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Abstract—We give efficient algorithms for finding power-sum
decomposition of an input polynomial P (x) =

∑
i6m pi(x)

d

with component pis. The case of linear pis is equivalent to the
well-studied tensor decomposition problem while the quadratic
case occurs naturally in studying identifiability of non-spherical
Gaussian mixtures from low-order moments.

Unlike tensor decomposition, both the unique identifiability
and algorithms for this problem are not well-understood. For
the simplest setting of quadratic pis and d = 3, prior work of

[11] yields an algorithm only when m 6 Õ(
√
n). On the other

hand, the more general recent result of [13] builds an algebraic

approach to handle any m = nO(1) components but only when
d is large enough (while yielding no bounds for d = 3 or even
d = 100) and only handles an inverse exponential noise.

Our results obtain a substantial quantitative improvement
on both the prior works above even in the base case of
d = 3 and quadratic pis. Specifically, our algorithm succeeds

in decomposing a sum of m ∼ Õ(n) generic quadratic pis for

d = 3 and more generally the dth power-sum of m ∼ n2d/15

generic degree-K polynomials for any K > 2. Our algorithm
relies only on basic numerical linear algebraic primitives, is exact
(i.e., obtain arbitrarily tiny error up to numerical precision), and
handles an inverse polynomial noise when the pis have random
Gaussian coefficients.

Our main tool is a new method for extracting the linear
span of pis by studying the linear subspace of low-order partial
derivatives of the input P . For establishing polynomial stability
of our algorithm in average-case, we prove inverse polynomial
bounds on the smallest singular value of certain correlated
random matrices with low-degree polynomial entries that arise
in our analyses. Since previous techniques only yield significantly
weaker bounds, we analyze the smallest singular value of matrices
by studying the largest singular value of certain deviation
matrices via graph matrix decomposition and the trace moment
method.

I. INTRODUCTION

An n-variate polynomial P (x) admits a power-sum decom-

position if it can be written as P (x) =
∑

i6m pi(x)
d for

some low-degree polynomials pis. This work is about the

algorithmic problem of computing such a decomposition when

it exists and the related structural question of when such a

decomposition, if it exists, is unique.

When pis are linear forms 〈vi, x〉 for vi ∈ Rn, the

task of decomposing P is equivalent to decomposing the

corresponding coefficient tensor
∑

i v
⊗d
i into rank 1 compo-

nents. For d = 2, this corresponds to rank decomposition of

matrices, which is unique only in degenerate settings. For

d = 3, while the problem is already NP-hard [16], there is

a long line of work on identifying natural sufficient condi-

tions (e.g., Kruskal’s condition [24]) that imply uniqueness

of decomposition in all but degenerate settings. There are

known efficient algorithms for decomposing tensors satisfying

such non-degeneracy conditions and such algorithms form

basic primitives in tensor methods [2], [4], [11], [14], [15],

[20], [21], [23], [28]–[30], [33], [35]. An influential line

of work has developed efficient learning algorithms for a

long list of interesting statistical models (under appropriate

assumptions) including Mixtures of Spherical Gaussians [11],

[17], Independent Component Analysis [28], Hidden Markov

Models [31], Latent Dirichlet Allocations [1], and Dictionary

Learning [7] via reductions to tensor decomposition. Higher-

degree power-sum decomposition is a natural generalization

of the tensor decomposition problem and is equivalent to

the well-studied problem of reconstructing certain classes

of arithmetic circuits [13], [25], [26] with connections (see

surveys [9], [40], [43]) to algebraic circuit lower bounds and

derandomization.

a) Tensor Decomposition with Symmetries: Higher-

degree power-sum decomposition is equivalent to a strict

generalization of tensor decomposition where the components

are symmetrized under a natural group action. For example,

when pi(x) = x>Aix are homogeneous quadratic polynomials

for n×n matrices Ai, the coefficient tensor of P has the form

Eσ∼S6

∑
i6m σ(A⊗3

i ) where S6 is the symmetric group on 6

elements and acts1 by permuting the 6 indices involved in

1For example, for a symmetric matrix A,
Eσ∼S6

[A⊗3((i1, i2, i3), (j1, j2, j3))] = E[A(e1)A(e2)A(e3)] where
the expectation is over the choice of a uniformly random perfect matching
(e1, e2, e3) of {i1, i2, i3, j1, j2, j3}.



any entry of A⊗3
i . If not for the action of σ, the coefficient

tensor would simply be a sum of tensor powers of vectorized

Ais. The group action, however, has a drastic effect on the

identifiability and algorithms for the problem. Specifically, the

symmetrization causes the resulting tensor to have a large rank

and thus any decomposition algorithm must strongly exploit

the symmetries to succeed. In fact, in our full version, we

exhibit a simple example of a sum of cubics of quadratics on

2 variables whose components are not uniquely identifiable

even though the corresponding coefficient matrices of the

quadratics are linearly independent. This is in contrast to

the well-known result [15], [29] that 3rd order tensors with

linearly independent components are uniquely identifiable and

efficiently decomposable. This is similar to other orbit recov-

ery problems that also reduce to tensor decomposition with

symmetries such as multi-reference alignment and the cryo-

EM [35], [38] problem where even establishing information-

theoretic identifiability for generic parameters is significantly

more challenging.

b) The Quadratic Case: Despite being the natural next

step after linear pis, power-sum decomposition of quadratic

pis is not well understood. In a seminal work, Ge, Huang and

Kakade [11] (GHK from now) proved that the first 6 moments

of a mixture of m ∼ √
n non-spherical Gaussians with

smoothed parameters exactly identify and (noise-resiliently)

recover the m sets of means and covariances. Their analy-

sis involves giving an algorithm (and uniqueness proof) for

decomposing sums of cubics of smoothed quadratic positive

definite polynomials but naturally generalizes to arbitrary

smoothed quadratics. This is a striking result that exhibits a

large gap between smoothed/generic parameters and arbitrary

ones for mixtures of Gaussians as it is known that we need

Ω(m) moments (an nΩ(m)-size object) to uniquely identify the

parameters of arbitrary mixtures of m Gaussians [34]. Their

approach uses a conceptually elegant “desymmetrize+tensor-

decompose” strategy by first undoing the effect of the group

action and then applying tensor decomposition. While their

approach can potentially be extended to m >
√
n, it seems to

encounter an inherent barrier at m > n2/3 as we explain in

Section II. Nevertheless, GHK conjectured that it should be

possible to handle m ≈ n1−δ generic components for any

δ > 0 given O(1)-degree mixture moments which, in our

context, corresponds to decomposing a sum of higher constant

degree powers of quadratics.

c) The Garg-Kayal-Saha Algorithm: In a beautiful work

of Garg, Kayal and Saha [13] (GKS from now), they

suggest that there is an inherent barrier to extending the

“desymmetrize+tensor-decompose” based approach of [11].

Instead, they work by exploiting an intriguing connection

to algebraic circuit lower bounds and develop algorithms to

recover any polynomial number of generic components from

their power-sums of large enough degree. This algorithm

however has two important deficiencies.

First, their strategy yields a decomposition algorithm for

degree-d power-sums only when d is very large compared

to the degree of the component pis. In particular, they do

not obtain any result for the simplest interesting setting of

d = 3rd (or even 100th) power of quadratics2. As a result,

their techniques seem unsuitable to answer natural questions

such as whether 6th moments of mixtures of non-spherical

Gaussians (with generic parameters) can uniquely identify

m > n0.51 components of Gaussian mixture in n dimensions,

or, whether a sum of m ≈ n cubics of generic quadratics

can be uniquely decomposed. Second, their algorithm relies

on algebraic methods for finding simultaneous vector-space

decomposition. The resulting algorithm is not error-resilient

and does not appear to handle even a small (e.g., exp(−n)
in each entry) amount of noise in the input polynomial. In

fact, GKS suggest finding a stable algorithm for power-sum

decomposition as an open question.

d) This Work: In this paper, we give a conceptually

simple algorithm that substantially improves the quantitative

results in [13] for decomposing power-sums of low-degree

polynomials. Somewhat surprisingly, our algorithm follows the

“desymmetrize+decompose” approach similar to [11] while

circumventing the barriers suggested by [13]. A key compo-

nent is an efficient algorithm to extract the linear span of the

coefficient tensors of (powers of) pis from the subspace of “co-

ordinate restrictions” of partial derivatives of P =
∑

i6m pdi
for d > 3. As a consequence of our algorithm, we obtain

substantially improved guarantees even for the simplest non-

trivial setting of sum of cubics of quadratics and handle m ∼ n
components.

