




Finally, in light of recent LfD methods which (1) highlight

that learning a separate policy for each subtask in a multi-

step task is more efficient [21] and (2) utilize suboptimal

demonstrations [3], we analyze if human audio contains

beneficial information for two related learning problems

— detecting the presence of subtasks and detecting the

presence of demonstration errors. Through proof-of-concept

experiments, we demonstrate that random forest classifiers

can detect subtasks & errors during demonstrations (Sec. III-

F) with a varied set of human acoustic features (Sec. III-E).

A. Task Descriptions

The two household tasks relevant to personal robots that

were used in our study are: (a) box opening and (b) fruit

cutting (Fig. 2). Each task consists of multiple subtasks

performed in sequence to accomplish the overall goal. There

could be pauses and errors during and between the execution

of the subtasks. Details of the two tasks are as follows:

1) Box Opening: A transparent box contains a green

wooden object inside it. A circular button located in the

center of the lid (covered with black paper) is pressed. This

unlocks the lid from the box. The lifted circular part of the

lid is then grasped to open the box. Then, the green wooden

object is picked from inside the box and placed on the table.

The lid is placed on top of the box. The circular button of

the lid is pressed again to lock the box. Finally, the green

object is picked from the table and placed on top of the

black circular button of the lid. The goal is to perform the

task without moving the box from its location on the table

surface (Fig. 2(a)). This is a multi-step pick-and-place task

with a challenging maneuver of lifting an object from inside

the box. This task is representative of several goal-oriented

household tasks.

2) Fruit Cutting: A flat surface contains different colored

wooden fruit pieces on it, along with an uncut wooden

banana whose three pieces are stuck together with Velcro.

A wooden knife is placed in a knife holder. The gripper of

the knife is covered with foam so it can be easily grasped

by the robot. A slit with a black marking indicates where

the robot’s gripper can firmly grasp the knife. The knife is

taken out of the knife holder, and then used to cut the banana

into three pieces by making two cuts through the two Velcro

attachments. Finally, the knife is placed back into the knife

holder. The goal is to cut the banana without moving any

other fruit on the wooden surface such that the cut pieces

also do not fall off (Fig. 2(b)). This is a task which requires

complex maneuvers to successfully cut the fruit pieces. This

is representative of complex manipulation tasks where the

trajectory path and forces applied can matter for successfully

achieving the goal.

B. Robot System

Demonstrations were provided to a 7 degree-of-freedom

Sawyer manipulator with series elastic actuators and a par-

allel gripper. We used a Movo MC1000 Conference USB

microphone to record audio during demonstrations. All par-

ticipants were told that the robot can watch and listen to

TABLE I

ORDERED SUBTASK CATEGORIES OF THE BOX OPENING TASK.

Index Subtask Category

1 Move arm towards the lid on the closed box

2 Click button to open the lid of the box

3 Grasp button on the lid of the box

4 Transport the lid from the box towards table

5 Release the button of the lid on the table from the gripper

6 Move arm towards the green object that’s inside the box

7 Grasp the green object

8
Transport the green object from
inside the box towards the table

9 Release the green object from gripper

10 Move arm towards the lid on the table

11 Grasp the button of the lid placed on the table

12 Transport the lid from the table towards the box’s body

13
Release the button of the lid

on top of the box from the gripper

14 Push the button to lock lid

15 Move arm towards green object

16 Grasp green object on the table

17 Transport the green object towards lid button

18 Release the green object from gripper on top of the lid

them. We used three static camera sensors (facing the hu-

man demonstrator and workspace) to collect high resolution

video data at ∼ 10 Hz for observing the demonstration.

The recorded visual and audio data were synchronized and

collected using ROS [22].

TABLE II

ORDERED SUBTASK CATEGORIES OF THE FRUIT CUTTING TASK.

Index Subtask Category

1 Move arm towards the knife

2 Grasp the knife while it’s inside the knife holder

3 Move the knife out from knife holder

4
Transport knife from the

knife holder towards the banana

5 Cut the first piece of the banana

6 Cut the second piece of the banana

7
Transport knife back from the

cutting board to the knife holder

8 Place the knife back in the knife holder

9 Release the knife from the gripper

C. User Study

1) Independent Variables (IVs): We evaluated the effects

of two independent variables (demonstration type and in-

struction type) on different acoustic features. For demonstra-

tion type (within-subjects), we focus on two modalities of

LfD for robot manipulation [21]: (1) learning via kinesthetic

teaching (KT) in which the joints of a robot are moved along

a trajectory in order to accomplish the task [23], and (2)

learning from observation, specifically video demonstrations,

in which a robot passively observes a human performing the

task. For instruction type (between-subjects), we focused on

the narration and natural conditions. Half of the participants

were part of the narration condition, in which they were ex-

plicitly asked to use speech to communicate their intentions

as they demonstrate. The remaining half of the participants

were in the natural condition, in which they were only told



that the robot can listen to them but not asked to use speech

specifically. To analyze data for subtasks and errors during

demonstrations, an IV indicating their presence or absence

is used (example of presence/absence depicted in Fig. 3).

