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Acoustic topological systems provide a new route to explore novel wave properties and

wave manipulation capabilities. Currently, most of the experimentally demonstrated acous-

tic topological systems are for airborne acoustic waves, and work at or below the kHz fre-

quency range. Here, we report an underwater acoustic topological waveguide that works

at the MHz frequency range. The 2D topological waveguide was formed at the interface

of two hexagonal lattices with different pillar radii that were fabricated with metal addi-

tive manufacturing. We demonstrated the existence of edge stages both numerically and

in underwater experiments. Our work has potential applications in underwater/biomedical

sensing, energy transport, and acoustofluidics.
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Topological insulators possess properties originating in the quantum spin Hall effect, a major

area of interest in condensed matter physics1,2. The unique conduction of electrons on the edges

instead of the bulk of condensed materials in a topological insulator was first discovered in elec-

tronic materials. With insensitivity of the edge states to defects, topological insulators possess a

huge potential for energy and information transport with high efficiency1. Such unique properties

are attributed to the intrinsic spin -1/2 fermionic character of electrons.

Topological insulators are also realized in bosonic systems, such as photonic materials and

acoustic materials by exploiting the pseudo-spin states in those materials3–32. In photonic materi-

als, the pseudo-spin states in topological insulators are realized by generating photon polarization

states either by symmetry breaking or permittivity/permeability matching3–7,27. An active area is

use of new designs and materials to achieve the required refractive index contrast33,34. Acoustic

systems, especially longitudinal airborne or underwater acoustic systems, do not have polarization

states. Instead, the pseudo-spin states are generated by constructing degenerate artificial acoustic

spin-1/2 states based on breaking time-reversal symmetry8–12,15,16,18,28,31,32,35, zone-folding8,12,35,

accidental degeneracy20,23, coupled resonators and waveguides13,16,21,23,29, and valley pseudo-

spin19,22,24,30. Fascinating ways to manipulate acoustic waves are demonstrated with acoustic

topological insulators, for example, topologically robust and defect-insensitive wave guiding and

splitting8,9,11,28, directional acoustic signal transmittance and reception robust against surrounding

noise and competing signals22, negative refraction of topological surface waves25, and negative re-

fraction out-coupling into free space24. Those acoustic wave manipulation methods could provide

new opportunities for acoustic wave manipulation, sensing and communication8,22,26–31,35.

Currently, most of the experimentally demonstrated acoustic topological materials are for air-

borne acoustic waves at or below the kHz frequency range9,10,12,16. A few works detailing un-

derwater acoustic topological materials are also in the kHz frequency range11,30,31. Underwater

acoustic topological materials working in the MHz and higher frequency ranges that are most

relevant to applications in biomedical ultrasound, acoustofluidics, and ultrasonic on-chip commu-

nication and signal processing have not been reported. The main reason for this gap is due to

the difficulty in fabrication. Large acoustic impedance contrast between the constituent materials

of the phononic crystals and the background medium is required in acoustic topological materi-

als. This is easy to achieve with high-resolution 3D printing of polymers when the background

medium is air. However, polymers do not have sufficient acoustic impedance contrast with water.

Metals/ceramics could be promising candidates for underwater acoustic topological materials, yet
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precise fabrication of metal/ceramic structures for the MHz frequency ranges is difficult.

In our study, we fill this gap by demonstrating an underwater 2D acoustic topological waveg-

uide working in the MHz frequency range fabricated by metal 3D printing. We experimentally

characterized the topological behavior through transmission spectra measurements and observed

the corresponding topological states. Although 2D topological waveguides have been reported in

THz and EM wave domains36, our work opens the path for fabricating and characterizing acous-

tic topological materials in the MHz frequency range in water that will benefit a wide range of

applications in biomedical ultrasound imaging, diagnosis, therapy, particle manipulation and drug

delivery, as well as ultrasound on-chip communication and information processing29,37.

