands are denoted with negative (positive) integers, so the highest

(lowest) valence (conduction) band is denoted −1 (1). The parame-

ters of (a)–(c) are the same as those in Figs. 10(a), 10(b), and 10(d).

The parameters of (d)–(f) are the same as those in Fig. 10(e). The

parameters of (g) and (h) are the same as those in Figs. 12(d) and

12(f).

includes the second and third magic angles in the chiral limit

as well as parameters with large w0/w1. We have identified a

gap closing transition in the hypermagic regime between the

lowest two bands at charge neutrality and the higher bands,

across which the topology of the lowest two bands changes

from fragile topological to trivial.

Many of the flat bands in the hypermagic regime belong

to disconnected groups of bands which may be understood

in terms of effective tight-binding models. Some groups

of three bands resemble the kagome lattice tight-binding

model which contains a flat band [82,87,88]. Other groups

of four bands resemble the px, py 2-orbital honeycomb

lattice tight-binding model which contains two flat bands

[81,82].

The lowest two bands at charge neutrality often resem-

ble the honeycomb lattice tight-binding model which can be

used to describe monolayer graphene. If such hypermagic

parameters can be achieved experimentally, one may ex-

pect the strongly interacting physics in the flat bands to be

analogous to that in the conventional Hubbard model with

trivial single-particle bands. This may allow the occurrence

of antiferromagnetic states, in contrast to the spin-valley fer-

romagnetic states in interacting magic angle TBG with φ0 = 0

[44,45,57–59].

A practical future concern is how to achieve a continuum

model with φ0 near ±π/2 and a sufficiently large energy

scale for the parameters w0 and w1 to observe the hypermagic

regime in experiment. The effective hopping parameters w0

and w1 at nonzero commensurate angles θ0 (without lattice

relaxation or other effects not considered here) are generically

small. For example, w0 and w1 at θ0 ≈ 38.2◦ are about 1 per-

cent of those at θ0 = 0◦. One idea to enhance w0 and w1 is to

explore the possibility of atomic interaction induced structural

reconstruction (e.g., charge density waves) or lattice relax-

ation, which may enhance the moiré potential modulation

between commensurate AA and AB/BA stackings. In addi-

tion, for small twist angles near the untwisted configuration

θ0 = 0, breaking the mirror symmetry My (while preserv-

ing the other symmetries) would allow χ0 to be nonzero,

and therefore also φ0 to be nonzero. Thus strong My break-

ing perturbations could transform small angle TBG into a

large φ0 model realization. Another interesting question is

whether or not there exist other moiré models (e.g., involv-

ing twisted graphene multilayers or other twisted materials)

for which there is a similar hypermagic regime where many

bands become simultaneously flat. If other such models exist,

it would be interesting to consider their common features

and the underlying reasons for the existence of these hyper-

magic regimes. We leave these ideas and questions for future

study.
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APPENDIX A: MICROSCOPIC HAMILTONIAN
MATRIX ELEMENTS

In this Appendix, we derive Eqs. (6) and (9) for the intra-

and interlayer microscopic Hamiltonian matrix elements. Re-

call that L is the Bravais lattice of monolayer graphene, P is its

reciprocal lattice, BZ is the Brillouin zone, Ll = R−lθ/2L, and

Pl = R−lθ/2P. The Bloch states |k, l, α〉 are defined by Eq. (3)

and satisfy the normalization condition Eq. (4). We first de-

rive Eq. (6) under the simplifying assumption μ = 0 so that

Eq. (5) becomes 〈r′, l, α′|H |r, l, α〉 = t+(r′ + τ l ′

α′ − r − τ l
α ).

Using the identity

1

|BZ|
∑

r∈L

eik·r =
∑

G∈P

δ2(k − G), (A1)

where |BZ| is the area of BZ, we compute

〈k′, l, α′|H |k, l, α〉 =
1

|BZ|
∑

r,r′∈Ll

e−ik′·(r′+τ l
α′ )eik·(r+τ l

α )t+
(

r′ + τ l
α′ − r − τ l

α

)

=
1

|BZ|
∑

r′∈Ll

e−ir′·(k′−k)
∑

r∈Ll

e−ik′·τ l
α′ eik·(r−r′+τ l

α )t+
(

r′ − r + τ l
α′ − τ l

α

)

=
∑

Gl ∈Pl

δ2(k′ − k − Gl )
∑

r∈Ll

e−ik′·τ l
α′ eik·(−r+τ l

α )t+
(

r + τ l
α′ − τ l

α

)

=
∑

Gl ∈Pl

δ2(k′ − k − Gl )e
−iGl ·τ l

α′
∑

r∈Ll

e−ik·(r+τ l
α′−τ l

α )t+
(

r + τ l
α′ − τ l

α

)

= 〈k′, l, α′|k, l, α′〉
∑

r∈L+τα′−τα

e−i(Rlθ/2k)·rt+(r). (A2)

Note that we have used the rotational symmetry of the t+(r) function in the last step. When μ �= 0, the Hamiltonian is modified

by subtraction of μ times the identity. As a result, the general form of the matrix element is

〈k′, l, α′|H |k, l, α〉 = 〈k′, l, α′|k, l, α′〉

⎛

⎝−μ +
∑

r∈L+τα′ −τα

e−i(Rlθ/2k)·rt+(r)

⎞

⎠, (A3)

which is Eq. (6).

Next, we derive Eq. (9). Using Eq. (A1) and the identities

t−(r) =
∫

d2q
(2π )2

t̂−(q)eiq·r, |�||BZ| = (2π )2, (A4)

where |�| is the area of the primitive unit cell � of L, we compute

〈k′,−l, α′|H |k, l, α〉 =
1

|BZ|
∑

r′∈L−l

∑

r∈Ll

e−ik′·(r′+τ−l

α′ )eik·(r+τ l
α )t−

(

r′ + τ−l
α′ − r − τ l

α

)

=
1

|BZ|
∑

r′∈L−l

∑

r∈Ll

∫

d2q
(2π )2

t̂−(q)e−ik′·(r′+τ−l

α′ )eik·(r+τ l
α )eiq·(r′+τ−l

α′ −r−τ l
α )

= |BZ|
∫

d2q
(2π )2

t̂−(q)eiτ−l

α′ ·(q−k′ )eiτ l
α ·(k−q)

∑

G−l ∈P−l

δ2(q − k′ − G−l )
∑

Gl ∈Pl

δ2(k − q + Gl )

=
∑

G−∈P−

∑

G+∈P+

t̂−(k + Gl )

|�|
eiτ−l

α′ ·G−l e−iτ l
α ·Gl δ2(k + Gl − k′ − G−l ), (A5)

which is Eq. (9).

APPENDIX B: DIRAC CONES

In this Appendix, we derive Eq. (7). Since this equation is

an approximation of Eq. (6) and both equations depend on

the crystal momentum k only through Rlθ/2k, it suffices to

consider the case θ = 0. That is, we need to show that the

single particle Hamiltonian for monolayer graphene at K + p
takes the form

h̄vF σ0 · p + O(|p|2) (B1)

when the chemical potential is chosen appropriately. Although

this is well known, the most common derivation employs a
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model of graphene that has only first or second order hopping

(for example, see Refs. [95,96]). We will now give an argu-

ment based on symmetry to show that Eq. (B1) holds with

arbitrary order hopping. This is similar to the symmetry argu-

ment given in Sec. III in the case of twisted bilayer graphene

near commensuration.

For monolayer graphene, we consider an orthonormal basis

of spinless pz orbitals |r, α〉 for r ∈ L and α ∈ {A, B} localized

at r + τα . We ignore the electron spin because of the weak

spin-orbit coupling in graphene [83]. The Bloch states are

defined by

|k, α〉 =
1

√
|BZ|

∑

r∈L

eik·(r+τα ) |r, α〉 (B2)

for crystal momentum vectors k, and satisfy the normalization

condition

〈k′, α′|k, α〉 = δα′,α

∑

G∈P

δ2(k′ − k − G)e−iτα ·G. (B3)

We consider a microscopic Hamiltonian Hmono with matrix

elements

〈r′, α′|Hmono|r, α〉 = t+(r′ + τα′ − r − τα ) − μδr′,rδα′,α,

(B4)

where μ is a chemical potential and t+ : R
2 → R is a rotation-

ally symmetric function (i.e., t+(r) depends only on |r|). The

symmetries of Hmono are generated by the unitary operators

C6z (rotation by π/3 about ẑ), My (reflection across the xz

plane), and the antiunitary operator T (time-reversal). These

operators take the form

C6z |k, α〉 = |Rπ/3k,−α〉 ,

My |k, α〉 = |Rxk,−α〉 ,

T |k, α〉 = |−k, α〉 ,

(B5)

where Rx denotes reflection across the x axis. The symmetry

subgroup that preserves the high-symmetry crystal momen-

tum K is generated by C2zT , C3z, and My, where C2z = C3
6z

and C3z = C2
6z. Using Eq. (B3), we find

C2zT |K + p, α〉 = |K + p,−α〉 , (B6)

C3z |K + p, α〉 = ei(2π/3)α |K + R2π/3p, α〉 , (B7)

My |K + p, α〉 = |K + Rxp,−α〉 . (B8)

If we expand the matrix elements of Hmono to second order

around K, we find

〈K + p′, α′|Hmono|K + p, α〉

= (Hmono(p)α′,α + O(|p|2))δ2(p′ − p), (B9)

where Hmono(p) is a Hermitian 2 × 2 matrix that is linear in

p. Requiring

[C2zT , Hmono] = [C3z, Hmono] = [My, Hmono] = 0 (B10)

implies

Hmono(p) = σxHmono(p)σx (B11)

= e−i(2π/3)σzHmono(R2π/3p)ei(2π/3)σz (B12)

= σxHmono(Rxp)σx, (B13)

where we use the notation M for the complex conjugate of a

matrix M. We now expand Hmono in Pauli matrices as

Hmono(p) = h0
0σ0 + hx

0σx + h
y

0σy + hz
0σz

+
(

h0
xσ0 + hx

xσx + hy
xσy + hz

xσz

)

px

+
(

h0
yσ0 + hx

yσx + hy
yσy + hz

yσz

)

py, (B14)

where the h coefficients are real. First, we choose the value of

μ so that h0
0 = 0. Next, Eq. (B11) implies hz

0 = hz
x = hz

y = 0

and Eq. (B12) implies hx
0 = h

y

0 = h0
x = h0

y = 0 and hx
y + ih

y
y =

i(hx
x + ih

y
x ). If we define vF and φF by h̄vF eiφF = hx

x + ih
y
x, we

have

Hmono(p) = h̄vF σφF
· p. (B15)

Finally, Eq. (B13) implies φF = 0 so the Hamiltonian is de-

scribed by Eq. (B1). We conclude that the C2zT and C3z

symmetries imply that Hmono takes the form of a Dirac cone

and My symmetry determines the rotation angle of the Dirac

cone.

