Underwater Ultrasonic Topological Waveguides by Metal Additive Manufacturing
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Acoustic topological systems provide a new route to explore novel wave properties and
wave manipulation capabilities. Currently, most of the experimentally demonstrated acous-
tic topological systems are for airborne acoustic waves, and work at or below the kHz fre-
quency range. Here, we report an underwater acoustic topological waveguide that works
at the MHz frequency range. The 2D topological waveguide was formed at the interface
of two hexagonal lattices with different pillar radii that were fabricated with metal addi-
tive manufacturing. We demonstrated the existence of edge stages both numerically and
in underwater experiments. Our work has potential applications in underwater/biomedical

sensing, energy transport, and acoustofluidics.



Topological insulators possess properties originating in the quantum spin Hall effect, a major
area of interest in condensed matter physics!"2. The unique conduction of electrons on the edges
instead of the bulk of condensed materials in a topological insulator was first discovered in elec-
tronic materials. With insensitivity of the edge states to defects, topological insulators possess a
huge potential for energy and information transport with high efficiency'. Such unique properties

are attributed to the intrinsic spin -1/2 fermionic character of electrons.

Topological insulators are also realized in bosonic systems, such as photonic materials and

acoustic materials by exploiting the pseudo-spin states in those materials®~>?

. In photonic materi-
als, the pseudo-spin states in topological insulators are realized by generating photon polarization
states either by symmetry breaking or permittivity/permeability matching>7-*7. An active area is
use of new designs and materials to achieve the required refractive index contrast’>3*. Acoustic
systems, especially longitudinal airborne or underwater acoustic systems, do not have polarization

states. Instead, the pseudo-spin states are generated by constructing degenerate artificial acoustic
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spin-1/2 states based on breaking time-reversal symmetry , zone-folding

20,23 13,16,21,23,29

accidental degeneracy~"~°, coupled resonators and waveguides , and valley pseudo-
spin!222430 " Fascinating ways to manipulate acoustic waves are demonstrated with acoustic
topological insulators, for example, topologically robust and defect-insensitive wave guiding and
splitting®%-11-28_ directional acoustic signal transmittance and reception robust against surrounding
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noise and competing signals??, negative refraction of topological surface waves”, and negative re-

fraction out-coupling into free space?*. Those acoustic wave manipulation methods could provide

new opportunities for acoustic wave manipulation, sensing and communication®?22-26-31.35,

Currently, most of the experimentally demonstrated acoustic topological materials are for air-
borne acoustic waves at or below the kHz frequency range”!%1>16 A few works detailing un-

11,3031 " Underwater

derwater acoustic topological materials are also in the kHz frequency range
acoustic topological materials working in the MHz and higher frequency ranges that are most
relevant to applications in biomedical ultrasound, acoustofluidics, and ultrasonic on-chip commu-
nication and signal processing have not been reported. The main reason for this gap is due to
the difficulty in fabrication. Large acoustic impedance contrast between the constituent materials
of the phononic crystals and the background medium is required in acoustic topological materi-
als. This is easy to achieve with high-resolution 3D printing of polymers when the background

medium is air. However, polymers do not have sufficient acoustic impedance contrast with water.

Metals/ceramics could be promising candidates for underwater acoustic topological materials, yet
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precise fabrication of metal/ceramic structures for the MHz frequency ranges is difficult.

In our study, we fill this gap by demonstrating an underwater 2D acoustic topological waveg-
uide working in the MHz frequency range fabricated by metal 3D printing. We experimentally
characterized the topological behavior through transmission spectra measurements and observed
the corresponding topological states. Although 2D topological waveguides have been reported in

THz and EM wave domains>°

, our work opens the path for fabricating and characterizing acous-
tic topological materials in the MHz frequency range in water that will benefit a wide range of
applications in biomedical ultrasound imaging, diagnosis, therapy, particle manipulation and drug
delivery, as well as ultrasound on-chip communication and information processing?®’.

