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Topological kagome magnets and 
superconductors


Jia-Xin Yin1,2 ✉, Biao Lian1 ✉ & M. Zahid Hasan1,3,4,5 ✉

A kagome lattice naturally features Dirac fermions, flat bands and van Hove 
singularities in its electronic structure. The Dirac fermions encode topology, flat  
bands favour correlated phenomena such as magnetism, and van Hove singularities 
can lead to instabilities towards long-range many-body orders, altogether allowing  
for the realization and discovery of a series of topological kagome magnets and 
superconductors with exotic properties. Recent progress in exploring kagome 
materials has revealed rich emergent phenomena resulting from the quantum 
interactions between geometry, topology, spin and correlation. Here we review these 
key developments in this field, starting from the fundamental concepts of a kagome 
lattice, to the realizations of Chern and Weyl topological magnetism, to various 
flat-band many-body correlations, and then to the puzzles of unconventional 
charge-density waves and superconductivity. We highlight the connection between 
theoretical ideas and experimental observations, and the bond between quantum 
interactions within kagome magnets and kagome superconductors, as well as their 
relation to the concepts in topological insulators, topological superconductors, Weyl 
semimetals and high-temperature superconductors. These developments broadly 
bridge topological quantum physics and correlated many-body physics in a wide range 
of bulk materials and substantially advance the frontier of topological quantum matter.

A kagome lattice (Fig. 1a), made of corner-sharing triangles, is a geo-
metrically frustrated two-dimensional (2D) lattice introduced to quan-
tum physics1 in 1951, as an analogy to a type of bamboo basket used 
in eastern countries. Interestingly, the kagome pattern has no direct 
analogy to wild nature, but a similar pattern has long been used as 
the star of David in religious ceremonies and a hexagram in alchemy 
symbols. In quantum physics research, inspired by Onsager’s exact 
solution of the Ising model for the square lattice2 in the 1940s, research-
ers extended the study of magnetic phase transitions to triangular, 
honeycomb and, eventually, kagome lattices. In the 1951 kagome work1, 
Syôzi demonstrated that, in contrast to the ferromagnetic case, a phase 
transition does not occur in a kagome lattice with a nearest-neighbour 
antiferromagnetic Ising interaction. Nowadays, geometrical spin frus-
tration in a kagome lattice under an antiferromagnetic exchange inter-
action is widely appreciated, and shows a great potential to realize 
quantum-spin-liquid states3 that feature long-range quantum entangle-
ment, fractionalized excitations and the absence of ordinary magnetic 
order4. Although these studies are about Heisenberg spins in a kag-
ome lattice, there has long been a debate about quantum magnetism 
since the 1930s: Heisenberg’s view that magnetic moments come from 
electrons localized in atoms5, or Stoner’s view that magnetization col-
lectively arises from itinerant electrons6. Under this broad context, in 
the 1991 kagome work7, Mielke studied the Hubbard model of a kagome 
lattice, and demonstrated that the flat band in its electronic structure 
stabilizes the ferromagnetic ground state. Finally, through this early 

quantum magnetism research, the electronic structure of the kagome 
lattice was unveiled and its power began to emerge8.

Fundamental concepts for kagome electrons
For a kagome lattice electron tight-binding Hamiltonian 

∑H tc c= − ( + h.c.)ij s i s j s⟨ ⟩, =± ,
†

,z z1
2 z

 with a real nearest-neighbour (deno
ted by ij⟨ ⟩) hopping −t (where ci s,

†
z
 and ci s, z

 are the spin sz electron cre
ation and annihilation operators, respectively, on site i, and h.c. is 
the hermitian conjugate), its electronic band structure exhibits an 
exactly flat band at energy 2t in the whole Brillouin zone, in quadratic 
band touching with the neighbouring band (Fig. 1b). This flat band 
originates from subdimensional eigen-wavefunctions with exact can-
cellation of hoppings due to lattice geometry, which can be generalized 
into a class of tight-binding models called line graphs7,9. Moreover, the 
band structure features Dirac cones at the Brillouin zone corners, and 
two van Hove singularities at the Brillouin zone boundaries (Fig. 1b,c). 
Theoretical understanding of the emergent physics of kagome electrons  
has deepened along with the introduction of theories on topological 
quantum matter10–12 and high-temperature-superconductivity-type 
correlated many-body physics13 to kagome systems.

A pioneering idea14 is that, by a hopping flux ϕ = 0 and ϕ = π in each 
triangle plaquette (Fig. 1a), energy gaps can be opened at the Dirac 
points between the two dispersive bands and the quadratic band touch-
ing point between the flat band and its neighbouring band, which leads 
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to a Chern number ∓C = ± 1,0, 1 in the three bands (in energetic order), 
in resemblance to the Haldane model for the honeycomb lattice15. Each 
occupied band then contributes a quantized Hall conductance 
σxy = Ce2/h (where e is the elemental charge and h is Planck’s constant). 
The flux ϕ amounts to having a complex hopping t λ t− − i ′ = − ′ e ϕi /3∣ ∣  
anticlockwise in each triangle (where −λ′ is the imaginary part of  
the complex hopping −t′), which can arise from the spin Berry  
phase in a kagome magnet with a chiral spin texture14. With the con-
ceptual development of the quantum spin Hall effect and Z2 topolo
gical number16,17, the Kane–Mele type of spin–orbit coupling was  
also introduced to the kagome lattice18–20 (Fig. 1d), which takes the  
form ∑H λ s c c= − 2 (i + h.c.)i j s z i s j ssoc ⟨ → ⟩, =± ,