The structure of the 2D acoustic topological waveguide is depicted in Figure 1a). The waveg-

uide locates at the interface of two hexagonal lattices of metal rods that have C6v symmetry. The

lattice constant is a0=0.83mm, and the radii of the rods on the two sides of the waveguide inter-

face are r/a=0.32 and 0.41, respectively. The dispersion relations of the hexagonal lattices with the

radii of r/a=0.41 and 0.32 are plotted in Figure 1b) and d), respectively, corresponding to the rods

on the two sides of the waveguide interface. When the radius of the pillars in the hexagonal lattice

is larger or smaller than r/a=0.3576, at which a double-Dirac-cone structure exists as shown in

Figure 1c), the two two-fold degeneracy appears near the Γ point, forming band gaps. Analogous

to electron orbitals, px, py, dxy and dx2−y2 refer to the ’acoustic orbitals’ that defines the acoustic

pressure distribution modes in a unit cell of the hexagonal lattice. When r/a=0.41, px and py or-

bitals are associated with lower energy bands, and the dxy and dx2−y2 are located at higher energy

bands. When r/a=0.32, the p and d orbitals flipped. We call the lattice with r/a=0.41 the trivial

lattice, and the one with r/a=0.32 the topological non-trivial lattice. The insets in Figure 1b) and

d show the different orbitals associated with the band structures that confirm the band inversions

at different r/a values.

At the interface between the two phononic lattices with r/a=0.32 and 0.41, the topological phase

transition, which occurs due to the phase continuity and the flipped orbitals of phononic crystals on

the two sides of the interface, creates edge stages inside the bulk band gap along the interface. We

constructed a super lattice as showed in Figure 1e) that is formed by concatenation of a topological

lattice and a trivial lattice. The top and bottom edges were selected as the periodic boundaries to

obtain the band structure of the super lattice as plotted in Figure 1f). The symmetric mode (S)

and anti-symmetric mode (A) originated from the hybridization of the p and d orbitals can be

written as S = (px + dx2−y2)/
√

2 and A = (py + dxy )/
√

2. The acoustic pressure distributions of the
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symmetric mode (S) and anti-symmetric mode (A) plotted in Figure 1e) are the mode distributions

in the super lattice when k|| = 0 and at the frequency where the red line and the blue line crosses

in Figure 1f). The S and A modes further hybridize to generate the acoustic spin-up edge states

(S+iA = p++d+, red line in Figure 1f) and spin-down edge states (S−iA = p−+d−, blue line in

Figure 1f), respectively.

We conduct numerical simulation of the acoustic wave transmission through the trivial lattice,

topological lattice, and the waveguide that is formed at the interface between the trivial and topo-

logical lattices. Simulations are performed with COMSOL MULTIPHYSICS 5.6. The pillars are

modeled as acoustically rigid structures.

To calculate the transmission spectra, we numerically construct the topological waveguide that

is formed at the interface of the two hexagonal lattices with r/a= 0.32 and 0.41. A point monopole

source is placed at the top of the trivial lattice, topological lattice, and the interface, respectively.

The transmitted wave amplitudes are measured at the bottom of the lattices at the same horizontal

positions as the incident source. Another simulation is conducted to measure the transmitted

amplitude through an empty space having the same size as the lattice. The transmission spectra

are calculated as the ratio between the transmitted amplitudes through the lattices and that through

the empty space is given in Figure 2a). Both perfect lattice and lattice with defects were simulated.

For the frequency range from 1.01MHz to 1.08MHz, the wave transmission through both the trivial

and topological lattices are small because of the band gap. In contrast, a high transmission peak

appears in the transmission spectrum of the waveguide in this frequency range resulting from the

edge stage inside the bandgap.

The above mentioned simulations are performed in a 2D setting. We also constructed the 3D

version of the 2D lattice with multiple pillar height h and calculated the transmission spectra at

the interface, as shown in Figure 2c). When there is no thermal viscous loss in the simulation

environment, the acoustic transmissions at the interface with multiple pillar heights are consistent

with our 2D simulation and the pillar height does not influence the acoustic transmission through

the topological waveguide. However in experiments, the thermal viscous loss will induce more

attenuation in the transmission when the pillar height is smaller.