We give an error-tolerant implementation of our algorithm

and prove that when each pi has independent random Gaus-

sian coefficients, the resulting algorithm tolerates an inverse

polynomial amount of adversarial noise in the coefficients of

the input polynomial. A key technical step in such an analysis

requires establishing inverse polynomial lower bounds on the

singular values of certain correlated random matrices whose

entries are low-degree polynomials in the coefficients of pis.

Standard results (e.g., from [4]) for analyzing smallest singu-

lar values yield significantly weaker bounds in our setting.

Instead, we rely on a new elementary but nimble method

that lower bounds the smallest singular value of correlated

random matrices by reducing the task to upper-bounding the

much better understood largest eigenvalue of certain deviation

matrices. Our analyses of the spectral norm of such matrices

use the trace moment method combined with graphical matrix

decompositions of random matrices that appear naturally in

the analyses of sum-of-squares lower bound witnesses [6],

[19] for average-case refutation problems. In particular, these

sharper bounds are crucial in allowing us to handle m ∼ Õ(n)
components for decomposing sums of cubics of quadratics.

A. Our results

Our main result gives a polynomial time algorithm (in the

standard bit complexity model with exact rational arithmetic)

for decomposing a sum of d-th powers of generic (e.g.,

2Indeed, while their bounds can likely be somewhat optimized, the smallest
power of quadratics that their algorithm (as currently analyzed) succeeds in
decomposing must be larger than 2335.



smoothed) polynomials. We note that just as in standard tensor

decomposition, sums of squares of low-degree polynomials are

uniquely decomposable only in degenerate settings, so cubics

of quadratics (i.e., d = 3) is the simplest non-trivial setting in

this context.

Theorem I.1 (Decomposing Power-Sums of Smoothed Poly-

nomials). There is an algorithm that takes input an n-variate

degree-Kd (for d a multiple of 3) polynomial of the form

P̂ (x) =
∑

i6m Âi(x)
d where Âi = Ai +Gi for an arbitrary

degree-K polynomial Ai and a degree-K polynomial Gi with

independent N (0, ρ2) coefficients, runs in time polynomial in

the size of its input and 1/ρ, and has the following guarantee:

with probability at least 0.99 over the draw of Gis and internal

randomness, it outputs the set {Âi | i 6 m} up to permutation

(and signs, if d is even) whenever

• m 6 Õ(n) for d = 3, K = 2,

• m 6 Õ(n2) for d = 6, K = 2,

• m 6 Õ(n2d/9) for any d > 9 and K = 2,

• m 6 Õ(n2Kd/3(5K−4)) for all d > 9 and K > 2.

The theorem above works more generally for any model

of smoothing that independently perturbs the coefficients

of each At with a distribution that allots a probability of

at most 1/nO(d) to any single point. In particular, a fine-

enough discretization of any continuous smoothing suffices.

As observed in [11], [13], identifying components of non-

spherical mixtures of Gaussians from low-degree moments

is equivalent3 to decomposing the power-sum of quadratic

polynomials. Thus, as an immediate corollary of the theorem

above, we obtain:

Corollary I.2 (Moment Identifiability of Smoothed Mixtures

of Gaussians). The parameters of a zero-mean mixture of

Gaussians
∑

i6m wiN (0,Σi), with arbitrary mixture weights

wi and smoothed4 covariances Σi, are uniquely identifiable

from the first 2d moments for any m 6 Õ(n2d/9). For d = 3
and 6, the bound improves to m 6 Õ(n) and m 6 Õ(n2)
respectively.

a) Error-Resilience for Random Components: When

P (x) =
∑

i Ai(x)
d + E(x) where each Ai has independent,

standard Gaussian coefficients, we prove that the our algo-

rithm above in fact is error-resilient and tolerates an inverse

polynomial error in every coefficient of the input P̂ . Indeed,

Theorem I.1 above is obtained essentially as a corollary (com-

bined with simple algebraic tools) of this stronger analysis for

random components.

3This follows from the fact that for x ∈ Rn, the 2d-th moment of

N (0,Σ) in direction x equals Ey∼N (0,Σ)[〈y, x〉
2d] =

(2d)!

2dd!
E[〈y, x〉2]d =

(2d)!

2dd!
(x>Σx)d. Consequently, Ey∼

∑
i
wiN (0,Σi)

[〈x, y〉2d] =
(2d)!

2dd!

∑
i wi(x

>Σix)
d.

4Any continuous smoothing suffices for this result. For e.g., for an arbitrary

Σ̂i � 0, for ρ = n−O(1), add an independent and uniformly random entry

from [−ρ, ρ] to every off-diagonal entry of Σ̂i and a uniformly random entry

from [nρ, 2nρ] to every diagonal entry of Σ̂i to produce Σi. Note that the
resulting matrix Σi is positive semidefinite.

Theorem I.3 (Power-sum Decomposition of Random Polyno-

mials). There is a polynomial time algorithm that takes input

an n-variate degree-Kd (for d a multiple of 3) polynomial

of the form P̂ (x) =
∑

i6m Ai(x)
d + E(x) where Ai is a

degree-K polynomial with independent N (0, 1) coefficients,

and E(x) is an arbitrary polynomial of degree Kd, and has

the following guarantees: with probability at least 0.99 over

the draw of Ais and internal randomness, it outputs the set

{Ãi | i 6 m} that contains an estimate of each Ai up to

permutation (and signs, if d is even) with an error of at most

nO(1) ‖E‖1/dF whenever

• m 6 Õ(n) for d = 3 and K = 2,

• m 6 Õ(n2) for d = 6 and K = 2,

• m 6 Õ(n2d/9) for any d > 9 and K = 2,

• m 6 Õ(n2Kd/3(5K−4)) for all d > 9 and K > 2.

B. Discussion and comparison to prior works

Theorem I.3 shows that our algorithm tolerates an inverse

polynomial amount of noise in each entry when the component

Ais are random. Theorem I.1 is in fact an immediate corollary

of our analysis for the random case combined with standard

tools. Our result for generic (as opposed to random) pis only

handles an inverse exponential amount of noise. We believe

that the same algorithm should handle inverse polynomial

noise (i.e., is well-conditioned) in any reasonable smoothed

analysis model. However, establishing such a result likely

requires new techniques for analyzing condition numbers of

matrices with dependent, low-degree polynomial entries in

independent random variables.

For the simplest setting of sums of cubics of quadratics

(i.e., K = 2 and d = 3), our theorem yields a polynomial

time algorithm that succeeds whenever m 6 Õ(n). This

improves on the algorithm implicit in [11] that succeeds5 for

m 6 Õ(
√
n). As we discuss in Section II, natural extensions

of their techniques to higher degree power-sums also appear

to break down for m > n.

The work of [13] recently found a more sophisticated

algorithm (that works in general on all large enough fields)

that relies on simultaneous decomposition of vector spaces

that escapes this barrier. In particular, they showed that for

any K, m = nO(1), there is an algorithm that succeeds in

decomposing a sum of m dth powers of generic degree-K
polynomials for large enough d. Their algorithm however

requires that d be very large as a function of K and logn m
and in particular, does not work for d = 3 (or even 100) for

example. Their algorithm relies on exact algorithms for certain

algebraic operations and does not appear to tolerate any more

than an inverse exponential (in n) amount of noise in the input.

