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The Bistritzer-MacDonald continuum model (BM model) describes the low-energy moiré bands for twisted
bilayer graphene (TBG) at small twist angles. We derive a generalized continuum model for TBG near any
commensurate twist angle, which is characterized by complex interlayer hoppings at commensurate AA stackings
(rather than the real hoppings in the BM model), a real interlayer hopping at commensurate AB/BA stackings,
and a global energy shift. The complex phases of the AA stacking hoppings and the twist angle together define
a single angle parameter ¢y. We compute the model parameters for the first six distinct commensurate TBG
configurations, among which the 38.2° configuration may be within experimentally observable energy scales.
We identify the first magic angle for any ¢, at a condition similar to that of the BM model. At this angle, the
lowest two moiré bands at charge neutrality become flat except near the I'y; point and retain fragile topology but
lose particle-hole symmetry. We further identify a hypermagic parameter regime centered at ¢9 = +w /2 where
many moiré bands around charge neutrality (often 8 or more) become flat simultaneously. Many of these flat
bands resemble those in the kagome lattice and p,, p, 2-orbital honeycomb lattice tight-binding models.
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I. INTRODUCTION

At certain discrete commensurate twist angles 6y, the
honeycomb lattices of two graphene layers align to form a
perfectly periodic superlattice [1,2]. The simplest such com-
mensurate configuration is 6y = 0 in which two layers of
graphene are aligned with no twist. Bistritzer and MacDonald
demonstrated that if two layers of graphene are twisted by
a small angle relative to this 6y = 0 configuration, forming
twisted bilayer graphene (TBG), a moiré superlattice emerges,
and the low energy single particle physics can be described
by a continuum model [3]. Furthermore, at the so called
magic angle, 6 ~ 1.05°, this model predicts that the lowest
two moiré bands (i.e., the first conduction and valence bands)
at charge neutrality become approximately flat. Moreover,
it has been shown that the two flat bands carry a fragile
topology [4-8], obstructing the construction of maximally
localized symmetric Wannier orbitals [9-14]. In this flat band
regime, the physics is dominated by interactions. Interacting
electronic states such as correlated insulators, superconduc-
tors, and Chern insulators have been observed [15-33], the
mechanisms of which have been studied extensively [34-59].
Flat bands and interacting electronic states are also present
in other two dimensional moiré materials such as twisted
double bilayer graphene [60-63], twisted trilayer and multi-
layer graphene [64—69], ABC trilayer graphene [70-73], and
twisted transition metal dichalcogenides [74—76]. For the pur-
pose of exploring interacting states, the search for more flat
band moiré platforms is important.

In this paper, we search for flat moiré bands in TBG twisted
by a small angle relative to an arbitrary commensurate config-
uration. That is to say, we consider a twist angle 0 = 6y + §6
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where 6 is a commensurate angle and 66 is small. Without
loss of generality, we can choose 0 < 6y < 7 /3 because of the
crystalline symmetries of TBG. When 6, = 0, the interlayer
hopping couples states near the top and bottom layer K points
only among themselves. This allows one to explicitly derive
the form of the Bistritzer-MacDonald continuum model (BM
model) by computing the interlayer hopping in reciprocal
space and making a few well-justified approximations [3].
However, for all other commensurate configurations, the cal-
culations are more complicated since states near the top and
bottom K points are coupled to many other states. The origin
of this complication is the fact that the commensurate unit cell
contains 4N atoms, where the integer N is 1 when 6y = 0 but
is 7 or greater for all other commensurate configurations [2].
Assuming that the interlayer hopping is not too strong,
the states far from the top and bottom K points influence
the low energy physics perturbatively. Rather than explicitly
applying perturbation theory, we take an approach based on
symmetry and parameter determination from a microscopic
tight-binding model. We first show, based on an analysis of
the magnitudes of the hopping terms, that the system is ap-
proximated by a continuum model of a certain general form.
We then use the exact unitary and antiunitary crystalline sym-
metries of TBG to constrain the coefficients of this general
model. Near a commensurate twist angle 6, we arrive at a
TBG continuum model containing four real parameters Y,
wo, wi, and wy, which are ultimately determined by the mi-
croscopic hopping parameters. We show that w; controls the
interlayer hopping at the commensurate AB and BA stacking
configurations while wye'* and wye X control the interlayer
hoppings at the commensurate AA stacking configuration. w;
is simply a global energy shift. When 6, = 0, the value of xg
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is negligible because of an approximate mirror symmetry, and
we recover the BM model.

In order to determine the model parameters near general
commensurate configurations, we consider the geometry of
TBG in real space. The key observation is that a small relative
rotation 86 of the two graphene layers can be locally approxi-
mated by an interlayer translation [77]. By carefully taking the
limit 66 — 0, we derive the model for commensurate twist
angle 9y and interlayer displacement d from the model for
twist angle 6 = 6y + 0. We then determine the continuum
model parameters from a numerical computation of the mi-
croscopic tight-binding model (without lattice relaxation or
corrugation [78]) at commensurate angle 8, with two values of
d corresponding to AA and AB stacking configurations. For the
case 6y = 0, we recover wy ~ w; ~ 110meV, xo =0, w, =
0 in agreement with the BM model. We additionally provide
numerical values of the model parameters for the next five
commensurate configurations in order of the number of atoms
per commensurate unit cell. When determining the continuum
model parameters, we only use numerical tight-binding results
at a single crystal momentum (the commensurate K point) and
two d vectors. However, we find that the continuum model
matches the tight-binding model with high accuracy for all
crystal momenta in the commensurate K valley and all d
vectors. It is worth noting that in the first five nontrivial (i.e.,
6y # 0) commensurate configurations, the new parameters xo
and w; are non-negligible. Although we do not consider lat-
tice relaxation or corrugation, we note that these effects can
alter the values of the model parameters, but not the general
form of the continuum model (assuming these effects preserve
the moiré lattice symmetries) [10,78,79]. We note also the
possibility that the model parameters can be altered by the
effects of higher graphene bands which we do not consider.

Next, we compute the moiré band structures of TBG with
twist angle near the first six commensurate configurations. By
both the “tripod model” approximation [3,80] and accurate
numerical computations, we identify the condition for the
first magic angle in any nearly commensurate TBG system
[Egs. (66) and (67)]. This condition is similar to that of the
original BM model. A further simplification of the generic
TBG continuum model indicates that the moiré band structure
only depends on a single angle variable ¢y = xo + 6p/2. At
the first magic angle, the lowest two bands at charge neutrality
in the nearly commensurate TBG model with ¢y # O are flat
in most of the moiré Brillouin zone except in the vicinity of the
I'y; point. These bands are no longer particle-hole symmet-
ric, though they do retain fragile topology. According to our
model, the first magic angle near any nonzero commensurate
twist angle 6 (e.g., the magic angle 0.004° near 6, ~ 38.2°)
may be too small to be realized experimentally. However, it
is possible that spontaneous commensurate atomic structural
reconstructions (e.g., charge density wave orders), lattice re-
laxation or corrugation, or effective couplings mediated by
higher graphene bands may enhance the moiré potential and
enlarge the magic angles.

Finally, we reveal the existence of a hypermagic regime
centered at ¢9 = £ /2 where several moiré bands (often 8
or more) near charge neutrality become extremely flat simul-
taneously. The second and third magic angles in the chiral
limit [12] are contained in the hypermagic regime, and for

(a) (b) BZ

FIG. 1. Illustration of the definitions of quantities in Sec. I A.
(a) The graphene lattice and its primitive unit cell. (b) The reciprocal
lattice primitive vectors, Brillouin zone, and high-symmetry crystal
momenta.

these parameters the lowest two bands at charge neutrality
have fragile topology [4-8]. On the other hand, for many
parameters in the hypermagic regime the lowest bands at
charge neutrality have trivial topology. In such cases, we
expect that the strongly interacting physics may be similar to
that of the Hubbard model with trivial bands and may host
antiferromagnetic states. Interestingly, many of the flat bands
in the hypermagic regime resemble those of the kagome lattice
and py, p, 2-orbital honeycomb lattice tight-binding models,
which are known to exhibit flat bands [81,82].

The rest of this paper is organized as follows. Section II
derives the generic form of the low energy TBG continuum
model near commensuration from a microscopic graphene
Hamiltonian. Section III further restricts the form of the TBG
continuum model using crystalline symmetries, and gives the
model parameters for the first six commensurate configura-
tions. In Sec. IV, we discuss the low energy bands (namely,
the first two conduction and valence bands) of commensurate
TBG. Then in Sec. V, we compute the moiré band struc-
ture near several commensurate configurations with the actual
model parameters and give the condition for the first magic
angle. In Sec. VI, we further explore the parameter space of
the nearly commensurate TBG continuum model, reveal the
hypermagic regime, and investigate the topology of the moiré
bands. Finally, we give a high level discussion in Sec. VIIL.

II. DERIVATION OF THE GENERIC CONTINUUM MODEL

A. Microscopic Hamiltonian

The honeycomb lattice of monolayer graphene consists of
two sublattices A and B. We will often make the identifications
A =1 and B= —1 when using A and B in equations. As
shown in Fig. 1(a), the positions of the carbon atoms in sub-
lattice o are given by r 4 7, for @ € {A, B}, r in a triangular
Bravais lattice L, and constant vectors 7. It is convenient to
choose the primitive vectors (a;, a,) for L where a; = ay V3%,
a) = R_; 331, ap ~ 0.142nm is the interatomic distance, and
R4 denotes rotation by angle ¢ about the Z axis. Additionally,
we choose 74 = ao§ and 73 = R_; 374 so that the origin 0 is
in the center of a hexagon. We define €2 to be the primitive
unit cell of L and |2| to be its area.

The Bravais lattice P that is reciprocal to L has primitive
vectors (by, by) with by = R2H/3b2 and b, = —47‘[3’/(3610) NeJ
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thatb; - a; = 276, . Explicitly, the lattices L and P are given
by

L = {ma, + may|n;,ny € 7},

P = {niby + mbs|ni, ny € Z}. (D
We define the Brillouin zone BZ to be the Wigner-Seitz unit

cell of P and |[BZ| to be its area. Note that |2||BZ| = (27)>.
We additionally define the high-symmetry crystal momenta

r=o0,
2 1 473
K= "b,+-by = 2,
3Pt 3= X

, 1 2
K = §b1 + §b2 = R,n/3K,

1 1 1 1
M= b+ 5by = K+ oK', 2
21+22 3 +2 2

which are shown in Fig. 1(b).

We consider a system consisting of two stacked graphene
layers denoted by [ € {4, —}. We rotate layer [ by the angle
—16/2 about the origin 0 and then translate it by an in-plane
vector —Id/2, so that 6 and d are the relative rotation and
translation of the two layers. We show in Appendix C that
when 6 is not a commensurate angle, a change in the trans-
lation vector d is equivalent to a unitary change of basis, but
this is not generally the case when 6 is a commensurate angle.

Let L;, P, and BZ; be the real space lattice, reciprocal
lattice, and graphene Brillouin zone of layer /. Explicitly, L; =
R_[(.)/QL, Pl = R_IQ/QP, and BZ[ = R_[9/2BZ where we use the
notation RS = {Rs|s € S} foraset S of vectors and an operator
or number R. We will additionally use the notations S; NS>
and S| U S, for the intersection and union of sets S;, S,, as
well as the notations S| + S, = {s; + 52|51 € S1, 52 € S»} and
st + 82 = {s1 + 52052 € S5} where s; is a vector and Sy, S, are
sets of vectors.

We neglect electron spin when describing the single-
particle model because of the weak spin-orbit coupling in
graphene [83]. The spinless p, orbitals |r,/, «) for r € L;,
l e {+, -}, and « € {A, B} form an orthonormal basis for
the Hilbert space. The orbital |r, [, ) is localized at position
r+ rfx where rfx = R_j92T — [d/2. Note that d enters the
formalism only through the definition of /..

The Bloch states are defined by

1 ik-(r+t.)
—— Y M r ) 3)
vIBZI T

for crystal momentum vectors k € R? and satisfy the normal-
ization condition

Ik, I, o) =

K.l o'k, [, )

=180 a Z 82(k' —k — G))e G 4)
G/GP]

Note that the origin for crystal momenta is I', defined in
Eq. (2) and shown in Fig. 1. The Bloch states |k, [, o) with
k € BZ,; form a continuous basis for the Hilbert space. How-
ever, for convenience we will sometimes use the overcomplete
set formed by all Bloch states |k, [, @) fork € R2.

We consider a microscopic single-particle Hamiltonian H
with matrix elements

(', ', |H|r, [, a)
= l‘]f.[(l'/ + T(IX,, —r— T([x) - Msr’,ral’,lga’,av )

where p is a chemical potential and 7. : R> — R are rota-
tionally symmetric functions (i.e., . (r) depends only on |r|)
determining the intra- and interlayer hoppings. We allow the
functions 74 (r) to remain unspecified for now. The intralayer
matrix elements are given by

K, 1,o'|HK, I, )

=&, Lok o) | —pu+ Z e IRy (1)

rel+ty,—1,
(6)

(see Appendix A). If the value of u is chosen appropriately,
then for crystal momenta near K; = R_;,K, this matrix ele-
ment can be approximated by a Dirac cone

K/ +p. L HK +p,l )
= (hvp (0102 - Plara + O(UPIPNE* (P —p). (1)

Here, 0, = ¢ ?/2%(0,% + 0,§)e'®/?) is a vector of rotated
Pauli matrices satisfying
H.c.
) 3

0
gy -p=0p- (Ryp) = (eid’(px +ipy) 0

and vp is the Fermi velocity, which depends on the function
t.(r). We make the assumption throughout the paper that
vrp > 0. See Appendix B for a derivation of Eq. (7) based on
symmetry. The matrix elements for crystal momenta near the
other Brillouin zone corners R, 3K, for 1 < n < 5 are given
by similar Dirac cone Hamiltonians.

The interlayer matrix elements are given by

<k,7 _17 a,|H|k5 la a)

=2 2 M(T+Gl)el”;’-cfzefﬂéﬂfaz<k
G_eP_ G;€eP; | |
+ Gl — k/ — G—l)a (9)

where the hatted functions 7, (k) are the two dimensional
Fourier transforms of 7. (r) (see Appendix A). We see that H
is block diagonal: the Bloch states |kK’, I, ') and |k, [, «) are
in the same Hamiltonian block if and only if

K —keP +P,. (10)

B. Commensurate configurations

Since layer [ is invariant under translation by elements of
the graphene Bravais lattice L;, the bilayer system is invariant
under translations by elements of L_ N L,. Commensurate
configurations are those for which L_ N L # {0}, in which
case L_ N L, forms a Bravais lattice called the commensu-
ration superlattice. Let & = 6, be a commensurate angle, by
which we mean the twist angle for a commensurate configu-
ration.
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TABLE I. Numerically determined model parameters reported
with three significant figures. For the more accurate parameters used
in Figs. 5to 7, 15, 16, and 18, see Appendix Table II.

(m,n) 6 N s X0 (wo, wy) W
(1,0) 0° 1 1 0.00° (113, 113) meV 0.0 meV
(5,3) 382° 7 1 —3.10° (959,1050) eV —4.44meV
(7,3) 27.8° 13 -1 125° (5.50,3.62) ueV  —4.43meV
4,3) 46.8° 19 1 —0.994° (33.2,33.2) ueV —4.32meV
(11,3) 17.9° 31 1 1.24°  (653,653)neV  —4.43 meV
(11,9) 50.6° 37 1 —0.862° (1300, 1300)neV —4.03 meV

We show in Appendix C that the crystalline symmetries of
TBG allow us to restrict our attention to configurations with
0o € [0, w/3). These configurations can be enumerated by a
pair of relatively prime integers m > n > 0 with

2 2
6o = cos! (3m_n> (11

3m2 + n?

(see Appendix D 1). The commensurate configuration corre-
sponding to the pair (m, n) has 4N atoms per unit cell where
the integer N > 1 is given in Eq. (D12) as a function of m and
n.

As shown in Appendix D3, if 3|n (i.e., 3 divides n), we
have

K+—K_,KLF—K’, eP_+ P, (12)
and otherwise
K+—KL,K/+—K,€P,+P+, (13)

where K; = R_jp,K and K; = R_;5oK'. Additionally, in ei-
ther case, we have

K, -K,,K_—K_ ¢P +P,. (14)

If 6y is a commensurate angle then so is 7 /3 — 6y, and
the Hamiltonians for these two configurations are unitarily
equivalent (see Appendix C). Furthermore, we show in Ap-
pendix D 4 that among the two configurations corresponding
to 6y and /3 — 6y, one must satisfy 3|n while the other
does not. As a result, we assume without loss of generality
that 3|n and Eq. (12) holds. From here on, we will always
assume 3|n unless we explicitly state otherwise. Table I
lists properties of the first six commensurate configurations
in increasing order of N. Figure 2 illustrates the locations
of the atoms in real space for a particular commensurate
configuration.

