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Abstract

Modularity is a design principle that aims to provide flexibility for spatio-temporal assem-
bly/disassembly and reconfiguration of systems. This design principle can be applied to multi-
scale (hierarchical) manufacturing systems that connect units, processes, facilities, and entire sup-
ply chains. Designing modular systems is challenging because of the need to capture spatial inter-
dependencies that arise between system components due to product exchange/transport between
components and due to product transformation in such components. In this work, we propose an
optimization framework to facilitate the design of modular manufacturing systems. Central to
our approach is the concept of a spatial superstructure, which is a graph that captures all possible
system configurations and interdependencies between components. The spatial superstructure is
a generalization of the notion of a superstructure and of a p-graph used in process design, in that
it encodes spatial (geographical) context of the system components. We show that this generaliza-
tion facilitates the simultaneous design and analysis of processes, facilities, and of supply chains.
Our framework aims to select the system topology from the spatial superstructure that minimizes
design cost and that maximizes design modularity. We show that this design problem can be cast
as a mixed-integer, multi-objective optimization formulation. We demonstrate these capabilities
using a case study arising in the design of a plastic waste upcycling supply chain.
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1 Introduction

Modularity is a design principle that aims to provide flexibility for spatio-temporal assembly, disas-
sembly, and reconfiguration of systems. This design principle can be applied to multiscale manufac-
turing systems that connect equipment units /technologies, processes (collections of units/technologies)
[1], facilities (collections of processes) [2], and entire supply chains (collections of facilities) [3]. Modu-
lar manufacturing systems are typically built from small-scale and standardized technologies (equip-
ment units) that perform specific tasks and that are coupled together using sparse interfaces [4, 5].
Small dimensions and sparse interfaces facilitate system assembly/disassembly and reconfiguration
(e.g., migration of technologies to a different location and expansion of capacity). This logistical flex-
ibility helps systems adapt to fast-changing markets and other externalities (e.g., climate, resource
availability, policy) [6,7] and enable the recovery of resources that are highly distributed and po-
tentially short-lived [8-10]. Modularity principles have been recently explored in diverse industrial
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sectors such as power generation, data centers, and chemical processes [11-13].

Modular design principles are often applied at the process synthesis stage. For instance, pro-
cesses that compose a facility (collection of processes at a given geographical location) can be inter-
preted as modules and products exchanged between such modules give rise to a facility. At this
level of an organization, modular design is usually coupled with process intensification that aims
to improve energy and process efficiency by combining difficult unit operations in a single-process
equipment [14]. Researchers have proposed generalized modular representation framework based
on mass/heat-transfer principals [2], and analyzed the impacts of key factors on operability and con-
trol of intensified /modular designs such as process constraints, numbering up vs. scaling up, and
dynamic/periodic operation [15]. These analysis helped develop systematic framework for the syn-
thesis of operable process intensification systems such as reactive separation systems [1], and further
provided novel ideas on discovering intensification/modularization opportunities at the process de-
sign stage [16,17]. Recently, researchers have also used graph theory to study modular processes from
a pure connectivity point of view [18-20]. This perspective separates the concept of modular process
and intensified process by identifying equipment modules that are tightly connected. Specifically,
the connectivity induced from products exchanged between processes and from product transfor-
mation in such processes induces a degree of modularity of the system. For instance, facilities that
have dense product interdependencies are less modular than those that have sparse interdependen-
cies. The degree of product interdependency affects flexibility, as facilities that are tightly coupled
are typically more difficult to reconfigure.

The graph-theoretic perspective to modular process design allows us to apply similar ideas at
a higher organization level. For instance, facilities that compose a supply chain can be interpreted
as modules that exchange products across geographical locations (e.g., via long-distance transport).
This indicates that a supply chain can be seen as a distributed network of processes (a distributed fa-
cility with processes placed at different geographical locations), while a typical facility can be seen as
a centralized network of processes (all processes are placed at the same geographical location). Sim-
ilar to the case of a facility, the modularity of a supply chain is affected by the connectivity induced
from product transport across components, from product transformation in its components, and from
its ability to be reconfigured (e.g., movable processes). Recent work in power grid and natural gas
networks has revealed that deploying distributed data centers, batteries, vehicle charging stations,
gas-fired power plants, and manufacturing facilities can add flexibility, relieve network congestion,
and enhance system-wide performance [21-23]. This flexibility can be used to absorb fluctuations
of wind and solar power and can help withstand externalities (e.g., extreme weather events, policy,
equipment failures). Researchers have found that the ability of the supply chain modules to relocate
helps improves the efficiency [24] and the sustainability of the process [25,26], especially for processes
that involve spatially-distributed materials such as the biomass-to-energy supply chains [27,28], and
meets highly variable product demands in a cost-efficient manner [29].

Computational frameworks have been proposed to optimize modular supply chains considering
demand uncertainty to manage risk [30,31], and to determine production schedules of supply chains
with modular production units [32,33]. A key observation of these works is that modularity of the
supply chain means that the system includes modular (small) production units. In other words, these
works do not use modularity in a graph-theoretic sense. From a graph-theoretic perspective a mod-
ular supply chain is a system that contains modules (collections of nodes) with tight connectivity.
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In other words, just like a modular chemical process where more than one unit operations are inte-
grated to form a module to achieve better energy efficiency and process flexibility, a supply chain can
be modularized by grouping and locating tightly connected production units together to improve
transportation efficiency of materials and manage risk under product uncertainty.

Rigid /inflexible processes, facilities, and supply chains are vulnerable and can face significant
risk due to changing markets and climate, shortages of resources at a specific location (e.g., water),
and changes in the policy landscape (e.g., carbon emissions). On the other hand, economies of scale
tend to benefit large, centralized systems due to favorable scaling of throughput with equipment
size [7]. Industrial organizations typically evolve into a mixed state in which certain processing tasks
are performed in small dispersed modular systems, while others are performed in large centralized
facilities. This arrangement induces a hierarchical reorganization of individual production facilities
and of associated supply chains. Inducing modularity by design in such organizations is difficult, as
one must consider complex physical and geographical dependencies between processing tasks and
products as well as trade-offs between economies of scale and flexibility provided by modularity.

Maximal p-graph structures and superstructures are system representations that have been widely
used for the design of chemical processes and of mass/energy recovery networks for single facili-
ties [34,35]. A maximal p-graph structure encodes all possible feasible paths between primary prod-
ucts, processing tasks, and intermediate and final products [36]. A superstructure encodes all possi-
ble configurations of equipment units and product flows that perform tasks defined by the maximal
p-graph (i.e., multiple units might perform the same task) [37,38]. While these representations pro-
vide a powerful framework to investigate systems at a process level, they do not encode spatial
information, which is necessary to capture how design affects flexibility at higher organization levels
(facilities and supply chains).

In this work, we propose an optimization framework to facilitate the design of modular processes,
facilities, and supply chains. Central to our approach is the concept a spatial superstructure, which
is a graph that encodes all possible dependencies between components. We show that the spatial
superstructure is a generalization of the superstructure and p-graph used for process design in that
it encodes spatial (geographical) context. Moreover, we show that this generalization enables the
simultaneous design of processes, facilities, and of supply chains in a unified manner. Specifically,
a spatial superstructure is a superstructure under which technologies and flows encode positional
(geographical) context and that encodes product dependencies that arise from transformation (as in
a p-graph). This allows us to represent standard centralized processes and facilities (under which
technologies are placed at the same geographical location) and a spatially-distributed process (under
which technologies are distributed over multiple geographical locations) by using the same graph
topology. The graph representation reveals that a key distinction between a spatial superstructure
and other representations is in how product transportation is accounted for. For instance, short-
range transport (inside a process or facility) might use pipelines while long-range transport might
use truck hauling or railways.

The proposed approach leverages the graph representation of the spatial superstructure to iden-
tify topologies that minimize system design cost and that maximize design modularity. We show that
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this design problem can be cast as a mixed-integer, multi-objective optimization formulation and al-
lows us to capture interdependencies between primary products (raw materials), intermediate prod-
ucts, and final products that arise from product transformation and transport across components.
We also leverage the topology of the spatial superstructure to accelerate the optimal design search by
restricting such search along feasible paths that obtain desired products from primary products. This
approach contrasts with standard superstructure optimization approaches that search over individ-
ual technologies/units. We demonstrate the capabilities for the design of a plastic waste upcycling
supply chain.

We highlight that, compared to existing literature, our work has the following contributions:

¢ Previous work has focused on the the design of supply chains that leverage modular produc-
tion units to provide flexibility. In our framework, we treat the supply chain as a system that
can be modularized (in a graph-theoretic sense) based on spatial connectivity among different
production units. This connectivity provides flexibility to the system and can be induced by a
combination of large, medium, and large production systems.