The corollary above immediately improves the moment

identifiability of mixtures of smoothed centered Gaussians

shown in both the works above. Extending our algorithm

to the “asymmetric” case of sums of products of quadratics

(instead of powers) will allow the above corollary to succeed

5Their algorithm succeeds more generally for smoothed Ais but in addition,
needs access to

∑
i Ai(x)

2.



for Gaussians with arbitrary mean, but we do not pursue

this goal in this paper. We also note that unlike [11], our

theorem above does not immediately yield a polynomial time

algorithm for learning mixtures of smoothed Gaussians from

samples (similar to [13]). This is because samples from the

mixture only give us access to the corresponding sum of

powers of quadratics with inverse polynomial additive error in

each entry while our current analysis for the case of smoothed

components only handles an inverse exponential error.

a) Open Questions: Despite the progress in this work,

we are far from understanding identifiability and algorithms

for power-sum decomposition. Our result shows unique iden-

tifiability for sums of ∼ n cubics of quadratics. Could this be

improved to n2? Conversely, could we produce evidence of

hardness of decomposing sums of ω(n) cubics of quadratics?

Analogous questions arise for higher-degree polynomials and

we mention one that eludes the current approach in both our

work and [13]: is it possible to obtain efficient algorithms that

succeed in decomposing sums of m d-th powers of degree-K
polynomials where m grows as nf(K)d for some f(K) → ∞
as K → ∞?

In a different direction, a natural question is to generalize

our result to obtain a polynomial time algorithm that decom-

poses power-sums of smoothed polynomials while tolerating

an inverse polynomial entrywise error. Our current analysis

obtains such a guarantee for power-sums of random poly-

nomials but can only handle an inverse exponential error in

the smoothed setting. We suspect that this goal requires new

tools to analyze the smallest singular values of matrices whose

entries are low-degree polynomials in independent Gaussians

with non-zero means.

C. Brief overview of our techniques

Given (the special case of) sum of cubics of quadratics

P (x) =
∑

i6m(x>Aix)
3 for n × n symmetric matrices Ai

with coefficient tensor
∑

i6m Sym6(A
⊗3
i ), the main idea of

the algorithm in [11] is a conceptually simple “desymmetrize +

tensor-decompose” approach. Here, desymmetrization reverses

the effect of the polynomial symmetry and yields
∑

i A
⊗3
i ,

and one can then apply standard tensor decomposition. While

Sym6 is a linear operator on 6th order tensors with an Ω(n6)-
dimensional kernel, it turns out that it is invertible when

restricted to tensors where the component Ais are restricted

to a known generic subspace. The work of [11] shows how to

estimate the span of Ais – i.e. this subspace – for m 6 Õ(
√
n).

But their techniques do not seem to extend to any m � n2/3.

Indeed, Garg, Kayal and Saha [13] comment that reduction to

tensor decomposition of the sort above cannot yield algorithms

that work for m � n. As a result, they build a considerably

more sophisticated approach that relies on an algebraic algo-

rithm for simultaneous decomposition of vector spaces.

Our main idea comes as a surprise in the light of

this discussion: we in fact give a conceptually simple

“desymmetrize+tensor-decompose” based algorithm that sub-

stantially improves the bounds obtained in [13]. Our key idea

is a “Span Finding algorithm” that recovers the linear span of

Ais restricted to any O(
√
n) variables by computing the linear

span of restrictions of partial derivatives of P and intersecting

it with an appropriately constructed random subspace (see

Section II for a more detailed overview).

Our algorithm is implemented using error-resilient numer-

ical linear algebraic operations. In particular, to establish

polynomial stability (Theorem I.3) for random Ai, we need

to understand the smallest singular values (to obtain well-

conditionedness) of certain correlated random matrices arising

in our analyses. These random matrices are rather com-

plicated with entries computed as low-degree polynomials

(much smaller than the ambient dimension) of independent

random variables. Standard techniques for analyzing such

bounds (such as the “leave-one-out” method [39], [44], [45]

employed in prior works on tensor decomposition [4], [33]) are

inadequate for our purposes and yield weaker bounds (which,

in particular, do not allow us to handle m ∼ √
n for sum of

cubics of quadratics, for example).

Instead, we rely on a new elementary method that es-

tablishes singular value lower bounds by studying spectral

norm upper bounds of certain associated deviation matrices.

We analyze and prove strong bounds on the spectral norm

of such matrices using the graphical matrix decomposition

technique that was introduced in [6], [19] and recently used

and refined in several works [3], [12], [18], [22], [32], [37]

on establishing sum-of-squares lower bounds for average-

case problems and reducing the bounds to understanding

certain combinatorial problems on graphs associated with the

matrix. As far as we know, our work is the first use of this

technique to prove singular value lower bounds and condition

numbers in algorithms. We believe that the graphical matrix

decomposition toolbox will find further applications in the

analyses of numerical algorithms.

II. TECHNICAL OVERVIEW

In this section, we give a high-level overview of our

algorithm and the key ideas that go into its design and analysis.

Let’s fix P (x) =
∑

t6m At(x)
d + E(x) where At(x) are

homogeneous polynomials of degree K in n indeterminates

x1, x2, . . . , xn. Throughout this paper, we will abuse notation

slightly and use At to also denote the K-th order coefficient

tensor of the associated polynomial. We will also use Õ to

suppress polylog(n) factors. To begin with, we will focus on

the case of generic Ats – this simply means that Ats do not

satisfy any of some appropriate finite collection of polynomial

equations. Eventually, as we explain in Section II-A, these

equations will simply correspond to full-rankness of certain

matrices that arise in our analyses. We will discuss a new

method to prove strong polynomial condition number bounds

for random Ats in the following section. The results for

smoothed/generic Ats then follow via standard, simple tools.

Just like the special case of tensor decomposition (i.e.,

when At are linear forms), the decomposition is not uniquely

identifiable from a sum of their quadratics (i.e., d = 2) except

in degenerate cases (see Section B). Thus, the simplest non-

trivial setting turns out to be d = 3.



In this section, we will focus on the simplest setting of

K = 2 (and thus, At are simply n × n matrices) and

d = 3. This, by itself, is an important special case and

captures the question of identifiability of parameters from the

6th moments of a mixture of m n-dimensional Gaussians

with zero-mean and smoothed covariance matrices, and our

main results (Theorems I.1 and I.3) improve the current best

identifiability results (Corollary I.2).
a) Structure of the Coefficient Tensor: Up to a constant

scaling, the coefficient tensor of P equals
∑

t6m Sym(A⊗3
t ).

Here, Sym = Sym6 acts on A⊗3
t by averaging over entries

obtained by permuting the 6 elements involved.
b) Relationship to Tensor Decomposition: It is natural

to compare our input to the related, desymmetrized tensor∑
t A

⊗3
t , given which, we can immediately obtain the Ats

by applying standard tensor decomposition algorithms [15],

[29] (see Fact III.7) whenever Ats are linearly independent as

vectors in
(
n+1
2

)
dimensions. Our input, however, is not even

close to a low-rank tensor because of the action of Sym6

that generates essentially maximal rank terms even starting

from a single generic At. Indeed, this effect is visible for just

bivariate polynomials. In Appendix A of the full version of

our work, we construct two different (and in fact, Ω(1)-far in

Frobenius norm) collections of robustly linearly independent

bivariate quadratic polynomials such that the sums of their

cubics have the same coefficient tensors. Thus, even though

such Ats can be uniquely and efficiently recovered from∑
t A

⊗3
t via standard tensor decomposition, it is information

theoretically impossible to do so given
∑

t Sym(A⊗3
t ).

c) The Ge-Huang-Kakade [11] Approach: The discus-

sion above presents a conceptually simple way forward: if we

could somehow compute the desymmetrized tensor (i.e., undo

the effect of the group action) from the input, then we have

reduced the problem to standard tensor decomposition. This is

a bit tricky as the linear operation Sym6 on 6th order tensors

is a contraction that maps a
(
n+1
2

)3 ∼ n6/8-dimensional

space into a
(
n+5
6

)
∼ n6/720 dimensional subspace and is

clearly not invertible (in fact, has a Ω(n6)-dimensional kernel)

on arbitrary 6th order tensors. The main idea in GHK is

to observe that Sym6 can be invertible when restricted to

6th order tensors in some smaller subspace. In particular, let

B1, B2, . . . , Bm be a basis for the span of the matrices At.