We saw in Eq. (10) that the microscopic Hamiltonian is
block diagonal in accordance with the lattice P_ 4+ P,. We
show in Appendix D2 that when the system is commensu-
rate, P_ 4 P, is the reciprocal lattice of the commensuration
superlattice L_ N L. We see that the block diagonality can be
attributed in this case to translation symmetry with respect to
the commensuration superlattice. Each Hamiltonian block has
a basis consisting of Bloch states with N nonequivalent crystal
momenta in each layer, for a total dimension of 4N. As an
example, Fig. 3(a) illustrates the crystal momenta involved in
the Hamiltonian block containing K, and K_ for a particular
commensurate configuration. We show in Appendix D5 that

FIG. 2. The real space structure of commensurate TBG with
(m,n) = (5,3)and d = 0, in which case 6y ~ 38.2° and N = 7. The
top (bottom) atoms are represented by dots (circles) and the A (B)
sublattices in each layer are colored blue (red). The purple rhom-
bus is an example of a primitive unit cell for the commensuration
superlattice. This unit cell contains 4N = 28 atoms. Note that this
configuration has AA stacking as described in Appendix D 6.

L_NL, =+/NLand P_ + P, = P/+/N so that the Brillouin
zone BZ, corresponding to the commensuration superlattice
is a regular hexagon.

IONONONONO,
(@) gy (b)| ®@ @ ®
* IONONONONO,
BZ_ (ONONONO;
@ ONONONONO,
BZo K_
®
K
@®

FIG. 3. (a) Illustration of the crystal momenta involved in the
Hamiltonian block containing K, and K_ for the commensurate
configuration with (m, n) = (5, 3). The top (bottom) Brillouin zone
boundaries are shown in blue (red) and the boundary of the Brillouin
zone BZ, corresponding to the commensuration superlattice is shown
in green. The N = 7 top (bottom) layer momenta are marked with
blue dots (red circles). All shown crystal momenta in a given layer
differ by elements of P_ + P, and are contained in the given layer’s
Brillouin zone. (b) Illustration of the set B; ;, defined in Sec. II D for
| =+ orl = —, some large value ¢, and some small value §6. There
is a lattice of crystal momenta near each point in (a).
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C. Incommensurate configurations

We now consider an incommensurate twist angle 6. We
show in Appendix E that in this case P_ 4+ P, is a dense
subset of R%. As a result, the block diagonality of H given
by Eq. (10) cannot be directly used to define a band structure.
In this section, we will construct a notion of distance between
Bloch states that can be used in place of block diagonality to
analyze H.

We show in Appendix D 1 that since 6 is incommensurate,
we have P_ N P, = {0}. It follows that for any / € {+, —} and
crystal momentum vectors k, k' with kK’ — k € P_ + P, there
are unique vectors G_ € P_, G € P; such that

k+G =K +G_,. (15)

This pair of vectors G_, G, determines the interlayer matrix
element in Eq. (9). Since 7_ (k) depends only on |K|, the mag-
nitude of (K’, —I, &'|H|K, [, &) depends only on |k + G;|. We
assume that 7_ (k) monotonically decreases with |K|, so that
interlayer matrix elements with large magnitude correspond
to small values of |k + G|. Similarly, the intralayer matrix
element in Eq. (6) is zero unless k' —k € P;. As a result,
(K', 1, o' |H|K, [, ) is only nonzero when k and k’ are related
as in Eq. (15) with |G_;| = 0.

With this motivation, we define a function d that quantifies
the magnitude of the matrix elements of H

00 ifk' —k ¢ P+ P,
dk,1,K,I')={|k+G;| ifl’'=—IandEq. (15). (16)
IG_/| if I’ = [ and Eq. (15)

We show in Appendix F that d satisfies

) dk, 1,k 1)=0,

2) dk, LK, lI"Y=dK, K I'k,I),

3) dk, LK, 1" <dK&, LK, I"Y+dK, UK I,
so that d defines a notion of distance on the set R? x {+, —}.!
Suppose we define the distance between Bloch states |k, [, «),
k', ', &) to be d(k, [,Kk',I"). Then by construction, the mi-
croscopic Hamiltonian H described by Egs. (6) and (9) is local
with respect to this notion of distance.

D. Continuum model for incommensurate configurations

We now take

0 =6y + 49, a7

where 6y is a commensurate angle as in Eq. (11) and 466 is
small. We assume that 6 is an incommensurate angle so that
the distance function d from Sec. IIC is defined. We are
interested in the single particle physics of H near the Fermi
level at charge neutrality, as this determines the low energy
excitations of the many-body Hamiltonian. In this section, we
will derive a continuum model that approximates the relevant
energies and eigenvectors of H.

We will make use of the following characterization of the
distance function d that applies when 0 = 6, + 86. Let L) =

ITechnically, d is not a metric because it assumes the value co and
dk,[,k',l'y=0whenever!'=—-l, ke P,K e Porl' =1,k —
k € P,. Nonetheless, it is useful to think of d as a distance function.

R_ig,2L, P) = R_j4, 2P, and recall from Sec. IIB that L° N
Lﬂ is the commensuration superlattice corresponding to twist
angle 0 and P° + P! is its reciprocal lattice. Define the set

ok, 1K, I')= =8 K + (k+P)N(K+P°) (I18)
and the operator
D(89) = Rg@/z — R,(sg/z = 25in(89/2)Rn/2. (19)

Letk € R?,/ € {+, —}, and define kg = R;s9,2k. Then for any
pair (k’,1") with d(k, [, k', I") < oo, there are unique vectors
kj € ko + PO+ Pf: and Q € Q(ko, I, kj, I') such that

K = R_ys502k;, — ID(86)Q. (20)
Additionally, we have |Q| = d(k, [, k’, I") so that
IRis0,2K" — Kol = 2|sin(86/2)|d(k, [, K, I"). (21)

Conversely, if k' is given by Eq. (20) for some k|, € ko + P° +
P and Q € Q(k, [, k), ') then d(k, I, K, I') = |Q|. These
claims are proved in Appendix G.

Since monolayer graphene has Dirac cones at the K and
K’ points (i.e., graphene has two valleys), the single-particle
physics of H near the Fermi level at charge neutrality is
dominated by Bloch states with crystal momenta near K or
K’,. Consider two momenta k = K;, k' = K, from opposite
graphene valleys. Then kg = K and Rys92k’ = K)? where
Koi = R4,2K and Ki) = R44,2K’. By Eqgs. (12) and (14),
K;(/) & K? + PO+ Pf: so there is some minimal value x > 0
taken by the quantity |K}° — k| for kj, € ko + P° + Pf:. By
Eq. (21),

K
2| sin(86/2)|’

which diverges as 66 — 0. This implies that for small 86, the
spectrum of H splits into two nearly uncoupled valleys cor-
responding to K and K’. We will neglect intervalley coupling
and focus on the K valley, noting that time-reversal symmetry
interchanges the valleys (see Appendix I).

For any ¢ > 0, define U (k, /, g) to be the subspace gen-
erated by all Bloch states |k', !, o) with d(k,[,K,l') < g,
and note that U (K, [, g) is finite dimensional. To compute the
eigenstates and energies of H in the K valley, we consider the
projection of H into U (K; + p, [, g) for a small vector p and
a large value g. Let B; , be the set of pairs (k’, I") such that
K’ is given by Eq. (20) with k = K;, k{, € BZ?/ = R_yq,/2BZ,
and |Q| < g. Then for all vectors p small enough, the set of
Bloch states |k’ +p, !, ') with (k’, ") € B; , forms a basis
for U(K; + p, I, q). The set B, 4 is illustrated in Fig. 3(b).

Recall from Sec. II B that we can write L° N LS)r =+/NL
and P° + Pg =P/ \/N where 4N is the number of atoms in
the primitive unit cell of L° HLS)F. When N > 1 and q is
large enough, there are elements (k', I') € B; , for which the
value of k; is not K?, [e.g., the points shown in Fig. 3(b)].
The corresponding Bloch states in U (K; + p, [, g) have ex-
pected energies with respect to the intralayer Hamiltonian
that are far from the Fermi level at charge neutrality. Assum-
ing that |f/_(K)| is not too large, these Bloch states can be
treated perturbatively. There is then some effective Hamil-
tonian supported only on the subspace generated by Bloch
states [K'+p,!’, ') such that (k’,!") € B;, and the value

d(Ki, 1, K;, 1) > (22)
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of kj is K?,. Note that these conditions are equivalent to
k' +p = K, + p/, where

P =p—I[D(E0)Q (23)

and Q € Q(K?, 1, K), ") with |Q| < ¢. For convenience, we
define

9, =9K%, +,K%, -)

=0K", — K%, +)
=K’ + PN K] +P)), (24)
Q. =-0,, (25)

Qo= Q(KY, +, K4, +)
=9QK’, -, K, )
=P’ np. (26)

We will now describe a class of continuum models that
approximate these effective Hamiltonians. We introduce con-
tinuum states |p, [, a), forp € R%, [ € {+, —}, @ € {A, B} in
a new Hilbert space, satisfying the normalization condition

(P, 1, |p, L, &), = 8118 o8*(p — P)- (27)

Although p is allowed to range over all of R2, p, I, o),
represents the Bloch state |K; + p,/, «) when p is small.
When p is large, these states cannot be identified because they
satisfy different normalization conditions, namely Egs. (4)
and (27). Because of Eq. (7), we take the part of the con-
tinuum Hamiltonian due to intralayer coupling to be Hipy, =

[ @*p|p) Hinua(P) (., Where

A _ 0p/2 P 0
Hmtra(p) - th( 0 0_¢9/2 - p) 28)
and
|p>C — (lp, _i_,A)L_ |p’ +, B>L |p7 > A>L |p1 ) B)()
(29)

is a row vector of states. Because of Eq. (23), we take the part
of the continuum Hamiltonian due to interlayer coupling to be
Hiner = fdzp,d2p|p/>c,Hinter(p/v P)<P|c, where

Hinter(p/a p)
S§& 0
= (3 S—)82(p’—p—D(89)Q)
Q
QeQo
+ Y (8 TOQ)82(p’—p—D(89)Q)
QeQ
0 0 20
+ ) (T O)a (0 —p—D(6)Q).  (30)
QeQ_ Q

Here, T and Sé denote complex 2 x 2 matrices, which are
functions of 36 and the translation parameter d. Note that
since Hiyer is Hermitian, we have

Ty =Taq. (Sh) =Sk 31)

The full contintum Hamiltonian is given by H = Hyp +
I:Iinler-

[ ] ©)

OQI

(] o

FIG. 4. The Q. and Q, lattices for the commensurate config-
uration with (m, n) = (5, 3), in which case s = 1. The elements of
9, (Qy) are denoted by purple circles (green dots) and the elements
of both lattices with minimal norm are labeled. The top (bottom)
Brillouin zone boundaries are shown in blue (red).

We show in Appendix D 5 that

Q. = svNK + VNP,
Qy = VNP, (32)

where s = £1 is given by Eq. (D43). Furthermore, the ele-
ments of Q, with minimal norm are

Q =sVNK, Q= Ry.;3Q1, Q3 = R4 3Q1.  (33)

The lattices @, and Q) and the vectors Q;, Q,, and Q3 are
shown in Fig. 4.

We now observe that H is block diagonal: the states
p’,l', &), and |p, [, &), are in the same Hamiltonian block
if and only if

@ +1'q1) — (p+1qi) € D(36)Qo, (34)

where

q; = D($6)Q;

More explicitly, we have

for j € {1,2,3). (35)

q1 = 25in(86/2)sv/N|K[§,

Q2 = Rox3q1, 43 = Rux/3q:1. (36)

We refer to D(30)Q as the moiré reciprocal lattice and
p+!/q; as the moiré quasimomentum for |p,/, «).. The
Wigner-Seitz unit cell of the moiré reciprocal lattice is BZy; =
D(BQ)\/N BZ and it is called the moiré Brillouin zone. Addi-
tionally, we define the high-symmetry moiré quasimomenta

X, = D(86)sv/NX (37)
for X € {T', K, K’, M} and note that
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and
IKy| = 2|sin(86/2)|VN|K]|. (39)

To further explicate the moiré translation symmetry, we
transform to real space. We define states

1 :
Ir,l o). = —fdzpef"” p. 1), (40)
2
which satisfy the normalization condition
(0 U o |x 1 a) = 8y 8o (F — ). (41)
Defining the row vector of states
|r)c = (|I', +’A>c |I', +’ B)c |I', _7A)c |I', ) B)(')v
(42)

we can rewrite the Hamiltonian in the form Hipg, =
[ &Prt) Hina(0)(r],  and  Higer = [ d’r|r) Hiner (X)(r],.,
where

. 09n -V 0
7'Lintra(r) = _lth< 0/?) o_op - V)a

T(r)
S~(r))’

T(I‘) — Z TQeir'D(ae)Qv
Qe

Sy = Y shePe.
QeQp

§*(r)

Hinter(r) = (TT(I‘) (43)

and

(44)

We interpret H as the Hamiltonian for a system of Dirac elec-
trons moving through the spatially varying potentials 7 (r),
S*(r), and S~ (r). Note that these potentials are periodic (up to
a phase) with respect to the moiré superlattice D(86)~'L/~/N,
which is reciprocal to D(§6)Qy.

E. Continuum model for commensurate configurations

As in Sec. IID we take 6 = 6y + 56, where 6y is a
commensurate twist angle, §6 is small, and 6 is an incommen-
surate angle. Since the microscopic Hamiltonian is continuous
with respect to twist angle, we can take the limit 66 — 0 to
derive a continuum model for the commensurate configuration
with twist angle 6.

In this section, we use Tg(80, d), 56(89, d), T(r,56,d),
and S'(r, 86, d), to denote the Tg and Sé matrices and the
T(r) and S'(r) potentials with twist angle 6 = 6, + 660 and
translation vector d. To determine the correct definition of
1(0, d), note that

R_i59/oF = T — [80R; o1 /2 + O(86%)
=r — ID(0)r/2 + 0(56%). (45)

This implies that the pattern of atoms near position r with
6 =6y + 660 and d = 0 is the same to first order in 56 as the

pattern with 6 = 6, and
d = D(86)r = 25in(86 /2)R; jor. (46)

Taking into account the phase shift accrued by the continuum
momentum states when the translation vector d is changed

(see Appendix H), we must then have

' CSO/DKDEOT (1 59 ()

= T(r,0, D(80)r) + 0(56%) 47)
and
Sl(r, 80,0) = S'(r, 0, D(80)r) + O(86°). (48)
It follows that
eicos(e/z)K-D(sa)r Z TQ(SQ, O)eir-D(ae)Q
Qe
= Z To(0, D(80)r) + 0(56%) (49)
QeQy
and
Z S56(86, 0)e™Pe"Q
QeQy
= Z S0, D(80)r) + 0(86%). (50)
QeQy

Taking r = D(86)~'d and then taking the limit as 60 — 0
with d fixed, we find

Z TQ(O, O)Eid-(cos(eo/Z)K—Q) — Z TQ(O, d)

QeQy QeQy
> 500007 = " 56(0.d).  (51)
Qe QeQo

Taking 80 — 0 in Eq. (30) then gives Hiner(p',p) =

HY 820 — p), where
o _ (So(d) To(d)
Himer - (TOT(d) Sa(d) (52)
and
Tod) = Y To(0, 0)ed o @/2K-Q,
QeQy
S(l)(d) = Z Sé)(o, 0)€_id'Q. (53)
QeQp

We see that in the commensurate case, the continuum Hamil-
tonian describes four energy bands, approximating the bands
nearest the Fermi level at charge neutrality.

Note that Ty(d) and S(])(d) are periodic (up to a phase) with
respect to the lattice L® + LY = L/+/N which is reciprocal
to Qp (see Appendixes D2 and D 5). As a result, for 6 = 6,
the continuum Hamiltonian A is periodic in d (up to unitary
equivalence) with respect to L% +L0+. It is worthwhile to
note that the microscopic Hamiltonian H has the exact same
periodicity in d (see Appendix C).

III. SYMMETRY CONSTRAINTS AND MODEL
PARAMETERS

‘We now consider the constraints that can be put on the TBG
continuum model at twist angle 6 = 6y + 60 based on the
symmetries of TBG, and explicitly determine the parameters
of the TBG continuum model near various commensurate
angles.
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Note that the continuum model is fully determined by the
Tq and Sf) matrices with d = 0 in both the commensurate
(660 = 0) and incommensurate (66 # 0) cases. We therefore
make the assumption that d = 0 throughout this section. For
0 # 0, the valley preserving symmetries of the microscopic
Hamiltonian H are generated by the unitary operators Cs,
(rotation by 2m /3 about Z), C,, (rotation by m about X),
and the antiunitary operator C,, 7 (time-reversal followed by
rotation by 7 about Z). The representations of these symmetry
operators on the |k, [/, @) and |p, [/, o). states are given in
Appendix L.

We require that / commutes with these symmetry opera-
tors. Hiya commutes with the symmetry operators identically
so we need only consider Hiner- Assuming 86 # 0, the sym-
metry constraint [Co. T, Hiner] = 0 is equivalent to

UxT_QUx = TQ, (TxSé)Gx = Sé), (54)

[Csz, Hiner] = 0 is equivalent to

ei(27r/3)az TQefi(er/3)03 — TRzn/3Qv
27 /3)0. ol ,—iQm/3)o, 1
el( T/ )G‘SQe i(2m /3)o; = SRZn/}Q’ (55)
and [Cay, Hiner] = 0 is equivalent to
UXT&JX = TreQ, O’XS(SI(TX = SI_RXQ, (56)

where we use the notation M for the complex conjugate of a
matrix M. By continuity, these equations also hold for 66 = 0.