* We also propose the concept of a spatial superstructure to simultaneously design modular fa-
cilities and supply chains under a unified framework; previous superstructure and p-graph
paradigms focus on facility design (single-site). Our generalization is enabled by taking a
graph-theoretical view of the problem.

2 Concepts and Graph Representations

In this section, we revisit the concept of a p-graph, maximal p-graph, and superstructure and provide
a unifying graph-theoretic perspective. We use these concepts to propose a spatial superstructure that
will be used to guide the design of modular systems.

2.1 P-graph and Maximal p-graph

In the context of chemical processes, graphs have been used to analyze interdependencies between
products and technologies (unit operations) in a process and with this unravel a number of funda-
mental systems properties such as topological feasibility (e.g., ability to reach a set of products from
a set of primary products).

A process can be represented /modeled as a p-graph (short for process graph). In a p-graph, nodes
represent technologies (processing tasks or unit operations) and products (primary products as well
as intermediate and final products) while edges represent dependencies between products and tech-
nologies. Here, the concept of product is general in that it can capture general resources such as
energy (e.g., electricity). In addition, we note that technologies induce complex interdependencies
because they conduct transformation of products into other products (e.g., a chemical reactor or a
separation unit). Under the p-graph abstraction, it is possible to derive a maximal p-graph (max p-
graph for short) that encodes all possible technologies and required primary products and interme-
diate products that can be used to obtain reach a desired set of final products. This representation
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is powerful and insightful because any possible process configuration that connects primary prod-
ucts, technologies, and intermediate/final products is embedded in the maximal p-graph. A specific
process realization is derived by selection of specific nodes and edges (which form a path between
primary products (i.e., primary products), intermediate products, and final products desired). As we
will see, superstructure representations inherit the topology of max p-graphs.

Suppose that a process involves a set of intermediate/final products P and a set of primary prod-
ucts R from which intermediate/final products are derived (via technologies). Furthermore, we
define a set of all products involved in the process as Z. A product can potentially be generated by
different types of technologies (techs for short), and we define a set of possible techs as 7.

Associated with each tech ¢ € T, there is a set of output products €; € P, a set of input products
K: € I, and a tech type 6;. For convenience, we categorize techs by products and types using the
subsets ﬁ’i/’j C T with 7;71‘/7]' = {t’l S Qt,’i, € Ky, 0, = ]}

We model the max p-graph as a directed graph GP = (NP; EP) where NP is its set of nodes (vertices)
and £7 is its set of edges. The set of nodes include product nodes and tech nodes. We define the set
of nodes representing the supplies/sources of primary product as S C NP). Associated with each
node s € &P there is a type of primary product €25 € R. For convenience, we categorize suppliers as
S C 8P with 8 := {s|Q2; = i}. Similarly, we define the set of nodes representing demands/sinks
of final products as D? C NP. Associated with each d € DP, there is a type of product K; € P; we
categorize demand nodes as D! C DP with D := {d|K; = i}.

We define the set of nodes representing the techs as ? C N?. For each node u € UP, there is
a tech 7, € T associated with it, and we classify tech nodes as U C UP with U} = {u|r, = t}.
Because each tech t is also associated with an product sets €2;, K; and a type 6;, we have that each
node u € UP is associated with a set of products €2, € P that the tech generates, a set of products
K, € I that enter the tech, and a type of tech 6. For convenience, we use the short-hand notation
Q,, K., and 6,,. We define the subsets L{f” vy = {uli € Qu, i" € Ky, 0, = j}. We highlight that, in the
max p-graph representation, the tech node set ” contains only attributes of tech ¢ € T, so they are
defined similarly. In other words, node ¢4 = U}, ; corresponds to the tech ¢ = 7; ;. Finally, the set
of all nodes is:

NP =8P UDPUUP. (2.1)

Figure 1 provides an illustration of a max p-graph and showcases how complex interdependencies
between products and techs arise. In this example, the set P contains products i3 and s, set R con-
tains primary products iy, i2, i3, ¢4 and ¢5, and the set Z contains the final product i5. The intermediate
product i3 and final product i5 are also included in the primary products because we consider the
possibility of satisfying the demand by purchasing it from an external market. The set 7 contains a
couple of tech types producing product i3 from either i; or i; and i3, and 2 types of techs producing
product i5 from either i3 or i3 and iy, represented as {7is iy j1 > Ty {i1in}.jos Tis {insia}jrs Tissis.jz f- INOdes
representing supplies of primary products are on the left, shown as nodes Sﬁ , Sﬁ , Sﬁ , Sﬁ , and Sﬁ

in set SP; nodes representing technologies are in the middle, shown as node UZZ i U Z.Z (irsin} o
ub . and U . . insetUP?; nodes representing the demand are on the right, shown as node D?
i5,{i3,14},J1 i5,i3,52 "
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in set DP. Nodes and edges are highlighted based on the associated product; for example, node S,
and the edge that carries the product i4 to technology U Z.I; {isiatin have the same color. The product
hierarchy of the process is also displayed in this max p-graph representation; looking from top to
bottom, we can see that products or techs that are involved in the early stage of the process are on the
top and those that are involved later in the process are on the bottom. Moreover, the max p-graph
tells us that primary products 1,72, and 74 can only be purchased but not produced. Product i3 is
an intermediate product that can be produced by either type of tech or purchased from the external
market; this product is also fed to the techs that produce product i5 (which is the final product).
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Suppliers

Technologies

Demands

Figure 1: Illustration of a max p-graph showing dependencies between products and technologies.

Suppliers

Technologies

ig,{i1,i2}

i5,{i3,ia}

s
Demands

Figure 2: Illustration of a superstructure (associated with max p-graph in Figure 1) showing depen-
dencies between products and technologies.
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2.2 Superstructure

A superstructure is a system representation that inherits properties of a max p-graph (product-tech
connectivity) but also accounts for the possibility of having multiple units/copies of techs and also
account for additional attributes of techs (e.g., capacities). It is thus important to highlight that a
superstructure can be derived from the topology of a max p-graph. The key difference is that, in
a max p-graph, techs are interpreted as unit operations while, in a superstructure, techs represent
equipment units.

A superstructure can also be represented as a graph; specifically, it can be represented as a di-
rected graph G° = (N*; £%), where N* is its set of nodes (vertices) and £? is its set of edges. As in the
p-graph, primary products are defined as R; intermediate/final products are defined as P; and all
products are defined as Z; techs are defined as 7 with the same attributes categories as in the max-p
graph. Nodes representing supplies and demands are defined as S® and D?, and the set of nodes 1/*
that represents techs. In this representation, each tech u € {/° has an additional attribute that repre-
sents the unit number 7,,.

We categorize the nodes U* as Uy, = U7, ;) © U with U, == {u|r, = t, 1, = h} and U}, ), =
{uli € Qu,7" € Ky,0, = j,n, = h}. In the case of a superstructure, the set /{* adds another layer of
information on top of the set 7 to indicate that multiple copies of the same tech might be available.
In other words, node U/}, = U, ;, corresponds to the / unit/copy of tech 7; s ;. The set N* for all

(]

nodes in the superstructure is N = 8% UD* UU”.

Using the same example shown in Figure 1, we illustrate a superstructure representation of this
system in Figure 2. Here, we labeled the set 147, := {uli € Qy,i" € Ky} on the side and labeled the
attribute {6, 7, } on the node for each u € U*. Comparing to the max p-graph representation, only the
notation for nodes representing techs has changed. For instance, the notation U, ; . ;| denotes the
tirst unit/copy of tech 7;, ;, j, thatis used to obtain the intermediate product ¢3. Multiple units/copies
of this tech are available to satisfy the demand of final product i5 and the same applied for other
techs. We can also observe that the product-tech connectivity of the max p-graph is inherited by the
superstructure. Moreover, we see that the superstructure graph is much denser than that of the max

p-graph (due to the availability of multiple tech units).

2.3 Spatial Superstructure

We now proceed to generalize the notion of a max p-graph and of a superstructure to capture spatial
context. Capturing spatial context is necessary to represent flexibility provided by modularity at dif-
ferent scales (process, facilities, supply chains). The key observation is that a supply chain can be seen
as a distributed facility that exchanges products between processes (placed at different geographical
locations). Similarly, a centralized facility can be seen as a supply chain with a single geographical
location. This unifying view of a system will reveal interesting insights that can be exploited to de-
rive a general graph-theoretic framework that explains how modularity emerges in a system design.
Specifically, we will see that the topology of the spatial superstructure directly inherits the topology
of a superstructure, which in turn inherits the product-tech topology of a max p-graph. Exploiting
this topological dependencies is key in building superstructures and in identifying feasible system
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designs. Our final aim will be to derive optimization formulations identify a subgraph from the
spatial superstructure (a design) to obtain a supply chain (composed of processes and facilities of
different sizes and at potentially multiple locations) that minimizes system-wide cost and that maxi-
mizes modularity.