Then, the desymmetrized coefficient tensor of P is a linear

combination of Bi ⊗Bj ⊗Bk – a subspace of m3 dimension

which is � n6/720 if m � n2. Proving such a claim requires

analysis of the rank (and singular values, for polynomial error-

stability) of the matrix representing Sym6 on the linear span

of Ats and GHK managed to prove it for any m � √
n.

To obtain the span of Ats, GHK rely on access to P4 =∑
t6m Sym4(A

⊗2
t ) in addition to the input tensor above.

Plugging in ea, eb in the first two modes of this tensor

yields an n × n matrix (i.e., a 2-D slice) of the form:∑
t At[a, b]At +

∑
t At[a] ⊗ At[b] where At[i] is the i-th

column of At. As a, b vary, the first term generates the

subspace of the span of Ats. However, each such 2-D slice

has an additive “error” that lies in the span of the rank 1 forms

in the 2nd term above. The GHK idea is to zero out the rank

1 terms by projecting the 2-D slices to a subspace S⊥, where

S contains the span of the rank 1 terms. To compute S , they

choose a subset H ⊆ [n] and plug in a, b, c ∈ H into three

modes of P4. The resulting 1-D slices are linear combinations

of the columns At[a] for a ∈ H and t ∈ [m]. If m|H| � n,

then all At[a] are linearly independent generically, while if

|H|3 � m|H|, then there are enough slices to generate the

span of At[a] for all a ∈ H and t ∈ [m]. This trade-off

is optimized at m ∼ n2/3 and |H| ∼ n1/3. Given a good

estimate of S , we can now plug in a, b ∈ H in two modes of

P4 and recover the span of At (restricted to columns in H) by

projecting the resulting 2-D slices off S . Repeating for disjoint

choices of H completes the argument. In order to analyze the

linear independence (and condition numbers) of the vectors

arising in this analysis, GHK need to work with a somewhat

smaller m ∼ √
n in their argument.

d) Key Bottleneck in the GHK Approach: In our situ-

ation, we only have the sum of cubics P as input (but not

P4). But even given P4, the crucial bottleneck is the need for

recovering the span of a subset of columns of the Ats. With

more sophisticated analyses, given the above trade-offs, it’s

plausible that a sum of d-th powers of At allows handling m as

large as n1−O(1/d), but there appears to be an inherent barrier

at m ∼ n. The GHK approach also seems to get unwieldy as it

involves plugging in standard basis vectors in several modes

of the tensor. This leads to more “spurious” terms that one

must zero-out (instead of just the rank-1 terms for P4).

Thus, even given higher powers, the GHK approach appears

to have a natural break-point at m ∼ n, and even handling

m � √
n seems to require somewhat unwieldy analysis. In

fact, in their recent work, Garg, Kayal and Saha [13] com-

mented (see Page 17) ”However, we believe such an approach

cannot be made to handle larger number of summands (say

poly(n)) even in the quadratic case as the lower bounds for

sums of powers of quadratics need substantially newer ideas

than the linear case...”.

e) The Garg-Kayal-Saha [13] Approach: In their beau-

tiful recent work, GKS managed to find a different approach

that escapes the above obstacles and showed an algorithm

(that works on both finite fields and Q) that for any K and

m = nO(1), manages to decompose P (x) =
∑

t6m At(x)
d

for large enough d (and generic degree-K polynomials At).

As discussed before, their approach requires d to be a large

enough constant as a function of K and logn m (though they

remarked that the bounds could likely be improved, already

for K = 2, they need d > 2335 and m 6 nd/1100). Their

main idea, however, is relevant to our approach so we briefly

describe it here.

We restrict our attention to the quadratic case (K = 2)

from here on. The GKS approach relies on the linear span

of partial derivatives of the input polynomial P . In fact,

taking rth partial derivatives of P is essentially the same

(though, more principled and easier to analyze) as “plugging

in” all possible standard basis vectors in r modes of the input

coefficient tensor as in GHK. GKS observed that for r < d, the



nr =
(
n+r−1

r

)
many r-th partial derivatives of P are all of the

form
∑

t6m At(x)
d−rQt(x) for some degree-r polynomials

Qt. This linear subspace is strictly contained within the space

of all polynomial multiples of At(x)
d−r – the containment is

strict because the latter space is of dimension ∼ mnr � nr

for generic Ats. However, if we were to project each of the nr

partial derivatives down to be a function of some small enough

` = o(n) variables y, then, the dimension counting above is

no longer an obstruction to the span being all multiples of the

projected At(x)
d−r. Indeed, for generic At, the subspace U of

the projected partial derivatives does in fact equal the subspace

V of all multiples of Bt(y)
d−r, where Bt = M>AtM (the

projection of At) and Bt(y) = At(My) = y>M>AtMy for

an n× ` projection matrix M .

f) Key Bottleneck in the GKS Approach: If we take r =
d−1, then, it appears that the partial derivatives give us access

to the subspace of span of multiples of Bts (of degree 2d−r =
d+ 1 for K = 2). If we could extract the span of quadratics

Bt from this subspace, we could implement desymmetrization

and tensor decomposition to obtain at least the Bts (i.e., the

projected Ats).

Unfortunately, this hope did not materialize for GKS who

managed only to recover the span of Bt(y)
d−r for r < 2d/3.

This is because their analysis of a certain “multi-GCD”

requires that the subspaces Bt(y)
d−ryT for |T | = r for each

t ∈ [m] only have trivial (i.e., 0) pairwise intersection. This

condition is impossible if r > 2(d − r) or r > 2d/3; for

example, if d = 3 and r = 2, then the degree-4 polynomial

Bt(y)Bt′(y) is clearly in the subspaces corresponding to

both t and t′, which is a non-trivial intersection! Thus, the

GKS analysis is restricted to work with r < 2d/3 and in

particular, only manages to recover the span of Bt(y)
d−r (for

d − r > d/3). This route rules out the desymmetrization +

tensor decomposition approach.

As a result, GKS used a more complicated sequence of

operations that involves taking projections of the partial deriva-

tives and algorithms for simultaneous decomposition of vector

spaces into irreducibles which they analyze by studying the

associated “adjoint algebra”. The two-step projection step

requires that d be very large as a function of logn m (and

degree K of the Ats).

g) Summary: The “desymmetrize + tensor decompose”

approach of GHK is elegant and simple but suffers from an

inherent bottleneck for going beyond m ∼ n (or even n2/3)

for sums of cubics (or higher powers) of quadratics and gets

unwieldy as d gets large. The GKS approach manages to

handle any m = nO(1) components but only for very large

d and relies on a somewhat complicated algebraic algorithm.

While GKS do not do this, finding a polynomially conditioned

variant of their algorithm will likely require significant effort.

A. Our approach and outline of our algorithm

Somewhat surprisingly, we manage to find an algorithm that

achieves the best of both worlds. Our algorithm relies on the

conceptually simple approach of desymmetrizing the input ten-

sor (as in GHK) while at the same time managing to not only

hit m ∼ n when K = 2 and d = 3 but also get a substantially

improved trade-off compared to GKS for all m, d,K. Further,

we find a polynomially stable implementation of our algorithm

when Ats are random by establishing condition number upper

bounds on the structured random matrices that arise in our

analysis.