†
,z z1

2 z
, where i j⟨ → ⟩ is nearest- 

neighbour pointing anticlockwise in a triangle, and λ is the spin–orbit 
coupling strength. It induces opposite fluxes ±ϕ for opposite spins 
sz = ±1/2 and opens spin Chern gaps. The gap opened at either the Dirac 
points or the flat-band quadratic band touching is Z2 topologically 
non-trivial (quantum spin Hall), which will develop helical edge states 
protected by time-reversal symmetry. By further adding an out-of- 
plane magnetization H M s c c= − ∑M z i s z i s i s, =± ,

†
,z z

1
2z z

 to the kagome lattice 
(where Mz is the z-direction Zeeman field) that lifts the spin s = ±1/2 
degeneracy, the Z2 topological gap becomes a Chern gap, and the  
kagome lattice carries a chiral edge state correspondingly. In kagome 
lattice materials, magnetism often arises spontaneously, making such 
a scenario possible. When the Fermi level is filled within the Chern gap, 
the kagome lattice exhibits a quantized anomalous Hall effect20.  
When the electron filling is away from the Chern gap, the total Berry 
curvature below the Fermi level will contribute to the anomalous Hall 

conductivity σ ≈xy
Δ
E

e
h2 D

2
, where Δ is the Chern gap size (twice the Dirac 

mass) and ED is the Dirac Fermi energy measured from the mid-gap 
energy. When the sizes of Δ and ED are comparable, the Berry curvature 
effect is still substantial, leading to a giant or large anomalous Hall 
effect that is often reported for topological kagome magnets. Moreo-
ver, as the Kane–Mele-type spin–orbit coupling Hsoc is proportional to 
the out-of-plane spin sz, a sufficiently large in-plane magnetization 

∑H M c σ c= − ( )′ ′M x i s s i s x s s i s, , ,
†

, ,z zx z z z z
 (where Mx is the x-direction Zeeman 

field) will polarize spins in-plane, making Hsoc effectively zero and clos-
ing the topological gap. This spin–orbit tunability leads to magnetiza-
tion direction control of the quantum-state topology of the kagome 
lattice, which is broadly discussed in topological kagome materials 
with soft magnetism. Similar topological physics induced by spin–
orbital coupling and magnetism can also occur when the Fermi level 
is between the flat band and its neighbouring band. In reality, most 
kagome materials are three-dimensional (3D) materials consisting of 
stacked kagome lattice layers, and the above physics of the kagome 
lattice emerges in each layer in the weak-interlayer-coupling regime. 
Such layered kagome materials with the Fermi level in the Chern gap 
exhibit the 3D quantum anomalous Hall effect21. When the interlayer 
coupling is strong, the dispersion can have a strong z-direction (per-
pendicular to layers) momentum (kz) dependence. If one views the 
band structure at each fixed kz as a 2D kagome system, its Chern gap 
can also undergo gap closings as a function of kz, which correspond to 
Weyl points in the 3D Brillouin zone22–24.

In parallel to the topological bands, the many-body interactions of 
kagome electrons is another research frontier for kagome materials. 
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Fig. 1 | Fundamental concepts of kagome electrons. a, A kagome lattice made 
of corner-sharing triangles. Each triangle can carry a quantum flux ϕ, and each 
hexagon carries a quantum flux −2ϕ. b, Band structure of a kagome lattice 
considering the nearest-neighbour electron hopping term with ϕ = 0. This 
band structure contains three key features: Dirac cones at K (or K′) points,  
van Hove singularities at M points and a flat band in the momentum space.  
c, Contour of the Fermi surfaces in the momentum space at Dirac cone (top), 
van Hove singularity (middle) and flat band (bottom) energies, respectively.  
d, Atomic spin–orbit-coupling-driven (red circular arrows) topology in a 
kagome lattice (blue spheres). The spin–orbit coupling opens a topological  
gap at the Dirac cone (blue cones) in the band structure (by producing a 
non-zero ϕ), and induces a topological edge state (yellow ring). The light (dark) 
blue cone represents unoccupied (occupied) electronic states, illustrating the 
generic case of Fermi energy away from the Dirac gap. e, Illustration of a 
flat-band-driven fractional Chern insulator in a kagome lattice (blue spheres). 