2) Data Collection Procedure: We collected demonstra-

tion data from 20 participants (8 males, 12 females) for

each of the two tasks (Fig. 2). Participants were graduate or

undergraduate students, recruited from a university campus.

All participants used English speech and were proficient at

speaking the language. Each participant was allowed one

practice round for each demonstration type on the task they

were assigned to do first. After one round of practicing,

participants completed 2 demonstrations (1 KT, 1 video) for

the box opening task and 2 demonstrations (1 KT, 1 video)

for the fruit cutting task. The order of tasks and demon-

stration types were counterbalanced across all participants.

We discarded data from two participants due to network

issues during recording and perform our analysis on the

remaining 18 participants. This amounted to a total of ∼24

minutes of video demonstration data and ∼119 minutes of

KT demonstration data.

3) Dependent Measures (DMs): Our dependent measures

are the (1) duration of utterances during demonstrations (also

measured as speech density, i.e. fraction of a demonstration

accompanied by speech), (2) acoustic features capturing the

prosody of speech, and (3) richness of the content conveyed

by utterances. Richness of the content refers to the diversity

of the concepts conveyed via the spoken words.

4) Research Hypotheses: Our research hypotheses are as

follows:

• H1: Prior work has shown that humans rely more

on additional channels of communicating intent, such

as audio, during challenging tasks [1]. Based on this

finding and given the complexity of our manipulation

tasks, we hypothesize that teachers would rely on using

similar amount (speech density) and kind of utterances

(expressiveness or prosody) under both the natural and

narration instruction conditions.

• H2: Following the previous motivation from [1]—since

kinesthetic demonstrations require more physical effort

from the human teacher compared to video demon-

strations [24], we hypothesize that more pronounced

acoustic features and higher density of speech would

be present during kinesthetic demonstrations.

• H3: Prior work which studied unrestricted audio sig-

nals in human tutoring from parents to children [25],

established that human speech from the demonstrator

binds to action events, with structured pauses between

events. Given these findings, we hypothesize that human

teachers’ speech would be more pronounced in terms of

density and prosodic features during relevant subtask

executions in a demonstration (presence), compared to

periods of gaps between subtasks (absence).

• H4: Human utterances have been shown to be beneficial

for improving the error prediction of ASR systems [26],

with more emphatic uses of speech when errors occur.

Thus, we hypothesize that human teachers’ speech

would be more expressive and emphatic during presence

of error segments versus in their absence.

D. Data Annotation

Automated speech detection and recognition is an active

and challenging research area [8], [27], [28]. Average word

error rates on our dataset (computed using the publicly

available Google Speech to Text API [29]) are 0.37 (video

demos) and 0.59 (KT demos). To accurately characterize

human speech, subtasks, and errors during demonstrations,

we collected detailed annotations from three different hu-

man annotators. All annotators were undergraduate students

recruited at a university campus. The following annotations

were collected for each utterance (separated by a significant

pause, as judged by the annotators.): start time, stop time,

and speech transcription. Each annotation was provided via

a GUI interface with information available from the audio

microphone and all three camera views to be played back at

any time.

TABLE III

UNORDERED ERROR CATEGORIES OF THE BOX OPENING AND FRUIT

CUTTING TASKS.

Index Error Category

1
Teacher forgets to perform

a step of the task

2
Teacher struggles to move the

robot’s arm in a certain way (KT only)

3 Teacher struggles to grasp an object

4
Robot/Human arm collides with, knocks off,
or moves items from their original position

5
Teacher performs a step of
the task in the wrong order

6
Teacher unintentionally uses two hands

instead of one to perform the task (video only)

7
Teacher uses their human hand during a kinesthetic

demonstration to complete the task/help the robot (KT only)

8
Teacher accidentally drops an object

already grasped by the robot’s gripper (KT only)

9
Teacher intentionally re-strategizes

or re-attempts a step of the task

10
Unsuccessful step execution e.g. not applying

enough force with the knife to completely cut the banana

11 Other

Annotators also separately marked the start and end times

of predefined error and subtask categories for each demon-

stration (Fig. 3), along with labels of predefined speech

categories present with each identified subtask and error.