A spatial superstructure is a superstructure under which techs and connections encode positional
context. This allows us to represent a standard single-site process/facility (under which equipment
units are located at the same geographical location) and a spatially-distributed process/facility (un-
der which units are distributed over multiple geographical locations) by using the same graph topol-
ogy. The spatial superstructure allows us to capture transportation modes for the products and asso-
ciated constraints and costs; for instance, short-range transport (inside a location) might use pipelines
while long-range transport (across locations) might use trucks or railways.

The graph representation of the spatial superstructure is inherited from that of the superstruc-
ture. We model the spatial superstructure as a directed graph G¢ = (N?;£7) where N7 is its set of
nodes (vertices) and £ is its set of edges. We define a set of potential spatial locations for placing
technologies as G, a set of potential locations for suppliers as G,, and a set of potential locations for
demands as G;. We then define a set of all locations as G = G; U G5 U Gg.

As in the max p-graph representation, primary products are defined as R; intermediate and fi-
nal products are defined as P; all products are defined as Z; techs are defined as 7 with the same
attributes and nested representation. Nodes representing supplies are defined as §9, and for nodes
s € S, there is a new attribute ¢, € G, representing the location of the supplies/sources of primary
products. We define subsets to categorize suppliers by location and product as Sf s & S C 87 with
Szg = {s|Qs =i, ¢s = g} and S} := {s|Q = i}. Nodes representing demands are defined as D?, and
for node d € D9, there is a new location attribute ¢4 € G;. We define the categorization as subsets
Dl.q/’g C D}, C D with Dl.q/,g = {d|Kq=1,¢q =g} and D} = {d|Kq =i}

For each tech node u € U? there is a new location attribute ¢, € G;, and the subsets are written
asU?, =Uul C U9 with L{gmg = {ulry = t,ny = h, ¢y = g} and U] = {uli € Q7 €

t7h7g Z7i/7j7h7g 72/ 7j7h7g
Ku,0u = j,nu = h, ¢, = g}. Specifically, node U}, 9= u? corresponds to the h copy of tech 7; i ;

/L7Z‘/ 7j7h7g
that is located at location g. The set of all nodes is N4 = S U D? U 4.

Using the same example shown in Figure 2 and a couple of potential locations A and B, we
illustrate the spatial superstructure in Figure 3. Here, we labeled the set /!, for the nodes on the side
while labeled the attribute {6.,, 7., ¢} on the nodes. We note that there rﬁight be multiple locations
for suppliers and demands. We also note that edges that connect nodes at the same locations or
across different locations have different meaning. For example, we can choose to install the first copy
of tech 7j, i, j, that produces i3 at location A (represented as node Uy, irjr.1,4) and the first copy of
tech T;, i, j, that produces i5 at location B (represented as node Uz%,ig, i».1.5), and the edge connecting
them represents the transportation of product i3 from location A to location B. If these techs are
both placed at location A, an edge connecting them represents short-range (on-site) transport. We
observe that the topology of the spatial superstructure is inherited from that of the superstructure,
which in turn inherits the product-tech connectivity from the max p-graph. We also note that the
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spatial superstructure is much larger and denser than the superstructure and can becomes difficult (if
not impossible) to express and visualize, due to the potential need to capture many geographical
locations and tech units at such locations. Therefore, deriving an automatic approach that generates
and analyzes the connectivity of the spatial superstructure is necessary.

Technologies
q
i5,{i3,14}

q
15,13

Location A
‘~Ui3,{i1,i2}

Suppliers

Is

Demands

q .
Uis,{il,iz} Location B

i5,{43,94}

Figure 3: [llustration of a spatial superstructure (associated with max p-graph of Figure 1 and super-
structure of Figure 2) showing dependencies between products and technologies across geographical
locations.

2.4 Feasible Paths

A feasible path is a collection of nodes and edges that enables reaching final products from primary
products. A feasible path can be derived by a reduction of nodes and edges of a max p-graph or
superstructure by leveraging graph-theoretic concepts. For example, a feasible path is a subgraph
G = (N/, &) of the superstructure graph G* (i.e., G C G*) where N/ is a subset of N'* and £7 is a
subset of £9. We present a feasible path obtained from an example max p-graph and superstructure
in Figure 4. Compared to the number of possible paths derived from a max p-graph, the number of
feasible paths from a superstructure is much larger because we now consider multiple copies of tech-
nologies (which enables more combinations). It is also important to highlight that, any feasible path

10
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in a superstructure (and spatial superstructure), has to be a feasible path for the max p-graph (be-
cause the superstructure inherits the product-tech connectivity). This observation is key in building
superstructures that avoid spurious (infeasible) paths.

] Suppliers Suppliers

lq .
51

i Technologies ' Technologies
@

Us

iz, {i1,i2}

15,13

@: @

Demands Demands

Figure 4: Example of a feasible path obtained from a max p-graph (left) and from a superstructure
(right).

We can similarly derive any feasible paths from a spatial superstructure between primary prod-
ucts, techs, and final products as shown in Figure 5. Here, a couple of copies of the same technology
Tisi1,5: that produces product i3 is located at location B (nodes Uiqg,,il,jl,l,B and Uz%,,z‘l,jl,zB)' and two
other technologies T, ;, i,},j, (node Uz'qg,{il,iz},jz,l,A) and Tj; (i, i}, (node Uz’q5,{i37i4},j2,17A) that pro-
duces i3 and final product 5 are located at location B. As we add spatial information to the super-
structure, combinations of techs across different locations are now possible and thus the number of
possible feasible paths becomes even larger. Among all the feasible paths, an optimal design is a
feasible path that takes into account tech and transport costs and modularity. As we consider com-
plicated interdependencies between products and different capital and transportation cost due to
potential locations, finding an optimal design is not immediately obvious from the spatial super-
structure. Therefore, one needs to rely on optimization techniques to identify optimal paths, as we

describe next.

3 Optimization Formulation for Finding Optimal System Designs

In this section, we derive an optimization formulation that aims to identify the hierarchy of products
in the system. This step is essential for computing the amount of each product and the number of
technologies required. This information is in turn required to generate superstructures and spatial
superstructures. We then proceed to introduce an optimization formulation to obtain an optimal
system design.

11
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Technologies

i3,{i1,i2}

Location A
q
15,13
Supplier
i1
- A -
i, @ @:
Demands
Location B

iz, {i1,12}
Figure 5: Example of a feasible path obtained from a spatial superstructure.

3.1 Computing a Product Hierarchy

Generating a superstructure and a spatial superstructure requires that we compute the number of all
possible pathways based on their product-tech connectivity encoded in the max p-graph. Here, we
assume that there are no cycles in the dependencies in the underlying max p-graph. For instance,
if producing product i; requires some is, producing i cannot require product i;. With this, we can
define a product hierarchy that moves from primary products to intermediate products and to final
products. We use ﬁf:t, i" € I,i € Q,t € T torepresent that producing a unit of product i € €, requires
ﬁf;t units of product i’. These quantities can be interpreted as techn yield /transformation factors.

Table 1: Example of product dependencies in technologies.

i3 i5
7;37i1,j1 7;3,{1'171'2}7j2 7;5,{1'3,1'4}7]'1 7;5,1'37]'2
11 2 1 0 0
19 0 1.5 0 0
3 0 0 0.8 1
14 0 0 1 0

Taking the example form the previous section, we consider the product-tech dependencies of
a system that involves supplies of i; and i2 and produces the intermediate product i3 using techs
Tis,irjr and T, 13, 4,35, and a system that involves supplies of i3 and i4 and produces the final prod-
uct i5 using techs T;; 1, 5,15, and Ty iy j,- The product dependencies are shown in Table 1. Rows in

12
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this table represent input products while the columns represent output products. Specifically, pro-

ducing i3 requires 2 units of iy using 7;, s, j, (5;31 Tovsrs, = 2)or1unit of i1 and 1.5 unit of i» using
] - s 113,11,71
11 _ 12 _ sp s . . .
Tis fir iz} jo (524377;37{2_1h}ﬂ_1 =1,and 51'3’7537{1'1@2},11 = 1.5), and it is represented in entries 2 and 1 in the
tirst row (i1 as the feed)and first two columns (i3 as the product) in the table. Producing i5 requires 0.8
. . . . . ’i3 _ 'i4
unit of i3 and 1 ynlt of iy using T, (504}, (/87:577;5,{i;;,i4},j1 = 0.8 and ’81'577?5,&‘3,1'4},;'1
using Tig is jo (B 7. ., = 1), and itis represented in entries 0.8 and 1 in the third row (i3 as the feed)
»lig,i3,01
and last columns (i5 as the product) of the table. Here, i1, i3 and i4 can be seen as a primary product,
i3 can be seen as an intermediate product and i5 can be treated as a product. In this case, i3 has a
higher hierarchy than i; and 75 because producing it depends on these products. Product i5 has the
highest hierarchy since no other products depend on it. Because there are no dependencies between

products i1, i3, and i4, the hierarchy among them can be arbitrary. Therefore, a possible hierarchy of

= 1) or 1 unit of i3

these five products is {i; : 3,42 : 3,43 : 2,44 : 3,45 : 1}. Obtaining the product hierarchy allows us to
estimate the amount of each product and the number of techs needed for the system to satisfy a set of
demands; this information is necessary for generating the superstructure and spatial superstructure.
Unfortunately, when the product-tech dependency becomes complicated, such product hierarchical
order is not easy to observe; therefore, we formulate an optimization problem that determines the
hierarchical level of each product.