The structure of the 2D acoustic topological waveguide is depicted in Figure 1a). The waveg-
uide locates at the interface of two hexagonal lattices of metal rods that have Cg, symmetry. The
lattice constant is ap=0.83mm, and the radii of the rods on the two sides of the waveguide inter-
face are #/a=0.32 and 0.41, respectively. The dispersion relations of the hexagonal lattices with the
radii of 7/a=0.41 and 0.32 are plotted in Figure 1b) and d), respectively, corresponding to the rods
on the two sides of the waveguide interface. When the radius of the pillars in the hexagonal lattice
is larger or smaller than #/a=0.3576, at which a double-Dirac-cone structure exists as shown in
Figure 1c¢), the two two-fold degeneracy appears near the I" point, forming band gaps. Analogous
to electron orbitals, py, py, dxy and d,2_» refer to the "acoustic orbitals’ that defines the acoustic
pressure distribution modes in a unit cell of the hexagonal lattice. When r/a=0.41, p, and p, or-
bitals are associated with lower energy bands, and the dyy and d,»_;
bands. When /a=0.32, the p and d orbitals flipped. We call the lattice with r/a=0.41 the trivial

> are located at higher energy

lattice, and the one with /a=0.32 the topological non-trivial lattice. The insets in Figure 1b) and
d show the different orbitals associated with the band structures that confirm the band inversions
at different »/a values.

At the interface between the two phononic lattices with #/a=0.32 and 0.41, the topological phase
transition, which occurs due to the phase continuity and the flipped orbitals of phononic crystals on
the two sides of the interface, creates edge stages inside the bulk band gap along the interface. We
constructed a super lattice as showed in Figure 1e) that is formed by concatenation of a topological
lattice and a trivial lattice. The top and bottom edges were selected as the periodic boundaries to
obtain the band structure of the super lattice as plotted in Figure 1f). The symmetric mode (S)
and anti-symmetric mode (A) originated from the hybridization of the p and d orbitals can be

written as S = (py + dxz_yz)/\/§ and A = (py + dyy )/v/2. The acoustic pressure distributions of the
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symmetric mode (S) and anti-symmetric mode (A) plotted in Figure 1e) are the mode distributions
in the super lattice when k| = 0 and at the frequency where the red line and the blue line crosses
in Figure 1f). The S and A modes further hybridize to generate the acoustic spin-up edge states
(S+iA = py+d4, red line in Figure 1f) and spin-down edge states (S—iA = p_-+d_, blue line in
Figure 1f), respectively.

We conduct numerical simulation of the acoustic wave transmission through the trivial lattice,
topological lattice, and the waveguide that is formed at the interface between the trivial and topo-
logical lattices. Simulations are performed with COMSOL MULTIPHYSICS 5.6. The pillars are
modeled as acoustically rigid structures.

To calculate the transmission spectra, we numerically construct the topological waveguide that
is formed at the interface of the two hexagonal lattices with r/a=0.32 and 0.41. A point monopole
source is placed at the top of the trivial lattice, topological lattice, and the interface, respectively.
The transmitted wave amplitudes are measured at the bottom of the lattices at the same horizontal
positions as the incident source. Another simulation is conducted to measure the transmitted
amplitude through an empty space having the same size as the lattice. The transmission spectra
are calculated as the ratio between the transmitted amplitudes through the lattices and that through
the empty space is given in Figure 2a). Both perfect lattice and lattice with defects were simulated.
For the frequency range from 1.01MHz to 1.08MHz, the wave transmission through both the trivial
and topological lattices are small because of the band gap. In contrast, a high transmission peak
appears in the transmission spectrum of the waveguide in this frequency range resulting from the
edge stage inside the bandgap.

The above mentioned simulations are performed in a 2D setting. We also constructed the 3D
version of the 2D lattice with multiple pillar height /4 and calculated the transmission spectra at
the interface, as shown in Figure 2c). When there is no thermal viscous loss in the simulation
environment, the acoustic transmissions at the interface with multiple pillar heights are consistent
with our 2D simulation and the pillar height does not influence the acoustic transmission through
the topological waveguide. However in experiments, the thermal viscous loss will induce more
attenuation in the transmission when the pillar height is smaller.

Compared to waveguides formed by hard walls, the topological waveguides is robust to defects
in the waveguide structure. The broken pillars or additional scatterers in the topological lattice

5,8,31,32,35

will not influence the overall wave transmission behavior , as shown in Figure 2b) (per-

fect lattice) and d) (lattice with defects) that demonstrate the acoustic wave distribution of the
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edge stage at the interface at the frequency of 1.07MHz. We also plotted the acoustic transmis-
sion coefficients through the waveguide with and without defects in Figure 2a). The transmission
coefficient through both the perfect lattice waveguide and the waveguide with defects are similar.
Besides defects, the acoustic transmission will also be less influenced by the sharp bending in the
waveguide compared to hard-wall waveguides3-33.