The predefined subtask categories are listed in Table I for

the box opening task and in Table II for the fruit cutting

task. Each subtask category represents a primitive step that

a robot can learn a policy for. The predefined error categories

for both tasks are listed in Table III. The predefined speech

categories that were labeled along with subtask and error

instances were: (1) frustration, (2) encouragement, (3) speech

pauses (explicit pause or filler words between two speech

utterances), (4) laughter, (5) surprise, (6) no variation in

manner of speech (normal). Annotators could also choose to

label an utterance in a ‘none’ category if it did fit well under

any of the predefined categories. All predefined categories



TABLE IV

PERCENTAGE OF A DEMONSTRATION DURATION ACCOMPANIED BY

UTTERANCES (SPEECH DENSITY), SUBTASKS, AND ERRORS.

AGGREGATE STATISTICS (MEAN & STANDARD ERROR) ARE REPORTED

FOR EACH OF THE FOUR SUBSETS RESULTING FROM TWO IVS.

Demo Type/
Instruction Type

%Utterances %Subtasks %Errors

Video/Natural 57.97± 14.12 79.56± 1.80 9.09± 3.27

Video/Narration 89.89± 3.26 90.67± 2.28 4.84± 1.87

KT/Natural 27.90± 11.86 91.43± 2.41 20.01± 3.87

KT/Narration 71.60± 6.09 85.33± 2.95 24.57± 2.74

were determined following the methodology of grounded

theory analysis [30], [31], [32].

E. Acoustic Feature Computation

We compute several acoustic features over the annotated

utterances to characterize prosody and content of human

speech. We first processed raw audio signals of human

demonstrators with a speech enhancement model [33] to filter

out the effect of environmental object-interaction sounds

and robot motor noises. We then compute 10 hand-crafted

prosodic features (Audio II) to capture prosody and affect

in terms of variation in the loudness or speed with which

a speaker can alter their pronouncement of an utterance

[26], [34], [18], [12], [35] — maximum pitch, energy, and

loudness; mean pitch, energy, and loudness; total energy;

pause duration between speech acts; total word count and

word rate. Pitch, loudness, and energy features represent

measures of intonation and enunciation, whereas duration,

pause, word count, word rate capture timing information.

These hand-crafted acoustic features have been shown to

enhance semantic parsing [34], understand speech recogni-

tion failures in dialogue systems [26], and widely used for

applications in human-robot interaction [11], [12] and speech

recognition [8] communities.

We also analyze annotated prosodic features (Audio I) in

the form of emotion labels present in speech (Sec. III-D). In

addition to the annotated (Audio I) and hand-crafted acoustic

features (Audio II), we also compute 256-dimensional deep

acoustic features (PASE [36]) for our learning experiments

(Sec. III-F). PASE features are obtained from the last layer

of a problem-agnostic speech encoder, trained in a self-

supervised manner, and beneficial for downstream tasks

which leverage speech features. To understand the richness

of semantic content conveyed via audio utterances, we used

variance of GloVe embeddings [37] (first principal compo-

nent from PCA analysis) for words in the annotated speech

transcriptions. GloVe embeddings are word representations

that capture fine-grained semantic and syntactic regularities

of words using vector arithmetic. The variance of such em-

beddings can quantify the variety of concepts communicated.

F. Learning Classifiers for Subtask and Error Detection

To further understand if different acoustic features in hu-

man speech can identify subtasks and errors during demon-

strations, we use random forest classifiers [38] for two

TABLE V

MEANS AND STANDARD ERRORS OF ANNOTATED ACOUSTIC FEATURE

DENSITY (%) (AUDIO I) COMPUTED ACROSS ENTIRE DEMONSTRATIONS.

Frustration Surprise
Speech
Pauses

Normal
Speech

Laughter
Encourage

-ment

KT 2.07±1.03 3.67±1.39 8.31±2.23 65.95±6.92 1.01±1.03 2.94±1.62

Video 0.00±0.00 0.10±0.10 1.80±1.33 62.81±7.60 0.00±0.00 0.00±0.00

F(1,16) 5.01 8.59 13.08 0.63 1.00 3.74

p <0.05 <0.01 <0.01 0.44 0.33 0.07

Narration 2.07±1.03 3.37±1.40 2.17±1.26 81.22±3.01 1.01±1.01 2.83±1.62

Natural 0.00±0.00 0.40±0.34 7.95±2.33 47.54±7.97 0.00±0.00 0.11±0.11

F(1,16) 5.01 5.46 3.84 8.23 1.00 3.26

p <0.05 <0.05 0.07 <0.05 0.33 0.09

binary classification tasks: (1) subtask detection and (2) error

detection. The default implementation from the scikit-learn

Python library [38] is used for our experiments. We use 100
trees for each experiment. From the human facing camera,

we also sample every 16th frame to compute video features

(penultimate layer output of I3D [39] pretrained on the

Kinetics activity recognition dataset [40]) and corresponding

audio features (Sec. III-E) for a 1 second window around this

frame. This provides about 2000 (cutting) and 2500 (box)

samples for kinesthetic demonstrations; and 370 (cutting)

and 510 (box) samples for video demonstrations. Audio

features consist of annotated speech labels encoded as one-

hot vectors (Audio I) described in Sec. III-D, hand-crafted

prosodic features (Audio II) described in Sec. III-E, as well

as deep acoustic features (PASE [36]).