Since 7_(k) monotonically decreases with |k|, we expect
that the magnitudes of T and Sé) decay rapidly with |Q]|. We
therefore neglect 7o and Sf) for all Q with nonminimal norm.
Recall that the elements of Q. of minimal norm are Qq, Q-,
and Q3 which are given in Eq. (33). The elements of Q_ with
minimal norm are —Q;, —Q,, and —Qj3, and the only element
of Qg of minimal norm is 0. See Fig. 4 for an illustration of
the Qq, Q», and Q3 vectors.

By Eq. (31), it suffices to determine the matrices Ty, , Tg,,
Tq,, Sy, S, which correspond to minimal norm momenta.
By expanding these matrices in the Pauli basis and applying
Egs. (54) to (56) we find

Ty, = woe X% + w; (o, cos g+ oysing;),
S(T = SO— = W0y (57)

for real model parameters xg, wo, Wi, and wp with wy = 0
and xo € [0, 27r). Here, we have used ¢; = M for j €
{1,2, 3} and oy for the 2 x 2 identity matrix. Note that the
model parameters yo, wo, Wi, and w, depend on 6y and §6 but
not on d.

In the special case § =0 (i.e., no twist), there is an
additional valley preserving unitary mirror symmetry M,
(reflection across the xz plane). The symmetry constraint
M, Hier] =01is equivalent to

D Tg.od= ) [Sg.0:] =0 (58)
Q9. QeQp

(see Appendix I). When 6 =0, Eq. (58) implies xo = 0.
Therefore, if the twist angle is near O (i.e., 6y = 0, 6 = §6 ~
0) one will find xo ~ 0 because of the approximate M, sym-

metry. This agrees with the Bistritzer-MacDonald model for
small angle TBG [3].

In Appendix J, we show that when §6 = 0, the model
parameters can be determined from numerical computations
of the Hamiltonian block containing K. using Egs. (6) and
(9). Additionally, Appendixes D 6 and J show that the xg, wo,
and w, parameters determine the band structure of AA stacked
commensurate configurations, while the w; and w, param-
eters determine the band structures of AB and BA stacked
commensurate configurations. For numerical computations,
we choose the ¢4 (r) functions in Eq. (5) to be those used in
Refs. [77,78,84] and described in Appendix K. Table I shows
approximate values of the model parameters derived from
these functions for the first six commensurate configurations
in order of the number of atoms per unit cell. Appendix Ta-
ble II lists these parameters with more significant figures.
Appendix Fig. 15 shows that the continuum models with
parameters in Appendix Table II are accurate low energy ap-
proximations of the microscopic Hamiltonian for all d vectors.
Additionally, Appendix Fig. 16 compares the band structures
for each commensurate configuration in Table I with the band
structure derived from the microscopic Hamiltonian, and we
see very good agreement. We note that we do not include
any lattice relaxation or corrugation effects here in the mi-
croscopic model, nor do we include coupling mediated by
higher graphene bands. Such effects may alter the true model
parameters.

IV. COMMENSURATE MODELS: BAND STRUCTURES

By Egs. (28), (52), and (53), the continuum model cor-
responding to commensurate twist angle 6y and translation
vector d is H :fdzplp)c’}-lo(p)(mc, where the explicit
Hamiltonian matrix is

hvpog, o - P To(d)
H = wyl + +0 ’ >
o(p) 2 ( T(d) hvpo_g, - P &%)
3
Tp(d) = Z TQ/eidA(COS(OO/Z)Kioj)' (©0)

J=1

The matrices Tg, are given in Eq. (57) and [ is the 4 x 4
identity matrix. Recall that o is the Pauli matrix vector de-
fined in Eq. (8), Q; is defined in Eq. (33), and the momentum
space basis |p), is defined in Eq. (29). Using Eqgs. (43) and
(44) we can also describe this model in real space as H =
fd2r|r)c7-{,0(r)(r|c, where the Hamiltonian matrix takes the
form

—ihUFO’QO/g Y
T, (d)

To(d)

Ho(r) = wal + ( e g v> 61)

and the real space basis |r), is defined in Eq. (42).

Figure 5 shows the low energy band structures of the model
in Egs. (59) and (60) for the first two commensurate con-
figurations in Table I, namely (m, n) = (1, 0) (the untwisted
configuration with 6y = 0) and (m, n) = (5, 3) (6y ~ 38.2°).
For both configurations, we show three translation vectors d,
and use the parameters in Appendix Table II. Similar band
structures for the other commensurate configurations in Ta-
ble I are shown in Appendix Fig. 16. We compare the band
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(m,n) = (1,0) (m,n) = (5,3)
(6o = 0°) (6o ~ 38.2°)
(a) d=0 (b) d=0
= 5004 >
]
£
~ 0 0-
3
Lrlq -500 - e
P00  Po P00 Po
(© d=2cay (4 d= ay
—~ - 5_
= 500
Q
£
~ 0 0-
3
|
K -500 —5-
-Po 0 f’o -Il)o 0 f)o
(e) d = ZaoX () d= ZaoXk
= 500+ 57
Q
\gx \/\/
~  0- 0-
3
Lg -500- s
P00  Po P00  Po

FIG. 5. Commensurate band structures using the model in
Eqgs. (59) and (60) with parameters in Appendix Table II. The vector
p ranges linearly from —3p,/2 to 3po/2, where ivppy = 3|wp|X. The
first and second columns correspond to commensurate configurations
with (m, n) = (1, 0) (6p = 0°) and (m, n) = (5, 3) (6, ~ 38.2°), and
the first and second rows correspond to AA and AB stackings, respec-
tively (see Appendix D 6).

structures of untwisted bilayer graphene and commensurate
TBG in the following cases.

(1) At AA stacking where d =0. In this case, un-
twisted bilayer graphene is gapless at momentum |p| = |po| =
3|wop|/(fivp) at charge neutrality as in Fig. 5(a). In contrast,
commensurate TBG develops a gap at |p| = |po| at charge
neutrality as in Fig. 5(b), due to the relative rotation angle
between the Dirac fermions in different layers and the nonzero
value of yg. Specifically, the gap at |p| = |po| is given in
general by

12|wo| min(| cos(¢o/2)I, | sin(¢o/2)]) (62)

where ¢o = xo +6p/2. In the 6y ~ 38.2° commensurate
configuration, the charge neutrality gap in Fig. 5(b) is approxi-
mately 1.6 meV, which should be experimentally measurable.

(2) At AB stacking where d = ﬁaoy (recall that s = %1

was introduced in Eq. (32)). In this case, both untwisted

(Bernal) bilayer graphene, shown in Fig. 5(c), and commen-
surate TBG, shown in Fig. 5(d), have gapless quadratic Dirac
band touchings [85] at charge neutrality.

(3) At generic asymmetric stackings such as d = \Lmaof(.
Untwisted bilayer graphene remains gapless as in Fig. 5(e). In
contrast, commensurate TBG has a tilted band gap at charge
neutrality as in Fig. 5(f), but there may not be an indirect gap.

Although the above observations are made at exactly com-
mensurate angles, they may also hold for local measurements
(e.g., scanning tunneling microscopy experiments) near the
corresponding stackings if the angle 6 is close enough to a
commensurate angle 6. In particular, when 6 is significantly
far from zero, one expects to observe a local charge neu-
trality gap at AA stacking positions (e.g., a 1.6 meV gap at
6y =~ 38.2°). However, we note that the local charge neutrality
at AA stacking is generically different from the global charge
neutrality of an incommensurate angle, due to local charge
transfers between AA stacking regions and AB stacking re-
gions. This can be seen in Fig. 7(c), by noting that the moiré
bands at global charge neutrality are close to the conduction
band energy at AA stacking in Fig. 5(b).

V. CONTINUUM MODELS NEAR COMMENSURATION:
MOIRE BAND STRUCTURES AND MAGIC ANGLES

The continuum model corresponding to twist angle
6 =6y + 86 and translation vector d = 0 is described by
Egs. (28), (30), and (57). Note that when §6 # 0, the micro-
scopic Hamiltonians for different choices of translation vector
d differ only by a unitary transformation (see Appendix C)
so it is sufficient to consider the case d = 0. In this section,
we further develop the continuum model Hamiltonian and
investigate its moiré band structures and magic angles using
the parameters determined in Sec. III.

Since 46 is small, we approximate the rotation angles £6 /2
of the Dirac cones in Eq. (28) by +6,/2. This is a common
approximation in the literature [3]. Additionally, we approx-
imate the xo, wo, wi, and w, parameters by their values at
angle 6y (i.e., with 66 = 0), which can be determined using
the method described in Sec. III. The continuum model then
becomes H = [ d*p'd*p|p’) . H(p', p)(pl.. where the Hamil-
tonian matrix is

H(P',p) = waI5*(p' — p)

000/2 p 0 2000
+hvp< 0 0—90/2'1’)8 ®-p

3
0 Ty, /
+ Z(o 8’)52@ -p-q)
Jj=1
3
0 0 )
+ (T& 0>82<p —p+aq) (63
Jj=1 I

and the matrices Tq, are defined in Eq. (57). Recall that o
is the Pauli matrix vector defined in Eq. (8), q; is defined in
Eq. (35), and the momentum space basis |p). is defined in
Eqg. (29). Note that w, only provides a constant energy shift.
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Using Egs. (4%) and (44), we can also describe this model
in real space by H = f d’r|r) H(r)(r|,., where

_ —ihl)pO'go/z -V T(l‘)
H(r) = wyl + < TT(I‘) _ihUF6—00/2 v )
3
T(r) = Z Ty, & (64)
j=1

and the real space basis |r), is defined in Eq. (42).
Following Refs. [3,12], we introduce the dimensionless
parameter
o= lwi| |wi |
hvp Kyl 2[sin(86/2)|hvpv/NIK|

(65)

Recall that 4N is the number of atoms in each commensurate
unit cell at twist angle 6. Note that o' o |§| when 86 is
small.

As a first step in the search for magic angles, we cut off the
continuum model in Eq. (63) to a subspace of four quasimo-
menta, namely p and p — q; for j € {1, 2, 3}. This truncation
is known as the tripod model approximation [3,80] and it
yields an approximate k - p model at the K, point at charge
neutrality. Generically, the lowest bands of this model have a
Dirac fermion spectrum with Fermi velocity vy,. In this tripod
model approximation, it can be shown (see Appendix O) that
the velocity vy, reaches its minimum (which is generically
nonzero unless 6y = 0) near

a !~ /3, (66)

given that the energy E at the Kj, point satisfies % < 1.
Note that the energy £ — w, at the Kj; point is generically
nonzero when 6y is nonzero. It is also known that the magic
angle condition in Eq. (66) generically requires wy < |wq|
to avoid hybridization with the remote bands [80], and this
is also true here (see Fig. 19 for examples illustrating this
point). By Eq. (65), we conclude that the first magic angle

occurs at

V3w,
+—.
hopN|K]|

The tripod model approximation, however, does not give the
higher (i.e., second, third, etc.) magic angles.

Figures 6(a) and 6(b) show numerical results for Dirac ve-
locities vy, and the bandwidth of the lowest two moiré bands at
charge neutrality, near the commensurate configurations with
(m,n)=(1,0) (6p =0°) and (m,n) = (5,3) (6 =~ 38.2°),
respectively. The blue curves show vy /vp values computed
from the tripod model, and have a minimum around the angle
in Eq. (67). The red curves show the accurate vy /vp val-
ues computed using 768 moiré bands (see Appendix M and
Fig. 17). In both cases, the value of vy /vp is computed by
numerical differentiation in the q; direction at K,,. Intrigu-
ingly, at 6y ~ 38.2°, the accurate Fermi velocity vy, at the first
magic angle §6p,gic is almost zero and much smaller than that
found in the tripod model. The black curves show the total
bandwidth (in units of Zvg|Ky|) of the lowest two bands at
charge neutrality using 768 moiré bands. From the accurate
vy /vF (red) and bandwidth (black) curves, we clearly see the

80 = Semagic ~ (67)

(a) (m7n) = (170)’ (00 = 00)

(b) (m,n) = (5,3), (Ao ~ 38.2°)

0 1 1 : 1
0.002 0.004 0.006
|00 (degrees)

FIG. 6. The red, blue, and black curves show properties of the
spectrum of the continuum Hamiltonian in Eq. (63) as a function of
80. The red and blue curves show vy /vr (vy is the Dirac velocity
at the K, point at charge neutrality), while the black curve shows
the bandwidth (in units of 7%vr|Ky|) of the two lowest bands at
charge neutrality. The purple dashed lines indicate 86 = §6mgic, at
which point the bandwidth is minimized. The blue curves use the
8 band tripod model analyzed in Appendix O while the red and
black curves use the more accurate 768 band model illustrated in
Appendix Fig. 17. The bandwidth shown in the black curve is the
difference between the highest conduction energy and the lowest va-
lence energy among the points I'y,, Ky, My, Kir /2, My /2, —My, /2
in BZ,,. (a) and (b) correspond to the commensurate configurations
with (m,n) = (1,0) (6p = 0°) and (m, n) = (5, 3) (6 =~ 38.2°), re-
spectively, and use the parameters in Appendix Table II.

first magic angle around the value in Eq. (67). There are higher
(i.e., smaller) magic angles near 6 =~ 38.2° as well, where the
lowest two bands become flat.

Figures 7(a) and 7(c) show the moiré band structures at
the first magic angle 86 = §6nagic the commensurate config-
urations with (m,n) = (1,0) (6p =0°) and (m, n) = (5, 3)
(6p =~ 38.2°), respectively. The band structure with 6y = 0°
shows the usual magic angle moiré bands of small angle TBG
studied in [3]. At 6y ~ 38.2°, the band structure is clearly not
symmetric across the Fermi level, indicating the absence of
both particle-hole symmetry P [5,45,86] and chiral symmetry
C [12] (see definitions in Appendix L). The lowest two moiré
bands at charge neutrality are still approximately flat near the
K, and —K}, points, and are energetically shifted close to a
remote conduction band. The two bands are however not quite
flat near the I'y; point.
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(m,n) = (1,0) (m,n) = (1,0) (m,n) = (5,3) (m,n) = (5,3)
(a) (0o = 0°) (b) wo reduced 20% (c) (0o ~ 38.2°) (d) wp reduced 20%
I I 300 1 i 37 T\
I I 1
1 )
200 11 //1\ \u
i/ I I 2001
I
o 1 N | 0o
o TN 1/
£ N1/
N 0 1 1 L
‘S I\ 0
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& 1 1
100 I | -100-
i 1
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-200- ! ! 200
1 1
1 [
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FIG. 7. Moiré band structures using the model in Eq. (63) with 6 = 0 — 6y = 66 ,gic (Where the bandwidth is minimal in Fig. 6) and the
quasimomentum truncation illustrated in Appendix Fig. 17. The horizontal axes follow the moiré quasimomentum trajectory I'yy — Ky —
M,;, - 'y — —My; — —Kj,. The two bands nearest charge neutrality are shown in blue and red while all other bands are shown in black.
(a) and (b) correspond to the commensurate configurations with (m, n) = (1, 0) (6p = 0°) and (m, n) = (5, 3) (6 ~ 38.2°), respectively and
use the parameters in Appendix Table II. The parameters for panels (b) and (d) are the same as those for (a) and (c) except with the values of

wy reduced by 20%. Similar plots for the other commensurate configurations in Table I are shown in Appendix Fig. 18.

It is known that in small angle TBG, lattice relaxation has
the effect of slightly reducing the value of wy [10,78,79].
Although we do not here consider relaxation from first prin-
ciples, it is nonetheless worthwhile to consider the effect of a
reduction in wg on the moiré band structure. Figures 7(b) and
7(d) show moiré band structures using the same parameters
as in Fig. 7(a) and 7(c), but with w reduced by 20%. In both
cases, we see that the two lowest bands at charge neutrality
develop a gap from the higher bands, but are otherwise quali-
tatively similar. Moiré band structures at the first magic angle
in Eq. (67) near the other commensurate configurations listed
in Table I are shown in Appendix Fig. 18. Additionally, other
example moiré band structures near the first magic angle can
be found in Figs. 10 and 19.

Appendix Table II shows the values of §6,gic for the first
six commensurate configurations. Due to the small magnitude
of wy and w; for nonzero commensurate angles, the corre-
sponding values of 86,45 are so small that they likely cannot
be achieved experimentally. However, we note the possibility
that atomic structural reconstructions (e.g., charge density
wave orders) may occur in large twist angle TBG and enhance
the effective interlayer hoppings wy and w;. Additionally,
lattice relaxation or corrugation or couplings mediated by
higher graphene bands could also change these parameters.
Provided these perturbations do not break the symmetries of
the moiré superlattice (translation, Cs;, C, 7, and C,,), the
form of effective continuum model will not change, and we
may arrive at larger first magic angles in nearly commensurate
TBG.

