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Abstract—We give efficient algorithms for finding power-sum
decomposition of an input polynomial P(z) = >, p;(z)*
with component p;s. The case of linear p;s is equivalent to the
well-studied tensor decomposition problem while the quadratic
case occurs naturally in studying identifiability of non-spherical
Gaussian mixtures from low-order moments.

Unlike tensor decomposition, both the unique identifiability
and algorithms for this problem are not well-understood. For
the simplest setting of quadratic p;s and d = 3, prior work of
[11] yields an algorithm only when m < O(y/n). On the other
hand, the more general recent result of [13] builds an algebraic
approach to handle any m = n® D components but only when
d is large enough (while yielding no bounds for d = 3 or even
d = 100) and only handles an inverse exponential noise.

Our results obtain a substantial quantitative improvement
on both the prior works above even in the base case of
d = 3 and quadratic p;s. Specifically, our algorithm succeeds
in decomposing a sum of m ~ O(n) generic quadratic p;s for
d = 3 and more generally the dth power-sum of m ~ n?%/15
generic degree-K polynomials for any K > 2. Our algorithm
relies only on basic numerical linear algebraic primitives, is exact
(i.e., obtain arbitrarily tiny error up to numerical precision), and
handles an inverse polynomial noise when the p;s have random
Gaussian coefficients.

Our main tool is a new method for extracting the linear
span of p;s by studying the linear subspace of low-order partial
derivatives of the input P. For establishing polynomial stability
of our algorithm in average-case, we prove inverse polynomial
bounds on the smallest singular value of certain correlated
random matrices with low-degree polynomial entries that arise
in our analyses. Since previous techniques only yield significantly
weaker bounds, we analyze the smallest singular value of matrices
by studying the largest singular value of certain deviation
matrices via graph matrix decomposition and the trace moment
method.

I. INTRODUCTION

An n-variate polynomial P(x) admits a power-sum decom-
position if it can be written as P(z) = > ., pi(x)? for
some low-degree polynomials p;s. This work is about the
algorithmic problem of computing such a decomposition when
it exists and the related structural question of when such a
decomposition, if it exists, is unique.
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When p;s are linear forms (v;,z) for v; € R", the
task of decomposing P is equivalent to decomposing the
corresponding coefficient tensor v‘?d into rank 1 compo-
nents. For d = 2, this corresponds to rank decomposition of
matrices, which is unique only in degenerate settings. For
d = 3, while the problem is already NP-hard [16], there is
a long line of work on identifying natural sufficient condi-
tions (e.g., Kruskal’s condition [24]) that imply uniqueness
of decomposition in all but degenerate settings. There are
known efficient algorithms for decomposing tensors satisfying
such non-degeneracy conditions and such algorithms form
basic primitives in fensor methods [2], [4], [11], [14], [15],
[20], [21], [23], [28]-[30], [33], [35]. An influential line
of work has developed efficient learning algorithms for a
long list of interesting statistical models (under appropriate
assumptions) including Mixtures of Spherical Gaussians [11],
[17], Independent Component Analysis [28], Hidden Markov
Models [31], Latent Dirichlet Allocations [1], and Dictionary
Learning [7] via reductions to tensor decomposition. Higher-
degree power-sum decomposition is a natural generalization
of the tensor decomposition problem and is equivalent to
the well-studied problem of reconstructing certain classes
of arithmetic circuits [13], [25], [26] with connections (see
surveys [9], [40], [43]) to algebraic circuit lower bounds and
derandomization.

a) Tensor Decomposition with Symmetries: Higher-
degree power-sum decomposition is equivalent to a strict
generalization of tensor decomposition where the components
are symmetrized under a natural group action. For example,
when p;(z) = 2" A;x are homogeneous quadratic polynomials
for n x n matrices A;, the coefficient tensor of P has the form
Eonss D icm o(AP?) where S is the symmetric group on 6
elements and acts! by permuting the 6 indices involved in

For example, for a symmetric matrix A,
Eons[A®3((i1,12,13), (j1,42,53))] = E[A(e1)A(e2)A(es)] where
the expectation is over the choice of a uniformly random perfect matching
(e1, e2,e3) of {i1,12,13, 1,72, j3}-



any entry of AZ@S. If not for the action of o, the coefficient
tensor would simply be a sum of tensor powers of vectorized
A;s. The group action, however, has a drastic effect on the
identifiability and algorithms for the problem. Specifically, the
symmetrization causes the resulting tensor to have a large rank
and thus any decomposition algorithm must strongly exploit
the symmetries to succeed. In fact, in our full version, we
exhibit a simple example of a sum of cubics of quadratics on
2 variables whose components are not uniquely identifiable
even though the corresponding coefficient matrices of the
quadratics are linearly independent. This is in contrast to
the well-known result [15], [29] that 3rd order tensors with
linearly independent components are uniquely identifiable and
efficiently decomposable. This is similar to other orbit recov-
ery problems that also reduce to tensor decomposition with
symmetries such as multi-reference alignment and the cryo-
EM [35], [38] problem where even establishing information-
theoretic identifiability for generic parameters is significantly
more challenging.

b) The Quadratic Case: Despite being the natural next
step after linear p;s, power-sum decomposition of quadratic
p;s is not well understood. In a seminal work, Ge, Huang and
Kakade [11] (GHK from now) proved that the first 6 moments
of a mixture of m ~ +/n non-spherical Gaussians with
smoothed parameters exactly identify and (noise-resiliently)
recover the m sets of means and covariances. Their analy-
sis involves giving an algorithm (and uniqueness proof) for
decomposing sums of cubics of smoothed quadratic positive
definite polynomials but naturally generalizes to arbitrary
smoothed quadratics. This is a striking result that exhibits a
large gap between smoothed/generic parameters and arbitrary
ones for mixtures of Gaussians as it is known that we need
Q(m) moments (an n2(™)_size object) to uniquely identify the
parameters of arbitrary mixtures of m Gaussians [34]. Their
approach uses a conceptually elegant “desymmetrize+tensor-
decompose” strategy by first undoing the effect of the group
action and then applying tensor decomposition. While their
approach can potentially be extended to m > /n, it seems to
encounter an inherent barrier at m > n?/3 as we explain in
Section II. Nevertheless, GHK conjectured that it should be
possible to handle m ~ n'~? generic components for any
d > 0 given O(1)-degree mixture moments which, in our
context, corresponds to decomposing a sum of higher constant
degree powers of quadratics.

c) The Garg-Kayal-Saha Algorithm: In a beautiful work
of Garg, Kayal and Saha [13] (GKS from now), they
suggest that there is an inherent barrier to extending the
“desymmetrize+tensor-decompose” based approach of [11].
Instead, they work by exploiting an intriguing connection
to algebraic circuit lower bounds and develop algorithms to
recover any polynomial number of generic components from
their power-sums of large enough degree. This algorithm
however has two important deficiencies.