IV. RESULTS AND DISCUSSION

We tested the reliability across annotators for consistency

of timing and content they labeled. The Interclass Correlation

(ICC) test shows high agreement on timing information

between the annotators for utterances, segments and mistakes

with ICC(1) = 0.94, F (35, 10) = 41.6, p < 0.001 (utter-

ances); ICC(1) = 0.82, F (971, 971) = 10.1, p < 0.001
(segments); ICC(1) = 0.89, F (35, 33) = 18.4, p < 0.001
(mistakes). Annotations for the error categories, subtask

categories, and speech categories also have good reliability

with Cohen’s κ > 0.72. Due to the high agreement among

annotators, we used data from a single annotator to present

the results going forward.

We report various findings about utterances (Sec. IV-A),

subtasks and errors (Sec. IV-B), and along the way address if

our hypotheses are supported by the results. Unless otherwise

noted, a statistical model based on a 2 x 2 mixed design

with instruction type as the between-subjects factor and

demonstration type as the within-subjects factor was used in

the analyses of variance (ANOVA). We also report findings

from our learning experiments in Sec. IV-C.

A. Human Audio Analysis during Demonstrations (H1, H2)

1) Quantification of Utterances: The total duration of the

demonstrations are 4069.37 sec (Narration/KT), 3080.34 sec

(Natural/KT), 893.95 sec (Narration/Video), 521.86 (Natu-

ral/Video). The total human audio duration are 2910.15 sec

(Narration/KT), 885.30 sec (Natural/KT), 811.11 sec (Narra-

tion/Video), 306.56 sec (Natural/Video). The ANOVA results



TABLE VI

MEANS AND STANDARD ERRORS OF SPEECH DENSITY, HAND-CRAFTED ACOUSTIC FEATURES (AUDIO II), AND VARIANCE OF GLOVE EMBEDDINGS

COMPUTED ACROSS ENTIRE DEMONSTRATIONS.

Speech
Density (%)

Mean
Pitch

Max
Pitch

Mean
Energy(1E-4)

Max
Energy

Total
Energy

Mean
Loudness(1E-4)

Max
Loudness

Word
Count

Word
Rate

Pause
Density (%)

GloVe
(PC Variance)

KT 48.61± 7.98 120.18± 14.61 264.48± 41.56 2.92± 0.58 0.21± 0.07 983.52± 305.05 56.50± 9.06 0.37± 0.07 154.81± 40.97 1.10± 0.16 25.69± 3.99 2.85± 0.39

Video 64.76± 8.68 121.18± 17.9 227.33± 39.73 3.65± 0.69 0.08± 0.02 374.50± 138.83 73.09± 11.45 0.24± 0.04 68.78± 21.44 1.75± 0.25 17.62± 4.34 2.77± 0.39

F (1,16) 10.86 0.03 3.75 6.91 5.40 7.15 19.39 8.62 8.52 45.21 10.86 0.28

p <0.01 0.87 0.07 <0.05 <0.05 <0.05 <0.01 <0.01 <0.05 <0.01 <0.01 0.60

Narration 76.02± 16.49 145.16± 8.61 312.25± 32.93 3.95± 0.55 0.23± 0.06 941.22± 281.56 77.69± 7.00 0.43± 0.06 160.53± 167.14 1.73± 0.15 11.99± 8.25 3.49± 0.1

Natural 37.35± 39.70 96.21± 19.73 179.56± 41.76 2.62± 0.69 0.06± 0.02 416.80± 189.4 51.91± 12.36 0.19± 0.04 63.06± 97.12 1.11± 0.26 31.33± 19.85 2.13± 0.49

F (1,16) 8.41 2.54 3.18 1.20 7.81 1.65 1.73 9.87 3.23 2.69 8.41 3.62

p <0.05 0.13 0.09 0.29 0.01 0.22 0.21 <0.01 0.09 0.12 <0.05 0.08

reveal that the percent duration of a demonstration accom-

panied by utterances (speech density) has a significant main

effect along both IVs: instruction type (F (1, 16) = 8.41, p <

0.05) and demonstration type (F (1, 16) = 10.86, p < 0.01)

(column 2 of Table IV). Speech density is significantly more

in the narration instruction conditions (M = 76.02, SD =
16.49) in comparison to the natural instruction conditions