In the following, we explain the main components in

our algorithm and analysis: insights that rescue the simple

“desymmetrize + tensor decompose” approach, the resulting

algorithm, and a new method to prove strong condition number

upper bounds on structured random matrices. We will focus on

the case when the Ats have independent N (0, 1) entries in the

following section. For this setting, we obtain an algorithm with

polynomial error-stability guarantees. Our result for generic

(or smoothed) At is a simple corollary of this result using

standard tools.

a) Recovering the Span of Bts: Recall that the

GKS observation shows that given a polynomial P (x) =∑
t6m At(x)

d for quadratic Ats, the subspace U spanned by

r-th partial derivatives of P , when projected to a sufficiently

small dimension ` = o(n) variables y, equals the span V =
span(Bt(y)

d−ryT | t ∈ [m], T ∈ [`]r) for Bt(y) = At(My)
where M is an n× ` projection matrix.

GKS then perform a multi-GCD step that recovers the span

of Bt(y)
d−r from V and their analysis requires the subspaces

{Bt(y)
d−ryT | T ∈ [`]r} for each t ∈ [m] to have only trivial

pairwise intersection (i.e. = {0}) . Our key idea is to observe

that this assumption is not crucial! We can extract the span

of powers of Bt as long as these subspaces do not have a

large intersection. As discussed before, when r > 2d/3, their

analysis fails because of some obvious intersections between

the above subspaces. We substantially improve their analysis

by observing that for random polynomials these obvious

intersections between the subspaces are the only ones possible!

More precisely, let’s restrict to d = 3 and consider the

subspace of projected (we in fact show that simply restricting

the variables suffices) partial derivatives of order r = 2
of P . Then, the subspace of restricted 2nd order partial

derivatives of P contains homogeneous polynomials of degree

4. For random Ats, we fully characterize the set of quadratic

polynomials {qt | t 6 m} that satisfy the polynomial equality∑
t6m Bt(y)qt(y) = 0. Observe that for any s 6= t ∈ [m],

qs = Bt and qt = −Bs is clearly in the solution space. Such

solutions span a subspace of dimension
(
m
2

)
, and we prove

that these solutions are in fact the only solutions whenever

m 6 Õ(n).
This understanding immediately allows us to use a simple

subroutine to recover the span of {Bt(y) | t 6 m}. Specif-

ically, we take a random homogeneous quadratic polynomial

p(y) and let Vp be the subspace of quartic multiples of p,

that is, Vp = span(p(y)yS | |S| = 2). Then, any non-

zero f(y) = p(y)q0(y) ∈ V ∩ Vp must be a solution to∑
t6m Bt(y)qt(y) = p(y)q0(y). The above characterization of

the solution subspace allows us to conclude that whenever q0 is

non-zero, it lies in the span of Bt(y). Thus, we have confirmed

that V ∩ Vp = span(p(y)Bt(y) | t 6 m), and dividing this



subspace by p immediately yields span(Bt(y) | t 6 m)!

Thus, to summarize, our algorithm for finding the span of

Bts is simple:

1) Restrict all 2nd order partial derivatives of P to some `
variables (` = O(

√
n) suffices),

2) Find intersection of this subspace with Vp for a random

homogeneous quadratic polynomial p and divide the

resulting subspace by p.

The analog of this result for d = 3D powers of quadratics

relies on a similar lemma that characterizes the solution space

of
∑

t6m Bt(y)
Dqt(y) = 0. For sums of powers of degree

K > 2 polynomials however, the characterization gets a little

more involved as unlike in the case of quadratic Bts, qt will

have a larger degree than BD
t , which makes the solution space

larger.

b) Noise Resilient Implementation: For obtaining a

noise-resilient version of the above method, we first need a

noise-robust version of the GKS observation that the subspace

U of restricted partial derivatives equals the subspace V
spanned by multiples of Bt(y), and also a robust way of

obtaining a basis for V . This amounts to understanding the

smallest nonzero singular value of various matrices. Finally,

we robustly compute the intersection of two subspaces given

a basis for each by looking at the largest singular values of

the sum of the corresponding projection matrices, allowing us

to obtain a subspace close to the span of Bt.

c) Desymmetrization: The above discussions show how

we can estimate the span of Bt(y) for a restriction of the

quadratic At to some ` = O(
√
n) variables. Given this

subspace, we apply desymmetrization directly to the restricted

polynomial P (My). To analyze this step, we need to under-

stand the invertibility (and condition numbers) of the matrix

representing the Sym6 linear transform on the subspace of the

linear span of Bt.

d) Aggregating Restrictions: For a given restriction (via

an n×` matrix M ), the above steps give us access to the tensor∑
t6m B⊗3

t where Bt = M>AtM is the `× ` matrix of the

restricted At. We would like to piece together such restrictions

to obtain
∑

t6m A⊗3
t . We show how to do this by working

with a simple n6-size pseudorandom set of restriction matrices

M such that the average over the corresponding restricted 3rd

order tensor gives us the unrestricted 3rd order tensor up to a

known scaling. Our construction is a simple modification of

the standard construction of 6-wise independent hash families.

e) Tensor decomposition and taking sD-th roots:

Given an estimate of
∑

t6m A⊗3
t , we can apply the stan-

dard polynomially-stable tensor decomposition algorithms

(Fact III.7) to recover the Ats. When we work with higher

(d = 3D) powers of quadratics (or degree-K polynomials,

more generally), this step only gives us SymKD(A⊗D
t ). The

task of recovering At given SymKD(A⊗D
t ) is a certain simple

“deconvolution” problem. We give a noise-robust algorithm for

this task that relies on a simple semidefinite program analyzed

in Lemma III.9.

B. Overview of singular value lower bounds

For establishing polynomial stability of our algorithm for

random Ats and proving Theorem I.3, we need to understand

the condition number and in particular, the smallest singular

value of certain random matrices that arise in our analyses.

Analyzing the smallest singular value of random matrices turns

out to be more challenging than the much better understood

largest singular value. For matrices with independent and iden-

tically distributed random subgaussian entries, a sharp bound

was only achieved in the breakthrough work of [39] via a

sophisticated analysis via the “leave-one-out” distance method.

The matrices that arise in our analyses are significantly more

involved. The entries are not independent but are instead

computed as low-degree polynomials of independent random

variables that are of polynomially smaller number than the

dimension of the matrix. As a result, the entries exhibit large

correlations, and the leave-one-out method appears hard to

implement for such matrices.

Instead, we adopt a different, more elementary but nimble

method that obtains estimates of the smallest singular values

via upper bounds on the largest singular values of certain

deviation matrices. To see this method on a simple toy

example, consider an n × m matrix (for m � n) G of

independent N (0, 1) entries. Then, we can write G>G =
n(1±O( 1√

n
)) · I+ offdiag(G>G) where offdiag(G>G) zeros

out the diagonal entries of G>G. To establish a lower bound

on the mth singular value of G, it is thus enough to observe

that
∥∥offdiag(G>G)

∥∥
op

6 Õ(
√
mn) with high probability.

This argument works as long as m 6 n/ polylog(n)
and gives a sharp (up to the leading constant) estimate on

the smallest singular value. Note that in this argument, we

effectively “charge” the spectral norm of the off-diagonal

“deviation” matrix to the smallest entry of the diagonal part.

Such a strategy works so long as all columns of G are of

roughly similar length.

It turns out that despite its simplicity, this technique is

surprisingly resilient for our purposes and unlike methods from

prior works, it easily applies to the involved matrices that arise

in our analysis, yielding bounds that are essentially sharp so

long as we can keep the dimensions of the matrix somewhat

“lopsided” (i.e. m � n in the example above). This turns out

to not be a handicap in our setting.