APPENDIX C: EQUIVALENT CONFIGURATIONS

Note that the microscopic Hamiltonian in Eq. (5) is

uniquely determined up to unitary equivalence by the relative

positions of the carbon atoms in the xy plane and their par-

titioning into two layers. We will therefore consider systems

differing only by an isometry of the xy plane and a relabeling

of the basis states to be equivalent. This leads to significant

redundancy in the specification of bilayer configurations, as

we will now show.

With angle and translation parameters (θ, d), the atoms are

located at sites

{R−θ/2(r + τα ) − d/2|r ∈ L, α ∈ {A, B}} ∪ {Rθ/2(r + τα )

+d/2|r ∈ L, α ∈ {A, B}}, (C1)

where the two terms indicate the top and bottom layers.

Since this set and partitioning is invariant under the mapping

θ �→ −θ , d �→ −d (with an interchange of the two layers)

the configurations with parameters (θ, d) and (−θ,−d) are

equivalent.

Next, consider the configuration with parameters (θ +
π/3, R−π/6d). If we rotate the whole system by the angle π/6,

the bottom layer atoms are located at

{Rθ/2+π/3(r + τα ) + d/2|r ∈ L, α ∈ {A, B}} (C2)

and the top layer atoms are located at

{R−θ/2(r + τα ) − d/2|r ∈ L, α ∈ {A, B}}. (C3)

Since Rπ/3L = L and Rπ/3τα − τ−α ∈ L, the bottom layer

atoms are equivalently located at

{Rθ/2(r + τα ) + d/2|r ∈ L, α ∈ {A, B}}. (C4)

Since these locations now match Eq. (C1), we see that the con-

figurations with parameters (θ, d) and (θ + π/3, R−π/6d) are

equivalent. As a result of these equivalences, we can restrict θ

to the interval [0, π/3) and note that the configurations (θ, d)

and (π/3 − θ,−R−π/6d) are equivalent.

Next, consider the configuration with parameters (θ, d +
X) for a vector X ∈ R

2. If we translate the whole system by
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X/2, the atoms are located at sites

{R−θ/2(r + τα ) − d/2|r ∈ L, α ∈ {A, B}} ∪ {Rθ/2(r + τα )

+ d/2 + X|r ∈ L, α ∈ {A, B}}. (C5)

If X ∈ L− then this matches Eq. (C1) so the configurations

with parameters (θ, d) and (θ, d + X) are equivalent. Sim-

ilarly, if we translate the whole system by −X/2, we see

that when X ∈ L+ the configurations with parameters (θ, d)

and (θ, d + X) are equivalent. Putting these results together,

we see that whenever X ∈ L− + L+, the configurations with

parameters (θ, d) and (θ, d + X) are equivalent.

We show in Appendix D 2 that when θ is a commen-

surate angle, L− + L+ is a Bravais lattice whose reciprocal

lattice is P− ∩ P+. Furthermore, it follows from the results

of Appendix D 6 that for commensurate θ , no set S larger

than L− + L+ has the property that the configurations with

parameters (θ, d) and (θ, d + X) are equivalent for all d ∈ R
2

and all X ∈ S. On the other hand, we show in Appendix E

that when θ is not a commensurate angle, L− + L+ is a dense

subset of R
2. Since the Hamiltonian depends continuously

on d, it follows that for incommensurate θ the configura-

tions with parameters (θ, 0) and (θ, d) are equivalent for

all d ∈ R
2.

APPENDIX D: PROPERTIES OF COMMENSURATE
CONFIGURATIONS

Using a combination of elementary number theory and

symmetry arguments, these appendices enumerate and char-

acterize the commensurate configurations of TBG. The

approach taken in Appendixes D 1 and D 2 is similar to that in

Ref. [2], but we include detailed derivations for completeness.

We follow the notations of Secs. II A and II B.

1. Enumeration of commensurate configurations

We first seek to enumerate the commensurate configura-

tions. Recall that a1, a2 are primitive vectors for L and b1, b2

are primitive vectors for P, as illustrated in Fig. 1. Let a

and b denote matrices with columns (a1, a2) and (b1, b2),

respectively. Explicitly, we have

a = a0

(√
3

√
3/2

0 −3/2

)

,

b =
2π

a0

(√
3/3 0

1/3 −2/3

)

. (D1)

Recall from Sec. II B that the bilayer system is commensu-

rate when L− ∩ L+ �= {0}, and in this case L− ∩ L+ is the

commensuration superlattice. L− ∩ L+ �= {0} is equivalent to

the existence of nonzero integer vectors u+ and u− such

that

u+ = a−1Rθau−. (D2)

Similarly, P− ∩ P+ �= {0} is equivalent to the existence of

nonzero integer vectors v+ and v− such that

v+ = b−1Rθbv−. (D3)

Note that

a−1Rθa =
(

x0 + y0 2y0

−2y0 x0 − y0

)

, (D4)

b−1Rθb =
(

x0 − y0 2y0

−2y0 x0 + y0

)

, (D5)

where x0 = cos θ , y0 = 1√
3

sin θ . It follows that the bilayer

system is commensurate if and only if x0 and y0 are both ratio-

nal, which is equivalent to the L− ∩ L+ �= {0} and P− ∩ P+ �=
{0}.

From here on, we will use θ0 in place of θ when we

assume the system is commensurate in order to match the

notation of Sec. II B. If the system is commensurate, then

(x0, y0) is a rational point on the ellipse x2 + 3y2 = 1. Unless

(x0, y0) = (1, 0), the line through (x0, y0) and (1,0) intersects

the y axis at a rational point (0, m/n) where m, n are relatively

prime integers with n > 0. Solving x2 + 3y2 = 1 simultane-

ously with x = − n
m

y + 1 yields

x0 =
3m2 − n2

3m2 + n2
,

y0 =
2mn

3m2 + n2
. (D6)

The special case (x0, y0) = (1, 0) corresponds to (m, n) =
(1, 0). By the results of Appendix C, we can restrict θ0 ∈
[0, π/3) so that m > n � 0 and θ0 = cos−1(x0).

2. Commensuration lattices

We now determine the primitive vectors and reciprocal lat-

tices of L− ∩ L+ and P− ∩ P+ assuming θ0 is a commensurate

angle. We have

a−1Rθ0
a =

1

N

(

α β

−β γ

)

, (D7)

b−1Rθ0
b =

1

N

(

γ β

−β α

)

, (D8)

α = (m + n)(3m − n)/d0, (D9)

β = 4mn/d0 = α − γ , (D10)

γ = (m − n)(3m + n)/d0, (D11)

N = (3m2 + n2)/d0, (D12)

where d0 is the greatest common divisor of the numerators

of α, β, γ , N . Note that α should not be confused with the

model parameter defined in Eq. (65) and used in the main text.

If 3 � n (i.e., 3 does not divide n) then the numerator of N is

1 (mod 3) so 3 � d0. On the other hand, if 3|n then 3|d0 but

9 � d0 since 3 � m. In either case, 3 � N . If one of m and n is

even, then the numerator of N is odd so d0 is odd. On the

other hand, if m and n are both odd then 4|d0, but considering

the numerator of β we see that 8 � d0. If p is a prime divisor

of d0 other than 2 then considering the numerator of β, we see

that p|m or p|n but not both. Considering the numerator of N ,
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we see that p = 3. We conclude

d0 = gcd(4mn, 3m2 + n2)

=

⎧

⎪

⎨

⎪

⎩

1 if (2|n or 2|m) and 3 � n

3 if (2|n or 2|m) and 3|n
4 if 2 � n and 2 � m and 3 � n

12 if 2 � n and 2 � m and 3|n

, (D13)

so that gcd(β, N ) = 1. Also, since det(a−1Rθ0
a) = 1 we have

αγ + β2 = N2.