We define a positive integer variable z;,7 € Z that represents the hierarchy of each product i. The
optimization formulation that computes the product hierarchy is:

min sz (3.2a)

* €L
st.x; <xpy—1,t€ T,i S Qt,i/ e Ky (32b)
x, >1,1€T, (32C)

Minimizing the objective (3.2a) ensures that the hierarchies for all products are consecutive numbers.
Constraint (3.2b) indicates that, if producing product i requires product ¢/, the hierarchy of i should
be higher than the hierarchy of 7. The final constraint makes sure that the highest hierarchy starts
with a value of one. This computation of the hierarchical level for each product aids the computa-
tion of the number of each techs possibly required, which is necessary information for generating
the superstructures. Then, without further computations, we are able to derive a connectivity ma-
trix (adjacency matrix) for all the nodes (products and techs) based on the information of products
involved and their interdependencies, and thus build the graph representation of the superstructures.

We define the adjacency matrix for the superstructure and spatial superstructure as i i, k, k' €
N®and py i, k, k' € N, respectively. The adjacency matrix is a fundamental quantity that encodes
the topology of the superstructures.

3.2 Computing Optimal Designs from Superstructures

We first derive an optimization formulation to identify an optimal design from a superstructure that
minimizes cost and maximizes modularity; this will generate a modular process design, as a su-
perstructure does not encode locational context. We will then extend the formulation to identify an
optimal design for a supply chain from a spatial superstructure.
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3.2.1 Cost-Minimizing Optimal Design

A feasible path (a process design) is obtained by extracting a subgraph (nodes and edges) from the
superstructure graph. Our goal is that this feasible path minimizes cost and maximizes modularity).
The graph representation of the superstructure will allow us to derive an intuitive (and computable)
measure for modularity, this measure will implicitly capture logistical flexibility (e.g., by capturing
module sizes and connectivity).

We consider the overall system cost is the net present value for the annualized capital and opera-
tional cost. Associated with each tech ¢t € T, we define the installation and operational cost as af and
a7, and we define the capacity of tech ¢ that produces product i € €, as & ;. For each node u € ¢/* and

its associated tech 7, we define the capital cost, operational cost, and capacity as b, af ,and &, 0,

and we use the short-hand notation ag, af,and &, ;,1 € Q, (the capital cost is annualized with factor
€q). The unit cost of each material is defined as of,i € R and the required amount of final product
iis 0;,1 € P. For simplicity, we assume that the cost for every connection/transport, denoted as o/,
is the same regardless of the product and scales linearly with the amount of product that it carries.
The disposal cost of any excess product is denoted as a¢, i € Z; this disposal cost allows us to capture

potential environmental impacts (e.g., carbon emissions).

We define a collection of continuous variables fj 5/, k, k' € N representing the flow of product
from node k to node £’. We define a continuous variable v;,i € R that represents the amount of each
primary product purchased from suppliers. We define a binary variable y,,, u € U® such that y,, = 1
if node u (a unit) is selected as part of the design, and y,, = 0 otherwise.

Under these definitions, the total annualized cost is:

C=Y(eaa+ad) put > ol ui+ > o fiwt D = Y fur) ol

ueUs $€85,i€0s k,k'eN's wuEUS i€Qy, keNsifieky
(3.3)

The total cost captures installation cost, the cost of purchasing primary products, the cost of trans-
port, and the cost of waste disposal. The installation cost implicitly captures economies of scale (as it
captures technology cost based on size/capacity).

There are a couple of constraint sets that contribute to the formulation. The first set of constraints
ensures that the feasible path is derived from the superstructure and can be expressed as:

S <M - pgpr, kK € N? (3.4)

where M is a sufficiently large coefficient; this constraint reduces the feasible region of the problem.
The second set of constraints are the product balances at the graph nodes:

> for<vi,s €S8t ieq, (3.5a)
keNs

D Fuk < Gui - yuru €USLI € Q (3.5b)
k'eN's

D7 e = uir Bl Yuu €U T € Kyyi € Qy (3.5¢)
keNs
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> fra=6s,deDi €Kq. (3.5d)
keNs

Constraint (3.5a) is the product balance for supplier nodes, (3.5b) and (3.5¢) ensure the inlet and out-
let balance for tech nodes, and constraint (3.5c) is the balance for the demand node.

To illustrate the definition of the variables and constraints in the optimization formulation, we
will use the same example discussed in the previous section. Consider that an optimal design is
derived from a superstructure as shown in Figure 6. Nodes in the design on the right are marked
from k; through ks, where ki and k; are suppliers, k3, k4 and k5 are technologies and kg is demand. If
nodes k3 and k4 (copies of the same technology) take 400 units of primary product ¢; and 200 units of
ip and produces 200 units of i3. Product streams i3 are then fed into node ks that produces 300 units
of final product i5 that is required by the market. The non-zero entries for each decision variables f,
v, and y are highlighted.

Suppliers 800 iy fkl,kg =400
or = 400 Jiaes =400
Ml e ) Technologles : lZ
~ 13 {i1,i2} k2 y
J 1 sz,/m =200 k3 k4
@ Frorks = 200
ks
U;:, i3 k

6
is . z {w is} Uls5 - fks,kc =300 A. is
Q@

Demands

Yks = Yky = Yks = 1

Figure 6: Illustration of notation for optimal design from superstructure.

With these definitions and constraints, we formulate the optimal design problem:

min C (3.6a)
oy
st frp <M - ppg, kK € N* (3.6b)
Y far<vis€S%ieQ, (3.6¢)
keN's
S fuw <&y u UL EQ, (3.6d)
k' eNsifiek,,
Z Fow = Ewir - Blo, - Yursu € U7 € Kuyi € Qy (3.6€)
keN's
> fra=0u,de D i €Ky (3.6f)
keN's
fegw >0,k K e N* (3.69)

This formulation uses the superstructure connectivity to reduce the feasible space of the problem and
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is concise to read and easy to understand. We will now expand this formulation by incorporating a
modularity measure as a trade-off of cost.

3.2.2 Cost-Minimizing Optimal Modular Design

The modularity measure that we adopt is a modified version of that presented in [20]. This measure
is directly derived from graph-theoretical principles, can be computed using mixed-integer optimiza-
tion techniques, and captures aspects of relevance in the context of manufacturing systems and sup-
ply chains. Specifically, the measure captures dimension (size) of modules, which enables capturing
the fact that such modules should be transportable. The modularity measure proposed is computa-
tionally more suitable for system design.

The modularity measure is ccomputed using concept of graph coverage; this is done by formulat-
ing a mixed integer optimization problem that minimizes the number of intermodular edges relative
to the total number of edges (intra- and inter-modular). In other words, the measure aims to capture
the ability of assembling/disassembling a system. The measure is defined as M,, with n being the
predefined number of modules. The measure )M, has a range has a range of [0, 1]; M,, = 1 being the
most modular system possible and M, = 0 represents the least modular system possible.

In addition to the previous attributes of tech ¢t € 7, we define a dimension (physical size) of the
tech represented as 7;. Similarly, for each node v € U* and its associated tech ¢t = 7, the dimension
is represented as ~,,, abbreviated as 7,. The set of modules is defined as £ = {1,2,....,n} and || =n
(the number of modules). We impose dimensionality constraints for each module by defining D and
D as upper and lower limits.

To compute the modularity measure of a given feasible path (a potential design), we define the col-
lection of binary parameters a,, ./, u,u’ € U*®, which represent the adjacency matrix of the subgraph
associated to the feasible path. We define the collection of binary variables Qs 13 U u e Ul € L;

here, a”,,, = 1 indicates that nodes u, v’ are connected and they are both in module /. We define the

binary variable y,,;,u € U*,l € L such that y,; = 1 if node (unit) u exists in the design and appears
in module /.