First, their strategy yields a decomposition algorithm for
degree-d power-sums only when d is very large compared
to the degree of the component p;s. In particular, they do

not obtain any result for the simplest interesting setting of
d = 3rd (or even 100th) power of quadratics’. As a result,
their techniques seem unsuitable to answer natural questions
such as whether 6th moments of mixtures of non-spherical
Gaussians (with generic parameters) can uniquely identify
m > n"5! components of Gaussian mixture in n dimensions,
or, whether a sum of m & n cubics of generic quadratics
can be uniquely decomposed. Second, their algorithm relies
on algebraic methods for finding simultaneous vector-space
decomposition. The resulting algorithm is not error-resilient
and does not appear to handle even a small (e.g., exp(—n)
in each entry) amount of noise in the input polynomial. In
fact, GKS suggest finding a stable algorithm for power-sum
decomposition as an open question.

d) This Work: In this paper, we give a conceptually
simple algorithm that substantially improves the quantitative
results in [13] for decomposing power-sums of low-degree
polynomials. Somewhat surprisingly, our algorithm follows the
“desymmetrize+decompose” approach similar to [11] while
circumventing the barriers suggested by [13]. A key compo-
nent is an efficient algorithm to extract the linear span of the
coefficient tensors of (powers of) p;s from the subspace of “co-
ordinate restrictions” of partial derivatives of P =73, pd
for d > 3. As a consequence of our algorithm, we obtain
substantially improved guarantees even for the simplest non-
trivial setting of sum of cubics of quadratics and handle m ~ n
components.

We give an error-tolerant implementation of our algorithm
and prove that when each p; has independent random Gaus-
sian coefficients, the resulting algorithm tolerates an inverse
polynomial amount of adversarial noise in the coefficients of
the input polynomial. A key technical step in such an analysis
requires establishing inverse polynomial lower bounds on the
singular values of certain correlated random matrices whose
entries are low-degree polynomials in the coefficients of p;s.
Standard results (e.g., from [4]) for analyzing smallest singu-
lar values yield significantly weaker bounds in our setting.
Instead, we rely on a new elementary but nimble method
that lower bounds the smallest singular value of correlated
random matrices by reducing the task to upper-bounding the
much better understood largest eigenvalue of certain deviation
matrices. Our analyses of the spectral norm of such matrices
use the trace moment method combined with graphical matrix
decompositions of random matrices that appear naturally in
the analyses of sum-of-squares lower bound witnesses [6],
[19] for average-case refutation problems. In particular, these
sharper bounds are crucial in allowing us to handle m ~ O(n)
components for decomposing sums of cubics of quadratics.

A. Our results

Our main result gives a polynomial time algorithm (in the
standard bit complexity model with exact rational arithmetic)
for decomposing a sum of d-th powers of generic (e.g.,

2Indeed, while their bounds can likely be somewhat optimized, the smallest
power of quadratics that their algorithm (as currently analyzed) succeeds in
decomposing must be larger than 233%.



smoothed) polynomials. We note that just as in standard tensor
decomposition, sums of squares of low-degree polynomials are
uniquely decomposable only in degenerate settings, so cubics
of quadratics (i.e., d = 3) is the simplest non-trivial setting in
this context.

Theorem 1.1 (Decomposing Power-Sums of Smoothed Poly-
nomials). There is an algorithm that takes input an n-variate
degree-Kd (for d a multlple of 3) polynomial of the form
P(z) = ZKMA (x)? where A; = A; + G, for an arbitrary
degree-K polynomml A; and a degree-K polynomial G; with
independent N'(0, p?) coefficients, runs in time polynomial in
the size of its input and 1/p, and has the following guarantee:
with probability at least 0.99 over the draw of G;s and internal
randomness, it outputs the set {A; | i < m} up to permutation
(and signs, if d is even) whenever

e m < ()ford—3 K =2

e m<On?) ford=6, K =2,

e m < O(n29) for any d > 9 and K =2,

o m < O(n2KABEE=D) for il d > 9 and K > 2.

The theorem above works more generally for any model
of smoothing that independently perturbs the coefficients
of each A; with a distribution that allots a probability of
at most 1 /no(d) to any single point. In particular, a fine-
enough discretization of any continuous smoothing suffices.
As observed in [11], [13], identifying components of non-
spherical mixtures of Gaussians from low-degree moments
is equivalent® to decomposing the power-sum of quadratic
polynomials. Thus, as an immediate corollary of the theorem
above, we obtain:

Corollary 1.2 (Moment Identifiability of Smoothed Mixtures
of Gaussians). The parameters of a zero-mean mixture of
Gaussians 3, ., wiN (0,%;), with arbitrary mixture weights
w; and smoothed* covariances i, are uniquely identifiable
from the first 2d moments for any m < O(n 249, For d=3
and 6, the bound improves to m < O(n) and m < O(n?)
respectively.

a) Error-Resilience for Random Components: When
P(z) = Y, A;(z)? + E(x) where each A; has independent,
standard Gaussian coefficients, we prove that the our algo-
rithm above in fact is error-resilient and tolerates an inverse
polynomial error in every coefficient of the input P. Indeed,
Theorem 1.1 above is obtained essentially as a corollary (com-
bined with simple algebraic tools) of this stronger analysis for
random components.

3This follows from the fact that for x € R™, the 2d?th moment of
N(0,%) in direction z equals Ey x5 [(y, z)24] = %E[(y,x)z]d =

2d)! ‘
(g %, (z"32)%4.  Consequently, Eyos, wN(0,5) (2 y)29 =
22ddd, S wi(z T Ew) e
N 4Any continuous smoothing suffices for this result. For e.g., for an arbitrary
i =0, for p = n=9M add an independent and uniformly random entry
from [—p, p] to every off-diagonal entry of %; and a uniformly random entry

from [np, 2np] to every diagonal entry of X; to produce 3;. Note that the
resulting matrix 3, is positive semidefinite.

Theorem 1.3 (Power-sum Decomposition of Random Polyno-
mials). There is a polynomial time algorithm that takes input
an n-variate degree-Kd (for d a multiple of 3) polynomial
of the form P(z) = >, Ai(z)¢ + E(z) where A; is a
degree-K polynomial with independent N'(0,1) coefficients,
and E(x) is an arbitrary polynomial of degree Kd, and has
the following guarantees: with probability at least 0.99 over
the draw of A;s and internal randomness, it outputs the set
{A; | i < m} that contains an estimate of each A; up to
permutation (and signs, if d is even) with an error of at most
nOM) ||E\|1/d whenever

N ()ford—SandK—Q

.m<O( %) ford=6and K =2,

.m<O( 24/9) for any d > 9 and K = 2,

o m < O(nKABEE-D) for all d > 9 and K > 2

B. Discussion and comparison to prior works

Theorem 1.3 shows that our algorithm tolerates an inverse
polynomial amount of noise in each entry when the component
A;s are random. Theorem 1.1 is in fact an immediate corollary
of our analysis for the random case combined with standard
tools. Our result for generic (as opposed to random) p;s only
handles an inverse exponential amount of noise. We believe
that the same algorithm should handle inverse polynomial
noise (i.e., is well-conditioned) in any reasonable smoothed
analysis model. However, establishing such a result likely
requires new techniques for analyzing condition numbers of
matrices with dependent, low-degree polynomial entries in
independent random variables.

For the simplest setting of sums of cubics of quadratics
(i.e., K = 2 and d = 3), our theorem yields a Eolynomial
time algorithm that succeeds whenever m < O(n). This
improves on the algorithm implicit in [11] that succeeds’ for
m < O(y/n). As we discuss in Section II, natural extensions
of their techniques to higher degree power-sums also appear
to break down for m > n.