Assume for now that (m, n) �= (1, 0) so that β �= 0. Writing

u− in components as u− = xx̂ + yŷ for integers x, y, Eq. (D2)

becomes

1

N

(

α β

−β γ

)(

x

y

)

∈ Z
2, (D14)

which is in turn equivalent to the pair of congruences

αx + βy ≡ 0 (mod N ), (D15)

−βx + γ y ≡ 0 (mod N ). (D16)

Since β �= 0 and gcd(β, N ) = 1, we can multiply Eq. (D16)

through by β. However since −β2 ≡ αγ (mod N ), we

see that this equation is implied Eq. (D15). Furthermore,

Eq. (D15) can be solved as

x = n1,

y = n1(−β−1α) + n2N (D17)

for integers n1, n2, where β−1 is the smallest non-negative

integer such that β−1β = 1 (mod N2). As a result, the set of

integer vectors u such that a−1Rθ0
au is an integer vector forms

a Bravais lattice with primitive vectors

u−
1 = x̂ − β−1αŷ,

u−
2 = N ŷ. (D18)

In the case (m, n) = (1, 0), a−1Rθ0
a = I , N = 1, and β−1 =

0 so this result still holds. The image of this lattice under

a−1Rθ0
a is also a Bravais lattice with corresponding primitive

vectors

u+
1 = a−1Rθ0

au−
1 = −αρx̂ + (βρ − β−1N )ŷ,

u+
2 = a−1Rθ0

au−
2 = βx̂ + γ ŷ,

ρ = (β−1β − 1)/N ∈ NZ.

(D19)

We conclude that the commensuration superlattice takes the

form

L− ∩ L+ = {R−θ0/2a(n1u+
1 + n2u+

2 )|n1, n2 ∈ Z}

= {Rθ0/2a(n1u−
1 + n2u−

2 )|n1, n2 ∈ Z}. (D20)

Note that the unit cell of L− ∩ L+ has area N |�|.
We can use this result to compute the reciprocal lattice of

L− ∩ L+. Let this reciprocal lattice be called P̃ and note that

primitive vectors for P̃ can be given by

ũ1 =
1

N
R−θ0/2b(γ x̂ − βŷ) = Rθ0/2bx̂,

ũ2 = R−θ0/2b[(−βρ/N + β−1)x̂ − (αρ/N )ŷ]

=
1

N
Rθ0/2b(β−1αx̂ + ŷ). (D21)

Since ρ/N is an integer, ũ1 ∈ P−, ũ2 ∈ P+ so P̃ ⊂ P− + P+.

However, by the definition of the reciprocal lattice P− + P+ ⊂
P̃ so that P̃ = P− + P+. Note that the unit cell for P̃ has area

|BZ|/N .

Since Eqs. (D7) and (D8) are related by the interchange

of α and γ , corresponding results for the reciprocal lattices

can be obtained by interchanging α and γ . The set of integer

vectors v such that b−1Rθ0
bv is an integer vector forms a

Bravais lattice with primitive vectors

v−
1 = x̂ − β−1γ ŷ,

v−
2 = N ŷ, (D22)

and the image of this lattice under b−1Rθ0
b is also a Bravais

lattice with corresponding primitive vectors

v+
1 = b−1Rθ0

bv−
1 = −γ ρx̂ + (βρ − β−1N )ŷ,

v+
2 = b−1Rθ0

bv−
2 = βŷ + αŷ. (D23)

We conclude

P− ∩ P+ = {R−θ0/2b(n1v+
1 + n2v+

2 )|n1, n2 ∈ Z}

= {Rθ0/2b(n1v−
1 + n2v−

2 )|n1, n2 ∈ Z}, (D24)

the reciprocal lattice of P− ∩ P+ is L− + L+, and the unit cell

of P− ∩ P+ has area N |BZ|.

3. Equivalences between top and bottom K and K′ points

We will now derive Eqs. (12) to (14) starting with Eq. (14).

By Eq. (2),

Kl = R−lθ0/2K

= R−lθ0/2(2b1 + b2)/3

= R−lθ0/2b(2x̂ + ŷ)/3 (D25)

and similarly K′
l = R−lθ0/2b(x̂ + 2ŷ), so that Kl − K′

l =
R−lθ0/2(x̂ − ŷ)/3. Examining the primitive vectors ũ1 and ũ2

for P− + P+ in Eq. (D21), we see that if R−lθ0/2bv ∈ P− + P+
where v is a rational vector then the denominators of v · x̂ and

v · ŷ must divide N . Since 3 � N , it follows that Kl − K′
l �∈

P− + P+, which is Eq. (14).

Next, since 3 � N there is an integer k ∈ {0, 1, 2} such that

kN = 2 + β−1γ (mod 3) (D26)

so that by Eq. (D22) we have

v−
1 + kv−

2 = x̂ + 2ŷ (mod 3). (D27)

Recalling that v+
j = b−1Rθ0

bv−
j for j = 1, 2 we then have

K− = −Rθ0/2b(v−
1 + kv−

2 )/3 + G−

= −R−θ0/2b(v+
1 + kv+

2 )/3 + G−,

K′
− = Rθ0/2b(v−

1 + kv−
2 )/3 + G′

−

= R−θ0/2b(v+
1 + kv+

2 )/3 + G′
− (D28)

for some G−, G′
− ∈ P−. Multiplying these equations by R−θ0

,

we find

K+ = −R−θ0/2b(v−
1 + kv−

2 )/3 + G+,

K′
+ = R−θ0/2b(v−

1 + kv−
2 )/3 + G′

+, (D29)
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where G+ = R−θ0
G− ∈ P+ and G′

+ = R−θ0
G′

+ ∈ P+. Note

that

K+ − K− = R−θ0/2b(v+
1 − v−

1 + k(v+
2 − v−

2 ))/3 + G+ − G−
(D30)

so K+ − K− ∈ P− + P+ if and only if R−θ0/2b(v+
1 − v−

1 +
k(v+

2 − v−
2 ))/3 ∈ P− + P+. By the same argument as before,

we see that K+ − K− ∈ P− + P+ if and only if

v+
1 + kv+

2 = x̂ + 2ŷ (mod 3) (D31)

in which case we also have K′
+ − K′

− ∈ P− + P+. Similarly,

K+ − K′
− ∈ P− + P+ if and only if

v+
1 + kv+

2 = 2x̂ + ŷ (mod 3) (D32)

in which case we also have K′
+ − K− ∈ P− + P+.

Using Eqs. (D23) and (D26), αγ + β2 = N2 = 1 (mod 3),

and β = α − γ , one can show

v+
1 + kv+

2 = N (α + γ )(2x̂ + ŷ) (mod 3). (D33)

Additionally, using Eq. (D13), we find

N (α + γ ) = 2(9m4 − n4)/d2
0

=
{

1 (mod 3) if 3 � n

2 (mod 3) if 3|n .
(D34)

Let (J−, J′
−) denote (K−, K′

−) when 3|n and (K′
−, K−)

when 3 � n. We then conclude K+ − J−, K′
+ − J′

− ∈ P− +
P+, which is equivalent to Eqs. (12) and (13).

4. Pairs of complementary commensurate configurations

It follows from AppendixC that when θ0 is a commensurate

angle, π/3 − θ0 is also a commensurate angle. We will now

prove this statement another way and consider an important

relationship between the two configurations that is used in

Sec. II B.

Returning to the notation of Appendix D 1, let

x1 = cos(π/3 − θ0) =
1

2
(x0 + 3y0),

y1 =
1

√
3

sin(π/3 − θ0) =
1

2
(x0 − y0). (D35)

Since θ0 is a commensurate angle, x0 and y0 are rational, and

therefore x1 and y1 are rational. It follows that π/3 − θ0 is

also commensurate. If (x0, y0) corresponds to the integer pair

(m0, n0) and (x1, y1) corresponds to the integer pair (m1, n1)

then

m1

n1

=
y1

1 − x1

=
3m2

0 − 2m0n0 − n2
0

3(m0 − n0)2
. (D36)

If 3|n0 then 3 � m0 so the denominator of this fraction is

divisible by 3 exactly once. However, the numerator is also

divisible by 3 so we conclude 3 � |n1. On the other hand, sup-

pose 3 � |n0. It is straightforward to see that the largest power

of 3 dividing the numerator is the same as the largest power of

3 dividing m0 − n0, so we conclude 3|n1. As a result, in one

of the commensurate configurations corresponding to θ0 and

π/3 − θ0 we have (J−, J′
−) = (K−, K′

−), and in the other we

have (J−, J′
−) = (K′

−, K−).

5. The lattices Q+ and Q0

In this section, we prove Eq. (32), find the minimal norm

elements of (K− + P−) ∩ (K+ + P+), and derive the forms of

L− ∩ L+, P− ∩ P+, L− + L+, and P− + P+. As explained in

Sec. II B, we assume 3|n so that J− = K−. Since (K− + P−) ∩
(K+ + P+) is closed under addition by elements of P− ∩ P+
and has the property that the difference of any two elements is

in P− ∩ P+, we must have

(K− + P−) ∩ (K+ + P+) = k0 + P− ∩ P+ (D37)

for some vector k0. Since P− ∩ P+ is a triangular lattice,

k0 + P− ∩ P+ has at most three elements of minimal norm.

However, since (K− + P−) ∩ (K+ + P+) has 3-fold rotational

symmetry and does not contain 0, it must have exactly three

elements of minimal norm. Since (K− + P−) ∩ (K+ + P+)

additionally has symmetry under reflection across the vector

K, one of the elements of minimal norm must be proportional

to K. Since the unit cell of P− ∩ P+ has area N |BZ|, we

conclude P− ∩ P+ =
√

NP and the element of minimal norm

proportional to K must be Q1 = s
√

NK where s is 1 or −1.

The other two elements of minimal norm are Q2 = R2π/3Q1

and Q3 = R4π/3Q1, and we can write

(K− + P−) ∩ (K+ + P+) = s
√

NK + P− ∩ P+. (D38)

Recalling from Appendix D 2 that the reciprocal lattice of

P− ∩ P+ is L− + L+, it follows that L− + L+ = L/
√

N . Ap-

plying the same argument to the real space lattices, we see

that L− ∩ L+ =
√

NL so that P− + P+ = P/
√

N .