In order to offer high acoustic impedance contrast with water and micrometer-scale geomet-
ric accuracy, Laser Powder Bed Fusion (LPBF) technology was used to 3D print metallic lattice
structures. The height of the pillars was 8.6 mm (more than 6 times the acoustic wavelength un-
derwater at 1.08 MHz) to make sure that the two-dimensional approximation is applicable. The
intended diameters of the pillars were 270 and 340 um. Boundary walls were constructed around
the pillars to avoid the collision of the recoater with the pillars during the printing process. The
structures were oriented at an angle of 30 degrees from X axis on the 25 cm X 25 cm X 10 cm
build platform. A support structure (0.5 mm thick) was used in between the bottom plate of the
pillars and build platform to dissipate the heat from the printed layers and assist in detaching the
samples from the build platform.

A 400 W Ytterbium fiber laser with wavelength 1060 nm and beam diameter 100 tm was used
for the LPBF processing. Argon gas was used as an inert gas to keep the oxygen content as low
as 0.1% during printing to prevent oxidation. Gas atomized Haynes 282 powdered material with a
particle size ranging from 15-40 um was used. The process parameters used were laser power of
250 W, laser scanning speed of 1000 mm/s, layer thickness of 40 um, and hatch distance of 0.11

mm?>°.

The printing process provides relatively precise control of the lattice geometries. Only small
surface roughness and slight bending of the rods toward varying directions are introduced by fab-
rication. Figure 3a) and b) shows the side view and top view of the printed topological waveguide
lattice under a microscope. From Figure 3a) and our microscope measurements, the diameters of
the pillars stays nearly a constant along the height direction. We also took over a hundred mea-
surements of distances between the nearest pillars in the fabricated lattices, a;, using a microscope
as shown in Figure 3b), and the distribution of the measured @;’s is given in Figure 3c). Those
values are averaged to get the effective lattice constant @ as @=0.83 mm. This value is used in the
simulations throughout the rest of the paper.

The schematic of the experimental setup is shown in Figure 4a). The transmitter, lattice sample

and receiver are aligned along one axis. Both the transmitter and receiver are OLYMPUS V303-
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SU. The surroundings of the sample are covered by metal plates. Two slits with the same height of
the lattice and the width of 5 mm are cut from the metal plates, one at the transmitting side and one
at the receiving side. The incident and transmitted waves can only pass through the slits. Figure 4b)
gives a picture of the experimental setup, where the sample is mounted on the top of a post holder
and the two slits are hung at two sides of the sample facing each other. The acoustic transmission
through the trivial lattice, topological lattice, and the interface are measured by moving the two
slits to the trivial side, topological side, and at the location of the interface, respectively. The
received signals are analyzed via Keysight DSOX3024T oscilloscope and MATLAB.

The emitted signal is a five-period pulse with center frequency f.. Two measurements are
conducted for each center frequency f, of the emitted pulse in order to get the acoustic wave trans-
mission coefficient through the sample in the frequency range around the corresponding f.. One
measurement is obtained when the sample is placed in between the transmitter and the receiver,
and a reference measurement is obtained when the sample is removed and the emitted pulse prop-
agates through pure water between the transmitter and the receiver. An example of the received
signal transmitted through the sample is shown in Figure 4c). The frequency spectrum of the trans-
mission coefficient is calculated as the ratio of the spectrum amplitudes of the two measurements
with and without the sample.

We set the center frequency f. to 0.9 MHz, 1 MHz, and 1.1 MHz and obtain multiple frequency
spectra of the transmission coefficient, as shown in Figure 4d). For each f., we choose the spec-
trum section between the full width at half maximum (FWHM) points around f,, as illustrated by
the shaded areas in Figure 4d), and set other spectrum sections to zero. The final transmission
spectrum is obtained from the average of the transmission coefficient spectra with different f’s.
The above process is repeated at least 10 times and averaged to reduce the random noise from
the instruments. The resulting transmission coefficients as a function of frequency are plotted in
Figure 4f) for the topological lattice (r/a=0.32), trivial lattice (r/a=0.41), and the edge stage along
the waveguide. The low transmission at and around 1.07 MHz through the trivial and the topolog-
ical lattices indicates the band gaps. The edge stage along the waveguide is indicated by the 5 dB
higher transmission coefficient at and around 1.07 MHz.