The work of [13] recently found a more sophisticated
algorithm (that works in general on all large enough fields)
that relies on simultaneous decomposition of vector spaces
that escapes this barrier. In particular, they showed that for
, there is an algorithm that succeeds in
decomposing a sum of m dth powers of generic degree-K
polynomials for large enough d. Their algorithm however
requires that d be very large as a function of K and log,, m
and in particular, does not work for d = 3 (or even 100) for
example. Their algorithm relies on exact algorithms for certain
algebraic operations and does not appear to tolerate any more
than an inverse exponential (in n) amount of noise in the input.

The corollary above immediately improves the moment
identifiability of mixtures of smoothed centered Gaussians
shown in both the works above. Extending our algorithm
to the “asymmetric” case of sums of products of quadratics
(instead of powers) will allow the above corollary to succeed

S5Their algorithm succeeds more generally for smoothed A;s but in addition,
needs access to Y, A;(z)2.



for Gaussians with arbitrary mean, but we do not pursue
this goal in this paper. We also note that unlike [11], our
theorem above does not immediately yield a polynomial time
algorithm for learning mixtures of smoothed Gaussians from
samples (similar to [13]). This is because samples from the
mixture only give us access to the corresponding sum of
powers of quadratics with inverse polynomial additive error in
each entry while our current analysis for the case of smoothed
components only handles an inverse exponential error.

a) Open Questions: Despite the progress in this work,
we are far from understanding identifiability and algorithms
for power-sum decomposition. Our result shows unique iden-
tifiability for sums of ~ n cubics of quadratics. Could this be
improved to n2? Conversely, could we produce evidence of
hardness of decomposing sums of w(n) cubics of quadratics?
Analogous questions arise for higher-degree polynomials and
we mention one that eludes the current approach in both our
work and [13]: is it possible to obtain efficient algorithms that
succeed in decomposing sums of m d-th powers of degree-K
polynomials where m grows as n/(5)¢ for some f(K) — oo
as K — oo?

In a different direction, a natural question is to generalize
our result to obtain a polynomial time algorithm that decom-
poses power-sums of smoothed polynomials while tolerating
an inverse polynomial entrywise error. Our current analysis
obtains such a guarantee for power-sums of random poly-
nomials but can only handle an inverse exponential error in
the smoothed setting. We suspect that this goal requires new
tools to analyze the smallest singular values of matrices whose
entries are low-degree polynomials in independent Gaussians
with non-zero means.

C. Brief overview of our techniques

Given (the special case of) sum of cubics of quadratics
P(x) = Zigm(xTAiJ)):i for n X n symmetric matrices A;
with coefficient tensor >, ., Symg (A9?), the main idea of
the algorithm in [11] is a conceptually simple “desymmetrize +
tensor-decompose” approach. Here, desymmetrization reverses
the effect of the polynomial symmetry and yields . Al‘g’?’,
and one can then apply standard tensor decomposition. While
Symy is a linear operator on 6th order tensors with an Q(n®)-
dimensional kernel, it turns out that it is invertible when
restricted to tensors where the component A;s are restricted
to a known generic subspace. The work of [11] shows how to
estimate the span of A;s —i.e. this subspace — for m < O(y/n).
But their techniques do not seem to extend to any m > n?/3.
Indeed, Garg, Kayal and Saha [13] comment that reduction to
tensor decomposition of the sort above cannot yield algorithms
that work for m > n. As a result, they build a considerably
more sophisticated approach that relies on an algebraic algo-
rithm for simultaneous decomposition of vector spaces.

Our main idea comes as a surprise in the light of
this discussion: we in fact give a conceptually simple
“desymmetrize+tensor-decompose” based algorithm that sub-
stantially improves the bounds obtained in [13]. Our key idea
is a “Span Finding algorithm” that recovers the linear span of

A;s restricted to any O(/n) variables by computing the linear
span of restrictions of partial derivatives of P and intersecting
it with an appropriately constructed random subspace (see
Section II for a more detailed overview).

Our algorithm is implemented using error-resilient numer-
ical linear algebraic operations. In particular, to establish
polynomial stability (Theorem 1.3) for random A;, we need
to understand the smallest singular values (to obtain well-
conditionedness) of certain correlated random matrices arising
in our analyses. These random matrices are rather com-
plicated with entries computed as low-degree polynomials
(much smaller than the ambient dimension) of independent
random variables. Standard techniques for analyzing such
bounds (such as the “leave-one-out” method [39], [44], [45]
employed in prior works on tensor decomposition [4], [33]) are
inadequate for our purposes and yield weaker bounds (which,
in particular, do not allow us to handle m ~ \/ﬁ for sum of
cubics of quadratics, for example).

Instead, we rely on a new elementary method that es-
tablishes singular value lower bounds by studying spectral
norm upper bounds of certain associated deviation matrices.
We analyze and prove strong bounds on the spectral norm
of such matrices using the graphical matrix decomposition
technique that was introduced in [6], [19] and recently used
and refined in several works [3], [12], [18], [22], [32], [37]
on establishing sum-of-squares lower bounds for average-
case problems and reducing the bounds to understanding
certain combinatorial problems on graphs associated with the
matrix. As far as we know, our work is the first use of this
technique to prove singular value lower bounds and condition
numbers in algorithms. We believe that the graphical matrix
decomposition toolbox will find further applications in the
analyses of numerical algorithms.

II. TECHNICAL OVERVIEW

In this section, we give a high-level overview of our
algorithm and the key ideas that go into its design and analysis.
Let’s fix P(z) = >, Ay(z)¢ + E(x) where Ay(z) are
homogeneous polynomials of degree K in n indeterminates
Z1,%2,...,Zy,. Throughout this paper, we will abuse notation
slightly and use A; to also denote the K-th order coefficient
tensor of the associated polynomial. We will also use O to
suppress polylog(n) factors. To begin with, we will focus on
the case of generic A;s — this simply means that A;s do not
satisfy any of some appropriate finite collection of polynomial
equations. Eventually, as we explain in Section II-A, these
equations will simply correspond to full-rankness of certain
matrices that arise in our analyses. We will discuss a new
method to prove strong polynomial condition number bounds
for random A;s in the following section. The results for
smoothed/generic A;s then follow via standard, simple tools.

Just like the special case of tensor decomposition (i.e.,
when A; are linear forms), the decomposition is not uniquely
identifiable from a sum of their quadratics (i.e., d = 2) except
in degenerate cases (see Section B). Thus, the simplest non-
trivial setting turns out to be d = 3.