We will now determine the sign s. We have s
√

NK − Kl ∈
Pl or equivalently (s

√
NRlθ0/2 − I )K ∈ P. Using the half-

angle formulas and the results of Appendixes D 1 and D 2 we

find

cos(θ0/2) =
m

√
3

√
d0N

, (D39)

sin(θ0/2) =
n

√
d0N

, (D40)

(s
√

NRlθ0/2 − I )K =
4π

√
3

9a0

((sm
√

3/d0 − 1)x̂

+ (sln/
√

d0)ŷ). (D41)

For comparison,

n1b1 + n2b2 =
4π

√
3

9a0

((3n1/2)x̂ + (n1/2 − n2)
√

3ŷ).

(D42)

By Eq. (D13), when m ± n is odd, we have d0 = 3 so the

equation (s
√

NRlθ0/2 − I )K = n1b1 + n2b2 has a solution if

and only if sm = 1 (mod 3). When m ± n is even, we have

d0 = 12 so the same equation now has a solution if and only

if sm = 2 (mod 3). We summarize both cases by saying

s =
m ± n
√

d0/3
(mod 3) and s = ±1. (D43)

6. AA, AB, and BA stacking commensurate configurations

We say that a commensurate configuration has AA stacking

if there is an A sublattice atom on the top layer that is directly

above some A sublattice atom on the bottom layer. Similarly
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FIG. 14. The real space structure of commensurate twisted bilayer graphene as in Fig. 2 but now with nonzero d. The left (right) plot

corresponds to AB (BA) stacking. The top (bottom) atoms are represented by dots (circles), the A (B) sublattices in each layer are colored blue

(red), and the purple rhombus is a primitive unit cell for L− ∩ L+.

we say that a commensurate configuration has AB (BA) stack-

ing if there is a B (A) sublattice atom on the top layer that is

directly above some A (B) sublattice atom on the bottom layer.

For the commensurate configuration with θ0 = 0, it is clear

that d = 0 (i.e., no interlayer translation) corresponds to AA

stacking, d = a0ŷ corresponds to AB stacking, and d = −a0ŷ
corresponds to BA stacking. We will now derive a generaliza-

tion of this correspondence for commensurate configurations

with 3|n.

We first consider AA stacking. In this case, there is a pair of

vectors r+ ∈ L+ and r− ∈ L− such that r+ + τ+
A = r− + τ−

A .

Equivalently, we have τ+
A − τ−

A ∈ L− + L+. Using Eq. (D40),

we have

τ+
A − τ−

A =
(

R−θ0/2τA − d/2
)

−
(

Rθ0/2τA + d/2
)

= −
(

Rθ0/2 − R−θ0/2

)

(a0ŷ) − d

= 2 sin(θ0/2)(a0x̂) − d

=
2n

√
d0N

a0x̂ − d

= n′a1/
√

N − d, (D44)

where n′ = 2n/
√

3d0 is an integer since 3|n and d0 ∈ {3, 12}
by Eq. (D13). Since we found in Appendix D 5 that L− +
L+ = L/

√
N we see that τ+

A − τ−
A ∈ L− + L+ if and only

if d ∈ L− + L+. We conclude that AA stacking corresponds

to d ∈ L− + L+. Since τB = R−π/3τA and a2 = R−π/3a1 we

have

τ+
B − τ−

B = n′a2/
√

N − d (D45)

so that τ+
B − τ−

B ∈ L− + L+ if and only if d ∈ L− + L+. It

follows that AA stacking can equivalently be defined by saying

that there is a B sublattice atom on the top layer that is

directly above some B sublattice atom on the bottom layer.

A commensurate configuration with AA stacking is shown in

Fig. 2.

Next, we consider AB and BA stacking. In AB stack-

ing, there are vectors rl ∈ Ll such that r+ + τ+
B = r− + τ−

A ,

or equivalently τ+
B − τ−

A ∈ L− + L+. Similarly, BA stacking

is equivalent to τ+
A − τ−

B ∈ L− + L+. Using Eqs. (D39) and

(D40), we have

τ l
A − τ−l

B = −
(

Rlθ0/2τB − R−lθ0/2τA

)

− ld

= −R−π/6

(

R(lθ0−π/3)/2 − R−(lθ0−π/3)/2

)

τA − ld

= 2 sin((lθ0 − π/3)/2)R−π/6(a0x̂) − ld

= (l sin(θ0/2)
√

3 − cos(θ0/2))(τB − τA) − ld

= −m′(τB − τA)/
√

N − ld, (D46)

where m′ = (m − ln)/
√

d0/3 is an integer with m′ = s

(mod 3) by Eq. (D43). It follows that τ l
A − τ−l

B ∈ L− +
L+ if and only if d ∈ − lsa0√

N
ŷ + L− + L+ so that AB stack-

ing corresponds to d ∈ s√
N

a0ŷ + L− + L+ and BA stacking

corresponds to d ∈ − s√
N

a0ŷ + L− + L+. Commensurate con-

figurations with AB and BA stacking are shown in Fig. 14.

APPENDIX E: L− + L+ and P− + P+ ARE DENSE
FOR INCOMMENSURATE θ

Suppose θ is an incommensurate angle. Recall from Ap-

pendix D 1 that this implies x0 and y0 are not both rational.

It follows from Eq. (D4) that both columns and both rows

of the matrix a−1Rθa contain an irrational value. It is well

known that for any irrational number z, the set of fractional

parts of integer multiples of z is dense in the interval [0, 1).

Equivalently, the set of integer linear combinations of 1 and

z is dense in R. It follows that the set of integer linear com-

binations of a−1Rθax̂, a−1Rθ aŷ, x̂, ŷ is dense in R
2. Since

the linear map R−θ/2a is continuous and density is preserved

under continuous maps, we conclude that L− + L+ is dense in

R
2. A similar argument using Eq. (D5) shows that P− + P+ is

dense in R
2 as well.
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APPENDIX F: PROPERTIES OF THE DISTANCE
FUNCTION d

(1) We consider 1 in Sec. II C which claims d (k, l, k, l ) =
0. If we write k + Gl = k + G−l where Gl = G−l = 0, we

then have d (k, l, k, l ) = |G−l | = 0.

(2) We consider 2 in Sec. II C which claims

d (k, l, k′, l ′) = d (k′, l ′, k, l ). If k′ − k �∈ P− + P+ then

d (k, l, k′, l ′) = ∞ = d (k′, l ′, k, l ). Otherwise, suppose

k + Gl = k′ + G−l for some G− ∈ P−, G+ ∈ P+. There are

two cases to consider.

(i) If l ′ = −l then k′ + Gl ′ = k + G−l ′ so that

d (k, l, k′, l ′) = |k + Gl | = |k′ + Gl ′ |
= d (k′, l ′, k, l ). (F1)

(ii) If l ′ = l then k′ − Gl ′ = k − G−l ′ so that

d (k, l, k′, l ′) = |G−l | = | − G−l ′ | = d (k′, l ′, k, l ). (F2)

(3) We consider 3 in Sec. II C which claims

d (k, l, k′′, l ′′) � d (k, l, k′, l ′) + d (k′, l ′, k′′, l ′′). (F3)

When either term on the right-hand side is ∞, the inequality

is trivially satisfied. If the left-hand side is ∞ then k′′ − k �∈
P− + P+. This implies that at least one of the terms on the

right-hand side must be ∞ as well, so the inequality is satis-

fied.

Otherwise, suppose

k + Gl = k′ + G−l ,

k′ + G′
l ′ = k′′ + G′

−l ′ (F4)

for some G−, G′
− ∈ P− and G+, G′

+ ∈ P+. It follows that

k + Gl + G′
l ′ = k′′ + G−l + G′

−l ′ . (F5)

We now consider three cases.

(a) Suppose l = l ′ = l ′′ and without loss of general-

ity we take l = l ′ = l ′′ = +. Then d (k, l, k′, l ′) = |G−|,
d (k′, l ′, k′′, l ′′) = |G′

−| and k + G′′
l = k′′ + G′′

−l , where

G′′
− = G− + G′

−,

G′′
+ = G+ + G′

+. (F6)

We then have

d (k, l, k′′, l ′′) = |G′′
−|

= |G− + G′
−|

� d (k, l, k′, l ′) + d (k′, l ′, k′′, l ′′). (F7)

(b) Suppose l = l ′ �= l ′′ and without loss of gener-

ality we take l = l ′ = +, l ′′ = −. Then d (k, l, k′, l ′) =
|G−|, d (k′, l ′, k′′, l ′′) = |k′′ + G′

−| and k + G′′
l = k′′ +

G′′
−l , where

G′′
− = G− + G′

−,

G′′
+ = G+ + G′

+. (F8)

We then have

d (k, l, k′′, l ′′) = |k′′ + G′′
−|

= |G− + (k′′ + G′
−)|

� d (k, l, k′, l ′) + d (k′, l ′, k′′, l ′′). (F9)

(c) Suppose l = l ′′ �= l ′ and without loss of gener-

ality we take l = l ′′ = +, l ′ = −. Then d (k, l, k′, l ′) =
|k′ + G−|, d (k′, l ′, k′′, l ′′) = |k′ + G′

−| and k + G′′
l =

k′′ + G′′
−l , where

G′′
− = G− − G′

−,

G′′
+ = G+ − G′

+. (F10)

We then have

d (k, l, k′′, l ′′) = |G′′
−|

= |G− − G′
−|

= |(k′ + G−) − (k′ + G′
−)|

� d (k, l, k′, l ′) + d (k′, l ′, k′′, l ′′). (F11)

The last case in which l �= l ′ = l ′′ follows from the sym-

metry of d and the case l = l ′ �= l ′′.