In our analysis, the problem now reduces to bounding the

spectral norm of certain correlated, low-degree polynomial-

entry random matrices arising from the off-diagonal part of

the matrices we analyze. While this can be quite complicated,

we rely on the recent advances in understanding the spectral

norm of such matrices [3], [6], [22] in the context of proving

Sum-of-Squares lower bounds for average-case optimization

problems. This technique relies on decomposing random ma-

trices into a linear combination of certain structured random

matrices called graph matrices. We rely on the tools from

prior works that reduce the task of analyzing the spectral norm

of such matrices to analyzing combinatorial properties of the

underlying “graph”.



This technique gets us started but hits a snag as it turns out

that some of the deviation matrices simply do not have small

spectral norms. We handle such terms by proving that the

large spectral norm can be “blamed” on having large positive

eigenvalues that cannot affect the bounds on the smallest

singular value. Formally, we provide a charging argument,

reminiscent of the positivity analyses in the construction of

sum-of-squares lower bounds [6], [12], [18], [22], to handle

such terms and establish the required bounds on the spectral

norm.

While somewhat technical, the proofs of singular value

lower bounds for all the matrices in our analyses follow the

same blueprint. We give a more detailed exposition of these

tools (by means of an example) in Section 6 of the full version

before applying them to the matrices relevant to us.

III. DECOMPOSING POWER-SUMS OF QUADRATICS

In this section, we describe our efficient algorithm to

decompose powers of low-degree polynomials. To keep the

exposition simpler, we will analyze the algorithm for the case

of quadratic pis in this section and postpone the analysis for

higher-degree pis to the next section.

Specifically, we will prove that there is a polynomially

stable and exact algorithm for decomposing power-sums of

random quadratics. The same algorithm’s recovery guarantees

hold more generally for power-sums of smoothed quadratic

polynomials though our current analysis only derives an in-

verse exponential error tolerance. Our algorithms work in the

standard bit complexity model for exact rational arithmetic.

Theorem III.1. There is an algorithm that takes input pa-

rameters n,m,D ∈ N, an accuracy parameter τ > 0,

and the coefficient tensor P̂ of a degree-6D polynomial P̂
in n variables with total bit complexity size(P̂ ), runs in

time (size(P̂ )n)O(D) polylog(1/τ), and outputs a sequence

of symmetric matrices Ã1, Ã2, . . . , Ãm ∈ Rn×n with the

following guarantee.

Suppose P̂ (x) =
∑m

t=1 At(x)
3D + E(x) where each At is

an n × n symmetric matrix of independent N (0, 1) entries,

‖E‖F 6 n−O(D) and m 6 ( n
polylog(n) )

D if D 6 2 and m 6

( n
polylog(n) )

2D/3 if D > 2. Then, with probability at least

0.99 over the draw of Ais and internal randomness of the

algorithm, for odd D,

min
π∈Sm

max
t∈[m]

∥∥∥Ãt −Aπ(t)

∥∥∥
F
6 poly(n)

(
‖E‖1/DF + τ1/D

)
,

and for even D,

min
π∈Sm

max
t∈[m]

min
σ∈{±1}

∥∥∥Ãt − σAπ(t)

∥∥∥
F

6 poly(n)
(
‖E‖1/3DF + τ1/3D

)
.

Observe that for odd D, we are able to recover Ats up

to permutation while for even D, we recover At up to

permutation and signings. Such a guarantee is also the best

possible given P (x).

a) The Algorithm: : Our proof of Theorem III.1 uses

the following algorithm (that works as stated for decomposing

powers of degree-K Ats more generally, but we will analyze

for quadratic Ats in this section).

Algorithm III-.1 (Decomposing Power Sums).

Input: Coefficient Tensor of a n-variate degree-3KD
polynomial P̂ (x) = P (x) + E(x) where P (x) =∑

t∈[m] At(x)
3D for degree-K polynomials At.

Output: Estimates Ã1, Ã2, . . . , Ãm of the coefficient

tensors of A1, A2, . . . , Am.

Operation:

1) Construct Pseudorandom Restrictions: Con-

struct the collection S of 6 3KD`-size subsets

of [n], |S| = nO(D) using the algorithm from

Lemma III.6.

2) Desymmetrize Pseudorandom Restrictions of

Coefficient Tensor: For each S ∈ S:

a) Find Subspace of Restricted Partials: Com-

pute the linear span ṼD of coefficient vec-

tors of MS-restrictions of 2D-th order partial

derivatives of P̂ .

b) Span-finding: Find the span of restricted

At(x)
D’s.

c) Desymmetrize: Compute the desymmetrized

restricted coefficient tensor.

3) Aggregate Restricted Tensors: Use restricted

desymmetrized tensors from all restrictions in the

pseudorandom set to construct the desymmetrized

tensor.

4) Decompose Tensor: Apply tensor decomposition

to the desymmetrized tensor.

5) Take D-th Root of a Single Polynomial: using

Lemma III.9.

b) Algorithm Overview: In this section, we henceforth

restrict our attention to quadratic At’s. Like in the case of

cubics of quadratics discussed in Section II our algorithm first

desymmetrizes the input coefficient tensor and then applies

tensor decomposition to recover estimates of the individual

components. Specifically (when E = 0), given the coefficient

tensor of P has the form Sym6D(
∑

t6m Sym2D(A⊗D
t )⊗3),

our goal is to “undo” the effect of the outer application of Sym
and this is accomplished in the first three steps that are direct

analogs of the ones discussed in the special case analyzed

in Section II. After performing the desymmetrization step,

for higher powers of quadratics we only recover estimates of

Sym(A⊗D) at the end of this procedure. The final (and extra,

compared to the cubic case) step in the algorithm takes D-th

root of noisy estimates of single polynomials, i.e. obtains an

estimate of A(x) from an estimate of A(x)D.

Specifically, in Step 2a, we compute the ∼ n2D differ-

ent 2D-th order partial derivatives ∂I P̂ (x) of P̂ as I =
{i1, . . . , i2D} ∈ [n]2D ranges over all multisets of size 2D.

We then restrict each of these degree-4D polynomials to some



fixed set of ` = o(n) variables which, in order to distinguish

from the original set of indeterminates x, we will call y. The

effect of this restriction is to transform At into Bt = M>AtM
for a n× ` restriction matrix M defined below.

Definition III.2 (Restriction matrix). Given a set S ⊆ [n]
with |S| = `, we denote MS ∈ Rn×` to be the matrix whose

columns consist of standard unit vectors ej for j ∈ S. We

write P ◦MS for the polynomial (in indeterminates y) defined

by P ◦MS(y) = P (MSy).
For each MS , we let RS be the linear operator that takes an

n×n matrix A ∈ Rn×n, into RS(A) = (MSM
>
S )A(MSM

>
S )

– i.e., zeros out the (i, j) entry of A if i or j is not in S.

For any restriction matrix M , let Bt = M>AtM . Let VD

be the span of polynomials of the form Bt(y)
DyT :

VD := span
(
Bt(y)

DyT | t ∈ [m], T ∈ [`]2D
)
.

Then, any 2Dth order partial derivative of P , when restricted

via M , is in VD. We prove that for small enough m, `, the

linear span of the restricted partials of P is in fact equal to

the linear span of the polynomials Bt(y)
DyT (we prove an

error-tolerant version in full version).

Lemma III.3 (Analysis of the Subspace of Restricted Partials

of P̂ ). Fix D ∈ N. Let m, `, n ∈ N be parameters such

that m 6 ( `
polylog(`) )

2D if D 6 2, and m 6 ( `
polylog(`) )

D

if D > 2, and that m`2D 6 ( n
polylog(n) )

2D. Given P̂ =∑
t∈[m] At(x)

3D+E(x) where each At is a degree-2 homoge-

neous polynomial with i.i.d. N (0, 1) entries, and a restriction

matrix M ∈ Rn×`, we have that with probability 1− n−Ω(D)

over the choice of At’s, Algorithm Partial-Derivative outputs

a subspace ṼD of R`4D that satisfies:

∥∥∥ṼD − VD

∥∥∥
F
6 O

(‖E‖F
(n`)D

)
,

with Bt(y) = At ◦M(y).