In this section, we will focus on the simplest setting of
K = 2 (and thus, A; are simply n X n matrices) and
d = 3. This, by itself, is an important special case and
captures the question of identifiability of parameters from the
6th moments of a mixture of m n-dimensional Gaussians
with zero-mean and smoothed covariance matrices, and our
main results (Theorems 1.1 and 1.3) improve the current best
identifiability results (Corollary 1.2).

a) Structure of the Coefficient Tensor: Up to a constant
scaling, the coefficient tensor of P equals ., Sym(AP?).
Here, Sym = Symy acts on AP? by averaging over entries
obtained by permuting the 6 elements involved.

b) Relationship to Tensor Decomposition: It is natural
to compare our input to the related, desymmetrized tensor
Zt Af@?’, given which, we can immediately obtain the A;s
by applying standard tensor decomposition algorithms [15],
[29] (see Fact I11.7) whenever A;s are linearly independent as
vectors in (";1) dimensions. Our input, however, is not even
close to a low-rank tensor because of the action of Symg
that generates essentially maximal rank terms even starting
from a single generic A;. Indeed, this effect is visible for just
bivariate polynomials. In Appendix A of the full version of
our work, we construct two different (and in fact, (1)-far in
Frobenius norm) collections of robustly linearly independent
bivariate quadratic polynomials such that the sums of their
cubics have the same coefficient tensors. Thus, even though
such A;s can be uniquely and efficiently recovered from
Do A®3 via standard tensor decomposition, it is information
theoretically impossible to do so given Y, Sym(A$?).

c) The Ge-Huang-Kakade [11] Approach: The discus-
sion above presents a conceptually simple way forward: if we
could somehow compute the desymmetrized tensor (i.e., undo
the effect of the group action) from the input, then we have
reduced the problem to standard tensor decomposition. This is
a bit tricky as the linear operation Symg on 6th order tensors
is a contraction that maps a (”"2“)3 ~ n%/8-dimensional
space into a ("$%) ~ n%/720 dimensional subspace and is
clearly not invertible (in fact, has a Q(nﬁ)—dimensional kernel)
on arbitrary 6th order tensors. The main idea in GHK is
to observe that Symg can be invertible when restricted to
6th order tensors in some smaller subspace. In particular, let
By, Bs,...,B,, be a basis for the span of the matrices A;.
Then, the desymmetrized coefficient tensor of P is a linear
combination of B; ® B; ® Bj, — a subspace of m3 dimension
which is < n%/720 if m < n?. Proving such a claim requires
analysis of the rank (and singular values, for polynomial error-
stability) of the matrix representing Sym, on the linear span
of Ass and GHK managed to prove it for any m < /n.

To obtain the span of A;s, GHK rely on access to Py =
D i<m Sym, (AP?) in addition to the input tensor above.
Plugging in e,,e, in the first two modes of this tensor
yields an n X n matrix (i.e., a 2-D slice) of the form:
> Ada,b]Ay 4+ >, Ala] ® Ay[b] where A,[i] is the i-th
column of A;. As a,b vary, the first term generates the
subspace of the span of A;s. However, each such 2-D slice
has an additive “error” that lies in the span of the rank 1 forms

in the 2nd term above. The GHK idea is to zero out the rank
1 terms by projecting the 2-D slices to a subspace S+, where
S contains the span of the rank 1 terms. To compute S, they
choose a subset H C [n] and plug in a,b,c € H into three
modes of P,. The resulting 1-D slices are linear combinations
of the columns A;[a] for a € H and ¢t € [m]. If m|H| < n,
then all A;[a] are linearly independent generically, while if
|H|? > m|H]|, then there are enough slices to generate the
span of A¢fa] for all a € H and ¢ € [m]. This trade-off
is optimized at m ~ n*/3 and |H| ~ n'/3. Given a good
estimate of S, we can now plug in a,b € H in two modes of
P, and recover the span of A; (restricted to columns in H) by
projecting the resulting 2-D slices off S. Repeating for disjoint
choices of H completes the argument. In order to analyze the
linear independence (and condition numbers) of the vectors
arising in this analysis, GHK need to work with a somewhat
smaller m ~ +/n in their argument.

d) Key Bottleneck in the GHK Approach: In our situ-
ation, we only have the sum of cubics P as input (but not
P,). But even given Py, the crucial bottleneck is the need for
recovering the span of a subset of columns of the A;s. With
more sophisticated analyses, given the above trade-offs, it’s
plausible that a sum of d-th powers of A; allows handling m as
large as n' ~9(/d)_ but there appears to be an inherent barrier
at m ~ n. The GHK approach also seems to get unwieldy as it
involves plugging in standard basis vectors in several modes
of the tensor. This leads to more ‘“‘spurious” terms that one
must zero-out (instead of just the rank-1 terms for Pj).

Thus, even given higher powers, the GHK approach appears
to have a natural break-point at m ~ n, and even handling
m > +/n seems to require somewhat unwieldy analysis. In
fact, in their recent work, Garg, Kayal and Saha [13] com-
mented (see Page 17) "However, we believe such an approach
cannot be made to handle larger number of summands (say
poly(n)) even in the quadratic case as the lower bounds for
sums of powers of quadratics need substantially newer ideas
than the linear case...”.

e) The Garg-Kayal-Saha [13] Approach: In their beau-
tiful recent work, GKS managed to find a different approach
that escapes the above obstacles and showed an algorithm
(that works on both finite fields and Q) that for any K and
m = n°M"), manages to decompose P(z) = D t<m Ay(x)?
for large enough d (and generic degree-K polynomials A;).
As discussed before, their approach requires d to be a large
enough constant as a function of K and log,, m (though they
remarked that the bounds could likely be improved, already
for K = 2, they need d > 233° and m < n%1190), Their
main idea, however, is relevant to our approach so we briefly
describe it here.

We restrict our attention to the quadratic case (K = 2)
from here on. The GKS approach relies on the linear span
of partial derivatives of the input polynomial P. In fact,
taking rth partial derivatives of P is essentially the same
(though, more principled and easier to analyze) as “plugging
in” all possible standard basis vectors in r modes of the input
coefficient tensor as in GHK. GKS observed that for » < d, the



n, = ("+:_1) many r-th partial derivatives of P are all of the

form >, A(2)4"Qq(x) for some degree-r polynomials
Q:. This linear subspace is strictly contained within the space
of all polynomial multiples of A;(z)¢~" — the containment is
strict because the latter space is of dimension ~ mn, > n,
for generic A;s. However, if we were to project each of the n,.
partial derivatives down to be a function of some small enough
¢ = o(n) variables y, then, the dimension counting above is
no longer an obstruction to the span being all multiples of the
projected A;(x)?~". Indeed, for generic Ay, the subspace U of
the projected partial derivatives does in fact equal the subspace
V of all multiples of B;(y)?~", where By = M " A;M (the
projection of A;) and By(y) = A(My) =y' M T A; My for
an n X ¢ projection matrix M.

f) Key Bottleneck in the GKS Approach: If we take r =
d—1, then, it appears that the partial derivatives give us access
to the subspace of span of multiples of Bys (of degree 2d—r =
d+ 1 for K = 2). If we could extract the span of quadratics
B, from this subspace, we could implement desymmetrization
and tensor decomposition to obtain at least the B;s (i.e., the
projected A;s).

Unfortunately, this hope did not materialize for GKS who
managed only to recover the span of B;(y)?~" for r < 2d/3.
This is because their analysis of a certain “multi-GCD”
requires that the subspaces By (y)? "yr for |T| = r for each
t € [m] only have trivial (i.e., 0) pairwise intersection. This
condition is impossible if » > 2(d — r) or r > 2d/3; for
example, if d = 3 and r = 2, then the degree-4 polynomial
Bi(y)By (y) is clearly in the subspaces corresponding to
both ¢ and ¢/, which is a non-trivial intersection! Thus, the
GKS analysis is restricted to work with » < 2d/3 and in
particular, only manages to recover the span of By (y)?~" (for
d —r > d/3). This route rules out the desymmetrization +
tensor decomposition approach.