APPENDIX G: LEVEL SETS OF d

In this section, we prove the characterization of d described

in Sec. II D. Recall that P0
± = R−lθ0/2P and that θ = θ0 + δθ

is an incommensurate angle, where θ0 is a commensurate

angle and δθ is small. Let k ∈ R
2, l ∈ {+,−}, and let k0 =

Rlδθ/2k. Suppose that k′, l ′ satisfy d (k, l, k′, l ′) < ∞ so that

we can write k + Gl = k′ + G−l for unique vectors G− ∈ P−,

G+ ∈ P+. Define G0
± = R±δθ/2G± ∈ P0

± and k′
0 = k0 + G0

l −
G0

−l ∈ k0 + P0
− + P0

+. We then have

k′ − Rlδθ/2k′
0 = (k + Gl − G−l ) − Rlδθ/2

(

k0 + G0
l − G0

−l

)

= R−lδθ/2

(

k0 + G0
l

)

− Rlδθ/2

(

k0 + G0
l

)

= −lD(δθ )Q−l , (G1)

where D(δθ ) is defined by Eq. (19) and

Q−l = k0 + G0
l = k′

0 + G0
−l ∈

(

k0 + P0
l

)

∩
(

k′
0 + P0

−l

)

= Q(k0, l, k′
0,−l ). (G2)

Similarly,

k′ − R−lδθ/2k′
0 = (k + Gl − G−l ) − R−lδθ/2

(

k0 + G0
l − G0

−l

)

= R−lδθ/2G0
−l − Rlδθ/2G0

−l

= −lD(δθ )Ql , (G3)

where

Ql = G0
−l = k0 − k′

0 + G0
l ∈ P0

−l ∩
(

k0 − k′
0 + P0

l

)

= Q(k0, l, k′
0, l ). (G4)

It follows that

k′ = R−l ′δθ/2k′
0 − lD(δθ )Ql ′ , (G5)

where Ql ′ ∈ Q(k0, l, k′
0, l ′). Furthermore, the vectors k′

0

and Ql ′ are uniquely determined because the vectors

G− and G+ are uniquely determined. Additionally, since

|Q−l | = |k0 + G0
l | = |k + Gl | and |Ql | = |G0

l | = |Gl |
we have d (k, l, k′, l ′) = |Ql ′ |. The converse statement
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can be proved simply by tracing the above argument

backwards.

APPENDIX H: EQUIVALENCE OF SMALL ROTATIONS
AND SPATIALLY VARYING TRANSLATIONS

We now derive Eqs. (47) and (48) which relate the T and Sl

potentials in commensurate and incommensurate configura-

tions. In this section, we denote continuum states |p, l, α〉c and

|r, l, α〉c with twist angle θ = θ0 + δθ and translation vector

d by |p, l, α, δθ, d〉c and |r, l, α, δθ, d〉c, respectively. Since

|p, l, α, 0, d〉c is a state with crystal momentum Kl + p which

has been shifted by −ld/2 we must have

|p, l, α, 0, d〉c = e−il (Kl +p)·d/2 |p, l, α, 0, 0〉c . (H1)

Similarly, since |p, l, α, δθ, 0〉c is a momentum state that has

been rotated by −lδθ/2, we must have

|p, l, α, δθ, 0〉c = |Rlδθ/2p, l, α, 0, 0〉
c
. (H2)

By Eq. (40), we then have

|r, l, α, 0, d〉 = e−ilKl ·d/2 |r + ld/2, l, α, 0, 0〉 ,

|r, l, α, δθ, 0〉 = |Rlδθ/2r, l, α, 0, 0〉 , (H3)

so that Eq. (45) implies

|r, l, α, δθ, 0〉 = eilKl ·D(δθ )r/2 |r, l, α, 0, D(δθ )r〉 + O(δθ2).

(H4)

Next, let the continuum Hamiltonian H̃ with twist angle

θ = θ0 + δθ and translation vector d be denoted H̃ (δθ, d).

Since the pattern of atoms near position r with θ = θ0 + δθ

and d = 0 is the same to first order in δθ as the pattern with

θ = θ0 and d = D(δθ )r, we must have

〈r′, l ′, α′, δθ, 0|c H̃ (δθ, 0) |r, l, α, δθ, 0〉c

= 〈r′, l ′, α′, δθ, 0|c H̃ (0, D(δθ )r) |r, l, α, δθ, 0〉c

+ O(δθ2). (H5)

It follows that

T (r, δθ, 0) = (〈r,+, A, δθ, 0|c 〈r,+, B, δθ, 0|c)H̃ (δθ, 0)

(

|r,−, A, δθ, 0〉c

|r,−, B, δθ, 0〉c

)

= e−i(K−+K+ )·D(δθ )r/2(〈r,+, A, 0, D(δθ )r|c 〈r,+, B, 0, D(δθ )r|c)H̃ (0, D(δθ )r)

(

|r,−, A, 0, D(δθ )r〉c

|r,−, B, 0, D(δθ )r〉c

)

+ O(δθ2)

= e−i cos(θ/2)K·D(δθ )rT (r, 0, D(δθ )r) + O(δθ2), (H6)

which is equivalent to Eq. (47). Equation (48) follows from a

similar calculation.

APPENDIX I: SYMMETRY REPRESENTATIONS

In this section, we give the representations of the unitary

and antiunitary symmetries of twisted bilayer graphene re-

ferred to in Sec. III. For θ �= 0, the spinless symmetries of the

full Hamiltonian are generated by the unitary operators C6z

(rotation by π/3 about ẑ), C2x (rotation by π about x̂), and the

antiunitary operator T (time reversal). These operators take

the form

C6z |k, l, α〉 = |Rπ/3k, l,−α〉 ,

C2x |k, l, α〉 = − |Rxk,−l,−α〉 ,

T |k, l, α〉 = |−k, l, α〉 , (I1)

where Rx denotes reflection across the x axis. The minus

sign for C2x reflects the fact that |r, l, α〉 are pz orbitals. The

symmetry subgroup preserving valley is generated by C2zT ,

C3z, and C2x, where C2z = C3
6z and C3z = C2

6z. Using Eq. (4),

we find

C2zT |Kl + p, l, α〉 = |Kl + p, l,−α〉 ,

C3z |Kl + p, l, α〉 = ei(2π/3)α |Kl + R2π/3p, l, α〉 ,

C2x |Kl + p, l, α〉 = − |K−l + Rxp,−l,−α〉 . (I2)

As a result, the appropriate representations on the |p, l, α〉c

space are

C2zT |p〉c = |p〉c

(

σx 0

0 σx

)

,

C3z|p〉c = |R2π/3p〉c

(

ei(2π/3)σz 0

0 ei(2π/3)σz

)

,

C2x|p〉c = |Rxp〉c

(

0 −σx

−σx 0

)

,

(I3)

where |p〉c is defined in Eq. (29).

In the case θ = 0, there is an additional valley preserving

unitary symmetry My (reflection across the xz plane). This

operator has representations

My |k, l, α〉 = |Rxk, l,−α〉 ,

My |K + p, l, α〉 = |K + Rxp, l,−α〉 ,

My|p〉c = |Rxp〉c

(

σx 0

0 σx

)

.

(I4)

For θ near 0, My can be considered an approximate symmetry.

APPENDIX J: DETERMINING THE MODEL
PARAMETERS WHEN δθ = 0

Recall from Sec. II E that in the commensurate case, the

continuum Hamiltonian approximates the four bands of H

nearest the Fermi level at charge neutrality. Explicitly, this
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model takes the form of a p dependent 4 × 4 matrix as shown

in Eq. (59). In order to determine the parameters for this

model, we will now describe a method to determine an ef-

fective Hamiltonian for these four bands directly from the

microscopic Hamiltonian H .

Recall from Sec. II B that for commensurate configura-

tions, H is block diagonal with blocks of dimension 4N .

Let H (p) be the Hamiltonian block containing Bloch states

|Kl + p, l, α〉 for l ∈ {+,−}, α ∈ {A, B}. In practice, the

4N × 4N matrix representation for H (p) can be computed

accurately from Eqs. (6) and (9) with finitely many terms for

each sum as long as the hopping functions t+(r) and t̂−(k)

decay rapidly enough. We diagonalize H (p) as

H (p) =
4N
∑

j=1

E j (p) |p, j〉 〈p, j| (J1)

for real eigenvalues E1(p) � E2(p) � · · · � E4N (p) and or-

thonormal eigenvectors |p, j〉. The indices j from 2N − 1 to

2N + 2 correspond to the four bands described by the contin-

uum Hamiltonian.

Define the projection operators

P0(p) =
∑

l=±

∑

α=±
|Kl + p, l, α〉 〈Kl + p, l, α| ,

P1(p) =
2N+2
∑

j=2N−1

|p, j〉 〈p, j| . (J2)

Since the states |p, j〉 are almost completely supported on the

states |Kl + p, l, α〉, the operators P0(p) and P1(p) are nearly

the same. It follows that there is a canonical unitary operator

U (p) called the direct rotation that satisfies

U (p)P1(p)U †(p) = P0(p) (J3)

and minimizes the Frobenius norm of U (p) − I over all uni-

tary operators satisfying Eq. (J3) [97]. The only condition

upon which this theorem is dependent is ||P0(p) − P1(p)||op <

1, which is satisfied in practice. Here, we use the notation

||M||op to denote the operator norm of M. The direct rotation

is given explicitly by

U (p) =
√

(I − 2P0(p))(I − 2P1(p)), (J4)

where
√

M denotes the operator square root of M and is

defined using a branch cut of the function z �→
√

z along the

negative real axis in the complex plane, with
√

1 = 1. The

operator

Heff(p) =
2N+2
∑

j=2N−1

E j (p)U (p) |p, j〉 〈p, j|U †(p) (J5)

is the result of projecting H (p) onto the four bands of

interest and then applying the direct rotation into the sub-

space spanned by the Bloch states |Kl + p, l, α〉. Under

the mapping |Kl + p, l, α〉 �→ |p, l, α〉c, Heff(p) maps to an

operator that should be considered the correct continuum

Hamiltonian.