VI. FLAT BANDS IN THE CONTINUUM MODEL
PARAMETER SPACE: THE HYPERMAGIC REGIME

Regarding the possibility that the actual model parameters
may change due to atomic structural reconstruction, lattice
relaxation or corrugation, or couplings mediated by higher
graphene bands, we now investigate the band structure of the
TBG continuum model near commensuration in Eq. (63) with
arbitrary parameters. We reveal the existence of a remarkable
hypermagic regime centered at ¢y = £ /2 where many moiré
bands (often 8 or more) become extremely flat simultaneously.

A. Model simplification

We first simplify the continuum model in Eq. (63) by
applying a unitary transformation of the basis from |p). to
Ip);. = Ip).Us,, where

e—io/4)0 0
Uy, = 0 oio/a |-

Such a transformation removes the rotation angles £6,/2 for
the Dirac cones, and transforms the Hamiltonian into H =
[d*p'd*plp).H (p', p)(pl.. where the Hamiltonian matrix is
given by

(68)

H (', p) = wal8*(p' — p)

_I_th<a~p 0

2/
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3
0 75
+Z<O §f>62<p’—p—q,f>
j=1
3

0 0\, ,
+3 <Tg_ 0)52(p ~p+a). (69
j=1 N

Here, 0 = o0,&X + 0, is a vector of Pauli matrices, and
Té, _ ei(00/4)rrzTQf i/ (70)
More explicitly,
Téj = wpe% + w (o, cos gj+oysing;)), (71)

where ¢; = M for j € {1, 2, 3}, and we have defined

0
b0 = xo+ 30 (72)

This implies that the angles xo and 6, do not have fully
independent effects on the band structure. We are left with
a single angle variable ¢y in the continuum model of Eq. (69),
occurring in the matrices Té/_ in Eq. (71). We note that the
angle ¢ in Eq. (72) also occurs in the expression for the
energy gap in the commensurate AA stacking configuration in
Eq. (62). This can also be understood via the transformation
in Eq. (68).

The model can similarly be written in the transformed real
space basis

Ir); = Ir)Us,- (73)

The Hamiltonian then becomes H = fdzrlr)’c’)-[’(r)(ﬂ’c,
where the Hamiltonian matrix is given by

T'(r)

—ihvpo -V
—ihvro - V)’ (74)

H’(r) = 'lUQI + ( T,T(r)

and where we have defined
3
T'(r) =) Tge™v (75)
j=1

in terms of the matrices Téj in Eq. (71).
By the results of Appendix L, we can assume without loss

of generality that s = 1 [recall that s affects the direction of
q;, see Egs. (33) and (35)], and

¢oe[0,%], we>0. w >0, 80>0. (76)

In addition, since w; simply shifts the energy bands globally,
we assume w, = 0 hereafter. As shown in Appendix L, the
moiré band structures at angle ¢y and angle —¢ are particle-
hole transformations of each other, while the moiré band
structures at angle ¢y and angle m — ¢ are equivalent.

We note that in the chiral limit wy = 0 [12], the continuum
model in Eq. (69) is independent of the angle ¢¢. This is
revealed as a symmetry of the TBG continuum model in the
chiral limit in Ref. [14].

B. Changing ¢, in the first magic manifold

We first describe the evolution of the flat bands with respect
to the angle variable ¢ defined in Eq. (72) with the magic

angle criteria a '~ /3 and 0 < wo/w; < 1 [see Eq. (66)].
Following Ref. [80], we refer to the parameter space sat-
isfying these conditions and minimizing the bandwidth of
the lowest two bands at charge neutrality as the first magic
manifold.

Figure 8 contains three heat maps showing the base 10
logarithm of the bandwidth (in units of Avg|Ky,|) of the two
lowest bands at charge neutrality. The first magic manifold
appears in Fig. 8(b) (where ¢y = 0) as a dark nearly horizontal
curve on the left of the plot. In the first magic manifold
with ¢9 = 0, the lowest two flat bands at charge neutrality
are symmetric about zero energy due to an anticommuting
particle-hole symmetry P defined in Appendix L [5]. Band
structures for parameters in the first magic manifold with
¢o = 0 can be found in Fig. 7(a), 7(b), and 10(a).

For a fixed wo/w; and with «~! &~ V3, tuning ¢y away
from O shifts the two flat bands at charge neutrality away
from zero energy (breaking the particle-hole symmetry P),
and gradually increases the bandwidth of the flat bands. As
shown in Fig. 8(a), the bandwidth around ! = /3 increases
as ¢ increases from 0 to 7 /2, but still shows a local minimum
near @' = +/3. The precise value of o~' that minimizes
the bandwidth decreases as ¢ increases. The increase of the
bandwidth is mostly due to band curvature at the I'y; point.
This can be seen in Figs. 7(c), 7(d), and 10(b)-10(d). In par-
ticular, the lowest two bands at charge neutrality remain quite
flat near the Kj; and —Kj, points in the first magic manifold
for small ¢y. See Appendix Figs. 18 and 19 for additional band
structures in the first magic manifold.

Figures 11(a) and 11(b) show the real space wave functions
at I'y; corresponding to the flat bands in Figs. 10(a) and 10(b).
We see that when ¢ is increased from O in the first magic
manifold, the annular shape of the real space wave functions
remains unchanged.

C. The hypermagic regime

One may have noticed that in the bandwidth plot of
Fig. 8(a) (where wg/w; = 0.8) there are three dark spots at
¢o = 7 /2 near a1 =0.7,0.4,and 0.3, indicating parameters
with very small bandwidths for the lowest two bands at charge

neutrality. The situation is identical at ¢g = —m /2, which is
related to ¢9 = 7 /2 by a particle-hole transformation P (see
Appendix L).

To investigate what happens to the flat bands at ¢y =
+m /2, we compute the bandwidth of the lowest two bands at
charge neutrality at angle ¢y = /2, as a function of ¢! and
wo/w;. The result is given in Fig. 8(c), where we find a small
bandwidth region containing three curves with a~' values
around 0.7, 0.4, and 0.3 when 0 < wg/w; < 3. These curves
start at wo/w; = 0 and extend to at least wo/w; = 5. The
upper two curves merge around wo/w; = 0.2, o~ = 0.45
and contain the so-called second magic angle in the chiral
limit at wo/w; = 0, @' = 0.45 [12]. The third magic angle in
the chiral limit at wo/w; = 0, o~ ! = 0.267 lies on the lowest
curve.

Figures 10(e) and 10(f) show example moiré band struc-
tures at points on each of the upper two dark curves in
Fig. 8(c). Surprisingly, in both cases, we find several ex-
tremely flat bands in addition to the lowest two bands at
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(a) wo /w1 = 0.8
2.5-

2_
15-

3
-
1_

0.5

FIG. 8. Heat maps showing the base 10 logarithm of the band-
width (in units of Zvr|Ky,|) of the two bands nearest the Fermi level
at charge neutrality. As in Fig. 6, the bandwidth was computed as
the largest difference between a conduction energy and a valence
energy in the lowest two bands at charge neutrality among the points
Ly, Ky, My, Ky /2, My /2, —My, /2 in BZ),. For this computation,
we use the model in Eq. (69) with the quasimomentum truncation
illustrated in Appendix Fig. 17. (a) shows the logarithm of the
bandwidth as a function of «~! [defined in Eq. (65)] and ¢/ (27)
while wy/w is fixed at 0.8. The nearly horizontal dark curve near
a ' =4/3is part of the first magic manifold (see Sec. VIB). (b) and
(c) show the logarithm of the bandwidth as a function of ¢~! and
wo/w; while ¢ is fixed at 0 and 7 /2, respectively. In panel (b),
the nearly horizontal dark curve at a '~ /3 and 0 < wo/w; S'1
corresponds to the first magic manifold of small angle TBG. In
(c), the three nearly horizontal dark curves around a '=0.7,04,
and 0.3 contain many simultaneous flat bands and are part of the
hypermagic regime discussed in Sec. VIC.

(a) ¢o = 7/2, third narrowest band
2.5

FIG. 9. Heat maps showing the base 10 logarithm of the band-
width (in units of /ivp|Ky,|) of the third and eighth narrowest bands
among the first 20 conduction bands and the first 20 valence bands
at charge neutrality for ¢y = 7/2 and 7 /4. The bandwidth was
computed with the points 'y, Ky, My, Ky /2, My, /2, =My, /2 in
BZ,,. For this computation, we use the model in Eq. (69) with the
quasimomentum truncation illustrated in Appendix Fig. 17. The dark
regions indicate parameters in the hypermagic regime discussed in
Sec. VIC. See Appendix Fig. 20 for similar heat maps with ¢y = 0,
/8, and 37 /8.
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FIG. 10. Moiré band structures using the model in Eq. (69) with wy/w; = 0.8, w, = 0, and the quasimomentum truncation illustrated
in Appendix Fig. 17. The horizontal axes follow the moiré quasimomentum trajectory I'y; — Ky — My, — I'yy - —My;, — —Kj,. The
two bands nearest charge neutrality are shown in blue and red while all other bands are shown in black. The first four band structures have
parameters in the first magic manifold (see Sec. VIB) with varying ¢,. The last two band structures take parameters from the top two dark

curves in Fig. 10(c).

charge neutrality. In total, there are at least seven flat bands
in Fig. 10(e) and nine flat bands in Fig. 10(f)! Additional
moiré band structures with parameters lying on the curves in
Fig. 8(c) are given in Fig. 21. All of the plots show multiple
flat bands, including those in Figs. 21(i) and 21(j), which
correspond to the second and third magic angles in the chiral
limit.

To further investigate this multiple flat band phenomenon,
we plot in Fig. 9 the bandwidth of the third and eighth nar-
rowest bands among the first 20 conduction bands and the
first 20 valence bands at charge neutrality for ¢y = 7 /2 and
/4. In Fig. 9(a), we see that for ¢y = /2 there is a large
region (the dark diagonal band rising from the bottom left of
the plot) in which there are 3 or more flat bands. Additionally,
Fig. 9(b) shows that the region in which there are 8 or more
flat bands is nearly as large as the region in which there are
3 or more flat bands. Figures 9(c) and 9(d) show that when
¢o is decreased to 7 /4 the flat bands are often still present
though less narrow. Appendix Fig. 20 shows similar heat maps
for the angles ¢y = 0, 7 /8, and 37 /8. At ¢y = 0, there are
very few parameters for which there are more than two flat
bands. We call the parameter region centered at ¢p = £ /2 in
which there are many simultaneous flat bands the hypermagic
regime.

Taking a closer look at the moiré bands around charge
neutrality in Figs. 10(e) and 10(f), we see groups of three
connected bands in which one band is very flat, there are
Dirac cones at Kj; and —K,; between the other two bands,
and there is a quadratic band touching at I'jy; between the
flat band and one of the other bands. The second to fourth

valence bands at charge neutrality in Figs. 10(e) and 10(f) are
examples of this pattern. Each such group of three connected
bands resembles those of a tight-binding model on the kagome
lattice [82,87,88]. Furthermore, the corresponding real space
wavefunctions at I'y; in Figs. 11(e) and 11(f) show a kagome
lattice pattern and the Wilson loop bands in Fig. 13(f) are
consistent with exponentially localizable Wannier functions
[89,90]. Intriguingly, there is a band inversion transition along
the lowest dark curve in Fig. 8(c) around wy/w; = 0.86,
a~ ! =0.3. For wy/w; slightly below 0.86, the lowest two
moiré bands at charge neutrality are part of a group of three
kagome-like bands while for wg/w; just above 0.86, they
form a pair of two isolated bands. This transition is illustrated
in Figs. 12(a)-12(c).

In addition to the groups of three connected bands, we
also see groups of four connected bands in which the top
and bottom bands are very flat, there are Dirac cones at
Ky, and —K,; between the middle two bands, and there are
two quadratic band touchings at Ty, each involving one flat
band. The second to fifth conduction bands at charge neu-
trality in Figs. 10(e) and 10(f) are examples of this pattern.
These groups of four bands resemble those of the py, p,
2-orbital honeycomb lattice tight-binding model [81,82]. Fur-
thermore, the corresponding real space wave functions at I'y,
in Fig. 11(c) show a honeycomb lattice pattern and the Wilson
loop bands in Fig. 13(d) are consistent with exponentially
localizable Wannier functions [89,90]. We note that similar
groups of three or four bands were also observed in a recent
study of twisted Kitaev bilayers in Ref. [91]. Additional moiré
band structures with parameters in the hypermagic regime
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$0=0, a " =1.732
(a) bands — 1,1
-

o

o =7/6, " =1.698
(b) bands — 1,1
-

o =7/2, o' =0.681
(c) bands 2,3

o =7/2, o' =0.681
(d) bands — 1,1

o =7/2, o' =0.681
(e) bands — 3, —2

o =m/2, ot =0.681
(f) band —4

FIG. 11. Real space wave-function plots at I'y; using the model
in Eq. (69) with wy/w; = 0.8 and the quasimomentum truncation
illustrated in Appendix Fig. 17. Each plot shows the sum of the
squares of the norms of the wave functions at I'j; in the indicated
bands, as a function of space. See Appendix N for more details.
Light colors indicate large values and dark colors indicate small
values, but the color scales in each plot are independent. The valence
(conduction) bands are denoted with negative (positive) integers, so
the highest (lowest) valence (conduction) band is denoted —1 (1).
The white hexagons indicate the hexagonal primitive unit cell of
the moiré superlattice. (a) and (b) correspond to Figs. 10(a) and
10(b) while (c)—(f) correspond to Fig. 10(e).

including some with ¢9 < 7 /2 can be found in Appendix
Fig. 22.

The continuum model in Eq. (69) (with w, = 0) at ¢g =
=47 /2 clearly has neither the particle-hole symmetry P nor the
chiral symmetry C (see Appendix L for the definitions of these
operators), due to the asymmetry between conduction bands
and valence bands, for example in Refs. 10(e) and 10(f). As
shown in Appendix L, conjugation by P maps the Hamiltonian
H at angle ¢ to —H at angle —¢,, while keeping the other
parameters invariant. In contrast, conjugation by C maps H
at angle ¢ to —H at angle ¢y — 7, while keeping the other
parameters invariant. Therefore the continuum model at angle

¢o = £ /2 has a combined CP symmetry:

[CP,H] =0 when ¢o= i%. 7

No other values of ¢ possess this symmetry unless wy = 0.

D. Band topology

Lastly, we discuss the band topology of the lowest two
moiré bands at charge neutrality. It is known that in the BM
model for small angle TBG [3], which corresponds to ¢y = 0
here [see Eq. (72)], the lowest two moiré bands carry a frag-
ile topology protected by C,, 7 symmetry, provided the two
bands are disconnected from all other bands [4-8,92-94]. It
was further shown in Ref. [86] that in the presence of both
C,, T symmetry and the anticommuting particle-hole symme-
try P, the fragile topology becomes stable. See Appendix L
for the definition of the P operator and recall that particle-hole
symmetry is present only when ¢y = 0.

The fragile topology in the lowest two moiré bands
at charge neutrality can be detected by computing their
Wilson loop winding number modulo 2 [5,86,89,90]. See Ap-
pendix M for an explanation of the Wilson loop matrix and its
band structure. Figure 13(a) shows the Wilson loop bands of
the lowest two moiré bands using parameters corresponding
to small angle TBG at the first magic angle. We find a wind-
ing number of 1, indicating nontrivial fragile topology. Away
from ¢y = 0, the system no longer has particle-hole symmetry
P, so the fragile topology of the lowest two moiré bands can
potentially be lost.

We find that the fragile topology of the lowest two moiré
flat bands at charge neutrality remains robust for any ¢g €
[0, 7 /2] in the first magic manifold (see Sec. VIB) as long
as they are gapped from the remote bands. Two examples of
Wilson loop bands in the first magic manifold (with wy/w; =
0.8) are given in Figs. 13(b) and 13(c) and both have a winding
number of 1.

Computing Wilson loop bands in the hypermagic regime,
we find that among parameters for which the lowest two
bands are gapped from the higher bands, it is possible for the
lowest two bands to have either trivial topology or nontrivial
fragile topology. In order to transition from one of these
possibilities to the other, there must be a gap closing between
the lowest two bands and the higher bands. We illustrate one
such gap closing in Figs. 12(d)-12(f). The gap closing occurs
in Fig. 12(e) near the crossing between the upper two dark
curves in Fig. 8(c). The parameters in Fig. 12(d) are near the
second magic angle in the chiral limit and as a result the lowest
two bands at charge neutrality have fragile topology [4-8]. In
contrast, the bands in Fig. 12(f) are topologically trivial and
resemble those of a honeycomb lattice tight-binding model.
The Wilson loop bands corresponding to Figs. 12(d) and
12(f) are given in Figs. 13(g) and 13(h) and have Wilson loop
winding numbers of 1 and 0, respectively. Figures 13(e) shows
the Wilson bands corresponding to the lowest two bands
at charge neutrality in Fig. 10(e) which are topologically
trivial.
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FIG. 12. Zoomed plots of moiré band structures near charge neutrality using the Hamiltonian in Eq. (69) and the quasimomentum trun-
cation illustrated in Fig. 17. The horizontal axes follow the moiré quasimomentum trajectory I'yy — Kyy — My — I'yy — —My — —Ky,.
The two bands nearest charge neutrality are shown in blue and red while all other bands are shown in black. (a)—(c) show a band inversion
transition near the lowest dark curve in Fig. 8(c). In (a), the lowest two moiré bands at charge neutrality form two of a group of three connected
kagome-like bands. In contrast, in (c), the lowest two moiré bands at charge neutrality are gapped from the remote bands. A larger band
structure with the same parameters as (a) is shown in Appendix Fig. 22(b). (d)—(f) show a gap closing transition between the lowest two bands
at charge neutrality and the remote bands around the crossing of the upper two dark curves in Fig. 8(c). At this crossing, the topology of the
lowest two bands changes from fragile topological in (d) to trivial in (f). The Wilson bands corresponding to (d) and (f) are shown in Figs. 13(g)

and 13(h).