As a result, GKS used a more complicated sequence of
operations that involves taking projections of the partial deriva-
tives and algorithms for simultaneous decomposition of vector
spaces into irreducibles which they analyze by studying the
associated “adjoint algebra”. The two-step projection step
requires that d be very large as a function of log, m (and
degree K of the Ays).

g) Summary: The “desymmetrize + tensor decompose”
approach of GHK is elegant and simple but suffers from an
inherent bottleneck for going beyond m ~ n (or even n?/3)
for sums of cubics (or higher powers) of quadratics and gets
unwieldy as d gets large. The GKS approach manages to
handle any m = n®®) components but only for very large
d and relies on a somewhat complicated algebraic algorithm.
While GKS do not do this, finding a polynomially conditioned
variant of their algorithm will likely require significant effort.

A. Our approach and outline of our algorithm

Somewhat surprisingly, we manage to find an algorithm that
achieves the best of both worlds. Our algorithm relies on the
conceptually simple approach of desymmetrizing the input ten-
sor (as in GHK) while at the same time managing to not only

hit m ~ n when K = 2 and d = 3 but also get a substantially
improved trade-off compared to GKS for all m, d, K. Further,
we find a polynomially stable implementation of our algorithm
when A;s are random by establishing condition number upper
bounds on the structured random matrices that arise in our
analysis.

In the following, we explain the main components in
our algorithm and analysis: insights that rescue the simple
“desymmetrize + tensor decompose” approach, the resulting
algorithm, and a new method to prove strong condition number
upper bounds on structured random matrices. We will focus on
the case when the A;s have independent N (0, 1) entries in the
following section. For this setting, we obtain an algorithm with
polynomial error-stability guarantees. Our result for generic
(or smoothed) A; is a simple corollary of this result using
standard tools.

a) Recovering the Span of DBgs: Recall that the
GKS observation shows that given a polynomial P(z) =
D t<m Ay(x)? for quadratic A;s, the subspace U spanned by
r-th partial derivatives of P, when projected to a sufficiently
small dimension ¢ = o(n) variables y, equals the span V =
span(B;(y)* "y | t € [m], T € [{]") for By(y) = A;(My)
where M is an n X ¢ projection matrix.

GKS then perform a multi-GCD step that recovers the span
of By(y)¢~" from V and their analysis requires the subspaces
{B(y)* "y | T € [{]"} for each t € [m] to have only trivial
pairwise intersection (i.e. = {0}) . Our key idea is to observe
that this assumption is not crucial! We can extract the span
of powers of B; as long as these subspaces do not have a
large intersection. As discussed before, when r > 2d/3, their
analysis fails because of some obvious intersections between
the above subspaces. We substantially improve their analysis
by observing that for random polynomials these obvious
intersections between the subspaces are the only ones possible!

More precisely, let’s restrict to d = 3 and consider the
subspace of projected (we in fact show that simply restricting
the variables suffices) partial derivatives of order r = 2
of P. Then, the subspace of restricted 2nd order partial
derivatives of P contains homogeneous polynomials of degree
4. For random A;s, we fully characterize the set of quadratic
polynomials {g; | ¢ < m} that satisfy the polynomial equality
> t<m Bt(y)ai(y) = 0. Observe that for any s # t € [m],
qs = B, and q, = —Bj; is clearly in the solution space. Such
solutions span a subspace of dimension (’;), and we prove
that these solutions are in fact the only solutions whenever
m < O(n).

This understanding immediately allows us to use a simple
subroutine to recover the span of {B(y) | t < m}. Specif-
ically, we take a random homogeneous quadratic polynomial
p(y) and let V, be the subspace of quartic multiples of p,
that is, V, = span(p(y)ys | |S| = 2). Then, any non-
zero f(y) = p(y)go(y) € V NV, must be a solution to
> t<m Bt(¥)a(y) = p(y)qo(y). The above characterization of
the solution subspace allows us to conclude that whenever qq is
non-zero, it lies in the span of B;(y). Thus, we have confirmed
that V NV, = span(p(y)Bi(y) | t < m), and dividing this



subspace by p immediately yields span(B;(y) | t < m)!
Thus, to summarize, our algorithm for finding the span of
B;s is simple:

1) Restrict all 2nd order partial derivatives of P to some /¢
variables (¢ = O(+/n) suffices),

2) Find intersection of this subspace with V), for a random
homogeneous quadratic polynomial p and divide the
resulting subspace by p.

The analog of this result for d = 3D powers of quadratics
relies on a similar lemma that characterizes the solution space
of > icm Bi(y)Pq:(y) = 0. For sums of powers of degree
K > 2 polynomials however, the characterization gets a little
more involved as unlike in the case of quadratic Bys, ¢, will
have a larger degree than B, which makes the solution space
larger.

b) Noise Resilient Implementation: For obtaining a
noise-resilient version of the above method, we first need a
noise-robust version of the GKS observation that the subspace
U of restricted partial derivatives equals the subspace V
spanned by multiples of B;(y), and also a robust way of
obtaining a basis for V. This amounts to understanding the
smallest nonzero singular value of various matrices. Finally,
we robustly compute the intersection of two subspaces given
a basis for each by looking at the largest singular values of
the sum of the corresponding projection matrices, allowing us
to obtain a subspace close to the span of B;.

¢) Desymmetrization: The above discussions show how
we can estimate the span of B;(y) for a restriction of the
quadratic A; to some ¢ = O(y/n) variables. Given this
subspace, we apply desymmetrization directly to the restricted
polynomial P(My). To analyze this step, we need to under-
stand the invertibility (and condition numbers) of the matrix
representing the Symy linear transform on the subspace of the
linear span of B;.

d) Aggregating Restrictions: For a given restriction (via
an n x ¢ matrix M), the above steps give us access to the tensor
> i<m BE? where By = M T A, M is the ¢ x ¢ matrix of the
restricted A;. We would like to piece together such restrictions
to obtain Ztgm A®3. We show how to do this by working
with a simple n8-size pseudorandom set of restriction matrices
M such that the average over the corresponding restricted 3rd
order tensor gives us the unrestricted 3rd order tensor up to a
known scaling. Our construction is a simple modification of
the standard construction of 6-wise independent hash families.

e) Tensor decomposition and taking sD-th roots:
Given an estimate of Zt<m A®3 we can apply the stan-
dard polynomially-stable tensor decomposition algorithms
(Fact 1I1.7) to recover the A;s. When we work with higher
(d = 3D) powers of quadratics (or degree-K polynomials,
more generally), this step only gives us Sym (A", The
task of recovering A; given Sym y ,(AP") is a certain simple
“deconvolution” problem. We give a noise-robust algorithm for
this task that relies on a simple semidefinite program analyzed
in Lemma II1.9.

B. Overview of singular value lower bounds

For establishing polynomial stability of our algorithm for
random A;s and proving Theorem 1.3, we need to understand
the condition number and in particular, the smallest singular
value of certain random matrices that arise in our analyses.
Analyzing the smallest singular value of random matrices turns
out to be more challenging than the much better understood
largest singular value. For matrices with independent and iden-
tically distributed random subgaussian entries, a sharp bound
was only achieved in the breakthrough work of [39] via a
sophisticated analysis via the “leave-one-out” distance method.
The matrices that arise in our analyses are significantly more
involved. The entries are not independent but are instead
computed as low-degree polynomials of independent random
variables that are of polynomially smaller number than the
dimension of the matrix. As a result, the entries exhibit large
correlations, and the leave-one-out method appears hard to
implement for such matrices.