Let Heff(p) be the 4 × 4 matrix representation of Heff(p)

with respect to the basis |Kl + p, l, α〉 so that Heff(p) is

FIG. 15. The maximal relative error between Heff(p) and H0(p)

as a function of |p|/|p0|, where h̄vF |p0| = 3|w0| [see Eq. (J7)]. The

maximum is taken over d in a 10 × 10 discretization of a unit cell of

2L/
√

N and five values of p with a given norm.

directly comparable to the matrix H0(p) defined in Eq. (59).

These two matrices are explicitly dependent on p, but also

implicitly dependent on the translation vector d. Recall

from Appendix D 6 that d = 0 corresponds to AA stacking,

d = s√
N

a0ŷ corresponds to AB stacking, and d = − s√
N

a0ŷ
corresponds to BA stacking. By Eqs. (57) and (60), we

have

T0(0) = 3w0eiχ0σz ,

T0(±dAB) = 3
2
w1(σx ∓ iσy), (J6)

where dAB = s√
N

a0ŷ so that w0, χ0,w2 determine H0(p) for

AA stacking configurations, while w1,w2 determine H0(p)

for AB and BA stacking configurations. Furthermore, to deter-

mine the model parameters, it suffices to compare Heff(p) and

H0(p) at p = 0 and a single generic d value. For simplicity,

we instead use p = 0 and both d = 0 and d = dAB to deter-

mine the model parameters shown in Tables I and II. These

computations are performed using the hopping functions t±(r)

given in Appendix K.

To validate the accuracy of these results, we compute the

relative error

||Heff(p) − H0(p)||
||Heff(p)||

(J7)

using the parameters in Table II, where ||M|| denotes the

Frobenius norm of M. We compute this relative error as a

function of d and p, where d varies over a unit cell of 2L/
√

N

(recalling from Sec. II E that both H and H̃ are periodic

up to unitary equivalence with respect to L/
√

N), and |p|
varies from 0 to 3|p0|/2 where h̄vF |p0| = 3|w0| (see Fig. 5).

Specifically, for each value of |p|, we compute the maximal

relative error for d in a 10 × 10 discretization of a unit cell

of 2L/
√

N and for five values of p with the given magnitude.

The results are shown in Fig. 15 for the first 6 commensurate

configurations. The relative errors for all configurations other

than (m, n) = (1, 0) (and θ0 = 0◦) are less than 10−2 for all

|p| values considered and are less than 10−3.5 for p = 0. The

relative errors for (m, n) = (1, 0) are larger but still bounded

by 10−1 for all |p| values considered, and the relative error at

p = 0 is less than 0.03. We conclude that H̃ is an accurate

model for the four bands of H nearest the Fermi level at
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FIG. 16. Commensurate band structures. The lines use the model in Eqs. (59) and (60) with parameters in Table II whereas the dots use the

microscopic Hamiltonian in Eqs. (6) and (9). The vector p ranges linearly from −3p0/2 to 3p0/2, where h̄vF p0 = 3|w0|x̂. Recall that d = 0
and d = s√

N
a0ŷ correspond to AA and AB stacking, respectively.

charge neutrality for all d and small p. Figure 16 compares

the eigenvalues of Heff(p) and H0(p) for each commensurate

configuration in Table II as a function of p for three values

of d.

APPENDIX K: t±(r) FUNCTIONS

Following Ref. [77], we take

t+(r) = A0e(a0−|r|)/δ0 ,
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TABLE II. Numerically determined model parameters reported with nine significant figures.

(m, n) θ0 N s χ0 (w0,w1, w2) in μeV δθmagic in microdegrees

(1, 0) 0◦ 1 1 0.0◦ (112682.504, 112682.504, 0.0) 1255782.99

(5, 3) 38.2132107◦ 7 1 −3.09972641◦ (958.62462, 1051.57009, −4444.6652) 4421.48495

(7, 3) 27.7957725◦ 13 −1 125.164435◦ (5.5027, 3.61749, −4431.53104) 9.96025

(4, 3) 46.8264489◦ 19 1 −0.993893031◦ (33.1618, 33.19161, −4320.05111) 83.97407

(11, 3) 17.8965511◦ 31 1 1.23811361◦ (0.65302, 0.65326, −4426.40937) 1.31881

(11, 9) 50.5699921◦ 37 1 −0.861668226◦ (1.29978, 1.30022, −4026.88676) 2.34902

t−(r) = A0e(a0−
√

|r|2+r2
z )/δ0

|r|2

|r|2 + r2
z

+ B0e(rz−
√

|r|2+r2
z )/δ0

r2
z

|r|2 + r2
z

, (K1)

where A0 = −2.7 eV and B0 = 0.48 eV are transfer integrals,

rz = 2.36a0 is the interlayer spacing, and δ0 = 0.318a0 is

chosen so that t+(a1) ≈ t+(τB − τA)/10. Using Eqs. (6) and

(7), we find

h̄vF /a0 ≈ 3.68423316 eV. (K2)

APPENDIX L: SIGNS OF THE PARAMETERS
AND DISCRETE SYMMETRIES

We now consider the continuum Hamiltonian H̃ in Eq. (69)

as a function H̃ (φ0,w0,w1,w2, δθ, s) of the shown parame-

ters. By Eq. (36), we have

H̃ (φ0,w0,w1,w2,−δθ, s)

= H̃ (φ0,w0,w1,w2, δθ,−s)

= −H̃ (φ0,−w0,−w1,−w2, δθ, s). (L1)

Similarly, by Eq. (71), we have

H̃ (φ0 + π,w0,w1,w2, δθ, s) = H̃ (φ0,−w0,w1,w2, δθ, s).

(L2)

Next, we consider the particle hole operator P, first chiral

operator C (which is often simply called the “chiral operator”

[12] when there is no ambiguity), and second chiral operator

C′ defined in Ref. [56]

P|p〉′c = |−p〉′c
(

0 −I

I 0

)

,

C|p〉′c = |p〉′c
(

σz 0

0 σz

)

,

C′|p〉′c = |p〉′c
(

σz 0

0 −σz

)

.

(L3)

These operators act within the K valley and the origin of

quasimomentum p is the �M point of the moiré Brillouin zone.

These operators are unitary and satisfy

PH̃ (φ0,w0,w1,w2, δθ, s)P−1

= −H̃ (−φ0,w0,w1,−w2, δθ, s),

CH̃ (φ0,w0,w1,w2, δθ, s)C−1

= −H̃ (φ0,−w0,w1,−w2, δθ, s),

C′H̃ (φ0,w0,w1,w2, δθ, s)C′−1

= −H̃ (φ0,w0,−w1,−w2, δθ, s). (L4)

It follows that H̃ is always equivalent up to a sign and a unitary

change of basis from the case in which s = 1, 0 � φ0 � π/2,

and w0,w1, δθ � 0, so it is sufficient to restrict the parameters

in these ranges in calculations.

In particular, we have

CPH̃ (φ0,w0,w1,w2, δθ, s)(CP)−1

= H̃ (π − φ0,w0,w1,w2, δθ, s). (L5)

Therefore, when φ0 = π/2, the system has a combined CP

symmetry, although neither C nor P is a symmetry. Moreover,

noting that the CP operator map momentum p to −p, CP

symmetry implies that the energy spectrum at φ0 = π/2 is

symmetric between p and −p, as can be seen in Figs. 10(d)–

10(f).

APPENDIX M: WILSON LOOPS AND
QUASIMOMENTUM TRUNCATION

In order to make the moiré translation symmetry of

the Hamiltonian in Eq. (69) more explicit, we now

reparametrize the states |p〉′c defined in Eq. (68), follow-

ing the approach of [80]. Note that we can write the

moiré quasimomentum p + lq1 uniquely in the form q +
g0 where q ∈ BZM and g0 ∈ D(δθ )Q0. We then have p =
q − g where g = lq1 − g0 ∈ D(δθ )Ql . With this motiva-

tion, for q ∈ R
2, g ∈ D(δθ )Ql , l ∈ {+,−}, and α ∈ {A, B},

we define

|q, g, α〉M = |q − g, l, α〉′c (M1)

where the row vector of states |p〉′c is given in components by

|p〉′c = (|p,+, A〉′c |p,+, B〉′c |p,−, A〉′c |p,−, B〉′c).

(M2)

Although the states |q, g, α〉M for q ∈ BZM form a continuous

basis for the Hilbert space, it is useful to define the overcom-

plete set of states |q, g, α〉M for q ∈ R
2.

Using this notation, the continuum Hamiltonian can be

written

H̃ =
∫

BZM

d2q
∑

g′,g∈
D(δθ )(Q−∪Q+ )

∑

α′,α∈
{A,B}

|q, g′, α′〉M

× H(q)(g′,α′ ),(g,α) 〈q, g, α|M , (M3)
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where the infinite dimensional Hamiltonian matrix H(q) has

elements

H(q)(g′,α′ ),(g,α) = w2δg′,gδα′,α + h̄vF (σ · (q − g))α′,αδg′,g

+
3

∑

j=1

(T ′
Q j

)α′,αδg′,g−q j
+ (T ′†

Q j
)α′,αδg′,g+q j

.

(M4)

For g0 ∈ D(δθ )Q0, we have

H(q + g0)(g′,α′ ),(g,α) = H(q)(g′−g0,α′ ),(g−g0,α) (M5)

so that

H(q + g0) = V (g0)H(q)V †(g0), (M6)

where the unitary matrix V (g0) has elements

V (g0)(g′,α′ ),(g,α) = δg′,g+g0
δα′,α (M7)

and is called the embedding matrix.