The red spheres illustrate electrons bound with an odd number of Berry flux 
quanta in the ground state. f, Many-body-interaction-driven (red wavy lines) 
topology in the kagome lattice (blue spheres). The interaction (which can be 
related to van Hove singularities) not only opens a charge gap at the Fermi 
energy but also produces a non-trivial Berry phase that leads to orbital currents 
(red arrows) and a topological edge state (yellow ring). The light and dark blue 
cones represent unoccupied and occupied electronic states, respectively. 
Compared with the spin–orbit-coupling-driven topology that often opens the 
topological gap away from the Fermi energy, the interaction-driven topology 
may open the topological gap directly at the Fermi level through long-range 
orders even without Dirac fermions. g, Doped kagome spin liquid as initially 
proposed for unconventional superconductivity in the kagome lattice. The 
blue spheres denote the kagome lattice, the red arrows denote local spins and 
the yellow spheres denote doped charge carriers.
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Since the discovery of copper-based and iron-based high-temperature 
superconductivity, it has been widely appreciated that many-body cor-
relations lie at the heart of most exotic quantum phases of matter13. For 
kagome electrons, the initial interest is in the realization of a flat band. 
Benefiting from quenched kinetic energy, flat bands can host correlated 
electronic states, including ferromagnetism7, which is often detected 
in kagome lattice materials. As discussed earlier, the spin–orbit cou-
pling can open a Chern gap at both the Dirac cone and the quadratic 
band touching point of the flat band in the magnetic kagome lattice. 
At a partial filling of the flat band, a kagome lattice with interactions 
has the potential to realize fractionalized topological phases, such as 
the fractional Chern insulator (fractional quantum Hall states without 
magnetic field)19,25–27 (Fig. 1e). Soon after these flat-band concepts were 
established, substantial interest was focused on the possible electronic 
orders at the van Hove filling28–30, where the Fermi surface is nested and 
has saddle points on the edges of the Brillouin zone. The real-space 
superlattice for the nesting vector gives a 2 × 2-unit-cell enlarging, and 
various kinds of spin density wave, charge-density wave and nematicity 
order with similar wavevectors have been proposed28–30. These orders 
also serve as a precursor of unconventional superconductivity in the 
kagome lattice and are broadly relevant to kagome superconductors. 
One intriguing charge order under consideration of the extended 
Coulomb interaction is one that leads to orbital currents and breaks 
time-reversal symmetry30. A similar orbital-currents scenario has also 
been proposed for the kagome flat-band full filling that leads to the 
quantum anomalous Hall effect31. More broadly, the orbital-currents 
physics in a kagome lattice resembles the loop current proposal for 
cuprates as an attempt to understand the pseudogap physics32, and 
effectively realizes the Haldane model phase15. Compared with spin–
orbit-coupling-driven topology, interaction-driven topology (defined 
as topology from order induced by many-body interactions of the active 
band electrons) may open the topological gap directly at the Fermi level 
(Fig. 1f). In addition, the time-reversal-symmetry-breaking charge order 
links the kagome magnetism and kagome superconductivity. In fact, 
the initially proposed kagome superconductivity is through doping a 
kagome spin liquid33 (Fig. 1g), where the superconducting order breaks 
the time-reversal symmetry.

In realizing these concepts, advanced techniques have been applied 
in probing kagome electrons. Magneto-transport can probe the phase 
transition and Berry curvature, but it is sensitive to only the electronic 
states at the Fermi level. Angle-resolved photoemission probes the 
band dispersions, but it lacks magnetic tunability and integrates dif-
ferent magnetic domains. Scanning tunnelling microscopy can probe 
the local density of states under a magnetic field, but it is sensitive to 
only electronic states of the surface kagome layer. Scattering tech-
niques can probe the bulk spin and lattice order, but they often lack 
charge and orbital sensitivity. First-principles calculations are powerful 
in identifying the topological index of the electronic structure, but  
correlations associated with magnetism lead to a non-rigid band shift 
so the chemical potential and band renormalization require corrections 
in reference to the experimental data. Therefore, these complemen-
tary techniques need to be combined to determine the topological or 
many-body effects of kagome electrons.

Chern quantum phase and spin–orbit tunability
During studies of topological magnets, several transition-metal-based 
kagome materials came to researchers’ attention, initially owing to 
their large anomalous Hall effect34–37. As learned from the quantum 
Hall effect, the topological nature of the anomalous Hall effect (that 
is, the intrinsic Berry curvature contribution) had readily been widely 
appreciated38 at the time of these studies in kagome materials, espe-
cially after the experimental realization of the quantum anomalous 
Hall effect39. One natural explanation would be to associate the anoma-
lous Hall effect with the Berry curvature near the topological gap in 

the spin–orbit-coupled kagome bands. In the ferromagnet Fe3Sn2, 
photoemission and tunnelling experiments have detected Dirac-like 
gaps40,41 and a kagome bilayer electronic structure has been identi-
fied. However, Fe3Sn2 is a soft magnet with no zero-field anomalous 
Hall effect, and is known to exhibit an in-plane magnetization ground 
state with complex spin textures leading to skyrmions and topological 
Hall effects42–44. Although this situation does not ideally match with a 
kagome Chern magnet picture, its soft magnetism and electron correla-
tion nature leads to giant and anisotropic spin–orbit tunability that is 
of great interest, which we discuss later41,45–48. Another concern is that 
most topological kagome magnets have a tin (Sn) atom in the centre 
of their kagome lattice unit, which could lead to additional hopping 
that affects the ideal kagome band structure.