Instead, we adopt a different, more elementary but nimble
method that obtains estimates of the smallest singular values
via upper bounds on the largest singular values of certain
deviation matrices. To see this method on a simple toy
example, consider an n x m matrix (for m < n) G of
independent N(0,1) entries. Then, we can writt G'G =
n(l+ O(ﬁ)) -1+ offdiag(G'T G) where offdiag(G' T G) zeros
out the diagonal entries of G G. To establish a lower bound
on the mth singular value of G, it is thus enough to observe
that Hoffdiag(GTG)HOp < O(y/mn) with high probability.

This argument works as long as m < n/polylog(n)
and gives a sharp (up to the leading constant) estimate on
the smallest singular value. Note that in this argument, we
effectively “charge” the spectral norm of the off-diagonal
“deviation” matrix to the smallest entry of the diagonal part.
Such a strategy works so long as all columns of G are of
roughly similar length.

It turns out that despite its simplicity, this technique is
surprisingly resilient for our purposes and unlike methods from
prior works, it easily applies to the involved matrices that arise
in our analysis, yielding bounds that are essentially sharp so
long as we can keep the dimensions of the matrix somewhat
“lopsided” (i.e. m < n in the example above). This turns out
to not be a handicap in our setting.

In our analysis, the problem now reduces to bounding the
spectral norm of certain correlated, low-degree polynomial-
entry random matrices arising from the off-diagonal part of
the matrices we analyze. While this can be quite complicated,
we rely on the recent advances in understanding the spectral
norm of such matrices [3], [6], [22] in the context of proving
Sum-of-Squares lower bounds for average-case optimization
problems. This technique relies on decomposing random ma-
trices into a linear combination of certain structured random
matrices called graph matrices. We rely on the tools from
prior works that reduce the task of analyzing the spectral norm
of such matrices to analyzing combinatorial properties of the
underlying “graph”.



This technique gets us started but hits a snag as it turns out
that some of the deviation matrices simply do not have small
spectral norms. We handle such terms by proving that the
large spectral norm can be “blamed” on having large positive
eigenvalues that cannot affect the bounds on the smallest
singular value. Formally, we provide a charging argument,
reminiscent of the positivity analyses in the construction of
sum-of-squares lower bounds [6], [12], [18], [22], to handle
such terms and establish the required bounds on the spectral
norm.

While somewhat technical, the proofs of singular value
lower bounds for all the matrices in our analyses follow the
same blueprint. We give a more detailed exposition of these
tools (by means of an example) in Section 6 of the full version
before applying them to the matrices relevant to us.

III. DECOMPOSING POWER-SUMS OF QUADRATICS

In this section, we describe our efficient algorithm to
decompose powers of low-degree polynomials. To keep the
exposition simpler, we will analyze the algorithm for the case
of quadratic p;s in this section and postpone the analysis for
higher-degree p;s to the next section.

Specifically, we will prove that there is a polynomially
stable and exact algorithm for decomposing power-sums of
random quadratics. The same algorithm’s recovery guarantees
hold more generally for power-sums of smoothed quadratic
polynomials though our current analysis only derives an in-
verse exponential error tolerance. Our algorithms work in the
standard bit complexity model for exact rational arithmetic.

Theorem IIL.1. There is an algorithm that takes input pa-
rameters m,m,D € N, an accuracy parameter T > 0,
and the coefficient tensor P of a degree-6D polynomial P
in n variables with total bit complexity size(P), runs in
time (size(P)n)?) polylog(1/7), and outputs a sequence
of symmetric matrices Ay, Ao, ..., A, € R™™ with the
following guarantee.

Suppose P(z) = St Au(2)3P + E(x) where each Ay is
an n X n symmetric matrix of independent N'(0,1) entries,
IElr <n=OP) and m < (5ogmm)” i D < 2 and m <
(Wog(n))mj/?’ if D > 2. Then, with probability at least
0.99 over the draw of A;s and internal randomness of the
algorithm, for odd D,

min max HAt — Az
TESm tE[m]

D
L <poly(n) (B[ +717)
and for even D,

min max min
TES te[m] ce{£1}

< voly(n) ([[EIS” + 1120

Hgt - O'Aﬂ.(t)

F

Observe that for odd D, we are able to recover A;s up
to permutation while for even D, we recover A; up to
permutation and signings. Such a guarantee is also the best
possible given P(x).

a) The Algorithm: : Our proof of Theorem III.1 uses
the following algorithm (that works as stated for decomposing
powers of degree-K A;s more generally, but we will analyze
for quadratic A;s in this section).

Algorithm III-.1 (Decomposing Power Sums).

Input: Coefficient Tensor of a n-variate degree-3KD
polynomial P(x) = P(x) + E(x) where P(x) =
Zte[m] Ay(2)3P for degree-K polynomials A;.

Output: Estimates Zl,ﬁg,...,ﬁm of the coefficient
tensors of A1, As, ..., Ap.

Operation:

1) Construct Pseudorandom Restrictions: Con-
struct the collection S of < 3K D{-size subsets
of [n], |S| = n°P) using the algorithm from
Lemma I11.6.

2) Desymmetrize Pseudorandom Restrictions of
Coefficient Tensor: For each S € S:

a) Find Subspace of Restricted Partials: Com-
pute the linear span Vp of coefficient vec-
tors of Mg-restrictions of 2D-th order partial
derivatives of P.

b) Span-finding: Find the span of restricted
Ay(x)Ps.

¢) Desymmetrize: Compute the desymmetrized
restricted coefficient tensor.

3) Aggregate Restricted Tensors: Use restricted
desymmetrized tensors from all restrictions in the
pseudorandom set to construct the desymmetrized
tensor.

4) Decompose Tensor: Apply tensor decomposition
to the desymmetrized tensor.

5) Take D-th Root of a Single Polynomial: using
Lemma II1.9.

b) Algorithm Overview: In this section, we henceforth
restrict our attention to quadratic A;’s. Like in the case of
cubics of quadratics discussed in Section II our algorithm first
desymmetrizes the input coefficient tensor and then applies
tensor decomposition to recover estimates of the individual
components. Specifically (when E = 0), given the coefficient
tensor of P has the form Symgp, (3", Symyp(AFP)®3),
our goal is to “undo” the effect of the outer application of Sym
and this is accomplished in the first three steps that are direct
analogs of the ones discussed in the special case analyzed
in Section II. After performing the desymmetrization step,
for higher powers of quadratics we only recover estimates of
Sym(A®P) at the end of this procedure. The final (and extra,
compared to the cubic case) step in the algorithm takes D-th
root of noisy estimates of single polynomials, i.e. obtains an
estimate of A(z) from an estimate of A(x)".

Specifically, in Step 2a, we compute the ~ nfD differ-
ent 2D-th order partial derivatives OrP(z) of P as I =
{i1,...,iap} € [n]*P ranges over all multisets of size 2D.
We then restrict each of these degree-4D polynomials to some



fixed set of £ = o(n) variables which, in order to distinguish
from the original set of indeterminates =, we will call y. The
effect of this restriction is to transform A; into B, = M T A, M
for a n x £ restriction matrix M defined below.

Definition IIL2 (Restriction matrix). Given a set S C [n]
with |S| = £, we denote Mg € R™* to be the matrix whose
columns consist of standard unit vectors e; for j € S. We
write P o Mg for the polynomial (in indeterminates y) defined
by Po Ms(y) = P(Msy).