Consider some set of Nb � 1 bands of H(q) that are dis-

connected from all other bands throughout BZM . Let U (q) be

a matrix whose columns form an orthonormal basis for this

set of bands. Importantly, we require

U (q + g0) = V (g0)U (q) (M8)

for g0 ∈ D(δθ )Q0. We define the non-Abelian Berry connec-

tion

A(q) = U †(q)∇qU (q). (M9)

Although U is not actually periodic, Eq. (M8) implies

A(q + g0) = A(q) (M10)

for g0 ∈ D(δθ )Q0. As a result, A is a well defined U (Nb)

gauge connection on the torus T = R
2/D(δθ )Q0.

For any closed loop � in T , we define the gauge covariant

Wilson loop unitary

W (�) = P exp

[

−
∫

�

A(q) · dq
]

, (M11)

where P indicates path ordering. For each 0 � x < 1, we de-

fine the loop �x(t ) = x(q3 − q2) + t (q1 − q2) for 0 � t � 1.

Following Ref. [98], we compute

W (�x ) = P exp

[

−
∫

�x

A(q) · dq
]

= lim
Nq→∞

0
∏

j=Nq−1

exp[−A(�x(t j+1)) · (�x(t j+1) − �x(t j ))]

= lim
Nq→∞

0
∏

j=Nq−1

I − A(�x(t j+1)) · (�x(t j+1) − �x(t j ))

= lim
Nq→∞

0
∏

j=Nq−1

I − U †(�x(t j+1))(U (�x(t j+1)) − U (�x(t j )))

= lim
Nq→∞

0
∏

j=Nq−1

U †(�x(t j+1))U (�x(t j )), (M12)

where I is the identity matrix and t j = j/Nq. Since W (�x )

is gauge covariant, its spectrum is gauge invariant. We will

refer to the spectrum of −i ln(W (�x )) as a function of x as the

Wilson loop band structure.

When we numerically compute the energy or Wilson loop

band structure of H̃ , we must truncate the infinite dimensional

matrices H(q), V (g0), and U (q) to a finite number of dimen-

sions. Since the infinite dimensional nature of H(q) comes

from the infinite size of Ql , we equivalently need to choose a

truncation of the lattices Ql . In order to make the symmetry

operators C3z, C2x, and P well defined (see Appendixes I and

L), we need a truncation Q̃l of Ql satisfying

Q̃− = −Q̃+,

R2π/3Q̃± = RxQ̃± = Q̃±. (M13)

One such truncation is given explicitly by

Q̃l = {n1Q1 + n2Q2 + n3Q3|n1 + n2 + n3

= l, |n1| + |n2| + |n3| � M} (M14)

for some M � 1. See Fig. 17 for an illustration of D(δθ )Q̃l

as defined by Eq. (M14) with M = 15. This truncation is

equivalent to the “�M-centered model” in Ref. [80]. As long

as Eq. (M13) is satisfied, the finite dimensional truncated

Hamiltonian retains exact C2zT , C3z, and C2x symmetries,

and Eqs. ((L1), (L2), (L4), and (L5) hold as well. However,

it should be noted that the moiré translation symmetry in

Eq. (M6) is exact only when M = ∞.

APPENDIX N: REAL SPACE WAVEFUNCTIONS

In this section, we derive the form of the real space wave

functions shown in Fig. 11. Suppose v is an eigenvector of

H(q) where H is given in Eq. (M4). In that case,

|ψv〉 =
∑

g∈D(δθ )(Q−∪Q+ )

∑

α∈{A,B}

v(g,α) |q, g, α〉M (N1)
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FIG. 17. The truncated lattices D(δθ )Q̃l where Q̃l is given by

Eq. (M14) with M = 15. The blue (red) dots indicate l = +(−),

the black dot indicates the origin, and the gray lines correspond to

nonzero interlayer matrix elements in Eq. (M4). Each of Q̃± has 192

points so this truncation corresponds to a model with 768 bands.

is the corresponding eigenvector of the continuum Hamil-

tonian H̃ . Suppose the row vector of states |r〉′c defined in

Eq. (73) can be written in components as

|r〉′c = (|r,+, A〉′c |r,+, B〉′c |r,−, A〉′c |r,−, B〉′c). (N2)

Note that |r, l, α〉′c differs from |r, l, α〉c in Eq. (40) only by a

phase and satisfies

|r, l, α〉′c =
1

2π

∫

d2pe−ip·r |p, l, α〉′c (N3)

where the states |p, l, α〉′c are defined in Eq. (M2).

Using Eq. (M1), we have

〈r, l, α|′cψv〉 =
eiq·r

2π

∑

g∈D(δθ )Ql

v(g,α)e
−ig·r. (N4)

The plots in Fig. 11 show

∑

l∈{+,−}

∑

α∈{A,B}

| 〈r, l, α|′cψv〉 |2 (N5)

summed over one or more eigenvectors v with q = �M . Im-

portantly, this quantity is invariant under unitary mixing of the

eigenvectors involved.

APPENDIX O: TRIPOD MODEL APPROXIMATION
FOR MAGIC ANGLE CONDITIONS

In this section, we use Eqs. (M3) and (M4) to approxi-

mate the condition under which the bands of the continuum

Hamiltonian nearest the Fermi level at charge neutrality be-

come flat near the KM point in the moiré Brillouin zone. In

order to make the model analytically tractable, we use the

truncation

Q̃+ = {Q1},
Q̃− = Q1 + {Q1, Q2, Q3}, (O1)

which produces a model called the “tripod Hamiltonian”

[3,80]. Although this truncation does not satisfy Eq. (M13),

it nonetheless enables a simple calculation of the magic angle

in small angle TBG.

We now consider the eigenvalue problem for the tri-

pod Hamiltonian near the KM point. We decompose the

eigenvector ψ in the form

ψ = (|KM + p, q1, A〉M |KM + p, q1, B〉M )ψ0

+
3

∑

j=1

(|KM + p, q1 + q j, A〉
M

|KM + p, q1 + q j, B〉
M

)ψ j,

(O2)

where ψ0, ψ1, ψ2, ψ3 are two dimensional complex column

vectors, p is a small vector, and the states |q, g, α〉M are

defined in Eq. (M1). The eigenvalue problem then takes the

form

(w2I + h̄vF σ0 · p)ψ0 +
3

∑

j=1

T ′
Q j

ψ j = Eψ0,

T
′†

Q j
ψ0 + (w2I + h̄vF σ0 · (p − q j ))ψ j = Eψ j, (O3)

where E is the energy and T ′
Q j

is given by Eq. (71). Subtracting

the w2 terms and multiplying by

λ =
s

h̄vF |KM |
=

s

2h̄vF

√
N |K| sin(δθ/2)

, (O4)

the eigenvalue problem takes the dimensionless form

σ0 · p′ψ0 +
3

∑

j=1

T̃ ′
Q j

ψ j = E ′ψ0, (O5)

T̃
′†

Q j
ψ0 + σ0 · (p′ − q′

j ))ψ j = E ′ψ j, (O6)

where E ′ = λ(E − w2), p′ = sp/|KM |, T̃ ′
Q j

= λT ′
Q j

=
ei(θ0/4)σz (λTQ j

)ei(θ0/4)σz , and q′
j = sq j/|KM | = R

j−1

2π/3ŷ. We

first solve Eq. (O6) for ψ j

ψ j = (E ′I − σ0 · (p′ − q′
j ))

−1T̃
′†

Q j
ψ0 (O7)

=
E ′I + σ0 · (p′ − q′

j )

E ′2 − |p′ − q′
j |2

T̃
′†

Q j
ψ0 (O8)

assuming that E ′2 − |p′ − q′
j |2 �= 0. Next, we use use

Eq. (O5) to find

(

E ′I − σ0 · p′ +
3

∑

j=1

T̃ ′
Q j

E ′I + σ0 · (p′ − q′
j )

|p′ − q′
j |2 − E ′2 T̃

′†
Q j

)

ψ0 = 0.

(O9)
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We first consider the case p′ = 0. Eq. (O9) then becomes

0 =

(

E ′I +
3

∑

j=1

T̃ ′
Q j

E ′I − σ0 · q′
j

1 − E ′2 T̃
′†

Q j

)

ψ0

=

(

E ′I +
E ′

1 − E ′2

3
∑

j=1

T̃ ′
Q j

T̃
′†

Q j
−

1

1 − E ′2

3
∑

j=1

T̃ ′
Q j

(σ0 · q′
j )T̃

′†
Q j

)

ψ0. (O10)

Using the identities

3
∑

j=1

T̃ ′
Q j

T̃
′†

Q j
= 3λ2

(

w
2
0 + w

2
1

)

I,

3
∑

j=1

T̃ ′
Q j

(σ0 · q′
j )T̃

′†
Q j

= 6λ2
w0w1 sin(φ0)I, (O11)

Eq. (O10) becomes

(

E ′ +
E ′

1 − E ′2 3λ2
(

w
2
0 + w

2
1

)

−
1

1 − E ′2 6λ2
w0w1 sin(φ0)

)

ψ0 = 0. (O12)

Since ψ0 �= 0, we conclude

E ′3 − E ′[1 + 3λ2
(

w
2
0 + w

2
1

)]

+ 6λ2
w0w1 sin(φ0) = 0. (O13)

Note that when E ′ = 1, the cubic polynomial in Eq. (O13) takes the value

−3λ2
(

w
2
0 + w

2
1

)

+ 6λ2
w0w1 sin(φ0) � −3λ2

(

w
2
0 + w

2
1

)

+ 6λ2|w0||w1| = −3λ2(|w0| − |w1|)2
� 0 (O14)

and when E ′ = −1, it takes the value

3λ2
(

w
2
0 + w

2
1

)

+ 6λ2
w0w1 sin(φ0) � 3λ2

(

w
2
0 + w

2
1

)

− 6λ2|w0||w1| = 3λ2(|w0| − |w1|)2
� 0. (O15)

There is therefore some solution E ′ = E ′
0 of Eq. (O13) with E ′

0 in the interval [−1, 1]. Additionally, when | sin(φ0)| < 1 or

|w0| �= |w1|, we can take E ′
0 in the interval (−1, 1). In this case, we can approximate E ′3

0 ≈ 0 and find

E ′
0 ≈

6λ2
w0w1 sin(φ0)

1 + 3λ2
(

w
2
0 + w

2
1

) ∈ (−1, 1). (O16)

When | sin(φ0)| = 1 and |w0| = |w1|, it is possible that there is no solution of Eq. (O13) in (−1, 1). We will not consider this

case further.