An alternative family49–51, RMn6Sn6 (where R is a rare-earth element), 
was then proposed to overcome these two problems. The large chemi-
cal pressure of a rare-earth element can push the Sn atom away from 
the kagome layer. In particular, the ferrimagnet TbMn6Sn6 stands out 
owing to its unique out-of-plane magnetization required for Chern 
magnetism (Fig. 2a). Scanning tunnelling spectroscopy shows that the 
manganese (Mn) kagome lattice exhibits distinct Landau quantization 
under a magnetic field, which features a spin-polarized Dirac dispersion 
with a Chern gap Δ = 34 meV and a Dirac Fermi energy ED = 130 meV. 
This Landau quantization fan maps out the Chern-gapped Dirac dis-
persion, which agrees well with angle-resolved photoemission results 
of the occupied states. Furthermore, a topological edge state with 
substantially reduced quasiparticle scattering is detected at 130 meV, 
which is within the Chern gap. Similar to the detection of spectroscopic 
Landau quantization, the longitudinal transport detects topological 
quantum oscillations51,52 (Fig. 2b, top) in RMn6Sn6. The quantum oscilla-
tion matches with the Dirac Fermi surface from spectroscopic probes50, 
and shows a cyclotron mass that agrees with the spectroscopic data.  
The intrinsic anomalous Hall conductivity (Fig. 2b, bottom) per kagome 
layer is measured to be σxy = 0.14e2/h, which agrees with the estima-
tion of the Berry curvature contribution based on spectroscopic data  
σxy = Δ/(2ED) × e2/h = 0.13e2/h. These quantitative spectroscopic trans-
port agreements build up the bulk–boundary–Berry correspondence 
for the kagome Chern magnet (Fig. 2a). Owing to the strong out-of-plane 
magnetism and large Berry curvature from Dirac fermions with a Chern 
gap, TbMn6Sn6 exhibits zero-field anomalous Hall, anomalous Nernst 
and anomalous thermal Hall effects51–53 (Fig. 2b, bottom). The charge–
entropy scaling derived from this anomalous transverse transport goes 
beyond the Mott formula54 and the Wiedemann–Franz law55 for ordi-
nary electrons, but can be described, interestingly, by the new scaling 
behaviour derived from Dirac fermions with a Chern gap, suggesting a 
topological behaviour consistent with spectroscopic observations50,52.

Owing to the pristine kagome lattice structure, a kagome-type 
band structure and anomalous Hall effect are widely searched for 
and detected in RMn6Sn6 and closely related compounds50,56–64.  
The recently discovered RV6Sn6 presents a complementary case where 
the vanadium (V)-based kagome layer is paramagnetic60 and the R layer 
can be magnetic, and their clean kagome-type band structure is well 
captured by photoemission experiments and explained by first prin-
ciples. The diverse chemical compositions and magnetic structures 
of these materials naturally lead to large spin–orbit tunability of its 
topological electronic structure. For instance, the rare-earth element 
can act as a tuning knob of the Chern gap, which scales with the under-
lying de Gennes factor51. In another related ferromagnet, LiMn6Sn6, a 
larger anomalous Hall effect is identified, which is probably owing to 
a smaller Dirac Fermi energy63. As discussed in the fundamental con-
cepts of kagome electrons, in-plane magnetization tends to close the 
Chern gap, leading to giant spin–orbit tunability with respect to dif-
ferent magnetization configurations. Such magnetization control has 
been discussed for the Fe3Sn2 system41,45–48 and RMn6Sn6 systems60,63,64 
through spectroscopic and transport experiments. Another intrigu-
ing phenomenon is the detection of nematicity in Fe3Sn2 (refs. 41,45). 
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When rotating its magnetization along different in-plane directions, 
both the Zeeman energy shift and the quasiparticle scattering signal 
exhibit nematicity (two-fold symmetry; Fig. 2c,d), a hallmark of cor-
related electrons. The tunability of the kagome Chern magnets reveals 
a strong interplay between the exchange field or external magnetic 
field, electronic excitations and nematicity, providing ways to control 
the spin–orbit properties.

Weyl fermion and antiferromagnetic spintronics
Weyl fermions were first introduced in 1929 in the context of high-energy 
physics as massless particles with definite chirality, described by a 
two-component spinor obeying the Weyl equation22. Weyl fermions 
arise as low-energy quasiparticle excitations in 3D crystals lacking inver-
sion symmetry or time-reversal symmetry23,24,65,66. In a Weyl crystal, Weyl 
fermions are the sources and sinks of the Berry curvature in momentum 
space (Fig. 3a). On its surface, a topological Fermi arc surface state 
is formed, which connects the projections of two Weyl points in the 
momentum space of the surface. The emergence of Weyl fermions in 
kagome magnets naturally requires strong interlayer coupling, such 
that the bulk electron bands are 3D. The non-collinear antiferromag-
net Mn3X (where X is Sn or Ge) and the ferromagnet Co3Sn2S2 stand  
out35–37,67–69, as the direct kagome lattice stacking in Mn3X and strong 
ionic bonding through S2− in Co3Sn2S2 enhance the interlayer coupling. 
On the basis of the non-collinear in-plane antiferromagnetism70 in 

Mn3Sn and out-of-plane ferromagnetism71 in Co3Sn2S2, their Weyl  
fermions have been identified through theoretical calculations35–37,68,69 
(Fig. 3b). In these materials, unique negative magnetoresistance 
(Fig. 3c) has been reported, which is consistent with the expected  
chiral anomaly for Weyl fermions36,69. Meanwhile, certain features of 
the 2D kagome electrons are still traceable in their band structure, such 
as their kagome flat bands72,73.