For each Mg, we let Rg be the linear operator that takes an
nxn matrix A € R™", into Rg(A) = (MsMg )A(MsMJ)
— i.e., zeros out the (7,7) entry of A if 4 or j is not in S.

For any restriction matrix M, let B, = M T A,M. Let Vp
be the span of polynomials of the form B;(y)Pyr:

Vp = span (By(y)Pyr | ¢ € [m]. T € [(PP) .

Then, any 2Dth order partial derivative of P, when restricted
via M, is in Vp. We prove that for small enough m, ¢, the
linear span of the restricted partials of P is in fact equal to
the linear span of the polynomials B;(y)Pyr (we prove an
error-tolerant version in full version).

Lemma I11.3 (Analysis of the Subspace of Restricted Partials
of P). Fix D € N. Let m,{,n € N be parameters such
that m < (W;g(f))ﬂ) if D <2 and m < (W@)D
if D > 2, and that mf*P < (Wog(n))2D' Given P =
2 tem] Ay(2)3P +E(x) where each Ay is a degree-2 homoge-
neous polynomial with i.i.d. N'(0,1) entries, and a restriction
matrix M € R"*!, we have that with probability 1 — n~P)
over the choice of Ay’s, Algorithm Partial-Derivative outputs
a subspace Vp of RYP that satisfies:

oo, <o (12).

with Bi(y) = Ay o M(y).

Consider Wp = span(By(y)? | t € [m]), for the next step,
we show we can extract a subspace Wp ~ Wp given a basis
for Vp, by proving for a random degree-2D polynomial p(y)
the intersection (computed in Step 2b) of Vp with the linear
span of polynomials of the form p(y)yr (for |T| = 2D) equals
that of B;(y)” with high probability over p and B;’s:

Lemma IIL4 (Extracting Span of By(y)P). Let D,m,/
be the same parameters as Lemma IIl.3. Given degree-2
homogeneous polynomials By for t € [m] in ¢ variables
with coefficients drawn ii.d from N(0,1), with probability
1 — 0=9D) the span-finding algorithm outputs Wp that
satisfies:

HVNVD - WDHF <0 (m€4D||VD - 17D|\F) .

Finally, we show that on the subspace of linear span of
Bi(y)P, the outer Symg, operation is invertible in an error-
tolerant way via the least squares algorithm. This gives us a
desymmetrized, M -restricted 3rd order tensor.

Lemma IILS (Desymmetrization of Restricted P via Least-
-Squares). Let D,m, ¢ € N such that m < (W)QD. For
each t € [m], let B; be a degree-2 homogeneous polynomial

in { variables with i.i.d. N(0,1) entries. Suppose Wp is a
subspace of R">P such that HWD — WDHF < 1/(m3'5€O(D)),

then with probability 1 — n**(P) over the choice of By’s,
Algorithm Desym outputs a tensor T' such that:

T3 (sym(BEP))™

te[m] F
< poly(m) (eO<D> HWD _ WDHF + HE||F) .

We show how to aggregate the desymmetrized estimates
above for n?P) pseudorandom restriction matrices to obtain
the estimate of the unrestricted tensor we need.

Lemma IIL.6 (Aggregating Pseudorandom Restrictions). Let
D,n,,m € N such that 6D < ¢ < n. There is an n©P)-
time computable collection S of subsets of [n] such that each
S € S satisfies ¢ < |S| < 6D{ and that

m

Esns fj (Sym (Rs(4)2P))** = oY (Sym(4PP))™

t=1 t=1

where C € (R™)®%D is a fixed tensor whose entries depend

only on the entry locations, and each entry of C has value
within ((£/2n)%7 1).

Given such a partially desymmetrized tensor, an application
of off-the-shelf algorithms for 3rd order tensor decomposition
allows us obtain Sym(APP) for ¢t < m in Step 4. We will
specifically use:

Fact IIL.7 (Stable Tensor Decomposition, symmetric case of
Theorem 2.3 in [4]). There exists an algorithm that takes input
anxnxn tensor T and an accuracy parameter T > 0, runs
in time (size(T)n)°™ polylog(1/7) and outputs a sequence
of vectors v1,Va, ..., Uy With the following guarantee. If T =

i vi®3—|—Ef0r an arbitrary n Xxn xn tensor E and the matrix
with v;s as rows has a condition number (ratio of largest to
r-th smallest singular value) at most k < co. Then,

min max ||5i

res. e - Uw(i)HQ < pOly(K‘,,’I'L) ||E||F +7.

To apply this fact, we will need the following bound on
the condition number % of the matrix with Sym(AP?) as
columns:

Lemma IIL.8 (Condition number). Under the same assump-
tions as Lemma II1.3, let Ap be the naop X m matrix whose
columns are the coefficient vectors of Ai(x)P for t € [m].
Then, with probability 1 — n~D) the condition number
k(Ap) < O(1).

Recall that for any natural number k, we write n; =
("+Ilj_1) for the number of distinct degree £ monomials in
n variables.

Finally, in Step 5, we extract A; from Sym(AP") (i.e.



desymmetrize a single noisy power). Note that in this step,
we do not need randomness/genericity of the A;.

Lemma IIL.9 (Stable Computation of D-th Roots). Let
D,n € Nand 6 > 0. Let P € R"™" be an unknown
symmetric matrix. Suppose Pp(x) is a homogeneous degree-
D polynomial in n variables such that its coefficient tensor
|25 = sym(pem)],

that runs in n°P) time and outputs Q € R™ ™ such that if
D is odd, then

satisfies < 0. There is an algorithm

|a-p| <owms®),
and if D is even, then

min

0 — PH < OnSY3PY (1Pl -
Ue{ﬂ}HQ oP| < Oms*P)-|P|

c) Putting things together: We will prove each of the
above lemmas and provide details of each step in the fol-
lowing subsections. Here, we use them to finish the proof of
Theorem III.1.

Proof of Theorem II.1: For D < 2, we set { = /n and
m < ( such that m < (m)w. For D > 2,
we set £ = n myD/s such that m <
(m) . In both cases, we have m/¢?" (m)zD

We consider the collection S of subsets of [n] from
Lemma II1.6 with parameter ¢ such that |S| = n®®) and
¢ < |S| < 6DL for all S € S. Thus for m < (

potost)
2/3 and m < (

n )D
polylog(n) ’

the parameters m,n, |S| satisfy m < (ﬁo‘g(n))?[’ and
2D 2D
m[S|*7 < (polylzg("))

Consider a set S € S and the corresponding restriction ma-
trix Mg, and let B; = M;AtMS € R'SMS‘. By Lemma I11.3,
1.4 and TS5 (assuming || E||F < n- D)y, after Steps 2a, 2b

and 2c, we obtain tensor Tg € R" such that
Ts— > (Sym(BEP)™|| <nO®)-||B|r,
te[m] F

with probability 1 — n(P) over the randomness of the input.
By union bound over S, we get the same guarantees for all

. ey 1
S € § with probability 1 — SO G-

Next, observe that 3°, (., (Sym(B,(?D))®3 € (RY)®D s
simply a sub-tensor obtained by removing zero entries from
the tensor Y ;- (Sym(Rg(At)®D)®3 € (R™)®6D according
to S C [n]. Therefore, for each S € S we have an estimate
of 1", (Sym(RS(At)®D))®3, then if we average over all
S € S, by Lemma III1.6, we get a tensor E’D c R*”
that

such

—Co > (Sym(A2P) P < nO®) B g

te[m] P
where the error bound is by triangle inequality, and C is
a known tensor with entries within ((¢/2n)%?,1). Thus, by
normalizing R, according to C, we get a tensor Rp such

that

ED _ Z (Sym(AféD))(X)?’ < TLO(D)

te[m] F

N Ele-

Next, by the tensor decomposition algorithm (Fact II1.7)
and the condition number upper bound from Lemma IILS,
Step 4 runs in n®) polylog(r) time and outputs tensors

AP, ... AD such that

m

min max HAtD — Sym (A®L2) H <P E|p+7.
7S te[m] WOVAIF

Finally, by Lemma IIL.9 we can extract A, € R™*" from AP.
For odd D, using the fact that z'/P is a concave function
when D > 1, we get that

1/D
<O(n) (n° P Bl + 1)

< poly(n) (B +71/7) .