Compared to waveguides formed by hard walls, the topological waveguides is robust to defects

in the waveguide structure. The broken pillars or additional scatterers in the topological lattice

will not influence the overall wave transmission behavior5,8,31,32,35, as shown in Figure 2b) (per-

fect lattice) and d) (lattice with defects) that demonstrate the acoustic wave distribution of the
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edge stage at the interface at the frequency of 1.07MHz. We also plotted the acoustic transmis-

sion coefficients through the waveguide with and without defects in Figure 2a). The transmission

coefficient through both the perfect lattice waveguide and the waveguide with defects are similar.

Besides defects, the acoustic transmission will also be less influenced by the sharp bending in the

waveguide compared to hard-wall waveguides33,38.

In order to offer high acoustic impedance contrast with water and micrometer-scale geomet-

ric accuracy, Laser Powder Bed Fusion (LPBF) technology was used to 3D print metallic lattice

structures. The height of the pillars was 8.6 mm (more than 6 times the acoustic wavelength un-

derwater at 1.08 MHz) to make sure that the two-dimensional approximation is applicable. The

intended diameters of the pillars were 270 and 340 µm. Boundary walls were constructed around

the pillars to avoid the collision of the recoater with the pillars during the printing process. The

structures were oriented at an angle of 30 degrees from X axis on the 25 cm × 25 cm × 10 cm

build platform. A support structure (0.5 mm thick) was used in between the bottom plate of the

pillars and build platform to dissipate the heat from the printed layers and assist in detaching the

samples from the build platform.

A 400 W Ytterbium fiber laser with wavelength 1060 nm and beam diameter 100 µm was used

for the LPBF processing. Argon gas was used as an inert gas to keep the oxygen content as low

as 0.1% during printing to prevent oxidation. Gas atomized Haynes 282 powdered material with a

particle size ranging from 15-40 µm was used. The process parameters used were laser power of

250 W, laser scanning speed of 1000 mm/s, layer thickness of 40 µm, and hatch distance of 0.11

mm39.

The printing process provides relatively precise control of the lattice geometries. Only small

surface roughness and slight bending of the rods toward varying directions are introduced by fab-

rication. Figure 3a) and b) shows the side view and top view of the printed topological waveguide

lattice under a microscope. From Figure 3a) and our microscope measurements, the diameters of

the pillars stays nearly a constant along the height direction. We also took over a hundred mea-

surements of distances between the nearest pillars in the fabricated lattices, ai, using a microscope

as shown in Figure 3b), and the distribution of the measured ai’s is given in Figure 3c). Those

values are averaged to get the effective lattice constant a as a=0.83 mm. This value is used in the

simulations throughout the rest of the paper.

The schematic of the experimental setup is shown in Figure 4a). The transmitter, lattice sample

and receiver are aligned along one axis. Both the transmitter and receiver are OLYMPUS V303-
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SU. The surroundings of the sample are covered by metal plates. Two slits with the same height of

the lattice and the width of 5 mm are cut from the metal plates, one at the transmitting side and one

at the receiving side. The incident and transmitted waves can only pass through the slits. Figure 4b)

gives a picture of the experimental setup, where the sample is mounted on the top of a post holder

and the two slits are hung at two sides of the sample facing each other. The acoustic transmission

through the trivial lattice, topological lattice, and the interface are measured by moving the two

slits to the trivial side, topological side, and at the location of the interface, respectively. The

received signals are analyzed via Keysight DSOX3024T oscilloscope and MATLAB.

The emitted signal is a five-period pulse with center frequency fc. Two measurements are

conducted for each center frequency fc of the emitted pulse in order to get the acoustic wave trans-

mission coefficient through the sample in the frequency range around the corresponding fc. One

measurement is obtained when the sample is placed in between the transmitter and the receiver,

and a reference measurement is obtained when the sample is removed and the emitted pulse prop-

agates through pure water between the transmitter and the receiver. An example of the received

signal transmitted through the sample is shown in Figure 4c). The frequency spectrum of the trans-

mission coefficient is calculated as the ratio of the spectrum amplitudes of the two measurements

with and without the sample.

We set the center frequency fc to 0.9 MHz, 1 MHz, and 1.1 MHz and obtain multiple frequency

spectra of the transmission coefficient, as shown in Figure 4d). For each fc, we choose the spec-

trum section between the full width at half maximum (FWHM) points around fc, as illustrated by

the shaded areas in Figure 4d), and set other spectrum sections to zero. The final transmission

spectrum is obtained from the average of the transmission coefficient spectra with different fc’s.