(M = 37.35, SD = 39.70). Thus, the results for speech

density do not provide support for H1. Speech density

is significantly more during video demonstrations (M =
64.76, SD = 36.81) compared to KT demonstrations (M =
48.61, SD = 33.87). This result can be explained by the fact

that there are longer pauses between utterances (normalized

by demonstration duration) during KT (M = 25.69%, SD =
16.93) compared to video (M = 17.62%, SD = 18.40)

demonstrations (F (1, 16) = 26.89, p < 0.01). Often users

struggle with moving the robot arm in the right configuration

during KT demos, and focus on executing subtasks instead

of simultaneously talking during such periods. Thus, speech

density does not provide support for H2.

2) Speech Prosody: The annotated (Audio I) and hand-

crafted (Audio II) prosodic feature values are listed in Ta-

ble V and columns 3-12 of Table VI respectively. The feature

values are accumulated for utterances in a single demon-

stration and these accumulated values are averaged across

demonstrations. For Audio I features (Table V), we ob-

serve that most demonstrations are accompanied with normal

speech (without much expressivity via emotions). Frustration

(F (1, 16) = 5.01, p < 0.05), surprise (F (1, 16) = 8.59, p <

0.01), and speech pauses (F (1, 16) = 13.08, p < 0.01) are

conveyed significantly more during KT versus video demos.

Since more errors occur during KT demos (column 4 of

Table IV, Sec. IV-B.2), the presence of frustration, surprise,

and pauses also indicated that most errors are unintentional

as the users maneuver the robot arm (often getting stuck in

singular configurations) and the light-weight gripper (objects

often fall from the grasp of the gripper). This finding partially

supports H2. Frustration (F (1, 16) = 5.01, p < 0.05),

surprise (F (1, 16) = 3.37, p < 0.05), and normal speech

(F (1, 16) = 8.23, p < 0.05) are conveyed significantly more

during narration versus the natural instruction condition. This

implies that when users are asked to narrate, they tend

to be more expressive, but otherwise do not express their

frustration or surprise as emphatically, even during errors.

Thus, this finding does not support H1.

For Audio II features (Table VI), we find only max

loudness (F (1, 16) = 9.87, p < 0.01) and pause density

(F (1, 16) = 8.41, p < 0.05) to be significantly higher for

the narration versus natural condition. The other 8 features

are not significantly different across instruction types, thus

providing partial support for H1. For demonstration types,

KT comprised of more errors and pauses compared to

video demos. Thus, the behavior and speech patterns of

teachers are different across demonstration types. 8 out of 10

features are significantly higher for KT versus video demos

(mean energy, max energy, total energy, mean loudness, max

loudness, word count, word rate, pause density), providing

partial support for H2.

3) Information Conveyed via Spoken Words: We analyzed

the word distributions used in teachers’ utterances via vari-

ance of GloVe vectors across the first principal component

(Table VI). The semantic concepts conveyed via spoken

words are not significantly different for either demonstration

type (F (1, 16) = 0.28, p = 0.60) or instruction type

(F (1, 16) = 3.62, p = 0.08). PCA projections of GloVe word

embeddings for the box opening and fruit cutting tasks are

shown in Fig. 4. The overall word count for KT is higher than

video demos (F (1, 16) = 8.52, p < 0.05) as shown in Ta-

ble VI, with a lot more paraphrasing, prepositions, gerunds,

and noun modifiers, and words specific to robot parts (such

as ‘closing’, ‘closed‘, ‘kind of’, ‘picking’, ‘picked’, ‘grip’,

‘gripper’,‘grasp’,‘keyframe’ etc.) compared to video demos.

B. Human Audio Analysis in relation with Subtasks and

Errors during Demonstrations (H3, H4)

The percentage of demonstrations that consist of subtask

segments and errors for both IVs are shown in the last

2 columns of Table IV. The percentage for subtasks is

significantly different across demonstration type (KT: M =
89.43, SD = 8.81; video: M = 83.09, SD = 7.17;

F (1, 16) = 6.78, p < 0.05) but not across instruction

type (Narration: M = 87.06, SD = 7.84; Natural: M =
85.55, SD = 9.36; F (1, 16) = 0.36, p = 0.55). The former

effect can be explained by the presence of more errors,

pauses, and gaps during KT demonstrations (Sec. IV-A.2).