VII. DISCUSSION

We have derived an effective low energy continuum model
for TBG at angle 6 = 6 + 50 near generic commensurate
angles 6. The model is characterized by complex interlayer
hopping amplitudes woe*® and woe ¥ at commensurate AA
stackings, a real interlayer hopping amplitude w; at commen-
surate AB/BA stackings, and a global energy shift w,. The
twist angle 6y and the phase xo combine into a single angle
parameter ¢o = xo + 6p/2 which affects the band structure of
the effective continuum model in Eq. (69). Unless 6, = 0, as
in small angle TBG, ¢q is generically nonzero. Taking the
66 — 0 limit yields a low-energy model for commensurate
TBG, which gives a nonzero charge neutrality gap in the

AA stacking case if ¢y # 0 (mod 7), and gapless quadratic
band touching in the AB/BA stacking cases. For commen-
surate angle 6y &~ 38.2°, the gap in the AA stacking case is
around 1.6 meV and is therefore experimentally detectable.
Away from commensurate angles, we find the first magic
angle 00n,gic near a generic commensurate angle 60y is still
approximately given by o ~' = +/3 with « defined in Eq. (65).
When ¢y # 0 at the first magic angle, the lowest two moiré
bands at charge neutrality are generically flat except in the
vicinity of the I'y, point.

We have also revealed a hypermagic parameter regime
centered at ¢9 = % /2, in which several moiré bands (often 8
or more) become flat simultaneously. The hypermagic regime
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FIG. 13. Wilson loop bands for various connected groups of
energy bands using the Hamiltonian in Eq. (69) and the quasimo-
mentum truncation illustrated in Fig. 17. See Appendix M for an
explanation of Wilson loop band structure. The valence (conduction)
bands are denoted with negative (positive) integers, so the highest
(lowest) valence (conduction) band is denoted —1 (1). The parame-
ters of (a)—(c) are the same as those in Figs. 10(a), 10(b), and 10(d).
The parameters of (d)—(f) are the same as those in Fig. 10(e). The
parameters of (g) and (h) are the same as those in Figs. 12(d) and
12(f).

includes the second and third magic angles in the chiral limit
as well as parameters with large wo/w;. We have identified a
gap closing transition in the hypermagic regime between the
lowest two bands at charge neutrality and the higher bands,
across which the topology of the lowest two bands changes
from fragile topological to trivial.

Many of the flat bands in the hypermagic regime belong
to disconnected groups of bands which may be understood
in terms of effective tight-binding models. Some groups
of three bands resemble the kagome lattice tight-binding
model which contains a flat band [82,87,88]. Other groups
of four bands resemble the p,, p, 2-orbital honeycomb
lattice tight-binding model which contains two flat bands
[81,82].

The lowest two bands at charge neutrality often resem-
ble the honeycomb lattice tight-binding model which can be
used to describe monolayer graphene. If such hypermagic
parameters can be achieved experimentally, one may ex-
pect the strongly interacting physics in the flat bands to be
analogous to that in the conventional Hubbard model with
trivial single-particle bands. This may allow the occurrence
of antiferromagnetic states, in contrast to the spin-valley fer-
romagnetic states in interacting magic angle TBG with ¢y = 0
[44,45,57-59].

A practical future concern is how to achieve a continuum
model with ¢y near £ /2 and a sufficiently large energy
scale for the parameters wy and w; to observe the hypermagic
regime in experiment. The effective hopping parameters wy
and w; at nonzero commensurate angles 6, (without lattice
relaxation or other effects not considered here) are generically
small. For example, wy and w; at 6y =~ 38.2° are about 1 per-
cent of those at 6y = 0°. One idea to enhance wgy and w is to
explore the possibility of atomic interaction induced structural
reconstruction (e.g., charge density waves) or lattice relax-
ation, which may enhance the moiré potential modulation
between commensurate AA and AB/BA stackings. In addi-
tion, for small twist angles near the untwisted configuration
6o = 0, breaking the mirror symmetry M, (while preserv-
ing the other symmetries) would allow x, to be nonzero,
and therefore also ¢ to be nonzero. Thus strong M, break-
ing perturbations could transform small angle TBG into a
large ¢p model realization. Another interesting question is
whether or not there exist other moiré models (e.g., involv-
ing twisted graphene multilayers or other twisted materials)
for which there is a similar hypermagic regime where many
bands become simultaneously flat. If other such models exist,
it would be interesting to consider their common features
and the underlying reasons for the existence of these hyper-
magic regimes. We leave these ideas and questions for future
study.
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reciprocal lattice, BZ is the Brillouin zone, L; = R_9/»L, and
Py = R_j92P. The Bloch states |k, /, o) are defined by Eq. (3)
and satisfy the normalization condition Eq. (4). We first de-
rive Eq. (6) under the simplifying assumption u = 0 so that

Eq. (5) becomes (r', [, o/ |H|r,l, &) =t (r' + 7, —r — 7).
APPENDIX A;/I ILJTIEi{)?;E](E)I\P;[IEZN};igMILTONIAN Using the identity
1
1k r 2
In this Appendix, we derive Egs. (6) and (9) for the intra- IBZ| Z §°(k = G), (AD)
and interlayer microscopic Hamiltonian matrix elements. Re- re Gep
call that L is the Bravais lattice of monolayer graphene, P is its where |BZ] is the area of BZ, we compute
|
K, 1, o |HIK, [, &) = B e—ik/.(r/-&-'rlu,)eik-(r+r,’1)t+(r/ 4 fo, e 1_‘11)
| | r,r'el;
_ 7 o (K —K) Zeﬂk -, U, +rg)t+ (r/ —r4 T([}/ _ T(lx)
r'el; rel;
- Z 2K —k—G)) Zefik’.rfy,eik.(*rwtrfy)br(r +7, —7)
G]EP[ rel;
_ Z 82K —k — Gl)e—ic,‘rg/ Z e—ik<(r+tlu,—‘tfx)t+ (r + fo, _ fo)
Gep, rel,
=K. Lok o) Y o e R (r). (A2)

rel+t,—Tq

Note that we have used the rotational symmetry of the 7, (r) function in the last step. When p # 0, the Hamiltonian is modified
by subtraction of p times the identity. As a result, the general form of the matrix element is

(K, 1o |HIk, I, o) =

which is Eq. (6).
Next, we derive Eq. (9). Using Eq. (A1) and the identities

P9 .
= [ Shi e, iiBzi = ery,

K. Lok o) | —pn+ D

where |€2] is the area of the primitive unit cell 2 of L, we compute

(k,, —l,(x,|H|k,l,Ol — |BZ| Z Z —ik' (r+r-/l) tk(r+r )t ( ,+T;/l _r_fo)

relL_; rel;

t efzk/ (r' +r”) ik- (r+r ) zq (r'+t o —T— 1
DI R a

rel_;rel;

d? q . it (q—K) itl-(k— ’
= |BZ|/ (271)2[’((1)61“, Q=K it (k—q) Z 8%(q—k —

i_(k ! i
Z Z ( + Gy) oiT ,.Gfleﬂrf,G[(;Z(k +G; — k' — G.)),

G_eP_ G;ePy |Q|

which is Eq. (9).

APPENDIX B: DIRAC CONES

In this Appendix, we derive Eq. (7). Since this equation is
an approximation of Eq. (6) and both equations depend on
the crystal momentum k only through Rje/0k, it suffices to
consider the case § = 0. That is, we need to show that the

e~ Rk (ry |, (A3)
rel+t, —1,
(A4)
-1
G) ) S k-q+G)
G,IEP,[ GIEPI
(A5)

i

single particle Hamiltonian for monolayer graphene at K + p
takes the form

hvpog - p + O(|pl*) (B1)

when the chemical potential is chosen appropriately. Although
this is well known, the most common derivation employs a
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model of graphene that has only first or second order hopping
(for example, see Refs. [95,96]). We will now give an argu-
ment based on symmetry to show that Eq. (B1) holds with
arbitrary order hopping. This is similar to the symmetry argu-
ment given in Sec. III in the case of twisted bilayer graphene
near commensuration.

For monolayer graphene, we consider an orthonormal basis
of spinless p, orbitals |r, o) forr € L and @ € {A, B} localized
at r + 7,. We ignore the electron spin because of the weak
spin-orbit coupling in graphene [83]. The Bloch states are
defined by

Ik, o) ) (B2)

1 K
— oK T+a) Ir, o
relL
for crystal momentum vectors k, and satisfy the normalization
condition

(k” a’lk, (x) = 50(,,0[ ZSZ(k/ —k— G)eiiT“'G,
GeP

(B3)

We consider a microscopic Hamiltonian Hygno With matrix
elements

(r', o' | HmonolT, at) = l+(l'/ + Ty — T — Ty) — WS r0u s

(B4)
where 11 is a chemical potential and z, : R? — R is a rotation-
ally symmetric function (i.e., £, (r) depends only on |r|). The
symmetries of Hpono are generated by the unitary operators
Ce, (rotation by 7 /3 about 2), M, (reflection across the xz
plane), and the antiunitary operator 7 (time-reversal). These
operators take the form

Ce: K, @) = |Rx/3K, —at)
My 1k, ) = |R'K, —at),
Tk, a) =|-k, o),

(BS)

where R* denotes reflection across the x axis. The symmetry
subgroup that preserves the high-symmetry crystal momen-
tum K is generated by 5,7, Cs;, and M,, where C,, = ng
and C;, = Cﬁzz. Using Eq. (B3), we find

G, TIK+p,a)=K+p,—a), (B6)
Cs; [K+p,a) = @ K + Ry 3p, ), (B7)
My|K+p,oz) = |K+ R'p, —«a) . (B8)

If we expand the matrix elements of Hy,opno to second order
around K, we find

<K + P/, Ol/|1_1m0n0|l< +p, Ol)
= (Humono(Par.a + O(IPI*)8* (P — p),

where Hmono(P) is @ Hermitian 2 x 2 matrix that is linear in
p- Requiring

(B9)

[C2: T, Hionol = [Cs:. Himonol = [My, Himonel =0 (B10)
implies

Hmono(P) = 03 Himono (P)0x (B11)

= ¢ Hnono (Rox30)" V% (B12)

= 0 Hmono(R'P)0y, (B13)

where we use the notation M for the complex conjugate of a
matrix M. We now expand Hono in Pauli matrices as

Hmono(p) = hgffo + hSUX + h;v)ay + 1’160'Z
+ (koo + hlo, + Koy + hio.) ps
+ (W)oo + Iyoy + oy + hio.) py, (B14)

where the & coefficients are real. First, we choose the value of
w so that h) = 0. Next, Eq. (B11) implies A5 = hi = hi =0
and Eq. (B12) implies iy = iy = hY = hY = 0 and k) + lh; =
i(h* + ihy). If we define vr and ¢r by hvpe'® = ht + ihy, we
have

Hmono(p) = thG¢p P (B15)

Finally, Eq. (B13) implies ¢ = 0 so the Hamiltonian is de-
scribed by Eq. (B1). We conclude that the C,;7 and Cs,
symmetries imply that 0,0 takes the form of a Dirac cone
and M, symmetry determines the rotation angle of the Dirac
cone.

APPENDIX C: EQUIVALENT CONFIGURATIONS

Note that the microscopic Hamiltonian in Eq. (5) is
uniquely determined up to unitary equivalence by the relative
positions of the carbon atoms in the xy plane and their par-
titioning into two layers. We will therefore consider systems
differing only by an isometry of the xy plane and a relabeling
of the basis states to be equivalent. This leads to significant
redundancy in the specification of bilayer configurations, as
we will now show.

With angle and translation parameters (6, d), the atoms are
located at sites

{Rogpp(r+1,)—d/2Ir e L, € {A, B}} U {Ry2(r + 14)
+d/2lr e L, € {A, B}}, (CD

where the two terms indicate the top and bottom layers.
Since this set and partitioning is invariant under the mapping
0 +— —0, d — —d (with an interchange of the two layers)
the configurations with parameters (6, d) and (—6, —d) are
equivalent.

Next, consider the configuration with parameters (6 +
7 /3, R_z6d). If we rotate the whole system by the angle 7 /6,
the bottom layer atoms are located at

{Roj24n/3(r + 7o) +d/2Ir € L, € {A, B}} (623
and the top layer atoms are located at
{Rgp(r+1,)—d/2Ire L,a € {A,B}}.  (C3)

Since Ry;;3L =L and R;;37, — T_o € L, the bottom layer
atoms are equivalently located at

{Roj2(r + 74) +d/2|r € L, € {A, B}}. (C4)

Since these locations now match Eq. (C1), we see that the con-
figurations with parameters (6, d) and (6 4+ 7 /3, R_; sd) are
equivalent. As a result of these equivalences, we can restrict 6
to the interval [0, v /3) and note that the configurations (0, d)
and (/3 — 0, —R_ ¢d) are equivalent.

Next, consider the configuration with parameters (6, d +
X) for a vector X € R2. If we translate the whole system by
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X/2, the atoms are located at sites

{Roop(r+1y)—d/2Ir € L, € {A, B}} U {Rp)2(r + 74)
+d/2+X[rel, ac{A B (C5)

If X € L_ then this matches Eq. (C1) so the configurations
with parameters (6,d) and (6, d + X) are equivalent. Sim-
ilarly, if we translate the whole system by —X/2, we see
that when X € L, the configurations with parameters (6, d)
and (0, d 4+ X) are equivalent. Putting these results together,
we see that whenever X € L_ 4 L., the configurations with
parameters (6, d) and (6, d + X) are equivalent.

We show in Appendix D2 that when 6 is a commen-
surate angle, L_ + L, is a Bravais lattice whose reciprocal
lattice is P_ N P,. Furthermore, it follows from the results
of Appendix D6 that for commensurate 6, no set S larger
than L_ 4+ L, has the property that the configurations with
parameters (6, d) and (9, d + X) are equivalent for all d € R?
and all X € S. On the other hand, we show in Appendix E
that when 6 is not a commensurate angle, L_ + L, is a dense
subset of R2. Since the Hamiltonian depends continuously
on d, it follows that for incommensurate 6 the configura-
tions with parameters (6,0) and (6,d) are equivalent for
alld € R2.

APPENDIX D: PROPERTIES OF COMMENSURATE
CONFIGURATIONS

Using a combination of elementary number theory and
symmetry arguments, these appendices enumerate and char-
acterize the commensurate configurations of TBG. The
approach taken in Appendixes D 1 and D 2 is similar to that in
Ref. [2], but we include detailed derivations for completeness.
We follow the notations of Secs. II A and II B.

1. Enumeration of commensurate configurations

We first seek to enumerate the commensurate configura-
tions. Recall that a;, a, are primitive vectors for L and b, b,
are primitive vectors for P, as illustrated in Fig. 1. Let a
and b denote matrices with columns (a;, a;) and (b, by),
respectively. Explicitly, we have

_ (V3 V32
“_“°<0 —3/2)’

2
po (V330 ) (D1)

ap \ 1/3  =2/3
Recall from Sec. II B that the bilayer system is commensu-
rate when L_ N L, # {0}, and in this case L_ N L, is the
commensuration superlattice. L_ N Ly # {0} is equivalent to
the existence of nonzero integer vectors u; and u_ such
that

u, =a 'Ryau_. (D2)

Similarly, P_ N P, # {0} is equivalent to the existence of
nonzero integer vectors v and v_ such that

v, =b 'Rybv_. (D3)

Note that
—1 Xo + Yo 2y0
Roa = , D4
@ fed ( —2y0 X0 — .VO> (D4
. - 2yp
b'Reb = (00 , D5
! ( —2yo X0+ Yo (DS)

where xy = cos6, yo = % sin@. It follows that the bilayer
system is commensurate if and only if xy and y( are both ratio-
nal, which is equivalent to the L_ N Ly # {0} and P_ N Py #
{0}.

From here on, we will use 6y in place of & when we
assume the system is commensurate in order to match the
notation of Sec. IIB. If the system is commensurate, then
(x0, yo) is a rational point on the ellipse x> 4+ 3y> = 1. Unless
(x0, y0) = (1, 0), the line through (x¢, yo) and (1,0) intersects
the y axis at a rational point (0, m/n) where m, n are relatively
prime integers with n > 0. Solving x?> + 3y* = 1 simultane-
ously with x = —»y + 1 yields

3m? — n?
Xo= ———,
07 32 2
2mn
W=z (D6)

The special case (xg,yo) = (1,0) corresponds to (m,n) =
(1,0). By the results of Appendix C, we can restrict 6 €
[0, 7/3) so that m > n > 0 and 6y = cos ™! (xp).