The measure that we propose is computed by minimizing the following function for a pre-defined
number of modules n:

§ m
au,u’,l

' eUs el
Mn _ u,u' € S (37)
>
u,u/ €U
We note that this modularity measure is different from that reported in [20], which is:
Z Ty * Auu!
/ uS
M, = “vE (3.8)
> G
w,u' €U
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where 7 is the membership variable matrix. Here, we have that the entry m,, , is 1 if node v and v’ are
in the same module. We highlight that, in the work of [20], the adjacency a,, ,, is a fixed parameter and
> wwreys Guw = 2m, where m is the number of edges in the graph. However, in the design context
discussed here, the adjacency a,,, is a variable (affected by the design selection). As such, the second
modularity measure would be computationally difficult to implement. This motivates our desire to
use the first modularity measure (we will see that this is easier to implement).

We now proceed to show that the modularity measures are equivalent; we establish this result by
showing that:

Z aqTZu’,l = Ty’ * Ay’ - (3.9)
leL
In other words, we aim show that the numerators of both modularity measures are equivalent.
Specifically, we would like to show that both numerators are binary and that, when the numera-
tor on the left takes a value of 1, the numerator on the right also takes a value of 1.

The right numerator is binary because both terms are binary and thus their product is binary. For
the left numerator we have that, by definition, there are no overlapping modules (each node can exist
only in one module). For a module I’ € £ we thus have that:

ayyy =1 al,, =1 (3.10)
lel
and
» ag, <1 (3.11)
lel

Because the variable o™ is also binary, we have that it can only take values of 0 and 1. We then have
that, by definition, the term a:ﬁu',z' takes a value of 1 if and only if node u connects to node v’ and
they are both in module I. Therefore, for a module I’ € £, we have:

CLZZ‘U/J/ =1<= Ay = 1 and Ty’ = 1. (3.12)
Combining these expressions:
Y al, =1+ ayy=landm, =1 (3.13)
leL

Therefore, we can rewrite the above expression as:
m
E Qo 1 = Quu! * T (3.14)
leL

which establishes the equivalence.

Note that the new modularity measure proposed is nonlinear (fractional) and would make the de-
sign formulation intractable if this is added directly as an objective function. Interestingly, however,
when the measure is used as a constraint, this can be reformulated in linear form as:

Z G’qu’,l > €M Z Qo (315)

u,u’ €U leL u,u/ EUS
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where €/ is a desired threshold value for the modularity measure. This observation is relevant be-
cause the design formulation is multi-objective (minimize cost and maximize modularity). Using an
e-constrained method to compute the Pareto frontier thus provides a natural approach to deal with
the modularity measure.

In addition to the modularity constraint and the constraints in formulation (3.6), new constraints
are added the impact of the assignment of nodes into modules on process variables. The logic be-
tween continuous flow variables and the binary adjacency variables is:

few <M -app, kK € N? (3.16)
A k! < fk,k’? k? k/ € Ns. (317)

The logic for variable y (a node can only exist in one module), variable o™, and a (a node u connects
to any node u’ and they all belong to a module [ only if node u and v’ both exist) are:

>y < Lueur (3.18)
leL

D gt Y A SMoyuu U lEL (3.19)
u' eUs u' eus

S al ) < g u €U (3.20)
leL

The constraint that governs the upper and lower bound for the dimensionality of each module is:

uels

Figure 7 presents an example to demonstrate the definitions of variables and constraints. Here, we
show a modular division of the optimal design where k3 and k5 are in module /; and k4 is in module
lo. It this worth noticing is that only one entry of variable a™ is 1 since only the edge that connects
node k3 and ks is counted as the edge within modules.

Tk ks =400
Suppliers fk'l,k4 =400
i ‘ Vi k Uky ks = 1
N Vi, _ Ak kg =1
5 e . o Module 2
—— Tec}mologles ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
: T e i
f m {i1,i2} i y \H. 3
' i s !
‘ ‘ ‘ Jra ks = 200 : ¥ Uiairiia)
u zl ' i !
fk27k4 =200 : ks LS ]f:il,,,,,,,,,:
i @ Aoy ks = 1 3 D fraks = 200
Upky =1 C fruks = 200
' ' 4,ks
! : _
i 1 kg ks = 1
. . ks g, =1
: Us !
el ke
I ‘ Ut tissia) Module 1 frs ke = 300 N .
15 »ig ag ] e = 1 ls
5,86
@

Demands m —
Uy sty = 1

Yksly = Ykaly = Yks,lo = 1

Figure 7: Illustration of notation for optimal design (left) obtained from superstructure (right).
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The optimization formulation to select the cost-optimal design given a modularity threshold e,
is:

min C (3.22a)
fv,a,a™,y
s.t. fk:,k:’ < M- Pk k! k, K eN® (3.22b)
Y far<vis€S%ieQ (3.22¢)
keNs
D fuk S&uit D yupu €U E€Q, (3.22d)
k'eNs leL
ST fru = Euir Bl Y yuau €ULT € Kuvi € Q (3.22¢)
keNs lel
> fra=6sde D i €Ky (3.22f)
keN's
S <M -app, kK € N? (3.22¢g)
ap g < frp kK e N? (3.22h)
>y < Lueur (3.221)
leL
D dtwat Y A S Moy uclU el (3.22))
u' e u' eUs
Z aum,u’,l < Ay !y Uy u' e U’ (3221()
lec
uels
Z azl,u/,l > €M Z Aoy u! (322m)
u,u’ €UsIeL u,u! EUS
Srp >0,k K e N* (3.22n)

Incorporating the modularity measure in the design formulation increases the number of variables
and constraints, which are required for the calculation of intra-modular edges. However, this for-
mulation gives us interesting insights on connectivity, decentralization, and transportability of the
process design. Formulation (3.6) and (3.22) find the optimal modular design based on the super-
structure graph (that does not account for spatial information). We will now introduce formulations
that find the optimal feasible path with spatial information, and we would like to show that with the
concept of spatial superstructure, these formulations are similar to formulations (3.6) and (3.22).

3.3 Computing Optimal Designs from Spatial Superstructures

We then consider the situation that we not only assign technologies to modules, but also put them at
different locations. Here, we consider two potential factors that might change the geological prefer-
ence for different technologies. First, the installation cost may be different for the same technology
at different locations due to the different cost of land. Second, the transportation cost from one lo-
cation to another may be different for the same product. Specifically, if technologies connected to
each other are installed at the same location, the short-range transport of product can be achieved us-
ing pipelines or other simple methods. If they are placed at different locations, trucks or trains may
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be utilized to long-range transport of the product. Alternative for short- and long-range transport
options are directly captured by our formulation. Also, the primary products are usually supplied
at some certain locations and the final products are usually transported to the location of demand.
We further assume that technologies within the same module should be placed together in the same
location and multiple modules can be placed at the same location. We first formulate the problem
that solves for the cost-minimizing optimal spatial feasible path and then incorporate the modularity
measure for an optimal modular design.

3.3.1 Cost-Minimizing Optimal Design with Spatial Information

The graph-theoretic representation of the spatial superstructure makes the notation of the optimiza-
tion formulation directly analogous to that of the superstructure. As such, we briefly discuss all the
necessary definitions for the formulation.

The capacity associated with technology ¢ = 7, for node u € U? are abbreviated as ,. The instal-
lation cost associated with each technology ¢ € T at location g € G, is defined as ozf, 4~ For the node
u € U7 associated with techr,, the installation cost can be represented as of b abbreviated similarly

as af. The unit cost of each product is af and the demand of the market for each product i € P
is defined as §;, and the cost of disposal for each product is defined as af. We redefine the cost for
connection/flow of product i from location g to location ¢’ which stands for the cost of transportation

asal i€ Z,9,9" € G. Note that if g = ¢/, we obtain the short-term transport cost (as in a typical

i,9,9"
process).

o
iz, {i1,i2}

Technologies
oo - (@) .
(ﬂ E Location A fkl,k4 = 400 Location A

k3
Ua .
Tk ks = 200
v, = 800 Sraks =200 "o g ke = 300
Vi, = 400 il h \

\

Y .
®:

Demands

. R R
2 ~ NN
R :
@ h \\\\\ ®: !
N \\\\\\\ 7 Demands i
WS -
is s N
, \ \\ / Sha,ks = 200 @ Location B
UI' L3S )
A Y . fk2yk4 =200 U
> UL Gy Location B ia,{insia}
v, .

Yks = Yky = Yks = 1

Figure 8: Illustration of notation for optimal design (right) obtained from spatial superstructure (left).

The variables defined for the spatial superstructure problem have a similar interpretation as those
of the superstructure but we can now attribute locational context. Specifically, we define a continuous
variable fj 5, k, k' € N representing the flow of product from node k at location ¢, to node &’
at location ¢. We also define a continuous variable for the purchase of each primary product as
v;,1 € R. We define a binary variable matrix y,,u € U9 such that y, = 1 if node u is selected as part
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of the design located at location ¢,,, and y,, = 0 otherwise. Therefore, the total annualized cost of the
system can be written as:

O= D (wafural)-yut > afvt 3 g fart D (Gwe= > fun)wall

ueU $€S89,ieNs 1€Q,kEN K eN wEUL,IEQ, kENIf kEK,
(3.23)

The only difference in this cost function is that we can now capture transport cost. An illustration of
the problem variables is provided in Figure 8.