One remarkable property of Mn3Sn is its room-temperature zero-field 
anomalous Hall effect35 (and other related Berry curvature effects74–80) 
under a weak and soft magnetic moment, providing exceptional 
application value for antiferromagnetic spintronics81. For instance, 
in a bilayer device made with non-magnetic metals and an Mn3Sn film, 
an electric current can manipulate the Hall voltage by switching the 
chiral kagome antiferromagnetism78 (Fig. 3d). The electronic band 
dispersions of Mn3X, however, have not been clearly detected, possibly 
owing to a strong electron correlation69,73. While similarly exhibiting 
giant anomalous Hall and related effects36,37,82–88, Co3Sn2S2 features 
a large ratio between anomalous Hall conductivity and longitudinal 
conductivity36. Such improvement is probably owing to its cleaner 
band structure that also enables better spectroscopic characteriza-
tions of its Weyl topology82. Guided by first-principles calculations, 
progress has progressively been made through counting the Chern 
numbers of the surface band crossings83, imaging the linear band 
crossing with surface doping84, imaging the diversity of quasiparticle 
interferences on surfaces hosting Fermi arcs85, imaging the magnetic 
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Fig. 2 | Chern quantum phase and spin–orbit tunability. a, Top-left: the 
features of a kagome Chern magnet TbMn6Sn6 in real space and momentum 
space (in each 2D kagome layer). In momentum space, spin-polarized Dirac 
fermions with a Chern energy gap (two separated cones) can exhibit Landau 
quantization. In real space, the spin–orbit-coupled magnetic kagome lattice 
(spheres with arrows pointing up) carries a topological edge state within the 
Chern energy gap. Bottom-left: the fitting of the Landau fan data (circles) with 
the spin-polarized and Chern-gapped Dirac dispersion (solid lines). Inset: 
schematic of Landau quantization of Chern-gapped Dirac fermions. Right:  
dI/dV maps (where I is the tunnelling current and V is the bias voltage) taken at 
different energies across a step edge (top). The map taken within the Chern gap 
energy (130 meV) shows a pronounced topological edge state. b, Topological 
transport signal for kagome Chern magnet TbMn6Sn6. Top: the longitudinal 
transport quantum oscillations as a function of inverse magnetic field 1/B. 
Inset: the non-trivial Berry phase can be extracted from the intersection of  
the Landau index and 1/B = 0, where the Landau index is extracted from the 

oscillation peaks. Bottom: the anomalous transverse transport as a function of 
magnetic field B. c, Vector-magnetization-induced energy shift of a quantum 
state in the topological kagome magnet Fe3Sn2. The light-blue surface shows a 
3D illustration of the nematic energy shift ΔE as a function of the magnetization 
vector, which exhibits a nodal line along the a axis. d, Vector magnetization 
control of the electronic scattering in the topological kagome magnet Fe3Sn2. 
The electronic structure scattering patterns are shown as a function of  
the magnetization direction with respect to the kagome lattice, which is 
indicated in the insets. The topmost quasi-particle interference pattern  
shows the spontaneous nematicity along the a axis. Magnetization along  
other directions can alter, and, thus, control, the electronic scattering 
symmetry. In the colour bars, L denotes low and H denotes high on the  
intensity of the map. STM, scanning tunnelling microscopy. Panels adapted 
with permission from: a, ref. 50, Springer Nature Limited; c,d, ref. 41, Springer 
Nature Limited.
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phase transition of the topological band structure87, and detecting the 
spin–orbit-coupling-induced energy gap86,88.

We further clarify the relationship between the anomalous Hall 
effect and Weyl fermions. A pioneering study89 of the anomalous Hall 
effect in Mn3X-type materials attributes it to the Berry curvature effects 
from non-collinear magnetism without inviting the Weyl fermions. In 
magnetic crystals, there are generic magnetic nodal lines in the bulk 
bands protected by spinless mirror symmetry (Fig. 3e), and the spin–
orbit coupling opens anisotropic gaps along the nodal lines, yielding 
nodes as pairs of Weyl cones. As one pair of Weyl fermions are often 
at the same energy acting as a source and a sink of Berry curvatures, 
respectively, their local integrated contribution to anomalous Hall 
conductivity essentially cancels out. However, the portions of the 
magnetic nodal lines that carry a large spin–orbit gap contribute to 
the integrated Berry curvature that leads to the anomalous Hall effect. 
This can be thought as a long-distance dipole effect of Weyl fermions90, 
or as an effect of a local effective Chern gap. One initial evaluation 
of the spin–orbit gap in kagome Weyl magnets is to investigate the 
local geometrical impurity-induced resonances86 (Fig. 3f). For triplet 
geometrical impurity-induced resonances, the spin–orbit coupling 
similarly breaks mirror symmetry to introduce a splitting gap86, which 
is of a similar size to the magnetic nodal line gap88.