Next, we consider Eq. (O9) with p′ �= 0. We take E ′ = E ′
0 + δE ′ and expand to first order in δE ′ and |p′|. Using |p′ − q′

j |2 ≈
1 − 2p′ · q′

j , E ′2 ≈ E ′2
0 + 2E ′

0δE ′, and the fact that E ′
0 solves Eq. (O13), we find

0 ≈

(

(E ′
0 + δE ′)I − σ0 · p′ +

3
∑

j=1

T̃ ′
Q j

(E ′
0 + δE ′)I + σ0 · (p′ − q′

j )

1 − E ′2
0 − 2p′ · q′

j − 2E ′
0δE ′ T̃

′†
Q j

)

ψ0

=

⎛

⎝(E ′
0 + δE ′)I − σ0 · p′ +

3
∑

j=1

T̃ ′
Q j

(E ′
0 + δE ′)I + σ0 · (p′ − q′

j )

1 − E ′2
0

T̃
′†

Q j

1

1 − 2p′·q′
j+2E ′

0δE ′

1−E ′2
0

⎞

⎠ψ0

≈ ((E ′
0 + δE ′)I − σ0 · p′)ψ0

+

(

3
∑

j=1

T̃ ′
Q j

E ′
0I − σ0 · q′

j

1 − E ′2
0

T̃
′†

Q j
+

3
∑

j=1

T̃ ′
Q j

δE ′I + σ0 · p′

1 − E ′2
0

T̃
′†

Q j

)

(

1 +
2p′ · q′

j + 2E ′
0δE ′

1 − E ′2
0

)

ψ0

≈

(

δE ′I − σ0 · p′ +
3

∑

j=1

T̃ ′
Q j

E ′
0I − σ0 · q′

j

1 − E ′2
0

T̃
′†

Q j

2p′ · q′
j + 2E ′

0δE ′

1 − E ′2
0

+
3

∑

j=1

T̃ ′
Q j

δE ′I + σ0 · p′

1 − E ′2
0

T̃
′†

Q j

)

ψ0. (O17)
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Using the identities in Eq. (O11) as well as

3
∑

j=1

T̃ ′
Q j

(σ0 · q′
j )(2p′ · q′

j )T̃
′†

Q j
= −3λ2

w
2
1σ0 · p′ + 3λ2

w
2
0σ−2φ0

· p′

3
∑

j=1

T̃ ′
Q j

(2p′ · q′
j )T̃

′†
Q j

= 6λ2
w0w1σ−φ0−π/2 · p′

3
∑

j=1

T̃ ′
Q j

(σ0 · p′)T̃ ′†
Q j

= 3λ2
w

2
0σ−2φ0

· p′,

(O18)

Equation (O17) becomes

[(

1 −
2E ′3

0

1 − E ′2
0

+
3λ2

(

w
2
0 + w

2
1

)

1 − E ′2
0

)

δE ′I +
(

−1 +
3λ2

w
2
1

1 − E ′2
0

)

σ0 · p′ +
E ′

0

1 − E ′2
0

(6λ2
w0w1σ−φ0−π/2 · p′)

]

ψ0 = 0. (O19)

We are interested in the conditions under which the terms proportional to p′ in Eq. (O19) vanish so that δE ′ = 0 to first order

in |p′|. If E ′
0 = 0, this condition is equivalent to 3λ2

w
2
1 = 1 or

λ = ±
1

|w1|
√

3
. (O20)

Since E ′
0 = 0 when w0 = 0 or φ0 = 0, we recognize this as the magic angle condition identified in Refs. [3,80], which is

realizable in small angle TBG. However, there is another solution with φ0 = ±π/2 and

3λ2
w

2
1

1 − E ′2
0

= 1 ±
E ′

0

1 − E ′2
0

6λ2
w0w1 (O21)

or equivalently

E ′2
0 ∓ 6λ2

w0w1E ′
0 + 3λ2

w
2
1 − 1 = 0. (O22)

By Eq. (O13), E ′
0 also satisfies

E ′3
0 − E ′

0

[

1 + 3λ2
(

w
2
0 + w

2
1

)]

± 6λ2
w0w1 = 0 (O23)

so we need to find when these two equations have a common solution for E ′
0 in the interval (−1, 1). Assuming |w0| �= |w1|, we

can take the approximation E ′3
0 ≈ 0 so that Eqs. (O22) and (O23) become

27w
2
1

(

w
4
1 − 2w

2
0w

2
1 − 3w

4
0

)

λ6 + 9
(

w
4
1 − w

4
0

)

λ4 − 3
(

w
2
1 + 2w

2
0

)

λ2 − 1 = 0. (O24)

It is easy to see that this equation has real solutions for λ if and only if |w0| < |w1|.
We conclude that the magic angle conditions for the tripod Hamiltonian are Eq. (O20) when either w0 = 0 or φ0 = 0, and

Eq. (O24) when φ0 = ±π/2 and |w0| < |w1|.

APPENDIX P: ADDITIONAL HEATMAPS AND MOIRÉ BAND STRUCTURES

Figures 18–22 show some additional heatmaps and moiré band structures (see captions for details).
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FIG. 18. Moiré band structures at the first magic angle δθ = θ − θ0 = δθmagic near the latter four (m, n) commensurate configurations in Ta-

ble II. The band structures were computed with the Hamiltonian in Eq. (63) and the quasimomentum truncation illustrated in Appendix Fig. 17.

The horizontal axes follow the moiré quasimomentum trajectory �M → KM → MM → �M → −MM → −KM . The two bands nearest charge

neutrality are shown in blue and red while all other bands are shown in black. The parameters for (a), (c), (e), and (g) are taken from Table II.

The parameters for (b), (d), (f), and (h) are the same as those for (a), (c), (e), and (g) except with the values of w0 reduced by 20%.
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FIG. 19. [(a)–(c)] Moiré band structures in the first magic manifold (see Sec. VI B) for four different small values of φ0. [(d)–(f)] Variations

on (c) in which the value of φ0 is negated or the value of w0/w1 is changed. Note that in (f) where w0/w1 is large, the lowest two bands at

charge neutrality are no longer isolated from the higher bands. All panels use the model of Eq. (69) with w2 = 0 and the quasimomentum

truncation illustrated in Appendix Fig. 17. The horizontal axes follow the moiré quasimomentum trajectory �M → KM → MM → �M →
−MM → −KM . The two bands nearest charge neutrality are shown in blue and red while all other bands are shown in black.
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FIG. 20. Heat maps showing the base 10 logarithm of the bandwidth (in units of h̄vF |KM |) of the third and eighth narrowest bands among

the first 20 conduction bands and the first 20 valence bands at charge neutrality for φ0 = 0, π/8, and 3π/8. The bandwidth was computed

with the points �M , KM , MM , KM/2, MM/2, −MM/2 in BZM . For this computation, we use the model in Eq. (69) with the quasimomentum

truncation illustrated in Appendix Fig. 17. The dark regions indicate parameters in the hypermagic regime discussed in Sec. VI C. See Fig. 9

for similar heat maps with φ0 = π/4 and π/2.
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FIG. 21. Moiré band structures using the model in Eq. (69) with w2 = 0, φ0 = π/2, and various parameters w0/w1 and α−1 located in

the three dark curves in Fig. 8(c). Since each panel has many simultaneous flat bands, these parameters all belong to the hypermagic regime

discussed in Sec. VI C. For this computation, we use the quasimomentum truncation illustrated in Fig. 17. The horizontal axes follow the moiré

quasimomentum trajectory �M → KM → MM → �M → −MM → −KM . The two bands nearest charge neutrality are shown in blue and red

while all other bands are shown in black. Note that (i) and (j) are in the chiral limit w0 = 0 so that φ0 does not affect their band structure. The

α−1 values for (i) and (j) correspond to the second and third magic angles in the chiral limit, respectively [12].
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FIG. 22. Moiré band structures using the model in Eq. (69) with w2 = 0 and various values of φ0, w0/w1, and α−1 in the hypermagic

regime discussed in Sec. VI C but not in the three dark curves in Fig. 8(c). For this computation, we use the quasimomentum truncation

illustrated in Fig. 17. The horizontal axes follow the moiré quasimomentum trajectory �M → KM → MM → �M → −MM → −KM . The two

bands nearest charge neutrality are shown in blue and red while all other bands are shown in black. The lowest bands in (b), (d), and (e) form

kagome-like groups of three as discussed in Sec. VI C. The lowest bands in (b) are also shown in Fig. 12(a). In contrast, the lowest two bands

in (a), (c), and (f) are gapped from higher bands and resemble those of graphene. (a)–(c) have φ0 = π/2 while (d)–(f) have smaller values of

φ0. The w0/w1 and α−1 parameters for (e) and (f) are the same as those for Fig. 10(e) and 10(f).
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