The formulation to obtain a cost-minimizing design from the spatial superstructure is:

min C (3.24a)
fvy
s.t. fk,k’ <M - kK k, K e N1 (3.24b)
> forx Svis€ShieQ, (3.24¢)
keNa
S fur S i Yusu €ULTEQ, (3.24d)
kK eNaifiel,,
> o =i Bl Yuu €ULT € Kyyi € Qy (3.24e)
keN4
> fra=6s,deDLi €Ky (3.24f)
keNa
Srg >0,k k' e N1 (3.24g)

The spatial superstructure is encoded iy 57, k, k' € N9 This optimization formulation is directly
analogous to that in (3.6) but can be computationally more challenging to solve because one can
account for multiple possible locations for techs, suppliers, and demands.

3.3.2 Cost-Minimizing Optimal Modular Design with Spatial Information

The modularity measure is directly analogous to the one defined previously but we need to specify
additional information to account for location of modules. The dimension associated with technology
t = 7, for node u € U are abbreviated as ,. We use set L = {1,2, ...,n} for the set of modules, and D
and D to represent the upper and lower limits of the dimensionality requirements. We use the binary

variable matrix ay , k, k' € N to represent the adjacency matrix of the feasible path (subgraph of
: P ) y p grap

m
w,u’ 00

between node u, v’ and module I. We define the binary variable y,,;,u € Y%, € L such thaty,; =1
if node u belongs to module [ at location ¢, and y,; = 0 otherwise. Finally, we define the binary
variable collection z 4,1 € L, g € G; such that if module [ is placed at location g, z,, = 1 and 2, = 0
otherwise.

the spatial superstructure). The binary variable a u,u’ € U1l € L represents the relationship

The modularity measure with predefined number of modules » modules is:

§ : m
au,u’,l

u,u/ €U IEL
M, =

(3.25)
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A couple of additional constrains (compared to formulation (3.22)) are added due to the newly de-

fined variable z. The first ensures that one module can only be placed at one location, and the second

one ensures the logic between variable y and z (a node u that exists in module / only if the module !

exists at location of node u), and they are expressed as:

Y mg<llel
9g€Gt

Yul < 2., u €U T E L.

An illustration of the defined variables is shown in Figure 9; note that a couple

(3.26)

(3.27)

of entries for the

newly defined variable z are 0, as module /; exists at location A and module /5 exists at location B.
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Figure 9: Illustration of notation for optimal modular design from spatial superstructure

With the previous definitions, the optimization formulation is:

min C
f7/U7a7am7y7z

s.t. fk,k/ <M - Pk ks k, K e N1
Z fs,k <w;, s € Sqai € Q

keNa
Z fu,k’ < gu,i : Zyulau € uqvi € Qu
k'eN4a lel
;! . .

Z fk,u = gu,i’ . ,8;’7_“ : Zyu,l’u € uq’l/ € KuaZ € Qu
keN4 lel

S° fra=0sdeDil € Ky

keNa

few <M -app, kK € N9
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Ak < frps ko ke N9 (3.28h)
>y < Lueur (3.281)
leL

S alu+ Y an g <My ucUlleL (3.28j)
u' U u’ €U

S alt ) < auuu €U (3.28K)
lel
D<)y w<DIeL (3.281)

ueU
Z C"qu’,l > €q - Z Qo ! (32811’1)

u,u' €U IEL u,u’ €U
Sug >0,k K e N1 (3.28n)
Y ag<llel (3.280)
rsen
Yul < 216, 0 EULTE L (3.28p)

This formulation is more comprehensive that the one based on a superstructure in that it delivers an
optimal system design that not only captures techs needed but also their geographical location. In
other words, this formulation simultaneously designs a supply chain and associated processes.

4 Case Study

We present a case study to illustrate how our optimization formulations can help automate the gen-
eration of superstructures and spatial superstructures and to identify optimal system designs with
desired modularity. The study tries to identify an optimal supply chain design for plastic waste up-
cycling that takes municipal solid waste (MSW) as the input and produces ethylene, propylene and
hydrogen as final products. The MILPs were solved using Gurobi (version 9.0.3) and were imple-
mented in the Julia-based JuMP modeling framework. We use Gephi for graph manipulation and
visualization. All optimization formulations are solved using a commercial laptop and the solving
time is referred to the wall clock time. All code needed to reproduce the results can be found in
https://github.com/zavalab/JuliaBox/tree/master/ModularDesign.

4.1 Problem Setup and Material Hierarchy of the Process

A high-level view of the processing tasks involved in plastic waste upcycling is provided in Figure 10.
Here, MSW (denoted as ;) collected from households is fed into a product recovery facility (MRF)
that obtains a plastic bale (i2), the plastic bale goes through a reprocessing facility (RF) that cleans
the bale and converts it into plastic flakes (i3), a pyrolysis process (PP) takes the plastic flakes and
converts these into pyrolysis gas (i4) and pyrolysis oil (i), a steam cracking (SC) process obtains the
final products, given by ethylene (is), propylene (i7), and hydrogen (ig). For this system, techs that
produce the same products have the same interdependencies between products and they only differ
in their capacities. Therefore, we eliminate the attribute of techs and the product dependencies be-
tween the different techs is shown in Table 2. Producing 1 unit of 5 requires 7.69 unit of i;; producing
1 unit of i3 requires 1 unit of ¢2; producing 1 unit of i5 requires 1.29 unit of 3; finally, 1 unit of s, i7
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Figure 10: High-level view of processing tasks involved in plastic waste upcycling.

or ig requires 3.81, 6.16 or 125 unit of i5 respectively. Note that intermediate product i, is not used in
the following process and is therefore considered a waste. Additional information is summarized in
Table 3.

Table 2: Product interdependencies between techs.

19 i3 15 i6 i7 18
i1 7.69 0 0 0 0 0
12 0 1 0 0 0 0
i3 0 0 1.29 0 0 0
i5 0 0 0 3.81 6.16 125

Each installation cost, operating cost tech dimension and tech capacity is associated with each
technology in the above row respectively. For example, for technology T7;, i1 i, , its installation cost
is $ 0.46 x 108, operating cost is $ 14 per unit of input i3, dimension is 2, and capacities for producing
product i4 and i5 are 169,000 tons and 39,000 tons, respectively. We assume that the operating cost for
techs producing the same products but of different sizes/kinds is the same. It is worth emphasizing
that, to capture economies of scale, the estimation of the installation cost is based on the so-called “2/3
rule” that is prevalent in cost estimation. Specifically, the rule that applies to the different technologies
producing product iz can be expressed as:

Njw

¢
ORI W (R (4.29)
§Ti27i17j2 O‘%’-

12,11,72
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Table 3: Data for plastic upcycling system.

Parameters Values
Supplied Materials, R [i1, @2, i3, i5]
Products, P [i2, i3, 14, i5, 16, i7, i8]
All Materials, 7 [i1, @2, 13, 14, 5, U6, 12, i8]

[Tiz,il-,ju Ti2,i1 227 Ti21i17j3]
[T inirs Tinioior Tin o ga]
. 342,517 143,492,527 Li3,42,53
Technologies , T
[T{i47i5}113,j1/ Tig,is}isiar T{i4,i5}7i3,j3]

[T{i67i77is},i57j1/ T{i6¢i7,is},i57j2/ T{i67i7,is},i57j3]

[0.27, 0.46, 0.70]
[0.13, 0.30, 0.56]
[0.46,0.79, 1.20]
[6.05,9.17 13.90]

Installation Cost, af (x10° $)

8.87
44.19
14

Operating Cost, o™ ($ / unit of input)

71.8

[3,5,8]
[3,5, 8]
Technology Dimension,
[2,4,8]
[

3,5,8]

[24.2, 60.5,120.9]
[20.8, 52, 104]
[[16.9, 3.9], [42.3, 9.8], [112.8, 26.3]]
[[13.1,8.1,0.4], [26.1, 16.2, 0.80], [52.3, 32.3, 1.6]]

Technology Capacity, & ( x10* tons)

Purchasing Unit Cost, o, ¢ € R, ($/unit) [0, 250, 1300, 1100]
Disposal Cost, af,i € Z, ($/ton) [50, 40, 40, 400, 800, 0, 0, 0]
Required Production, 6;,4 € Z, (tons) [0,0,0,0,0,150000, 100000, 5000]
Project Duration, ¢, (yrs) 20
Discount Rate, r 0.06
Annualization Factor, €, 0.087
Module Dimension Limits, [D, D] [2,12]
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In order to generate the superstructures of the system, we first use the formulation (3.2) to solve
for the hierarchy of all products based on their interdependencies. The result shows that i4, i, i7,
and ig have the highest hierarchy followed by i5, i3, i2 and i; respectively. This makes sense because
products i, i7, and ig are the final product of the process, and for intermediate product i4, even
though it is the product of an intermediate process, it is the waste of the process that no other products
depend on. Therefore, it has the highest hierarchy but it is not a required product in the process. Then,
with the hierarchy of each product, we can compute the total amount of each product needed for the
system and the number of all possible techs needed for the process. The information is summarized
in Table 4.