2. Commensuration lattices

We now determine the primitive vectors and reciprocal lat-
tices of L_ N Ly and P_ N P, assuming 6, is a commensurate
angle. We have

" Roya = %(f‘ﬂ ’ﬁ) O7)
e = (% ) (D8)
« = (m + n)3m — n)/do, (D9)
B=dmnjdy=a—y, (D10)
y = (m—m)Gm -+ n)/ds, (11
N = 3m? +n*)/dy, (D12)

where dj is the greatest common divisor of the numerators
of «, B, y,N. Note that @ should not be confused with the
model parameter defined in Eq. (65) and used in the main text.
If 3 17 (i.e., 3 does not divide n) then the numerator of N is
1 (mod 3) so 3 1 dp. On the other hand, if 3|n then 3|d, but
9t dp since 3 t m. In either case, 3t N. If one of m and n is
even, then the numerator of N is odd so dp is odd. On the
other hand, if m and n are both odd then 4|d,, but considering
the numerator of 8 we see that 8 t dy. If p is a prime divisor
of dj other than 2 then considering the numerator of 8, we see
that p|m or p|n but not both. Considering the numerator of N,
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we see that p = 3. We conclude

dy = ged(4mn, 3m* + n?)
if 2|nor2jm)and31n
if (2|n or 2|m) and 3|n

if2fnand2tmand3tn’
2 if24nand2{mand3n

(D13)

|
—_ W =

so that ged(B, N) = 1. Also, since det(a~'Rg,a) = 1 we have
ay + p* = N>

Assume for now that (m, n) # (1, 0) so that 8 # 0. Writing
u_ in components as u_ = xX + y¥ for integers x, y, Eq. (D2)

becomes
L{a PB\(x )
— e 7", D14
N (—ﬂ 7/) (y> (B1)
which is in turn equivalent to the pair of congruences
ax+ By=0 (mod N), (D15)
—Bx+yy=0 (mod N). (D16)

Since B # 0 and ged(B, N) = 1, we can multiply Eq. (D16)
through by B. However since —pB% =ay (mod N), we
see that this equation is implied Eq. (D15). Furthermore,
Eq. (D15) can be solved as

X =ny,
y=ni(—=B ') + mN

for integers n;,ny, where B8~! is the smallest non-negative
integer such that 87! = 1 (mod N?). As a result, the set of
integer vectors u such that a~!' R au is an integer vector forms
a Bravais lattice with primitive vectors

(D17)

u =%- B lay,

u, =N§. (D18)
In the case (m,n) = (1,0), a 'Rga=1, N =1, and ! =
0 so this result still holds. The image of this lattice under

a~'Rg,a is also a Bravais lattice with corresponding primitive
vectors

uf =a 'Ryau; = —apk+ (Bp — B7'N)§,
ul =a 'Reau; = X+ ¥,
p=(B'B—1)/N eNZ.

We conclude that the commensuration superlattice takes the
form

(D19)

L_NLy = {R,go/za(muf” + nzu;’)|n1, ny € 7.}
= {Ry,pa(mu; + nau; )|ny, ny € Z}.

Note that the unit cell of L_ N L, has area N|Q2|.

We can use this result to compute the reciprocal lattice of
L_ N L. Let this reciprocal lattice be called P and note that
primitive vectors for P can be given by

(D20)

. 1 N om R
i = NRfeo/zb(VX — BY) = Ry, 2bX,

i = R_g,2b[(—=Bp/N + B~)% — (ap/N)§]

1 A
= —Rgo/zb(ﬂilax + y).

v (D21)

Since p/N is an integer, it; € P_,ii, € P, so P C P_ + P,.
However, by the definition of the reciprocal lattice P_ + Py C
P so that P = P_ + P, . Note that the unit cell for P has area
IBZ|/N.

Since Eqs. (D7) and (D8) are related by the interchange
of @ and y, corresponding results for the reciprocal lattices
can be obtained by interchanging « and y. The set of integer
vectors v such that b~'Rg bv is an integer vector forms a
Bravais lattice with primitive vectors

Vi =%-B71y§,
v, = N§, (D22)

and the image of this lattice under b~!Ry,b is also a Bravais
lattice with corresponding primitive vectors

Vi = b'Rebv; = —ypk+ (Bp — B'N)Y,

vy = b 'Ry,bv; = BY + af. (D23)
We conclude
P_ NPy = {R_gpb(mv{ + mvy)lny, ny € Z}
= {Rg,2b(n1v] +navy)Iny,mo € 2}, (D24)

the reciprocal lattice of P_ N P, is L_ + L, and the unit cell
of P_ N P, has area N|BZ|.

3. Equivalences between top and bottom K and K’ points

We will now derive Egs. (12) to (14) starting with Eq. (14).
By Eq. (2),

K; = R_j,2K
= R_j9,2(2b; +b2)/3
= R_15,20(2% + §)/3

and similarly Kj = R_;g,2b(X +2§), so that K; — K] =
R_6,/2(X — §)/3. Examining the primitive vectors @i; and i,
for P_ 4 P, in Eq. (D21), we see that if R_;,2bv € P_ + P,
where v is a rational vector then the denominators of v - X and
v - § must divide N. Since 3 { N, it follows that K; — K; &
P_ + P,, which is Eq. (14).

Next, since 3 {1 N there is an integer k € {0, 1, 2} such that

(D25)

kN =24 87"y (mod 3) (D26)
so that by Eq. (D22) we have
Vi + kv, =%4+2§ (mod 3). (D27)

Recalling that v;r = b’lenbvj’ for j = 1, 2 we then have

K_ = —Rgnb(v] +kv3)/3+ G_
= —R_g,ob(v{ +kv3)/3 +G_,
K' = Ry 2b(v] +kv;)/3 +G_
= R_g,nb(v{ +kvi)/3 + G (D28)

for some G_, G__ € P_. Multiplying these equations by R_g,,
we find

K+ = —R_go/zb(V? + kV;)/3 + G+,

I(/Jr = ngo/gb(vl_ + sz_ )/3 + G’ s (D29)
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where Gy =R_4G_ € P, and G/_ =R_4/G/ € P,. Note
that

Ky —K_ =R g nb(vi —vi + k(v —v5))/3+ G4 —G_

(D30)
so Ky —K_ € P_+ P, if and only if R_g,nb(v{ — v +
k(v;' —V,))/3 € P_ + P,. By the same argument as before,
we see that K, — K_ € P_ 4 P, if and only if

vi+kvy =%+42§ (mod 3) (D31)

in which case we also have K/, — K” € P_ + P,. Similarly,
K, — K’ € P_+ P, if and only if
vi+kvi =2%8+§ (mod 3) (D32)

in which case we also have K/, — K_ € P_ + P,.
Using Egs. (D23) and (D26), ay + B>=N?*=1 (mod 3),
and 8 = o — y, one can show

Vi +kvi =N(@+y)2&+§) (mod 3). (D33)
Additionally, using Eq. (D13), we find
N(a +y) =209m* —n*)/d}
B {1 (mod 3) if3fn (D34)
12 (mod3) if3n °

Let (J_,J ) denote (K_,K’) when 3|n and (K ,K_)
when 3 {n. We then conclude K, —J_, K, —J_eP_+
P, , which is equivalent to Eqgs. (12) and (13).

4. Pairs of complementary commensurate configurations

It follows from AppendixC that when 6 is a commensurate
angle, mw /3 — 6y is also a commensurate angle. We will now
prove this statement another way and consider an important
relationship between the two configurations that is used in
Sec. II B.

Returning to the notation of Appendix D 1, let

1
x; = cos(m/3 — 6y) = E(Xo + 3y0),

1 1

yi = —=sin(w/3 —6p) = 5(xo — yo). (D35)
V3 2
Since 6, is a commensurate angle, xq and y, are rational, and
therefore x; and y, are rational. It follows that w /3 — 6 is
also commensurate. If (xg, yo) corresponds to the integer pair
(mg, ng) and (x;, y;) corresponds to the integer pair (m;, ny)
then

_ 3m(2) — 2mgng — n%
3(my — no)?

m Y1

n l—xl

(D36)

If 3|ny then 31my so the denominator of this fraction is
divisible by 3 exactly once. However, the numerator is also
divisible by 3 so we conclude 3 fn;. On the other hand, sup-
pose 3 fng. It is straightforward to see that the largest power
of 3 dividing the numerator is the same as the largest power of
3 dividing mg — ng, so we conclude 3|n;. As a result, in one
of the commensurate configurations corresponding to 6y and
/3 — 6y we have (J_,J ) = (K_, K’ ), and in the other we
have (J_,J") = (K_, K.).

5. The lattices Q.. and Q,

In this section, we prove Eq. (32), find the minimal norm
elements of (K_ + P_) N (K, + P;), and derive the forms of
L. NLy,PNP.,L_ +L,, and P+ P,. As explained in
Sec. II B, we assume 3|nso that J_ = K_. Since (K_ +P_) N
(K4 + P, ) is closed under addition by elements of P_ N P,
and has the property that the difference of any two elements is
in P_ N P,, we must have

K_+P)NK,+P)=ky+P NP, (D37)

for some vector ky. Since P_ NP, is a triangular lattice,
ko + P_ N Py has at most three elements of minimal norm.
However, since (K_ 4+ P_) N (K, + P, ) has 3-fold rotational
symmetry and does not contain 0, it must have exactly three
elements of minimal norm. Since (K_ + P_)N (K + Py)
additionally has symmetry under reflection across the vector
K, one of the elements of minimal norm must be proportional
to K. Since the unit cell of P~ N P, has area N|BZ|, we
conclude P_ N P, = /NP and the element of minimal norm
proportional to K must be Q; = s+/NK where s is 1 or —1.
The other two elements of minimal norm are Q> = Ry 3Q
and Q3 = Ry4;,3Q, and we can write

K_+P)NK;L+P)=s/NK+P_.NP.. (D38)

Recalling from Appendix D2 that the reciprocal lattice of
P_.NP,is L.+ L., it follows that L_ + L, = L/+/N. Ap-
plying the same argument to the real space lattices, we see
that L_ N L, = +/NL so that P_ + P, = P/+/N.

We will now determine the sign s. We have s+/NK — K, €
P, or equivalently (s\/ﬁRmo 2 — DK € P. Using the half-
angle formulas and the results of Appendixes D 1 and D2 we
find

cos(6p/2) = :1/1T0£13V’ (D39)
. n
sin(6y/2) = TaN’ (D40)
(sv/NRyg,p — DK = 4gf((sm\/3/70 - DX
+ (sln/v/do)9). (D41)
For comparison,
47/3

3
(Bn/2)R + (n1/2 — n)V/39).

(D42)
By Eq. (D13), when m £ n is odd, we have dy = 3 so the
equation (s\/NRmO 2 — DK = n;b; + nyb, has a solution if
and only if sm =1 (mod 3). When m £ n is even, we have
dy = 12 so the same equation now has a solution if and only
if sm =2 (mod 3). We summarize both cases by saying

nb; + nmoby =

9a0

mtn

Jao 3

5= (mod 3) and s = +1. (D43)

6. AA, AB, and BA stacking commensurate configurations

We say that a commensurate configuration has AA stacking
if there is an A sublattice atom on the top layer that is directly
above some A sublattice atom on the bottom layer. Similarly
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FIG. 14. The real space structure of commensurate twisted bilayer graphene as in Fig. 2 but now with nonzero d. The left (right) plot
corresponds to AB (BA) stacking. The top (bottom) atoms are represented by dots (circles), the A (B) sublattices in each layer are colored blue

(red), and the purple rhombus is a primitive unit cell for L_ N L.

we say that a commensurate configuration has AB (BA) stack-
ing if there is a B (A) sublattice atom on the top layer that is
directly above some A (B) sublattice atom on the bottom layer.
For the commensurate configuration with 6y = 0, it is clear
that d = 0 (i.e., no interlayer translation) corresponds to AA
stacking, d = a¥ corresponds to AB stacking, and d = —ao¥
corresponds to BA stacking. We will now derive a generaliza-
tion of this correspondence for commensurate configurations
with 3|n.

We first consider AA stacking. In this case, there is a pair of
vectorsry € Ly andr_ € L_such thatry + 7} =r_ + 7.
Equivalently, we have T/ — 7, € L_ + L.. Using Eq. (D40),
we have

TX — T; = (R_90/2TA — d/2) — (R90/21'A + d/2)

= —(Rey2 — Rg,2)(a0§) — d
= 2sin(6y/2)(apX) — d

2n < d
= apX —
Nz
= n/al/vN —d, (D44)

where n' = 2n/+/3d, is an integer since 3|n and d, € {3, 12}
by Eq. (D13). Since we found in Appendix D5 that L_ +
Ly =L/v/N we see that tf — 1, € L_+ L, if and only
if d € L_ 4+ L,. We conclude that AA stacking corresponds
todeL_+Ly. Since T3 =R_;;374 and ay = R_;3a; we
have

T5 —1; =n'ay/VN —d (D45)

sothat 75 — 75 € L_+ Ly ifand only if de L_ + L. It
follows that AA stacking can equivalently be defined by saying
that there is a B sublattice atom on the top layer that is
directly above some B sublattice atom on the bottom layer.
A commensurate configuration with AA stacking is shown in
Fig. 2.

Next, we consider AB and BA stacking. In AB stack-
ing, there are vectors r; € L; such that ry + rg =r_+1,,
or equivalently T4 — 7, € L_ + L. Similarly, BA stacking
is equivalent to T} — 7, € L_ + L,. Using Egs. (D39) and
(D40), we have

154 - Tgl = _(RIQO/ZTB - R,[90/21.'A) —id

= —Rr/6(Raay-n/3)/2 — R-qtgy-n/32) Ta — 1d
= 25in((16p — /3)/2)R_ j6(aoRk) — Id

= (I'sin(6y/2)v/3 — cos(6y/2))(tp — T4) — Id
= —m'(t5 — 14)/VN — Id, (D46)

where m' = (m — In)/s/dy/3 is an integer with m' =s
(mod 3) by Eq. (D43). It follows that rﬁ, — rgl el_+
L, if and only if d € —“J—%ff + L_ + Ly so that AB stack-
ing corresponds to d € \/Lﬁaoff + L_+ Ly and BA stacking
corresponds tod € — \Lwaoy + L_ + L, . Commensurate con-

figurations with AB and BA stacking are shown in Fig. 14.

APPENDIX E: L_ + L, and P_ + P, ARE DENSE
FOR INCOMMENSURATE ¢

Suppose 6 is an incommensurate angle. Recall from Ap-
pendix D1 that this implies xy and yy are not both rational.
It follows from Eq. (D4) that both columns and both rows
of the matrix a~'Rya contain an irrational value. It is well
known that for any irrational number z, the set of fractional
parts of integer multiples of z is dense in the interval [0, 1).
Equivalently, the set of integer linear combinations of 1 and
z is dense in R. It follows that the set of integer linear com-
binations of a~'RyaX, a 'Rya¥, X, ¥ is dense in R2. Since
the linear map R_g»a is continuous and density is preserved
under continuous maps, we conclude that L_ + L, is dense in
R2. A similar argument using Eq. (D5) shows that P_ + P, is
dense in R? as well.
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APPENDIX F: PROPERTIES OF THE DISTANCE
FUNCTION d

(1) We consider 1 in Sec. IT C which claims d(k, [, Kk, [) =
0. If we write K+ G; =k + G_; where G; = G_; =0, we
then have d(k, [, Kk, ) = |G_;| = 0.

(2) We consider 2 in Sec. IIC which claims
dk,LK,I'Y=dX, 'k, ). If K—KkgP_ +P, then
dk,LLK,I'y=00=d([K,I',k,1). Otherwise, suppose

k+ G, =k'+ G_; for some G_ € P_, G, € P,. There are
two cases to consider.
(i) Ifl’ = —I then k' + Gy = k + G_; so that

dk,LLK,I")=|k+ G| =K + Gy
=dK, Ik, (F1)
(ii) If !’ = thenk/’ — Gy = k — G_y so that
dk, LK, I)=|G|=|—-G_y|=dX,I',k, ). (F2)
(3) We consider 3 in Sec. I C which claims
dk,1,K", 1"y <dk, LK, I')+dX&,I',kK",I"). (F3)

When either term on the right-hand side is oo, the inequality
is trivially satisfied. If the left-hand side is oo then k" — k ¢
P_ 4 P,. This implies that at least one of the terms on the
right-hand side must be oo as well, so the inequality is satis-
fied.