Flat-band correlation and many-body physics
Kagome lattices host both high-velocity electrons (Dirac or Weyl fer-
mions) and vanishing velocity electrons (flat band). Flat-band physics 
can be traced back to the fractional quantum Hall effect25–27. The Landau 
levels generated by a large magnetic field are perfect flat bands, and a 
fractional filling can produce the fractional quantum Hall effect with 
anyonic excitations. Without the magnetic field, flat bands are rare 
and emerge in only a few systems such as heavy-fermion compounds91, 

kagome lattices (or line graphs7,9) and twisted bilayer graphene92,93. 
The paramagnet CoSn stands out owing to its simple crystal struc-
ture and cleaner flat bands in spectroscopic experiments, matching 
first-principles calculations94–100. The hallmark of a kagome flat band—
quadratic band touching in momentum space (Fig. 4a)—is visualized by 
angle-resolved photoemission experiments94,96. As originally pointed 
out in the modelling of kagome electrons20, the highly anisotropic  
d orbital can form flat bands. The d orbitals uniquely arrange themselves 
in the hexagonal ring of the kagome lattice (Fig. 4a, inset), leading 
to a nearly perfect cancelling of their propagating wavefunctions96.  
A similar arrangement of lattice vibration is found to produce localized 
phonon modes—flat-band phonons95 (Fig. 4b).

The existence of flat bands leads to several emergent effects.  
The kagome flat bands have been known to favour ferromagnetism1,7. 
The flat bands in the ferromagnet Fe3Sn2 and the antiferromagnet 
FeSn can be related to their strong in-plane ferromagnetism101–103. 
With spin–orbit coupling, the quadratic degenerate points open a 
Z2 topological gap (Fig. 4c), which is visualized in CoSn94,96. With the 
further introduction of out-of-plane ferromagnetism, it turns into a 
Chern gap, as in the flat-band case72 of Co3Sn2S2. The associated Berry 
curvature of this Chern gap leads to sizable orbital magnetism104,105. 
Tunnelling spectroscopy of the flat-band peak shifts anomalously with 
both positive and negative magnetic field72, which goes beyond the 
conventional Zeeman effect. The anomalous Zeeman shift further 
supports the existence of orbital magnetism, with its direction being 
opposite to the bulk magnetization direction (Fig. 4c), which is con-
sistent with the first-principles calculation72. Similar negative orbital 
magnetism physics is also detected for impurity resonances86,106 as local 
flat bands in Co3Sn2S2 and for anisotropic magnetic susceptibility99 in 
CoSn. The negative orbital magnetism associated with Dirac fermions 
is also detected in a momentum-resolved way61 in the antiferromagnet 
YMn6Sn6. Moreover, different from the bulk kagome flat band featuring 
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a quadratic band touching, the surface flat band realized in FeSn does 
not have such a feature103,107, and the realization of an atomic film of 
FeSn makes it an appealing platform for flat-band-based spintronic 
devices108,109.

Besides the spin–orbit-driven topology, flat bands can lead to strong 
many-body interactions. The itinerant electrons in CoSn sense the 
strong coupling to its phonon flat band95, leading to a kink in the band 
dispersion (Fig. 4d) and a peak–dip–hump structure in the tunnelling 
spectrum. The electron–phonon coupling can be a factor that leads to 
competing electronic instabilities that result in its paramagnetic state 
instead of ferromagnetism. In the kagome magnet Mn3Sn, its electron 
correlation is substantially strong, as indicated by the large band renor-
malization factor69. Under this strong correlation, its single-particle 
flat band can couple to the itinerant electrons at the Fermi level, lead-
ing to a many-body resonance at the Fermi level73 (Fig. 4e). The spec-
troscopic features of this many-body resonance, including Fano line 
shape and fast temperature broadening, resemble those detected in 
Kondo systems91.

Unconventional charge-density waves
The interplay between topology and interaction has been extensively 
discussed for kagome superconductors. Although kagome supercon-
ductors with a transition temperature Tc up to 7 K have been known 
for over half a century (such as CeRu2 and LaRu3Si2)110–113, recently 
discovered kagome superconductors114–117 AV3Sb5 (where A is K, Rb 
or Cs) show a charge-density wave115,118,119, the ordering temperature 
T* of which reaches 100 K. Above T*, the band structure of AV3Sb5 
features van Hove singularities at the Fermi level, and an indirect  
topological bandgap115 under consideration of spin–orbit coupling. 
Both magnetization and transport measurements find an anomaly at 
T*, which is considered to be a possible signature of orbital ordering114  
or a charge-density-wave-like instability115. Scanning tunnelling 
microscopy has identified the 2 × 2 in-plane supercells of the charge 
modulation, charge energy gap and charge-density reversal across 
the gap below T *, which reveal a charge-density-wave order118. X-ray 

scattering has further identified 2 × 2× 2 3D supercells119 below T*. 
These initial experiments established the bulk 2 × 2 × 2 charge-density 
wave as the many-body state in the topological kagome supercon-
ductor AV3Sb5 below T* (Fig. 5a), and its in-plane wavevector agrees 
with early studies of the possible electronic instability for kagome 
lattices29,30. A charge-density wave with similar 2 × 2 × 2 supercells has 
been detected in transition-metal dichalcogenides120, and the chirality  
and the nematicity of the order have been discussed120–123. The antiphase 
coupling of the adjacent 2 × 2 order leads to nematicity in the first 
order and can feature chirality as a further orbital ordering120–123.  
Similar additional spatial symmetry breaking, as well as the associated  
lattice124–134 and orbital135–149 manifestations below the charge-density 
wave state of AV3Sb5, has been intensively investigated through vari-
ous techniques150. Many of them connect with each other reasonably.  
For instance, tunnelling118,136 and photoemission142,146,147 show a consist-
ent charge-density-wave gap for occupied states of ~20 meV (Fig. 5b). 
This systematic progress provides the fundamental concepts to under-
stand the dual lattice–orbital nature of the charge-density wave in the 
kagome lattice.