The magnitudes of the experimentally measured transmission coefficients (Figure 4f)) are
strongly influenced by the damping of acoustic waves when transmitting through the closely
packed pillar lattices, especially through the trivial lattice where the distance between the neigh-

boring pillars is less than 20 um. As a result, the difference between the transmission coefficient
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at the edge state and that at the band gap is less obvious in experiment than in simulation. More-
over, the experimentally measured transmission coefficient vs. frequency curve of the topological
lattice (r/a=0.32) is up-shifted by 0.05 MHz compared to in simulation, mainly because of the
deformation of the metal pillars during 3D printing. The topological lattice has the pillar diameter
of around 530 pum. Such thin pillars are more susceptible to bending deformation.

We designed, fabricated and experimentally characterized an MHz underwater ultrasound topo-
logical waveguide that opens the path towards exploring quantum behavior of classic acoustic sys-
tems at ultrasound frequencies in water/tissue. The topological waveguide was fabricated by metal
3D printing that gives enough acoustic impedance contrast with water and allows the control of
geometric parameters of metallic structures with sub-millimeter resolution. Potential applications
of topological waveguides include underwater acoustic energy transportation, sensing, communi-
cation, information processing, biomedical particle manipulation, and ultrasonic imaging.

This research was supported by the National Science Foundation through the University of
Wisconsin Materials Research Science and Engineering Center (DMR-1720415). The additive
manufacturing costs were supported by UW2020 WARF Discovery Institute Funds.
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FIG. 1. a) A schematic of the topological waveguide constructed at the interface of two types of phononic
lattices with the same lattice constant a but different radii r for metal pillars. b), c) and d) are the dispersion
relations of the phononic lattices with the filling ratio of #a=0.41, 0.3576 and 0.32, respectively. The inset
shows the different acoustic states p,, py, dxy, and dxz_yz. The dispersion relation with the filling ratio of
r/a=0.3576 has a four-fold degenerate Dirac cone. e) A super lattice formed by the concatenation of a trivial
lattice and a topological lattices, and the acoustic pressure distribution of the anti-symmetric mode (A) and
symmetric mode (S) in the super lattice. ) The dispersion relation of the super lattice. The shadowed area
represents the bulk states. The red and blue lines in the band gap represent acoustic spin-up and spin-down

edge states.
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FIG. 2. a) and c) are calculated transmission spectra. The black, green, blue and red curves in a) represent
the transmission coefficient spectrum along the waveguide formed by perfect lattice, waveguide formed
by lattice with defects, and lattices with #/a=0.32 and 0.41, respectively. The curves in c) represent the
transmission spectra for different pillar heights 4. b) and d) are simulated acoustic pressure distributions

showing the topological edge states in perfect lattice and lattice with defects, respectively.
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FIG. 3. a) Side view image of the metal topological waveguide under the optical microscope. b) Top view
image of the metal topological waveguide under the optical microscope. The a; is the distance between the
nearest two metal pillars, corresponding to the lattice constant of the phononic crystal. c¢) Distribution of

the measured lattice constants fit to a Gaussian distribution.
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FIG. 4. a) and b) The schematic and a picture of the experimental setup. The transmitter, metalic apertures
with small slits, the sample and the receiver are aligned along one axis. c¢) An example of a measured
time domain transmitted signals through the topological lattice. d) Frequency spectra of transmitted signals
through the topological lattice corresponding to emitted pulse center frequency of f, =0.9,1, and 1.1 MHz
before being normalized by the transmission spectra through water. The shaded areas correspond to the
spectrum sections between the FWHM points of each measurement. e) The normalized transmission coef-
ficient spectra of one set of measurement with r/a=0.32. f) Final transmission spectra of the trivial lattice
with r/a=0.41, topological lattice with r/a=0.32, and the topological edge state through the waveguide with
relatively high transmission.
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