The latter effect indicates that the execution of subtasks

does not vary based on the instruction for using audio. The

percentage of errors is very low for video demonstrations

(M = 4.85, SD = 6.10), resulting in a negligible sample

size of errors. Hence, we didn’t analyze errors for video

demonstrations any further. For KT, the percentage of errors

(M=19.50, SD=9.23) are not significantly different across

instruction types (Narration: M = 22.30, SD = 16.98;



TABLE VII

MEANS AND STANDARD ERRORS OF SPEECH DENSITY, HAND-CRAFTED ACOUSTIC FEATURES (AUDIO II), GLOVE EMBEDDINGS IN THE PRESENCE

AND ABSENCE OF SUBTASKS.

Speech
Density (%)

Mean
Pitch

Max
Pitch

Mean
Energy(1E-4)

Max
Energy

Total
Energy

Mean
Loudness(1E-4)

Max
Loudness

Word
Count

Word
Rate

Pause
Density (%)

GloVe
(PC Variance)

KT/Narration

Presence 68.24±5.55 141.21±11.90 321.51±43.73 3.04±0.60 0.23±0.06 1163.38±419.53 61.78±7.29 0.44±0.06 195.44±51.91 1.29±0.13 31.16±5.14 3.52±0.20

Absence 62.10±7.70 145.17±11.61 277.86±37.23 3.41±0.99 0.17±0.10 193.24±79.92 59.43±12.51 0.31±0.09 28.89±12.11 1.17±0.10 25.60±5.25 3.44±0.69

F (1,8) 2.06 0.42 4.69 0.35 0.18 5.48 0.10 1.10 11.8 4.32 0.70 0.02

p 0.19 0.54 0.06 0.57 0.68 0.05 0.75 0.32 <0.05 0.07 0.43 0.90

KT/Natural

Presence 30.52±11.72 98.52±24.13 207.45±62.36 2.79±0.96 0.08±0.03 510.04±254.49 52.54±16.01 0.22±0.06 68.56±29.79 0.90±0.26 32.89±9.29 2.29±0.74

Absence 23.02±9.5 78.75±28.25 110.45±40.67 1.83±1.0 0.03±0.01 100.37±81.72 33.49±17.02 0.09±0.04 9.56±7.1 0.57±0.28 18.96±5.9 1.08±0.52

F (1,8) 2.75 0.88 5.25 3.87 4.02 4.35 4.11 6.13 5.29 2.13 2.17 2.26

p 0.14 0.38 0.05 0.08 0.08 0.07 0.08 <0.05 0.05 0.18 0.18 0.17

Video/Narration

Presence 90.41±2.55 149.27±12.35 302.99±46.52 4.96±0.79 0.12±0.03 497.48±217.64 96.71±8.58 0.33±0.04 89.06±34.77 2.15±0.14 9.66±2.52 3.52±0.23

Absence 41.59±7.93 73.4±17.97 129.66±32.53 2.01±1.34 0.03±0.01 28.34±24.32 36.74±16.91 0.13±0.03 2.06±0.61 1.13±0.24 36.22±7.64 2.82±0.77

F (1,8) 28.81 11.06 10.87 6.4 29.27 4.18 16.74 71.08 5.55 19.47 7.26 0.66

p <0.01 <0.05 <0.05 <0.05 <0.01 0.08 <0.01 <0.01 0.05 <0.01 <0.05 0.44

Video/Natural

Presence 50.0±15.04 92.71±29.52 151.67±50.26 2.47±0.94 0.04±0.01 178.38±100.9 52.64±18.06 0.14±0.04 35.94±14.71 1.29±0.39 5.56±2.60 2.09±0.67

Absence 21.29±9.09 78.09±31.71 109.48±44.84 2.61±1.21 0.02±0.01 44.8±36.69 44.41±19.69 0.10±0.04 1.94±1.05 0.61±0.33 26.0±9.20 1.54±0.79

F (1,8) 7.11 1.08 4.00 0.02 1.55 3.56 0.33 1.49 5.31 3.22 6.53 0.62

p <0.05 0.33 0.08 0.88 0.25 0.10 0.58 0.26 0.05 0.11 <0.05 0.45

TABLE VIII

MEANS AND STANDARD ERRORS OF SPEECH DENSITY, HAND-CRAFTED ACOUSTIC FEATURES (AUDIO II), GLOVE EMBEDDINGS IN THE PRESENCE

AND ABSENCE OF ERRORS.