An alternative paradigm for looking at the charge order focuses 
on its time-reversal symmetry breaking (Fig. 5c), which goes beyond 
the conventional charge-density wave and features orbital-current 
physics, as initially proposed for achieving the quantum anomalous 
Hall effect15 and for the hidden phase in cuprates32. Pioneering mag-
netization114, muon spin rotation151 and tunnelling118 studies have 
shown that both the phase transition temperature and the energy 
gap are insensitive to the magnetic field, and that there is no spin 
ordering. Thus, any magnetism should be a higher-order effect. One 
breakthrough is the detection of magnetic field switching of the 2 × 2 
charge-order chirality118,135,136, but regions with defects or strains 
featuring a much smaller energy gap do not show chirality118,134–136. 
The phenomenon of magnetic-field-controlled chirality can be mod-
elled118 by considering a relative phase between three sets of order 
parameters describing the charge order in the three kagome sublat-
tices. This complex order parameter breaks time-reversal symme-
try, leads to a large anomalous Hall effect152,153 and introduces a small 
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orbital magnetization. Theoretical studies154–156 have uncovered that 
the time-reversal-symmetry-breaking charge order is energetically 
favourable in the kagome lattice close to the van Hove filling. This exotic 
charge order provides a rare example of many-body interaction-driven 
topology (Fig. 1f).

Magnetic-moment-sensitive probes157–160, including muon spin 
rotation and Kerr rotation, further confirm the magnetic feature of 
the charge order. An external magnetic field can substantially boost 
the time-reversal-symmetry-breaking muon signal157–159, providing 
insights beyond the initially considered magnetic-field insensitivity114.  
A recent observation of field-tuned chiral transport161 further elab-
orated how spatial chirality and time-reversal-symmetry breaking 
twist with each other to introduce nonlinear magneto-transport, 
which is consistent with the spectroscopy detection of field-tuned 
electronic chirality118,135,136. In connection with a kagome supercon-
ductor, charge order is detected162,163 in the kagome antiferromagnet 
FeGe. The essential physical picture of kagome charge order is further 
tested, including van-Hove-singularity-driven 2 × 2 charge instability, 
the anomalous contribution to the Hall effect, magnetic coupling of 
the charge order and internal exchange magnetic-field-tuned chiral-
ity switching. In addition, robust edge states are detected within the 
charge-order energy gap, which agrees with the topological nature of 
the time-reversal-symmetry-breaking charge order (Fig. 1f).

Magnetically intertwined superconductivity
Superconductivity in kagome lattices has long been identified to 
coexist with magnetic phases. One of the earliest known supercon-
ductors hosting a kagome lattice, CeRu2, was termed as a ferromag-
netic superconductor110 by Matthias. The normal state of the kagome 
superconductor CeRu2 is a weak magnet, probably owing to the 
flat-band correlation110,111. Coincidently, one early theory for kagome 

superconductors (Fig. 1g) predicts a time-reversal-symmetry-breaking 
superconducting ground state33. The intertwining between magnetism 
and superconductivity has also been theoretically considered for kag-
ome electrons at the van Hove filling28–30 and the Dirac filling164. These 
pioneering studies set the tone for exploring magnetically intertwined 
kagome superconductivity.

Applying this research theme to AV3Sb5, both physical pressure and 
chemical doping can suppress the charge order, while superconduc-
tivity is immediately enhanced165–172, which indicates competition 
between the charge order and superconductivity (Fig. 5d). A question 
is whether the time-reversal symmetry is broken for superconductivity. 
An initial muon study argued that this symmetry breaking persists into 
superconductivity157, as there is no additional relaxation rate change 
across Tc. This proposal is further substantiated by the observation of 
the relaxation rate change across Tc through killing the charge order 
by pressure tuning158. Further evidence for such intertwined physics 
comes from examining the effect of interactions affecting both the 
time-reversal-symmetry-breaking features of charge order and super-
conductivity. Theoretical analysis30,154–156 indicates that the extended 
Coulomb interaction drives time-reversal-symmetry-breaking charge 
order. Owing to the poorly screened Coulomb interaction, the charge 
number fluctuations are suppressed. According to the number-phase 
uncertainty, quantum-phase fluctuations will proliferate leading to 
smaller superfluid density173. The penetration depth λ of several kagome 
superconductors has been measured111,113,157–159, where λ−2 is proportional 
to the superfluid density, and suggests their small superfluid density. 
The scaling analysis of Tc versus λ−2 in these studies shows a marked 
difference from conventional superconductors but a close analogy 
to cuprates (Fig. 5e). The large Tc/λ−2 value attests to the unconven-
tional nature of kagome superconductivity in the correlation sense, 
and implies a connection with the underlying interactions driving 
time-reversal-symmetry-breaking charge order.
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In parallel, substantial research efforts28–30,111,113,124,126,136,138,157,158,174–180 