Table 4: Results for hierarchy of products, quantity of products, and number of technologies.

Materials Hierarchy Required Amount (tons) Number of Technologies

i1 5 6.22 x 106 -
Tigyirgi: 4
io 4 8.09 x 10° Tisjirjot 2
Ti27i17j3: 1
Tig,m J1+ 4
is 3 8.09 x 10° Tig ig ot 2
Ti37i27j3: 1
T{i4,i5},i3,j1: 4
is 2 6.25 x 10° Tigis}is.go’ 2
T{i4,i5},i3,j3: 1
is 1 0 /
i6 1 1.5 x 10° T{ie,im’ig},i&jl: 2
17 1 1 x 10° T{ie,imig}:i&jz: 1
is 1 5 x 10 Lo i is}is gs*

With above information, we are now ready to generate the superstructures of the system and then
identify an optimal feasible path. We first consider the design using superstructure without spatial
information and solve the problem using formulation (3.6) and (3.22). Then, we solve for the spatial
optimal design using formulation (3.24) and (3.28).

4.2 Optimal System Design without Spatial Information

The superstructure of this system is shown in Figure 11. Looking from top to bottom, we have the
product hierarchy of the system, which takes MSW as the input, generates plastic bale/flakes and
pyrolysis gas/oil as intermediate products, and generates ethylene, propylene and hydrogen as final
outputs. Looking from left to right, we have four nodes representing the supplies of the four primary
products, and in the middle nodes with different sizes represent techs of different capacities. The
number of copies of each techs coincides with the number shown in Table 4. Finally, the three nodes
on the right represent the demands. As expected, the superstructure is dense due to the large number
of possible techs.

We assume that the connectivity cost o/ is $ 0.01 per unit of product that an edge carries. First, we
used formulation (3.6) to solve for the cost-minimizing optimal supply chain design and the result is
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Figure 11: Superstructure for plastic upcycling system (no spatial information).

shown in Figure 12 . The design problem contains 1028 continuous variables and 25 binary variables,
and contains 1111 constraints. This problem tooks less than 0.01 second to solve. The result shows
that the optimal design design contains 7 tech units and achieves an annualized cost of $ 6.56 x 10°.
We can see that it chooses the tech with largest capacity for processes MRF, RF and PP as they are the
most cost efficient units to satisfy the required amount of products.

We then use optimization formulation (3.22) to solve for the cost-minimizing design that also
achieves a certain degree of modularity. This problem has 1028 continuous variables, 3624 integer
variables, and 3918 constraints. A couple of designs that correspond to different levels of modularity
are shown in Figure 13. Module division in both cases are grouped by red dashed rectangles and
nodes within 4 modules for each case are summarized in Table 5. Note that the optimal design
shown on the left in Figure 13 contains identical techs as in Figure 12. This means that the cost-
minimizing design without considering modularity achieves a modularity measure of 0.3. This is the
maximum level of modularity that a valid system design can achieve, while achieving the minimum
level of the cost (and we see that this value is quite low). We can also see that, as we require a higher
degree of modularity, medium- and small-sized technologies start to be considered in the design. We
summarize the results for different combinations of modularity measure and cost in Table 6.

We can see that, as we increase the required degree of modularity, the cost increases and the
number of techs installed also increases. This demonstrates that, to achieve a higher modularity
measure, smaller techs need to be installed and there exists a trade-off between cost and the degree of
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Suppliers

Technologies

S
. ‘ Ui27il

Plastic Bale .

Plastic Flnkc.

Hydrogen
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Figure 12: Cost-minimizing optimal design of plastic upcycling system (no spatial information).

Table 5: Module details for optimal system designs with different degrees of modularity.

Modularity Measure, Annualized Cost, Module 1 Module 2 Module 3 Module 4

My C (%)
S S S

0.3 6.56 x 108 Univgil Uigirad Uihingn 2 s

’ ' s US L. Us {1671797’8}7157]171
13,12,73,1 i3,i2,J1,1 {i4,i5},43,73,1
S S S S
vl Ubing Ubiviad  Ulisis)ision
S S S S

0.6 6.95 x108 Uiz,i1,j1,2 Uis,z’zm,i’) U{i4,i5},i3,j2,1 U{ig,i7,ig},i5,jg,1

Us

U
13,12,51,1 {ia,i5},i3,52,2
Z33223]172

modularity of the system. In addition, we observe that, we increase the level of modularity measure
from 0 to 0.6, the cost increase is relatively small (~2% for 0.1 increase in modularity). However,
as we further increase the modularity (from 0.6 and above), the cost increases sharply in order to
achieve the same amount of modularity increase (~10% for 0.1 increase in modularity). This means
that there exists a threshold for the process design when increasing modularity measure becomes too
expensive and makes no economic sense; as such, decision-makers should choose any optimal design
within that threshold to achieve a balanced tradeoff between cost and modularity. As we increase
the modularity measure, the solution time generally becomes longer since the smaller technologies
become relevant here, increasing the possible number of designs and therefore harder for the solver
to find an optimal solution. When we are at a high modularity measure (0.8 in this case), the design
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Figure 13: Cost-minimizing optimal modular designs with My > 0.3 (left) and My > 0.6 (right)

requirements become too strict, and therefore reduce the number of possible designs available. This
explains the reduction on the solution time for the case when the modularity measure is 0.8.

Table 6: Trade-offs between system cost and modularity for optimal designs (no spatial information).

Modularity Measure  Cost ($)  # of Technology Solving Time (s)

0 6.56 x 108 7 0.27
0.3 6.56 x 108 7 1.42
0.4 6.71 x 108 9 22.33
0.5 6.83 x 108 10 16.99
0.6 6.95 x 108 11 22.52
0.7 7.65 x 108 11 48.51
0.8 8.38 x 108 12 17.71

4.3 Optimal System Design with Spatial Information

When we extend the problem to include spatial information, all the case settings defined in Table 2
and Table 3 remain valid. We define the additional spatial information such as potential locations to
install techs and the transportation cost across different locations in Table 7.

Here, a couple of potential locations (B and D) are available to install technologies. Locations
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Table 7: Spatial information for plastic upcycling system.

Parameters Values
Potential Locations to Install Technologies, G, [B, D]
Locations for Suppliers of Materials, G,i € R [B,C, B, D]
Locations for Demand of Materials, Qﬁl,i epP [C,D,B,C,B, B]
Set of All Locations, G [B, C, D]

Ti,: [0.9,1.1]
Ty, [1,1.1]
Tpisisy: [11,1]
Tiigiris): [09,1.1]

Scale of Total Cost at [B, D]

Transportation Cost, o ;, ,,i € Z, ¢’ € G ($/unit) [0.01,0.1,0.14]
Transportation Cost, a£C7g,,i €Z,9 € G ($/unit) [0.14,0.01, 0.12]
Transportation Cost, alf,D’g,,i €Z,q € G ($/unit) [0.14, 0.11, 0.01]

for suppliers and demands corresponds to the sequences of product 7 in set R and P as shown in
Table 3. For example, supply of product ; is at location B and demand of product i¢ is at location
C. Installation costs for location B and D are represented as a scale times the cost defined in Table 3.
For instance, installation costs for tech ¢ € T, (technologies T, i, j,, Tis i1,j», and Tj, 4, j,) at locations
B equals to the scale 0.9 times their original installation costs [0.19,0.45,0.89] as defined in Table 3,
and the costs at location D equals to the scale 1.1 times their original costs. Finally, we assume that
transport costs for different products are the same but they are different across different locations.
For example, transportation cost for any product from location B to D is 0.14 and from location C' to
D is 0.12. Note that transportation costs at the same location (from location B to B) are much smaller
than those across different locations.

The spatial superstructure of the system is shown in Figure 14. Nodes on the top represent po-
tential technologies at location B while nodes on the bottom represent their installation at location D.
This spatial superstructure is much denser than the superstructure in Figure 11; therefore, we have a
much larger optimization problem.