Speech
Density (%)

Mean
Pitch

Max
Pitch

Mean
Energy(1E-4)

Max
Energy

Total
Energy

Mean
Loudness(1E-4)

Max
Loudness

Word
Count

Word
Rate

Pause
Density (%)

GloVe
(PC Variance)

KT/Narration

Presence 57.33±7.58 135.44±12.44 284.46±36.31 2.58±0.62 0.25±0.11 217.14±76.44 45.12±6.57 0.41±0.09 36.89±13.57 0.94±0.13 38.26±5.78 4.44±0.7

Absence 70.12±5.32 139.82±10.66 317.04±44.02 3.28±0.65 0.17±0.04 1139.48±391.22 65.83±8.21 0.38±0.05 177.61±46.27 1.27±0.13 27.98±4.37 3.77±0.23

F (1,8) 6.74 0.28 2.07 2.89 0.39 7.15 22.04 0.05 13.49 14.63 5.55 1.31

p <0.05 0.61 0.19 0.13 0.55 <0.05 <0.01 0.82 <0.05 <0.05 0.05 0.29

KT/Natural

Presence 20.88±10.42 81.7±28.96 125.3±46.47 1.66±0.68 0.02±0.01 64.77±55.97 36.14±13.44 0.11±0.04 7.61±6.13 0.63±0.22 16.54±8.26 2.1±1.06

Absence 31.77±11.80 98.38±24.00 207.45±62.36 2.71±0.97 0.08±0.03 545.64±280.75 50.4±16.28 0.21±0.06 71.89±32.11 0.86±0.26 27.38±7.45 2.41±0.8

F (1,8) 2.64 1.99 5.95 1.74 5.11 3.71 1.14 5.64 4.80 1.58 0.96 0.15

p 0.14 0.20 <0.05 0.22 0.05 0.09 0.32 <0.05 0.06 0.24 0.36 0.71

Natural: M = 16.70, SD = 6.16; F (1, 16) = 0.6, p = 0.45).

For further analysis, we perform 1-way ANOVA analyses

using four subsets of our data independently. The four

subsets are the conditions that result from combinations of

demonstration type and instruction type. For each subset,

a single IV is a binary category depicting the presence or

absence of subtasks/errors. The DMs are same as before

(Sec. III-C.3).

1) Quantification of Utterances: As shown in Table VIII,

for each subset of the data, the density of speech is higher

during absence of errors, significantly more (F (1, 8) =
6.74, p < 0.05) during kinesthetic demonstrations versus

video demonstrations under the narration condition. This

finding does not provide support for H4. Talking more

during absence of errors can be explained by the fact that

majority of the demonstration data does not comprise of

errors (Table IV). However, there are still interesting acoustic

cues present during errors as shown in Table X.

A similar trend of higher speech density is observed

during subtasks in comparison to in their absence, with

significant results under subsets of video demonstrations

(Video/Narration: F (1, 8) = 28.81, p < 0.01; Video/Natural:

F (1, 8) = 7.11, p < 0.05) as shown in Table VII. For

kinesthetic demonstrations, users talk roughly as much in

the presence of subtasks as in their absence. These findings

provide partial support for H3.

2) Speech Prosody: For analysis of subtasks, we observe

that most acoustic features are higher during subtask pres-

ence versus absence (Table VII), with most being statistically

significant for video demonstrations under the narration

condition. However, as shown in Table VII, teachers still

exhibit more expressive speech during gaps between subtask

executions (such as surprise and laughter during KT demon-

strations in the narration condition). This result is similar

to Nagai et al. [13], where demonstrators use expressive

infant-directed speech before they begin the execution of a

subtask. As a few of the results in Table VII and Table IX

are statistically significant (more so during the narration

condition), they only provide partial support for H3.

For analysis of errors (Table VIII), we observe that most

prosodic features are higher in the absence of errors, since

the majority of demonstrations comprise of non-erroneous

segments (Table IV). However, there are still interesting

acoustic cues such as frustration, surprise, pauses, laugh-

ter, and encouragement present during errors as shown in

Table X. This indicates that teachers convey some of their

reactions with emphasis when a mistake happens. This

finding provides only partial support for H4.

3) Information Conveyed via Spoken Words: We do not

observe a significant difference in the variance of GloVe

features under any of the data subsets for subtask analysis

(KT/Narration: F (1, 8) = 0.02, p = 0.90; KT/Natural:

F (1, 8) = 2.26, p = 0.17; Video/Narration: F (1, 8) =
0.66, p = 0.44; Video/Natural: F (1, 8) = 0.62, p = 0.45)

or error analysis (KT/Narration: F (1, 8) = 1.31, p = 0.29,

KT/Natural F (1, 8) = 0.15, p = 0.71). This implies that the





TABLE IX

MEANS AND STANDARD ERRORS OF ANNOTATED ACOUSTIC FEATURE

DENSITY (%) (AUDIO I) IN THE PRESENCE AND ABSENCE OF SUBTASKS.