The above process is repeated at least 10 times and averaged to reduce the random noise from

the instruments. The resulting transmission coefficients as a function of frequency are plotted in

Figure 4f) for the topological lattice (r/a=0.32), trivial lattice (r/a=0.41), and the edge stage along

the waveguide. The low transmission at and around 1.07 MHz through the trivial and the topolog-

ical lattices indicates the band gaps. The edge stage along the waveguide is indicated by the 5 dB

higher transmission coefficient at and around 1.07 MHz.

The magnitudes of the experimentally measured transmission coefficients (Figure 4f)) are

strongly influenced by the damping of acoustic waves when transmitting through the closely

packed pillar lattices, especially through the trivial lattice where the distance between the neigh-

boring pillars is less than 20 µm. As a result, the difference between the transmission coefficient
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at the edge state and that at the band gap is less obvious in experiment than in simulation. More-

over, the experimentally measured transmission coefficient vs. frequency curve of the topological

lattice (r/a=0.32) is up-shifted by 0.05 MHz compared to in simulation, mainly because of the

deformation of the metal pillars during 3D printing. The topological lattice has the pillar diameter

of around 530 µm. Such thin pillars are more susceptible to bending deformation.

We designed, fabricated and experimentally characterized an MHz underwater ultrasound topo-

logical waveguide that opens the path towards exploring quantum behavior of classic acoustic sys-

tems at ultrasound frequencies in water/tissue. The topological waveguide was fabricated by metal

3D printing that gives enough acoustic impedance contrast with water and allows the control of

geometric parameters of metallic structures with sub-millimeter resolution. Potential applications

of topological waveguides include underwater acoustic energy transportation, sensing, communi-

cation, information processing, biomedical particle manipulation, and ultrasonic imaging.
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FIG. 1. a) A schematic of the topological waveguide constructed at the interface of two types of phononic

lattices with the same lattice constant a but different radii r for metal pillars. b), c) and d) are the dispersion

relations of the phononic lattices with the filling ratio of r/a=0.41, 0.3576 and 0.32, respectively. The inset

shows the different acoustic states px, py, dxy, and dx2−y2 . The dispersion relation with the filling ratio of

r/a=0.3576 has a four-fold degenerate Dirac cone. e) A super lattice formed by the concatenation of a trivial

lattice and a topological lattices, and the acoustic pressure distribution of the anti-symmetric mode (A) and

symmetric mode (S) in the super lattice. e) The dispersion relation of the super lattice. The shadowed area

represents the bulk states. The red and blue lines in the band gap represent acoustic spin-up and spin-down

edge states.
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FIG. 2. a) and c) are calculated transmission spectra. The black, green, blue and red curves in a) represent

the transmission coefficient spectrum along the waveguide formed by perfect lattice, waveguide formed

by lattice with defects, and lattices with r/a=0.32 and 0.41, respectively. The curves in c) represent the

transmission spectra for different pillar heights h. b) and d) are simulated acoustic pressure distributions

showing the topological edge states in perfect lattice and lattice with defects, respectively.
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FIG. 3. a) Side view image of the metal topological waveguide under the optical microscope. b) Top view

image of the metal topological waveguide under the optical microscope. The ai is the distance between the

nearest two metal pillars, corresponding to the lattice constant of the phononic crystal. c) Distribution of

the measured lattice constants fit to a Gaussian distribution.
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FIG. 4. a) and b) The schematic and a picture of the experimental setup. The transmitter, metalic apertures

with small slits, the sample and the receiver are aligned along one axis. c) An example of a measured

time domain transmitted signals through the topological lattice. d) Frequency spectra of transmitted signals

through the topological lattice corresponding to emitted pulse center frequency of fc = 0.9,1, and 1.1 MHz

before being normalized by the transmission spectra through water. The shaded areas correspond to the

spectrum sections between the FWHM points of each measurement. e) The normalized transmission coef-

ficient spectra of one set of measurement with r/a=0.32. f) Final transmission spectra of the trivial lattice

with r/a=0.41, topological lattice with r/a=0.32, and the topological edge state through the waveguide with

relatively high transmission.
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