have also been devoted to determining the electron Cooper-pairing 
symmetry150. Experimentally, both nodeless and nodal supercon-
ducting gap structures, as well as their quantum tuning, have been 
reported. However, a direct momentum space determination of the 
pairing symmetry and topological order have been lacking. The topo-
logical nature of the superconducting state remains one of the active 
areas of investigation. Experiments have shown emergent features of 
the electron pairing, including the observation of a putative Majorana 
zero mode124 and detection of pair density waves126 on the kagome 
superconductor surface.

Future opportunities
With the rise in interest in quantum material studies181, quantum inter-
actions in topological kagome magnets and related superconductors 
have effectively bridged the research communities of correlated elec-
trons and topological matter. This Review aims not to conclude this 
field but to invite further exploration and enjoyment of this quantum 
party held in the kagome lattice. At times, history mirrors the future. 
It is unlikely that in 2012, when substantial conceptual literature for 
kagome physics existed, we could have predicted the exciting discover-
ies reviewed here. However, this reflects the fast-growing nature of this 
field: it appears to be full of opportunities and seems to be progressing 
beyond projective expectations.

For kagome Chern magnets such as TbMn6Sn6 and similar materi-
als, the corresponding monolayer or few-layer devices have not been 
successfully fabricated, which would allow for the demonstration of 
their cleaner electronic band structures and quantized transports.  
A first-principles-guided materials search towards more isolated or dis-
tinct kagome bands20 is still needed for further development. One alter-
native route is to design and grow surface-supported metal–organic 
kagome frameworks182,183. For the kagome Weyl magnet Mn3Sn, the 
experimental visualization of its Fermi arc and its vector magnetization 
control remain unsettled. Similarly, several kagome magnets exhibiting 
large transverse anomalous transport184,185, including UCo0.8Ru0.2Al and 
Fe3Sn, still await spectroscopic visualization of their topological fermi-
ons. From the first-principles prediction186 and microscopic studies of 
the bulk crystal’s surface edge187 of monolayer Co3Sn2S2, it is expected 
to exhibit a Chern insulator phase, which awaits experimental realiza-
tion. The realization of monolayer or few-layer kagome magnets would 
also be a significant step towards the prediction of a high-temperature 
fractional Chern insulator phase19, which requires an isolated flat Chern 
band with strong interaction and electrical tunability. An opportunity 
has been provided by computational advances in building a catalogue 
of flat-band stoichiometric materials188. Moreover, the Landau level 
of spin–orbit-coupled kagome flat bands has recently been shown 
to be highly unconventional189. The high-energy-resolution- and 
high-magnetic-field-based spectroscopic mapping of the Landau fan 
of the kagome flat band in Co3Sn2S2 and CoSn can serve as a promising 
tool for testing this theoretical modelling. The identification162,163 of a 
charge-density wave in FeGe is encouraging for the search of charge 
order in more topological kagome magnets. In parallel, as charge order 
can be a precursor of superconductivity, it is also meaningful to further 
engineer FeGe with chemical doping and pressure to look for supercon-
ductivity. In the kagome superconductor AV3Sb5, electronic evidence 
for a time-reversal-symmetry-breaking superconducting state has 
been lacking. The search for time-reversal-symmetry-breaking super-
conductivity with odd parity pairing may allow us to realize intrinsic 
topological superconductivity in either 3D or monolayer/few-layer 
kagome materials with a sizable gap, and the bulk Majorana zero modes 
and chiral Majorana edge states thus open a route to exploring the 
quantum information frontier190,191.

Although the above questions are of current interest, there 
are longer-term explorative directions. For instance, it has long 

been proposed that kagome lattice systems are promising for the 
realization of gapped or Dirac spin liquids192,193. The existence of 
time-reversal-symmetry breaking in realistic materials may also facili-
tate the possibility of a chiral spin liquid194,195 with detectable quantized 
transport196,197. The doped kagome quantum spin liquid can become an 
exotic superconductor33, and may give rise to more unknown phases 
in mixing the quantum spin liquid and the superconducting state. In 
addition, doped kagome herbertsmithite systems can host strongly 
correlated Dirac fermions164, and have recently been proposed to realize 
viscous electron fluids that can be described by holography to make 
a possible model for quantum connection to gravity198. Moreover, 
kagome physics may occur in moiré systems that are highly tunable. 
For example, a twisted kagome lattice bilayer can yield emergent flat 
bands199 similar to that in magic-angle twisted bilayer graphene. On 
the contrary, the twisted graphene system is also predicted to be able 
to produce kagome electronic bands200, which may allow the reali-
zation of pristine kagome electrons without spin–orbital coupling 
and related interaction-driven phases. Although existing research in 
quantum materials remains largely within the interplay of the quantum 
(anomalous) Hall effect and (unconventional) superconductivity, we 
look forward to reaching a regime of ‘unknown unknowns’ with the 
next generation of cleaner and artificial kagome materials.
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