Consider WD = span(Bt(y)
D | t ∈ [m]), for the next step,

we show we can extract a subspace W̃D ≈ WD given a basis

for ṼD, by proving for a random degree-2D polynomial p(y)
the intersection (computed in Step 2b) of VD with the linear

span of polynomials of the form p(y)yT (for |T | = 2D) equals

that of Bt(y)
D with high probability over p and Bt’s:

Lemma III.4 (Extracting Span of Bt(y)
D). Let D,m, `

be the same parameters as Lemma III.3. Given degree-2

homogeneous polynomials Bt for t ∈ [m] in ` variables

with coefficients drawn i.i.d from N (0, 1), with probability

1 − `−Ω(D), the span-finding algorithm outputs W̃D that

satisfies:
∥∥∥W̃D −WD

∥∥∥
F
6 O

(
m`4D‖VD − ṼD‖F

)
.

Finally, we show that on the subspace of linear span of

Bt(y)
D, the outer Sym6D operation is invertible in an error-

tolerant way via the least squares algorithm. This gives us a

desymmetrized, M -restricted 3rd order tensor.

Lemma III.5 (Desymmetrization of Restricted P̂ via Least-

-Squares). Let D,m, ` ∈ N such that m 6 ( `
polylog(`) )

2D. For

each t ∈ [m], let Bt be a degree-2 homogeneous polynomial

in ` variables with i.i.d. N (0, 1) entries. Suppose W̃D is a

subspace of R`2D such that

∥∥∥W̃D −WD

∥∥∥
F
6 1/(m3.5`O(D)),

then with probability 1 − nΩ(D) over the choice of Bt’s,

Algorithm Desym outputs a tensor T̃ such that:
∥∥∥∥∥∥
T̃ −

∑

t∈[m]

(
Sym(B⊗D

t )
)⊗3

∥∥∥∥∥∥
F

6 poly(m)
(
`O(D)

∥∥∥W̃D −WD

∥∥∥
F
+ ‖E‖F

)
.

We show how to aggregate the desymmetrized estimates

above for nO(D) pseudorandom restriction matrices to obtain

the estimate of the unrestricted tensor we need.

Lemma III.6 (Aggregating Pseudorandom Restrictions). Let

D,n, `,m ∈ N such that 6D 6 ` 6 n. There is an nO(D)-

time computable collection S of subsets of [n] such that each

S ∈ S satisfies ` 6 |S| 6 6D` and that

ES∼S

m∑

t=1

(
Sym

(
RS(At)

⊗D
))⊗3

= C ◦
m∑

t=1

(
Sym(A⊗D

t )
)⊗3

where C ∈ (Rn)⊗6D is a fixed tensor whose entries depend

only on the entry locations, and each entry of C has value

within ((`/2n)6D, 1).

Given such a partially desymmetrized tensor, an application

of off-the-shelf algorithms for 3rd order tensor decomposition

allows us obtain Sym(A⊗D
t ) for t 6 m in Step 4. We will

specifically use:

Fact III.7 (Stable Tensor Decomposition, symmetric case of

Theorem 2.3 in [4]). There exists an algorithm that takes input

a n×n×n tensor T̃ and an accuracy parameter τ > 0, runs

in time (size(T )n)O(1) polylog(1/τ) and outputs a sequence

of vectors ṽ1, ṽ2, . . . , ṽr with the following guarantee. If T̃ =∑
i v

⊗3
i +E for an arbitrary n×n×n tensor E and the matrix

with vis as rows has a condition number (ratio of largest to

r-th smallest singular value) at most κ < ∞. Then,

min
π∈Sr

max
i6r

∥∥ṽi − vπ(i)
∥∥
2
6 poly(κ, n) ‖E‖F + τ .

To apply this fact, we will need the following bound on

the condition number κ of the matrix with Sym(A⊗D
t ) as

columns:

Lemma III.8 (Condition number). Under the same assump-

tions as Lemma III.3, let AD be the n2D ×m matrix whose

columns are the coefficient vectors of At(x)
D for t ∈ [m].

Then, with probability 1 − n−Ω(D), the condition number

κ(AD) 6 O(1).

Recall that for any natural number k, we write nk =(
n+k−1

k

)
for the number of distinct degree k monomials in

n variables.

Finally, in Step 5, we extract At from Sym(A⊗D
t ) (i.e.



desymmetrize a single noisy power). Note that in this step,

we do not need randomness/genericity of the At.

Lemma III.9 (Stable Computation of D-th Roots). Let

D,n ∈ N and δ > 0. Let P ∈ Rn×n be an unknown

symmetric matrix. Suppose P̃D(x) is a homogeneous degree-

D polynomial in n variables such that its coefficient tensor

satisfies

∥∥∥P̃D − Sym(P⊗D)
∥∥∥
F

6 δ. There is an algorithm

that runs in nO(D) time and outputs Q̃ ∈ Rn×n such that if

D is odd, then
∥∥∥Q̃− P

∥∥∥
F
6 O(

√
nδ1/D) ,

and if D is even, then

min
σ∈{±1}

∥∥∥Q̃− σP
∥∥∥
F
6 O(nδ1/3D) · ‖P‖max .

c) Putting things together: We will prove each of the

above lemmas and provide details of each step in the fol-

lowing subsections. Here, we use them to finish the proof of

Theorem III.1.

Proof of Theorem III.1: For D 6 2, we set ` =
√
n and

m 6 ( n
polylog(n) )

D such that m 6 ( `
polylog(`) )

2D. For D > 2,

we set ` = n2/3 and m 6 ( n
polylog(n) )

2D/3 such that m 6

( `
polylog(`) )

D. In both cases, we have m`2D 6 ( n
polylog(n) )

2D.

We consider the collection S of subsets of [n] from

Lemma III.6 with parameter ` such that |S| = nO(D) and

` 6 |S| 6 6D` for all S ∈ S . Thus for m 6 ( n
polylog(n) )

D,

the parameters m,n, |S| satisfy m 6 ( |S|
polylog(n) )

2D and

m|S|2D 6 ( n
polylog(n) )

2D.

Consider a set S ∈ S and the corresponding restriction ma-

trix MS , and let Bt = M>
S AtMS ∈ R|S|×|S|. By Lemma III.3,

III.4 and III.5 (assuming ‖E‖F 6 n−Ω(D)), after Steps 2a, 2b

and 2c, we obtain tensor T̃S ∈ R`6D such that
∥∥∥∥∥∥
T̃S −

∑

t∈[m]

(
Sym(B⊗D

t )
)⊗3

∥∥∥∥∥∥
F

6 nO(D) · ‖E‖F ,

with probability 1− nΩ(D) over the randomness of the input.

By union bound over S , we get the same guarantees for all

S ∈ S with probability 1− 1
poly(n) .

Next, observe that
∑

t∈[m]

(
Sym(B⊗D

t )
)⊗3 ∈ (R`)⊗6D is

simply a sub-tensor obtained by removing zero entries from

the tensor
∑m

t=1

(
Sym(RS(At)

⊗D
)⊗3 ∈ (Rn)⊗6D according

to S ⊆ [n]. Therefore, for each S ∈ S we have an estimate

of
∑m

t=1

(
Sym(RS(At)

⊗D)
)⊗3

, then if we average over all

S ∈ S , by Lemma III.6, we get a tensor R̃′
D ∈ Rn6D

such

that∥∥∥∥∥∥
R̃′

D − C ◦
∑

t∈[m]

(
Sym(A⊗D

t )
)⊗3

∥∥∥∥∥∥
F

6 nO(D) · ‖E‖F

where the error bound is by triangle inequality, and C is

a known tensor with entries within ((`/2n)6D, 1). Thus, by

normalizing R̃′
D according to C, we get a tensor R̃D such

that ∥∥∥∥∥∥
R̃D −

∑

t∈[m]

(
Sym(A⊗D

t )
)⊗3

∥∥∥∥∥∥
F

6 nO(D) · ‖E‖F .