Otherwise, suppose

k+Gl=k/+G_1,

K+G, =k"+G’, (F4)
for some G_, G_ € P_ and G, G/, € P,. It follows that
k+G +G, =k"+G_,+G,. (F5)

‘We now consider three cases.
(a) Suppose [ =1’ =1" and without loss of general-
ity we take [ =10 =1" = +. Then d(k, [, K,l') = |G_]|,
dX,UI',k", 1"y =|G"_|and k + G/ = k" + G”, where

G =G_+G.,
G, =G, +G. (F6)
We then have
dk,1,K", 1" = |G"|
=|G_+ G|

<dKk, LK, I+dK,I',K",1"). (F7)

(b) Suppose [ =1"#1" and without loss of gener-
ality we take [ =1’ =+, I” = —. Then d(k,[,K,l') =
G|, dK,I' K", 1"y=|k"+G_| and k+ G/ =k" +
G”,, where

G =G_+G.,
Gl =G, +G. (F8)
We then have
dk,1,K", 1"y = K"+ G"|
= |G-+ &"+GL)|
<dk, LK, I)+dX,I',K",1"). (F9)

(c) Suppose [ =1"#1" and without loss of gener-
ality we take [ =" =+, '’ = —. Then d(k, [, K, l') =
kK +G_|, dk,I'K',I"Y=|k'+G"| and k+ G/ =
k” + G”,, where

G =G_-G,
G, =G, -G (F10)
We then have
dk, k", 1") = |G|
= |G- — G|
= |k +G-) — (k' + GL)|
<dK, LK, )+dX,I',K",1"). (F11)

The last case in which [ # I’ = [” follows from the sym-
metry of d and the case [ = 1" #[".

APPENDIX G: LEVEL SETS OF d

In this section, we prove the characterization of d described
in Sec. IID. Recall that P) = R_jy, 2P and that 6 = 6, + 50
is an incommensurate angle, where 6, is a commensurate
angle and &6 is small. Let k € R2, 1 € {+, -}, and let kg =
Riso2k. Suppose that k', I’ satisfy d(k, I, k', I") < oo so that
we can write k + G; = k’ + G_; for unique vectors G_ € P_,
G+ € P+. Define G?h = Rigg/zGi € Pi and k(,) = k() + G? —
G(ll eko+ P+ PR. We then have

K' — Riso0ky = (k+ Gy — G_;) — Riso o (ko + G) - G(l,)
= R_i502(ko + G}) — Riso 2 (ko + GY)

— _ID(50)Q_, G1)

where D(86) is defined by Eq. (19) and
Qi =ko+G] =k + G2, € (ko +P) N (ky + P2
= Q(ko, [, ki, —1). (G2)
Similarly,
K —R_j500ky = (k + G, — G_;) —R_i502(ko + G} — G?))

= R_156/2G%; — Ris02G,
= —ID(60)Qy, (G3)
where
Q =G =ko—k)+G) e P’ n (kg —kj+ P)
= Q(ko. [, ky, 1).

It follows that

(G4)

K = R_ys592k, — ID(80)Qy, (G35)

where Qp € Q(ko, I, kj, I'). Furthermore, the vectors k;
and Qp are uniquely determined because the vectors
G_ and G, are uniquely determined. Additionally, since
IQul=ko+G)|=k+G/| and |Q|=IG) =G
we have d(k,[,K,!’)=|Qy|. The converse statement
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can be proved simply by tracing the above argument
backwards.

APPENDIX H: EQUIVALENCE OF SMALL ROTATIONS
AND SPATTIALLY VARYING TRANSLATIONS

We now derive Egs. (47) and (48) which relate the T and St
potentials in commensurate and incommensurate configura-
tions. In this section, we denote continuum states |p, /, «). and
Ir, [, o), with twist angle 6 = 6y + 66 and translation vector
d by |p,/,«,80,d), and |1, [, o, 66, d),., respectively. Since
Ip, I, «, 0, d), is a state with crystal momentum K; 4 p which
has been shifted by —/d/2 we must have

p. L, 0,d), = e 1®P215 7 4 0,0),. (H1)
Similarly, since |p, [, «, 66, 0), is a momentum state that has
been rotated by —/56 /2, we must have

|p,l,0[,89,0>c = |R153/2P,l,0€,0, 0>c (H2)

J

T(r,80,0) = ((r,+,A,80,0]. (r,+,B,380,0|.)H (0, 0)(

= ¢ IKAKDCEO/2((p 4 A 0,D(80)r|. (r,+,B,0,D(0)r|)H O, D(59)r)<

= ¢/ COORRDODIT (r 0, D(86)r) 4+ O(86°),

which is equivalent to Eq. (47). Equation (48) follows from a
similar calculation.

APPENDIX I: SYMMETRY REPRESENTATIONS

In this section, we give the representations of the unitary
and antiunitary symmetries of twisted bilayer graphene re-
ferred to in Sec. III. For 6 # 0, the spinless symmetries of the
full Hamiltonian are generated by the unitary operators Cg,
(rotation by 7 /3 about Z), C,, (rotation by 7 about X), and the
antiunitary operator 7 (time reversal). These operators take
the form

Ce: K, [, a) = |Ry 3K, [, —at) ,
G Ik I, a) = — Rk, =1, —a),

Tk, L, a)=|-Kk, 1, a), In
where R* denotes reflection across the x axis. The minus
sign for C,, reflects the fact that |r, [, a) are p, orbitals. The
symmetry subgroup preserving valley is generated by C, 7T,
Cs;, and Gy, where Gy, = ng and Cs3, = ng. Using Eq. (4),
we find

C22T|Kl + P, lv Ot) = |Kl +pv ls —Ol> s
Cs, K +p. 1, a) = @K + Roq3p, 1, @),

Cu|Ki+p, L) =— K +R'p, —,—a).  (12)

By Eq. (40), we then have
Ir,l,a,0,d) = e 92 p 4 1d/2,1, 2, 0,0),
Ir, 1, &, 86,0) = |Ry50)o1, [, @, 0,0),
so that Eq. (45) implies
Ir, [, o, 860, 0) = KPOO/2 10 1 0, D(8O)r) + O(562).
(H4)

(H3)

Next, let the continuum Hamiltonian A with twist angle
0 = 6y + 80 and translation vector d be denoted H (56, d).
Since the pattern of atoms near position r with 6 = 6y + 66
and d = 0 is the same to first order in §6 as the pattern with
6 =6y and d = D(60)r, we must have

(., ', a', 80,01, H(6,0)|r,1,a,86,0),
=, l',d,86,0|.H(O,DESO))|r, [, a, 86, 0),
+ 0(86°).
It follows that

(H5)

Ir, — A, §6,0).
Ir, —, B, §6,0).

|r7 R

|l', R

A, 0, D(6)r), 2
B 0,D(50)r)c> +0(56°)

(H6)

(

As a result, the appropriate representations on the |p, [, o),
space are

o 0
G, TIp). = IP). 0 ,
Oy
£i(2n/3)0;

0 e /3)(;:) » (13

C3Z|p)c = |R27r/3p>c<

. 0 —0y
Culp). = IR'P). )
—0, 0

where |p). is defined in Eq. (29).

In the case 8 = 0, there is an additional valley preserving
unitary symmetry M, (reflection across the xz plane). This
operator has representations

My |k7 l’ (X) = |ka5 lv _a> 5
M, K+p,l,a)=|K+Rp,I,

X X O
MyIp). = IR p>c<‘(’) )

e (14)

Ox

For 6 near 0, M, can be considered an approximate symmetry.

APPENDIX J: DETERMINING THE MODEL
PARAMETERS WHEN 46 = 0

Recall from Sec. IIE that in the commensurate case, the
continuum Hamiltonian approximates the four bands of H
nearest the Fermi level at charge neutrality. Explicitly, this
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model takes the form of a p dependent 4 x 4 matrix as shown
in Eq. (59). In order to determine the parameters for this
model, we will now describe a method to determine an ef-
fective Hamiltonian for these four bands directly from the
microscopic Hamiltonian H.

Recall from Sec. IIB that for commensurate configura-
tions, H is block diagonal with blocks of dimension 4N.
Let H(p) be the Hamiltonian block containing Bloch states
IK; +p,l,a) for [ € {+, -}, a € {A, B}. In practice, the
4N x 4N matrix representation for H(p) can be computed
accurately from Eqgs. (6) and (9) with finitely many terms for
each sum as long as the hopping functions 7, (r) and 7_(K)
decay rapidly enough. We diagonalize H (p) as

4N
H(p)=Y_E;(p)p. ) (p. jl an
j=1

for real eigenvalues E;(p) < E>(p) < --- < Eyn(p) and or-
thonormal eigenvectors |p, j). The indices j from 2N — 1 to
2N + 2 correspond to the four bands described by the contin-
uum Hamiltonian.

Define the projection operators

Pp) =) Y IK +p,La) (K +p,lal,
=+ a=%

2N+2

Pi(p)= )Y Ip.J)(p.Jl. 32)

j=2N—1

Since the states |p, j) are almost completely supported on the
states |K; 4+ p, [, ), the operators Py(p) and P, (p) are nearly
the same. It follows that there is a canonical unitary operator
U (p) called the direct rotation that satisfies

U@)Pi(p)U"(p) = Py(p) J3)

and minimizes the Frobenius norm of U (p) — I over all uni-
tary operators satisfying Eq. (J3) [97]. The only condition
upon which this theorem is dependent is || Py(p) — Pi(P)|lop <
1, which is satisfied in practice. Here, we use the notation
[IM||op to denote the operator norm of M. The direct rotation
is given explicitly by

U(p) =/ —2Py(p))UI — 2Pi(p)), (J4)

where /M denotes the operator square root of M and is
defined using a branch cut of the function z > ,/z along the
negative real axis in the complex plane, with ~/1 = 1. The
operator

2N+2

Her(p) = Z E;(p)U()Ip. j) (p. jIU (D) ds)
j=2N—1

is the result of projecting H(p) onto the four bands of
interest and then applying the direct rotation into the sub-
space spanned by the Bloch states |K; + p,/, ). Under
the mapping |K; +p,/,a) — |p, [, o)., Herr(p) maps to an
operator that should be considered the correct continuum
Hamiltonian.

Let Heg(p) be the 4 x 4 matrix representation of Heg(p)
with respect to the basis |K; 4+ p, [, a) so that Heg(p) is

-
1

§ 1077 e— —e— (1,0)
& _3 | 63
2 10 K —— (7,3)
. ——(4,3)
E 10 / 11, 3)
2107 9
£
% o10—9
< 1077
2 I T T T T T T

0 0.25 0.5 0.75 1 1.25 1.5

Ipl/IPol

FIG. 15. The maximal relative error between Hg(p) and Ho(p)
as a function of |p|/|po|, Where fivp|po| = 3|wy| [see Eq. (J7)]. The
maximum is taken over d in a 10 x 10 discretization of a unit cell of
2L/+/N and five values of p with a given norm.

directly comparable to the matrix Hy(p) defined in Eq. (59).
These two matrices are explicitly dependent on p, but also
implicitly dependent on the translation vector d. Recall
from Appendix D 6 that d = 0 corresponds to AA stacking,
d= ﬁaoff corresponds to AB stacking, and d = ——=ao§
corresponds to BA stacking. By Egs. (57) and (60), we
have

Ty (0) = 3wge' 0%,
To(+dyp) = 3w (o, F ioy), (J6)

where dyp = ﬁaoy so that wy, xo, wy determine Ho(p) for
AA stacking configurations, while w;, w, determine Ho(p)
for AB and BA stacking configurations. Furthermore, to deter-
mine the model parameters, it suffices to compare H.g(p) and
Ho(p) at p = 0 and a single generic d value. For simplicity,
we instead use p = 0 and both d = 0 and d = dp to deter-
mine the model parameters shown in Tables I and II. These
computations are performed using the hopping functions 7. (r)
given in Appendix K.

To validate the accuracy of these results, we compute the
relative error

|[Heit(P) — Ho(p)I|
[ Hete (P

using the parameters in Table II, where ||M|| denotes the
Frobenius norm of M. We compute this relative error as a
function of d and p, where d varies over a unit cell of 2L/~/N
(recalling from Sec. IIE that both H and H are periodic
up to unitary equivalence with respect to L/+/N), and |p|
varies from 0 to 3|po|/2 where hvg|po| = 3|wo| (see Fig. 5).
Specifically, for each value of |p|, we compute the maximal
relative error for d in a 10 x 10 discretization of a unit cell
of 2L/+/N and for five values of p with the given magnitude.
The results are shown in Fig. 15 for the first 6 commensurate
configurations. The relative errors for all configurations other
than (m, n) = (1, 0) (and 6y = 0°) are less than 102 for all
|p| values considered and are less than 1073 for p = 0. The
relative errors for (m, n) = (1, 0) are larger but still bounded
by 10~ for all |p| values considered, and the relative error at
p = 0 is less than 0.03. We conclude that A is an accurate
model for the four bands of H nearest the Fermi level at

dmn
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(m,n) = (1,0) (m,n) = (5,3) (m,n) = (7,3) (m,n) = (4,3)
(2) d=0 (b) d=0 (c) d=0 (d) d=0
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0] 0+ 0+ 0+
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FIG. 16. Commensurate band structures. The lines use the model in Egs. (59) and (60) with parameters in Table II whereas the dots use the
microscopic Hamiltonian in Eqgs. (6) and (9). The vector p ranges linearly from —3py/2 to 3po/2, where hvppo = 3|wo|X. Recall thatd = 0
andd = ﬁaoy correspond to AA and AB stacking, respectively.

charge neutrality for all d and small p. Figure 16 compares APPENDIX K: ¢, (r) FUNCTIONS
the eigenvalues of Hs(p) and Ho(p) for each commensurate .

configuration in Table II as a function of p for three values Following Ref. [77], we take

of d.

r(r) = Aoe(ao—lr\)/lso’
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TABLE II. Numerically determined model parameters reported with nine significant figures.

(m, n) 6o N K X0 (wg, wy, wy) in pueV 86magic in microdegrees
(1,0) 0° 1 1 0.0° (112682.504, 112682.504, 0.0) 1255782.99
(5,3) 38.2132107° 7 1 —3.09972641° (958.62462, 1051.57009, —4444.6652) 4421.48495
(7,3) 27.7957725° 13 -1 125.164435° (5.5027,3.61749, —4431.53104) 9.96025
4,3) 46.8264489° 19 1 —0.993893031° (33.1618, 33.19161, —4320.05111) 83.97407
(11, 3) 17.8965511° 31 1 1.23811361° (0.65302, 0.65326, —4426.40937) 1.31881
(11,9) 50.5699921° 37 1 —0.861668226° (1.29978, 1.30022, —4026.88676) 2.34902
2 ! 17 -1
r(r) = Ape @ CETE L C'H (¢, wo, wi, wa, 860, s)C’
- 2. 2 _
LRE = —H (¢, wo. —wy, —w3, 86, 5). (L4)
2
I, -~
+ Boe" VI % m, (K1) TItfollows that H is always equivalent up to a sign and a unitary
Zz

where Ay = —2.7eV and By = 0.48 eV are transfer integrals,
r, = 2.36a is the interlayer spacing, and §y = 0.318qay is
chosen so that #, (a;) ~ t. (75 — t4)/10. Using Egs. (6) and
(7), we find

hvr Jag ~ 3.68423316eV. (K2)

APPENDIX L: SIGNS OF THE PARAMETERS
AND DISCRETE SYMMETRIES

We now consider the continuum Hamiltonian A in Eq. (69)
as a function H (¢, wo, wi, w1, 86, s) of the shown parame-
ters. By Eq. (36), we have

H (¢o, wo, wy, wa, =386, 5)
= H(¢o, wo, wi, wy, 86, —s)
= —H(¢o, —wo, —wy, —w3, 86, 5). (L1)
Similarly, by Eq. (71), we have

H(¢o + 7, wo, wy, wa, 86, 8) = H(¢y, —wo, w1, wa, 860, s).

(L2)
Next, we consider the particle hole operator P, first chiral
operator C (which is often simply called the “chiral operator”
[12] when there is no ambiguity), and second chiral operator
C’ defined in Ref. [56]

;L (0 —I
Plp). = |-p). (, 0 )
v fo: 0
Clp), = Ip>c(0 UZ>,

/ / ! 0
C'lp). = Ip), (‘g _0).

These operators act within the K valley and the origin of
quasimomentum p is the I'y; point of the moiré Brillouin zone.
These operators are unitary and satisfy

(L3)

PH (¢y, wo, wi, wa, 86, s)P~!

= —H(—¢o, wo, wi, —w2, 86, 3),
CH (¢, wo, wy, w, 86, s)C

= —H(¢o, —wo, w1, —wy, 86, ),

change of basis from the case in which s = 1,0 < ¢ < /2,
and wy, wy, §6 = 0, soitis sufficient to restrict the parameters
in these ranges in calculations.

In particular, we have

CPH (¢, wo, wy, wa, 80, s)(CP)™"
= H(m — ¢o, wo, wi, wa, 86, 5). (L5)

Therefore, when ¢y = 7 /2, the system has a combined CP
symmetry, although neither C nor P is a symmetry. Moreover,
noting that the CP operator map momentum p to —p, CP
symmetry implies that the energy spectrum at ¢y = 7 /2 is
symmetric between p and —p, as can be seen in Figs. 10(d)—

10(f).