Frustration Surprise
Speech
Pauses

Normal
Speech

Laughter
Encourage

-ment

KT/Narration

Presence 4.76±1.88 6.71±2.33 4.02±1.93 90.89±4.12 1.86±1.75 6.27±3.01

Absence 0.00±0.00 10.49±7.76 0.3±0.29 14.17±10.07 2.69±2.53 0.03±0.03

F(1,8) 5.70 0.24 3.11 50.09 1.00 3.83

p <0.05 0.64 0.12 <0.01 0.35 0.09

KT/Natural

Presence 0.00±0.00 0.86±0.69 5.64±2.31 46.72±13.79 0.00±0.00 0.3±0.28

Absence 0.00±0.00 0.00±0.00 1.72±1.62 5.62±5.20 0.00±0.00 0.00±0.00

F(1,8) NA 1.38 2.41 9.96 NA 1.00

p NA 0.27 0.16 <0.05 NA 0.35

Video/Narration

Presence 0.00±0.00 0.20±0.19 0.00±0.00 91.71±3.73 0.00±0.00 0.00±0.00

Absence 0.00±0.00 0.00±0.00 0.00±0.00 0.48±0.46 0.00±0.00 0.00±0.00

F(1,8) NA 1.00 NA 556.53 NA NA

p NA 0.35 NA <0.01 NA NA

Video/Natural

Presence 0.00±0.00 0.00±0.00 0.00±0.00 52.12±15.59 0.00±0.00 0.00±0.00

Absence 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00

F(1,8) NA NA NA 9.94 NA NA

p NA NA NA <0.05 NA NA

TABLE X

MEANS AND STANDARD ERRORS OF ANNOTATED ACOUSTIC FEATURE

DENSITY (%) (AUDIO I) IN THE PRESENCE AND ABSENCE OF ERRORS.

Frustration Surprise
Speech
Pauses

Normal
Speech

Laughter
Encourage

-ment

KT/Narration

Presence 15.1±7.18 19.04±9.29 15.51±6.6 84.68±5.2 5.69±5.37 10.23±6.71

Absence 1.15±0.44 3.68±1.93 0.0±0.0 78.4±6.03 0.23±0.22 4.12±2.56

F(1,8) 3.62 2.34 4.91 0.70 1.00 0.81

p 0.09 0.16 0.06 0.43 0.35 0.39

KT/Natural

Presence 0.00±0.00 1.25±1.18 9.86±8.78 35.05±13.96 0.00±0.00 0.27±0.26

Absence 0.00±0.00 1.07±0.99 0.01±0.01 37.9±12.83 0.00±0.00 0.19±0.18

F(1,8) NA 0.01 1.12 0.21 NA 1.00

p NA 0.92 0.32 0.66 NA 0.35

for multi-step manipulation tasks to a situated robot. Our

findings indicate that human audio cues carry rich informa-

tion, potentially beneficial for further technological advance-

ment in robot learning. While several human demonstra-

tion datasets leverage environment and object sounds [41],

[42], [43], [44], often human audio of demonstrators is not

recorded. Since speech data can be recorded easily with

light-weight and cheap sensors, we propose that collection of

human audio data, as part of future demonstration datasets,

can be beneficial for algorithm development. Integrating

information from (1) environmental and object sounds along

with (2) information from human audio is a topic for future

work. Our analysis is done on a small in-house dataset

collected in a laboratory setting. Leveraging human audio

TABLE XI

AVERAGE F1 SCORES OF SUBTASK DETECTION AND ERROR DETECTION

FOR USERS IN THE ‘NARRATION’ INSTRUCTION CONDITION.

Subtask Detection Error Detection

Features
Box

Video
Box
KT

Cutting
Video

Cutting
KT

Box
KT

Cutting
KT

Random 0.44 0.4 0.44 0.43 0.43 0.47
Constant 0.46 0.47 0.46 0.46 0.46 0.42

Audio I 0.86 0.84 0.76 0.78 0.89 0.80
Audio II 0.71 0.60 0.72 0.70 0.56 0.55

Audio (I+II) 0.91 0.87 0.79 0.89 0.89 0.82

PASE 0.59 0.49 0.71 0.50 0.46 0.46

Video 0.82 0.80 0.66 0.74 0.72 0.67
Audio I+Video 0.78 0.84 0.77 0.80 0.90 0.84

Audio II+Video 0.80 0.82 0.53 0.77 0.69 0.66
Audio (I+II)+Video 0.82 0.83 0.76 0.78 0.90 0.84

for larger datasets with larger, data-driven feature encoders,

such as neural networks, is also a topic for future work.

Furthermore, several recent LfD approaches use suboptimal

demonstrations [45], [46] as input. Real-world demonstration

data can contain partial errors and gaps in between execu-

tion steps of a task. Instead of discarding suboptimal data,

leveraging an additional modality like audio can provide ad-

ditional information about errors and subtasks to aid learning.

We take the key first step in leveraging human audio for robot

learning—understanding the information present in speech

and highlighting that it is possible for automated methods to

extract it.
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