Next, by the tensor decomposition algorithm (Fact III.7)

and the condition number upper bound from Lemma III.8,

Step 4 runs in nO(D) polylog(τ) time and outputs tensors

ÃD
1 , . . . , ÃD

m such that

min
π∈Sm

max
t∈[m]

∥∥∥ÃD
t − Sym

(
A⊗D

π(t)

)∥∥∥
F
6 nO(D)‖E‖F + τ .

Finally, by Lemma III.9 we can extract Ãt ∈ Rn×n from ÃD
t .

For odd D, using the fact that x1/D is a concave function

when D > 1, we get that

min
π∈Sm

max
t∈[m]

∥∥∥Ãt −Aπ(t)

∥∥∥
F
6 O(

√
n)

(
nO(D)‖E‖F + τ

)1/D

6 poly(n)
(
‖E‖1/DF + τ1/D

)
.

For even D, since ‖At‖max 6 polylog n with high probability

by standard concentration results, we get that

min
π∈Sm

max
t∈[m]

min
σ∈{±1}

∥∥∥Ãt − σAπ(t)

∥∥∥
F

6 O(n)
(
nO(D)‖E‖F + τ

)1/3D

‖At‖max

6 poly(n)
(
‖E‖1/3DF + τ1/3D

)
.

This completes the proof.

APPENDIX

A. Non-identifiability of sum of cubics of linearly independent

quadratics

Lemma A.1. Let a =
√
6 and consider the following distinct

sets of bivariate quadratic polynomials in variables x, y:

S1 = {x2 + axy, x2 + y2, y2 + axy} ,
S2 = {x2, x2 + axy + y2, y2} .

Then, the polynomials in each set have linearly independent

coefficient matrices but the sum of cubics of polynomials in

either sets is equal.

Proof: It is easy to verify that in both sets, the coefficient

matrices of the polynomials are linearly independent. The sum

of cubics of S1 is
∑

p∈S1

p(x, y)3 = 2x6 + 3ax5y

+ 3(a2 + 1)x4y2 + 2a3x3y3 + 3(a2 + 1)x2y4 + 3axy5 + 2y6

whereas
∑

p∈S2

p(x, y)3 = 2x6 + 3ax5y + 3(a2 + 1)x4y2

+ (6a+ a3)x3y3 + 3(a2 + 1)x2y4 + 3axy5 + 2y6



Thus by setting a =
√
6, we have 2a3 = 6a + a3, meaning∑

p∈S1
p(x, y)3 =

∑
p∈S2

p(x, y)3.

B. Non-identifiability of sum of squares of quadratics

We observe that sum-of-squares of even two random homo-

geneous quadratics cannot be uniquely decomposed.

Lemma A.2 (Non-Indentifiability of Generic Sum of Quadrat-

ics of Quadratics). Let A1, A2 be n× n matrices of indepen-

dent N (0, 1) entries up to symmetry. Then, with probability

1 over the draw of A1, A2, there exist symmetric A′
1, A

′
2

such that ‖A′
i −Aj‖2 > 1/nO(1) for every i, j such that

(x>A1x)
2 + (x>A2x)

2 = (x>A′
1x)

2 + (x>A′
2x)

2 for every

x.

Proof: Let V1, V2 be the vectorization of upper-triangular

entries of A1, A2 respectively. Since the coefficient tensor

of (x>A1x)
2 + (x>A2x)

2 is a linear transformation (scaling

of Sym operation) applied to A⊗2
1 + A⊗2

2 , it is enough to

find V ′
1 , V

′
2 distinct form V1, V2 such that V ⊗2

1 + V ⊗2
2 =

V ′
1
⊗2

+V ′
2
⊗2

. The (since V1, V2 are random Gaussian, the rank

decomposition is unique w.p. 1) orthogonal decomposition of

the matrix V1V
>
1 +V2V

>
2 uses orthogonal vectors V ′

1 , V
′
2 that

are different from V1, V2 (in fact must have a distance of at

least 1/n ‖V1‖2). Taking A′
i to be the matrix whose upper

triangular entries are given by V ′
i for i = 1, 2 completes the

proof.

In this section, we derive Theorem I.1 as a corollary of

our proof of Theorem I.3 combined with some elementary

algebraic considerations.

We will rely on the following lemma that shows that

whenever a matrix with low-degree polynomial entries in some

variable A has full column rank for some real assignment to

variables A, it must in fact have non-trivially lower bounded

singular value for any A′ after a small random perturbation in

each entry. Specifically, we prove:

Lemma A.3. Let G be a product distribution on N dimen-

sional vectors such that the marginal of any coordinate of G
is distributed so that no single point has probability > 2−NO(1)

(for e.g., uniform distribution on NO(1) bit rational numbers

in any constant length interval suffices). Let M(A) be a R×S
matrix such that each entry of M(A) is a degree-d polynomial

in the N -dimensional vector A with each entry upper bounded

by 2N
O(1)

. Suppose there is a point A′ ∈ RN such that M(A′)
has full rank R. Then, for any vector B ∈ RN with rational

entries of bit complexity at most NO(1),

Pr
G∼G

[M(B +G) has R-th singular value > 2−(SN)O(1)

]

> 1− 2−NO(1)

.

Our proof relies on the following variant of the classical

Schwartz-Zippel lemma and a simple observation about eigen-

values of matrices with polynomial bit complexity entries.

Fact A.4 (Corollary of Generalized DeMillo–Lipton–Zippel

Lemma, Theorem 4.6 in [5]). Let p(x1, x2, . . . , xn) be an n-

variate degree-d polynomial over any field F. Suppose p is not

identically equal to 0. Let S1, S2, . . . , Sn be finite subsets of

F of size s > dn2. Then, if xi ∼ Si is chosen uniformly at

random and independently for every i, then,

Pr[p(x) = 0] 6 dn/s .

Lemma A.5 (Gapped Eigenvalues from Polynomial Bit Com-

plexity). Let A be a n × r matrix of N -bit rational entries.

Suppose A has rank r. Then, the r-th smallest singular value

of A is at least 2−O(Nn3).

Proof: Let B = A>A and let B′ be the matrix of integers

obtained by clearing the denominators of the rational numbers

appearing in the entries of B. The bit complexity by B′ is then

larger than that of B by at most an additive Nn2 and is thus

at most 4Nn2. Further, by the Gershgorin circle theorem, the

largest eigenvalue of B′ is at most n24Nn2

.

Since B′ is a symmetric matrix with integer entries and has

full rank, the determinant of B′, det(B′) is a non-zero integer

and thus at least 1 in magnitude. Since det(B′) is the product

of all r eigenvalues of B′ each of which is at most n24Nn2

, the

smallest eigenvalue must be at least n−n2−4Nn3

6 2−5Nn3

and large enough n. This completes the proof.

Proof of Lemma A.3: For any fixed B ∈ RN , consider

the determinant det(Q) of the R × R matrix Q = M(A +
B)M(A+B)>. This is a polynomial of degree 2Rd in A. For

A∗ = A′−B, from the hypothesis, M(A∗+B)M(A∗+B)>

has full rank R. Thus, det(Q) is not identically equal to 0 as

a polynomial of A.

Let G ∈ RN be sampled from G. For each entry i
of G, let Si be the support of the distribution that Gi is

drawn from. Then, we know that this support is of size at

least 2N
O(1)

. Thus, by the generalized De-Millo-Lipton-Zippel

lemma (Fact A.4), the probability that M(B+G)M(B+G)>

is singular is at most 2−NO(1)

.

Further, the entries of M(B + G)M(B + G)> have bit

complexity at most NO(1). Thus, by Lemma A.5, whenever

the matrix M(B+G)M(B+G)> is non-singular, it’s smallest

eigenvalue is lower bounded by 2−(SN)O(1)

.

We can now finish the proof of Theorem I.1 and we defer

this to the full version of our paper.
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