For even D, since || A¢|lmax < polylogn with high probability
by standard concentration results, we get that

min max HAt

t
TESm te[m ﬂ-( ) F

nin mox min [ - 040,
< 0) (rOPNBlr+7) " A
<poly(m) (| B + 71/ .
This completes the proof. [ ]
APPENDIX

A. Non-identifiability of sum of cubics of linearly independent
quadratics

Lemma A.l. Let a = \/6 and consider the following distinct
sets of bivariate quadratic polynomials in variables x,y:
Sy ={a” +azy, 2> +y°, ¥’ +azy},
= {2?, 2* +axy +v* v*}.
Then, the polynomials in each set have linearly independent

coefficient matrices but the sum of cubics of polynomials in
either sets is equal.

Proof: Tt is easy to verify that in both sets, the coefficient
matrices of the polynomials are linearly independent. The sum
of cubics of Sy is

3 pla.9)? = 205 + 3aa’y

PESI
+3(a® + Day? + 2a323y® + 3(a® + 1)2%y* + 3axy® + 245
whereas

Z p(z,9)% = 22° + 3ax’y + 3(a® + 1)aty?

PES2

+ (6a + a®)x3y® + 3(a® + 1)2?y* + 3azy® + 2¢°



Thus by setting @ = /6, we have 2a® = 6a + o>, meaning
Yopes, P y)? =30 s, Pl y)°. u

B. Non-identifiability of sum of squares of quadratics

We observe that sum-of-squares of even two random homo-
geneous quadratics cannot be uniquely decomposed.

Lemma A.2 (Non-Indentifiability of Generic Sum of Quadrat-
ics of Quadratics). Let Ay, As be n X n matrices of indepen-
dent N'(0,1) entries up to symmetry. Then, with probability
1 over the draw of Ay, As, there exist symmetric A}, Al
such that || A} — Ajll, = 1/n°Y) for every i,j such that
(xTA12)? + (27 Apx)? = (2T Al 2)? + (27 AYx)? for every
.

Proof: Let Vi, Vs be the vectorization of upper-triangular
entries of A, Ay respectively. Since the coefficient tensor
of (xT A1x)? 4 (z " Aox)? is a linear transformation (scaling
of Sym operation) applied to A% 4 A$?, it is enough to
find V{,Vy distinct form V;,V, such that V2 + V;*? =
Vi ®2+V2’®2 The (since V7, V5 are random Gaussian, the rank
decomposition is unique w.p. 1) orthogonal decomposition of
the matrix V1 V;" + VoV, uses orthogonal vectors V7, Vy that
are different from V7, V5 (in fact must have a distance of at
least 1/n ||V1],). Taking A’ to be the matrix whose upper
triangular entries are given by V; for ¢ = 1,2 completes the
proof. ]

In this section, we derive Theorem I.1 as a corollary of
our proof of Theorem 1.3 combined with some elementary
algebraic considerations.

We will rely on the following lemma that shows that
whenever a matrix with low-degree polynomial entries in some
variable A has full column rank for some real assignment to
variables A, it must in fact have non-trivially lower bounded
singular value for any A’ after a small random perturbation in
each entry. Specifically, we prove:

Lemma A.3. Let G be a product distribution on N dimen-
sional vectors such that the marginal of any coordinate of G
is distributed so that no single point has probability > 2N o
(for e.g., uniform distribution on N bit rational numbers
in any constant length interval suffices). Let M (A) be a Rx S
matrix such that each entry of M (A) is a degree-d polynomial
in the N-dimensional vector A with each entry upper bounded
by NI, Suppose there is a point A’ € RN such that M (A”)
has full rank R. Then, for any vector B € RN with rational
entries of bit complexity at most NOo@),

GPI‘Q[M(B + G) has R-th singular value > 2*(51\7)0(1)]
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Our proof relies on the following variant of the classical
Schwartz-Zippel lemma and a simple observation about eigen-
values of matrices with polynomial bit complexity entries.

Fact A.4 (Corollary of Generalized DeMillo-Lipton—Zippel
Lemma, Theorem 4.6 in [5]). Let p(z1,x2,...,%,) be an n-
variate degree-d polynomial over any field F. Suppose p is not

identically equal to 0. Let Sy, 5, ...,Sy, be finite subsets of
F of size s > dn®. Then, if x; ~ S; is chosen uniformly at
random and independently for every 1, then,

Prip(z) =0] < dn/s.

Lemma A.5 (Gapped Eigenvalues from Polynomial Bit Com-
plexity). Let A be a n X r matrix of N-bit rational entries.
Suppose A has rank r. Then, the r-th smallest singular value
of A is at least 2-0(On®),

Proof: Let B = A" A and let B’ be the matrix of integers
obtained by clearing the denominators of the rational numbers
appearing in the entries of B. The bit complexity by B’ is then
larger than that of B by at most an additive Nn? and is thus
at most 4N n?. Further, by the Gershgorin circle theorem, the
largest eigenvalue of B’ is at most n24V n’,

Since B’ is a symmetric matrix with integer entries and has
full rank, the determinant of B’, det(B’) is a non-zero integer
and thus at least 1 in magnitude. Since det(B’) is the product
of all r eigenvalues of B’ each of which is at most n24" n’® , the
smallest eigenvalue must be at least n= 7274V n® < 279N n’
and large enough n. This completes the proof. [ ]

Proof of Lemma A.3: For any fixed B € R", consider
the determinant det(Q) of the R X R matrix Q = M(A +
B)M(A+B)T. This is a polynomial of degree 2Rd in A. For
A* = A’ — B, from the hypothesis, M (A* + B)M(A*+B) "
has full rank R. Thus, det(Q) is not identically equal to 0 as
a polynomial of A.

Let G € RY be sampled from G. For each entry i
of G, let S; be the support of the distribution that G; is
drawn from. Then, we know that this support is of size at
least 2V . Thus, by the generalized De-Millo-Lipton-Zippel
lemma (Fact A.4), the probablhty that M(B+G)M(B+G)T
is singular is at most 2~ Now,

Further, the entries of M(B + G)M (B + G)T have bit
complexity at most N°(). Thus, by Lemma A.5, whenever
the matrix M (B+G)M(B+G)T is non-singular, it’s smallest
eigenvalue is lower bounded by 2~ (5N o, [ ]

We can now finish the proof of Theorem I.1 and we defer
this to the full version of our paper.
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