We first use formulation (3.24) to solve for the cost-minimizing spatial design and the result is
shown in Figure 15 . This problem has 3253 continuous variables, 50 binary variables, and 3416
constraints, and required 0.16 seconds to solve. The result shows that the optimal design contains 7
techs, with 6 of them being placed at location B while the only pyrolysis plant is placed at location
D. This configuration makes sense, as the optimal design tries to put technologies at locations with
less installation cost, which is the major cost of the process. This cost-minimizing design achieves
an annualized cost of $6.30 x 10® and similarly, it selects the technology with largest capacity for
processes MREF, RF, and PP as they are the most cost-efficient units to satisfy the required amount of
products. We then use optimization formulation (3.28) to solve for the cost-minimizing design with
spatial information that also achieves a certain level of modularity.
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Figure 14: Spatial superstructure for plastic waste upcycling system. Technologies on the top are for
location B and technologies on the bottom are for location D.
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Figure 15: Cost-minimizing optimal spatial system design.
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The optimal designs that correspond to two different levels of modularity are shown in Figure 16.

Technologies Technologies

®0 oo 00 000
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Suppliers \ \«
A\ 1 5y
\" | _ Q
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Plastic Bale . \ | Hydrogen
\l ‘. Ethylene
Plastic Flake . | Propylene
RN Hydrogen
AN \ Demands
AN : ]‘ A gt Propylene
‘ Demands
Technology Node Sets
q q
[ ] Uiz‘il . U{i4,’i5}1i3
q -
o Uia,iQ [ ] U(za,twa}-zs

Figure 16: Cost-minimizing optimal modular system design (with spatial information) for modular-
ity My > 0.4 (left) and My > 0.6 (right)

Table 8: Details for a couple of modular designs.

Modularity =~ Annualized

Measure, M, Cost, C ($) Module1l  Module 2 Module 3 Module 4
;i,il,jz,l [];Q,il,jg,Z l];27i17j1’1 l]:i,iz,j1,2
04 6.46 x10° Uiq?ni%j?vl Uiq;a,iz,jm? Uzqza,imjlﬂ Ugi4,i5},i3,j3,1
‘?iﬁ,i%is},%,jg,l
g?’il’jl’l Ui{l?vil:jlv?’ Uiqz,il,jg,l U‘E]i4,i5},i3,j2,2
0.6 6.74 x108 U’g?’il’jl@ UZ%,iz,jlﬁ Uz%,,izdz,l U?i6,i7,i8},i5,j2,1
iqs,iz,jl,l U?i4,i5},i3,j2,1
iq&iz J1.2

Module divisions in both cases are grouped by red dashed rectangles and nodes within four
modules for each case are summarized in Table 8. We can see that, when requirement for modularity
is low, the large pyrolysis plant in purple takes the advantage of low installation costs at location
D and is grouped with a small reprocessing facility in black. The module (facility) that these units
form is placed at location D, while all other units and modules are placed at a facility in location B.
On the right we can see that, as we require a higher degree of modularity, all units and modules are
placed at location B. Here, a low installation cost is outweighed by the high transportation cost due
to increased connectivity across locations and therefore no units are placed at location D. We can also
see that smaller techs are utilized in the optimal design with higher modularity. We also summarize
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the results for different combinations of modularity measure and cost in Table 9. A similar trend
can be observed in Table 6; specifically, a threshold exists around a modularity measure of 0.6 where
further increasing the measure causes the cost of design to rise sharply, and the solving time increases
dramatically as we increase the requirement for modularity measure initially, and eventually drops
when the requirement is too high.

Table 9: Trade-off between cost and modularity for optimal system design (with spacial information).

Modularity Measure  Cost ($)  # of Technologies Solving Time (s)

0 6.30 x 103 7 0.92
0.3 6.32 x 108 7 4.89
0.4 6.46 x 108 9 287.51
0.5 6.61 x 108 10 708.48
0.6 6.74 x 108 11 719.71
0.7 7.44 x 108 11 3074.36
0.8 8.17 x 108 12 1312.20

Conclusions and Future Work

We have presented an optimization framework that facilitates the design of modular systems. Central
to our development is the introduction of the concept of a spatial superstructure, which is a general-
ization of a superstructure that encodes spatial context. This generalization enables the simultaneous
design of processes, facilities, and supply chains with desired modularity properties. The spatial
superstructure is used to derive a multi-objective, mixed-integer optimization formulation for iden-
tifying optimal designs that trade-off cost and modularity. We demonstrate the capabilities of the
proposed framework by using a case study arising in the design of a plastic upcycling supply chain.
As part of future work, we are interested in exploring the use of strategies to address computational
tractability issues and to capture higher fidelity in the design (e.g., detailed physical models).
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Nomenclature

Abbreviations

MSW - Municipal solid waste
MREF - Material / Product recovery facility
RF - Reprocessing facility
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PP - Pyrolysis process
SC - Steam cracking

Indices and Sets

i € R - Primary products

i € P - Intermediate/Final products

i € Z - All products

t € T -Technologies

GP - Max p-graph

k € NP - Nodes in max p-graph

s € SP - Supplier nodes in max p-graph

d € DP - Demand nodes in max p-graph

u € UP - Technology nodes in max p-graph

&P - Edges in max p-graph

G*® - Superstructure

k € N® - Nodes in superstructure

s € §° - Supplier nodes in superstructure

d € D? - Demand nodes in superstructure

u € U® - Technology nodes in superstructure

&° - Edges in superstructure

GY - Spatial superstructure

k € N7 - Nodes in spatial superstructure

s € 87 - Supplier nodes in spatial superstructure

d € D7 - Demand nodes in spatial superstructure

u € U? - Technology nodes in spatial superstructure

&7 - Edges in spatial superstructure

g € G; - Locations for technologies in spatial superstructure
g € Gs - Locations for suppliers in spatial superstructure
g € Gq - Locations for demands in spatial superstructure
G/ - Feasible path

k € N/ - Nodes in feasible path

&7 - Edges in feasible path

l € £ -Modules

Attributes

2 - Technology t output products set 2
K¢ - Technology t input products set
6, - Technology t technology type 6

vt - Technology ¢ physical size

(25 - Supplier node s output product
¢s - Supplier node s location ¢

K4 - Demand node d input product £
¢4 - Demand node d location ¢
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7. - Technology node u technology

Q. /Q, - Technology 7 of technology node u output products set 2
K-, /K. - Technology 7 of technology node u input products set
0-, /0. - Technology 7 of technology node u technology type 6
Yr./7u - Technology 7 of technology node u physical size v

1y - Technology node u copy 1

¢u - Technology node u location ¢

Derived Subsets

Ti,ir.; - Technologies t|i € Q,i' € Ky, 0, = j

S? - Supplier node s|Q; = ¢ for max-p graph

St ;- Supplier node s|Q2s = i, ¢s = g for spatial superstructure

D? - Demand node d|K; = i for max-p graph

D} , - Demand node d|Kg = i, ¢q = g for spatial superstructure
U - Technology node u|r, = ¢ for max-p graph

Uy ; - Technology node uli € Qy,4’ € Ky, 6, = j for max-p graph
Z/{; ;, - Technology node u|7, = t, 7, = h for superstructure

Usir i
Ul, - Technology node u|r, = t,n, = h, ¢, = g for spatial superstructure

t,h,g
u? - Technology node uli € Q.7 € Ky, 0, = j,nu = h, ¢, = g for spatial superstructure

Z?i/ )j’hhq

- Technology node uli € Q.7 € K, 6, = j,n, = h for superstructure

Parameters

f/t - Amount of units of product i’ required to produce a unit of product i using technology ¢
Lk i - Superstructure/Spatial superstructure connectivity
af - Technology ¢ installation cost (for superstructure)
af} , - Technology ¢ installation cost at location g (for spatial superstructure)
ay - Technology ¢ operational cost
&:,i - Technology t capacity of product ¢
ab, /o, - Technology 7 of technology node u installation cost
af /ag, - Technology 7 of technology node v operational cost
.00/ 6u,i - Technology 7 of technology node u capacity of product i € €,
€q - Capital cost annualization factor
e - Modularity measure threshold
of - Unit cost of product ¢
d; - Required amount of final product i
af - Uniform connection/ transport cost (for superstructure)
f
“ig.g'
af - Disposal cost for product i

- Transportation cost of product 7 from location g to ¢’ (for spatial superstructure)

M - Big M parameter

n - Number of modules

D - Dimensionality upper limit
D - Dimensionality lower limit
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Variables

x; - Product ¢ hierarchy

fr. - Flow of product from node k to node £’

v; - Primary product i purchase quantity

yu - Technology node u selection

Yu, - Technology node u selection with module information

C - Total annualized cost

M, - Modularity measure with predefined n modules

ay - Connectivity of technology nodes associated to the feasible path
Ay, - Connectivity of technology nodes with module information
Tu,w - Membership variable matrix

21,4 - Module [ location information
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