APPENDIX M: WILSON LOOPS AND
QUASIMOMENTUM TRUNCATION

In order to make the moiré translation symmetry of
the Hamiltonian in Eq. (69) more explicit, we now
reparametrize the states |p). defined in Eq. (68), follow-
ing the approach of [80]. Note that we can write the
moiré quasimomentum p + /q; uniquely in the form q +
gy where q € BZy, and gy € D(§0)Qy. We then have p =
q—g where g =1q; — gy € D(§6)Q,. With this motiva-
tion, for q € R2, g D(0)9,;, l € {+,—}, and a € {A, B},
we define

|qv gva)M = Iq—g,l,a)’c (Ml)

where the row vector of states [p)’. is given in components by

(M2)

Although the states |q, g, o), for q € BZ,, form a continuous
basis for the Hilbert space, it is useful to define the overcom-
plete set of states |q, g, «),, for q € R?,

Using this notation, the continuum Hamiltonian can be
written

H=
BZy

2

dq Y. D leg. )y
g .ge o e

D(80)(Q_UQ,) {A,B}

X H(Q)g,o), g (A 8 Xy (M3)
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where the infinite dimensional Hamiltonian matrix H(q) has
elements

H(W(g.o).ga) = W28y g0u,a + 0p (0 - (4 — 8))aadg g
3
+ Y (TG, )by ga, + (T o ey g

j=1
(M4)
For gy € D(66)Q,, we have
MG+ 20)g o). (g.0) = H(Q(g—go.a).(g—go.0) (M5)
so that
H(q+20) = V(g)H(@V (g0). (M6)
where the unitary matrix V(gg) has elements
V(80)g.a).g.a) = Og'g+go0c e MT7)

and is called the embedding matrix.
Consider some set of N, > 1 bands of H(q) that are dis-
connected from all other bands throughout BZ,,. Let U(q) be

J

W(T,) = Pexp [—/ A(q) - dq}
I,

0

Jj=Ns—1

lim ]‘[ U™ (Ta(tj0))U (T (1)),

J=N,—1

where [ is the identity matrix and ¢; = j/N,. Since W(I';)
is gauge covariant, its spectrum is gauge invariant. We will
refer to the spectrum of —i In(W (T',)) as a function of x as the
Wilson loop band structure.

When we numerically compute the energy or Wilson loop
band structure of H, we must truncate the infinite dimensional
matrices H(q), V(gy), and U(q) to a finite number of dimen-
sions. Since the infinite dimensional nature of 7 (q) comes
from the infinite size of Q;, we equivalently need to choose a
truncation of the lattices Q;. In order to make the symmetry
operators Cs;, Cy,, and P well defined (see Appendixes I and
L), we need a truncation Ql of Q; satisfying

Q =-9,,

Ryr3Qs = ROy = Q.. (M13)
One such truncation is given explicitly by
O = {mQi + mQy + n3Qslny + ny + n3
=1 ||+ na| + |n3] < M} M14)

exp[— AT (tj4+1)) - (Tx(tj11) —

[ = U (To(tj+1))(U (Ti(tj31)) —

a matrix whose columns form an orthonormal basis for this
set of bands. Importantly, we require

U(q+go) =V(g)U(a) (M8)

for gy € D(66)Q,. We define the non-Abelian Berry connec-
tion

Al@ = U(@VqU (@) (M9)
Although U is not actually periodic, Eq. (M8) implies
A(q + go) = A(q) (M10)

for gy € D(80)Qy. As a result, A is a well defined U (N,)
gauge connection on the torus T = R?/D(86)Q,.

For any closed loop I' in T, we define the gauge covariant
Wilson loop unitary

W(I) = Pexp [— / Adq) - dq},
T

where P indicates path ordering. For each 0 < x < 1, we de-
fine the loop ', (¢) = x(q3 — q2) +1(q; — q2) for0 < < 1.
Following Ref. [98], we compute

M11)

L. (7j))]

I — AT (tj41) - (Fi(tj11) — T(2)))

U(Tx(1))))

M12)

(

for some M > 1. See Fig. 17 for an illustration of D(SH)QI
as defined by Eq. (M14) with M = 15. This truncation is
equivalent to the “I'y;-centered model” in Ref. [80]. As long
as Eq. M13) is satisfied, the finite dimensional truncated
Hamiltonian retains exact C,, 7, Cs;, and C,, symmetries,
and Egs. ((L1), (L2), (L4), and (L5) hold as well. However,
it should be noted that the moiré translation symmetry in
Eq. (M6) is exact only when M = oo.

APPENDIX N: REAL SPACE WAVEFUNCTIONS

In this section, we derive the form of the real space wave
functions shown in Fig. 11. Suppose v is an eigenvector of
H(q) where H is given in Eq. (M4). In that case,

> D Vw68 @)y

geD(80)(Q_UQ ) ac{A,B}

[} = (N1)
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FIG. 17. The truncated lattices D(80)Q; where O, is given by
Eq. (M14) with M = 15. The blue (red) dots indicate [/ = +(—),
the black dot indicates the origin, and the gray lines correspond to
nonzero interlayer matrix elements in Eq. (M4). Each of Q. has 192
points so this truncation corresponds to a model with 768 bands.

is the corresponding eigenvector of the continuum Hamil-
tonian H. Suppose the row vector of states |r). defined in
Eq. (73) can be written in components as

Ir). = (Ir, +, A), |r, +, B) Ir, —, A)_ [r, —, B)).

c

(N2)

Note that |r, [, o)/, differs from |r, [, ). in Eq. (40) only by a
phase and satisfies

1 .
Ir,l,a), = — / d*pe ™" |p, 1, a). (N3)
2r
where the states |p, [, «). are defined in Eq. (M2).
Using Eq. (M1), we have
, elar .
(r, 1, aly,) = > vgwe . (N4)
g8eD(86)Qy
The plots in Fig. 11 show
oY e L) P (N5)

le{+,—} ac{A,B}

summed over one or more eigenvectors v with q = I'y;. Im-
portantly, this quantity is invariant under unitary mixing of the
eigenvectors involved.

APPENDIX O: TRIPOD MODEL APPROXIMATION
FOR MAGIC ANGLE CONDITIONS

In this section, we use Eqs. (M3) and (M4) to approxi-
mate the condition under which the bands of the continuum
Hamiltonian nearest the Fermi level at charge neutrality be-
come flat near the Kj, point in the moiré Brillouin zone. In

order to make the model analytically tractable, we use the
truncation

0+ =1{Qi},

0- =Qi+1{Qi,Q: Qs}, (82

which produces a model called the “tripod Hamiltonian”
[3,80]. Although this truncation does not satisfy Eq. (M13),
it nonetheless enables a simple calculation of the magic angle
in small angle TBG.

We now consider the eigenvalue problem for the tri-
pod Hamiltonian near the K, point. We decompose the
eigenvector ¥ in the form

¥ =Ky +p,qi, A)y Ky + P, a1, B)y)vo
3
+ Z(|KM +p, Qi +4q;,A), 1Ky +p, a1 +q;, B),)V;,

J=1

(02

where Vg, V1, ¥, Y3 are two dimensional complex column
vectors, p is a small vector, and the states |q, g, o),, are
defined in Eq. (M1). The eigenvalue problem then takes the
form

3

(wal + Fvpoo - P)Wo + Y Ty ¥ = Evo,
=1

T Vo + (wal + hvpoo - (p— )Y = Ev;,  (03)

where E is the energy and Té,_ is given by Eq. (71). Subtracting
the w, terms and multiplying by

s s
= = , (04)

hvp | Kyl 2hve/N|K| sin(50/2)

the eigenvalue problem takes the dimensionless form
3
oo P+ Y T4, v =E'Vo, (05)
j=1

Tg o +00- 0 — ), = E'Y, (06)

where E' = AE —ws), p =sp/|Kyl, Téj =Ty, =
N7 (1 To )e @/ and g = sq;/[Ku| = R}, );§. We
first solve Eq. (O6) for ¥;

¥y = (E'T—00-® — ) Tg o (07

_El+oe0-(0—q) .

o
E/Z _ |p/ _ q/.|2 Téjwo (08)
J

assuming that E” — |p/ —q}|2 # 0. Next, we use use
Eq. (O5) to find

3
(E’I —oo-p + ) T,

j=1

E'l+oo-(p' —q))
P — ) —E”

Téj_) Yo = 0.
(09)
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We first consider the case p’ = 0. Eq. (09) then becomes

3 ’ ’
. El—o0y-q_
_ / 4 J gt
0= <E1+ ) :TQ_fWTQ,)W’

j=1
1 3
‘ald INAT
(E’+ EQZ o1, _E/ZZTQj(oo-qj)Téj)I/fo. (010)
j=1

Using the identities

3
T4 T, = 32w+ ud)L,

j=1
3
> 1,00 - 4Ty = 63 wow sin(go)l, (011)
=1
Eq. (O10) becomes
/ E/ 2 2 2
E'+ 733 (w§ + wi) — 7560 wow sin(go) | o = 0. 012)
Since ¥y # 0, we conclude
E” — E'[14 327 (w§ + w?)] + 6A%wow; sin(¢y) = 0. (013)

Note that when E’ = 1, the cubic polynomial in Eq. (O13) takes the value

=322 (wg + wi) + 6x7wow sin(gy) < =317 (wg + wi) + 627 |wol|wi| = =347 (Jwo| — [wi])* <O (014)
and when E’ = —1, it takes the value
332 (wg + wi) 4+ 627 wow, sin(gy) > 313 (wg + wi) — 647 [wollwi| = 32> (Jwo| — |wi])* > 0. (015)

There is therefore some solution E’ = E|| of Eq. (O13) with E] in the interval [—1, 1]. Additionally, when |sin(¢o)| < 1 or
|wo| # |w1], we can take E] in the interval (—1, 1). In this case, we can approximate E63 ~ 0 and find

612wow, sin(¢g)
1+ 322 (wg + w?)

!~
Ej~

e (—1,1). (O16)

When |sin(¢g)| = 1 and |wy| = |w], it is possible that there is no solution of Eq. (O13) in (—1, 1). We will not consider this
case further.
Next, we consider Eq. (09) with p’ # 0. We take E” = E; + SE’ and expand to first order in §£” and [p’|. Using |p’ — 1> ~

1-2p - q;-, E? ~ E? + 2E[SE’, and the fact that E} solves Eq. (O13), we find

(E)+ SEN + o - (pf —q])~ )
Yo

0~ E SENI —
(( + ) ap - P +Z Qg EéZ 2p - q]_ ZEOSE’ Q,

(Eq +SENI + 09 - (p—q,)~ 1
= (E + O’ )’ — 0o p + Z Q) 1 — E/2 Q, 2p'-q+2E(SE' Yo
=1 -7
~ ((Eq +8ENI — a9 - PV
3 / / / / /
— 0o qJ =t -, SE'T+00-p - 2p' - q; + 2E\SE
(Z Qj E/2 TQ; + Z TQ/ 1— E(/)Z TQL' I+ 1— E62 Yo
j=1
Efl —00-q) .20 a4 +2EE O\ SET+00-P
<8E I—09-p' + Z o5 To——p» Z o —gr T Vo (017)
=1 0 0 = 0
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Using the identities in Eq. (O11) as well as

3
Y T, (00 - a)@p - a)TY = =32 2wiog - P+ 332 wio g, - P’

j=1
3
> T, - d)TG =627 wow 0 g, o P’ (018)
j=1
3
D 14,00 - PTG =31 7wio g, - P,
j=1
Equation (O17) becomes
2EF 32 (wi + w? 32 2w? E;
[(1 -1 %/2 E—OE’Q 1)>(SE/I + <—l + 1= E}2>Go p+ 1 —35’2 (6A2Wow 16—y )2 'P/)i|1ﬂo =0. (019)
0 0 0 0

We are interested in the conditions under which the terms proportional to p’ in Eq. (O19) vanish so that §E’ = 0 to first order
in |p'|. If E| = 0, this condition is equivalent to 3A*w? = 1 or

1
+—.
lwi /3

Since E; = 0 when wo = 0 or ¢y = 0, we recognize this as the magic angle condition identified in Refs. [3,80], which is
realizable in small angle TBG. However, there is another solution with ¢ = £ /2 and

3n2w? E|

(020)

&y =1+ £ 622 wow, (021)
or equivalently
EP F 6)*wow E) + 332w — 1 = 0. (022)
By Eq. (O13), E| also satisfies
Eg — E[1+ 327 (wg + w?)] + 62 wow; =0 (023)

so we need to find when these two equations have a common solution for Ej in the interval (—1, 1). Assuming |wg| # |w;], we
can take the approximation E63 ~ 0 so that Egs. (022) and (023) become

27wt (wi — 2wgwi — 3wy )A® + 9(wi — wg)a* — 3(wi 4+ 2wj)A* —1=0. (024)

It is easy to see that this equation has real solutions for A if and only if |wg| < |w].
We conclude that the magic angle conditions for the tripod Hamiltonian are Eq. (020) when either wy = 0 or ¢y = 0, and
Eq. (024) when ¢y = £7 /2 and |wy| < |wy].

APPENDIX P: ADDITIONAL HEATMAPS AND MOIRE BAND STRUCTURES

Figures 18-22 show some additional heatmaps and moiré band structures (see captions for details).
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(m,n) = (7,3) (m,n) = (7,3) (m,n) = (4,3) (m,n) = (4,3)
(a) (00 =~ 27.8°) (b) wp reduced 20% (d) wp reduced 20%
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FIG. 18. Moiré band structures at the first magic angle 66 = 6 — 6y = 86 ,,ic near the latter four (i, n) commensurate configurations in Ta-
ble II. The band structures were computed with the Hamiltonian in Eq. (63) and the quasimomentum truncation illustrated in Appendix Fig. 17.
The horizontal axes follow the moiré quasimomentum trajectory I'yy — Ky — My, — I'yy — —M,, — —Kj,. The two bands nearest charge
neutrality are shown in blue and red while all other bands are shown in black. The parameters for (a), (c), (e), and (g) are taken from Table II.
The parameters for (b), (d), (f), and (h) are the same as those for (a), (c), (e), and (g) except with the values of w, reduced by 20%.
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FIG. 19. [(a)-(c)] Moiré band structures in the first magic manifold (see Sec. VI B) for four different small values of ¢g. [(d)—(f)] Variations
on (c) in which the value of ¢, is negated or the value of wy/w; is changed. Note that in (f) where wy/w; is large, the lowest two bands at
charge neutrality are no longer isolated from the higher bands. All panels use the model of Eq. (69) with w, = 0 and the quasimomentum
truncation illustrated in Appendix Fig. 17. The horizontal axes follow the moiré quasimomentum trajectory I'y, - Ky - My, — Iy —
—M,, — —Kj,. The two bands nearest charge neutrality are shown in blue and red while all other bands are shown in black.
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(a) ¢o = 0, third narrowest band ¢o = 0, eighth narrowest band
2.5- y = - & 7l / L
2- 5
1.5-
3
~
— 1-
0.5-

1 2 3 4 5
¢o = 7/8, eighth narrowest band
”

1 2 3 4 5
¢o = 3m/8, eighth narrowest band

0 1 2 3 4 5

wo/wl wo/w1

FIG. 20. Heat maps showing the base 10 logarithm of the bandwidth (in units of 7ivr|K,|) of the third and eighth narrowest bands among
the first 20 conduction bands and the first 20 valence bands at charge neutrality for ¢y = 0, 7 /8, and 37 /8. The bandwidth was computed
with the points Iy, Ky, My, Ky, /2, My, /2, —M,, /2 in BZ,,. For this computation, we use the model in Eq. (69) with the quasimomentum
truncation illustrated in Appendix Fig. 17. The dark regions indicate parameters in the hypermagic regime discussed in Sec. VIC. See Fig. 9
for similar heat maps with ¢y = 7 /4 and 7 /2.
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FIG. 21. Moiré band structures using the model in Eq. (69) with w, = 0, ¢y = 7 /2, and various parameters wy/w; and o~ located in
the three dark curves in Fig. 8(c). Since each panel has many simultaneous flat bands, these parameters all belong to the hypermagic regime
discussed in Sec. VI C. For this computation, we use the quasimomentum truncation illustrated in Fig. 17. The horizontal axes follow the moiré
quasimomentum trajectory I'y; — Ky, — My, — I'y > —M,; — —Kj,. The two bands nearest charge neutrality are shown in blue and red
while all other bands are shown in black. Note that (i) and (j) are in the chiral limit wy = 0 so that ¢ does not affect their band structure. The
a~! values for (i) and (j) correspond to the second and third magic angles in the chiral limit, respectively [12].
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FIG. 22. Moiré band structures using the model in Eq. (69) with w, = 0 and various values of ¢y, wo/w;, and a~' in the hypermagic
regime discussed in Sec. VIC but not in the three dark curves in Fig. 8(c). For this computation, we use the quasimomentum truncation
illustrated in Fig. 17. The horizontal axes follow the moiré quasimomentum trajectory I'yy — Ky, — My — I'yy - —My; — —Kj,. The two
bands nearest charge neutrality are shown in blue and red while all other bands are shown in black. The lowest bands in (b), (d), and (e) form
kagome-like groups of three as discussed in Sec. VIC. The lowest bands in (b) are also shown in Fig. 12(a). In contrast, the lowest two bands
in (a), (c), and (f) are gapped from higher bands and resemble those of graphene. (a)—(c) have ¢y = 7 /2 while (d)—(f) have smaller values of
¢o. The wy/w; and o~ parameters for (¢) and (f) are the same as those for Fig. 10(e) and 10(f).
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