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Understanding Acoustic Patterns of Human Teachers
Demonstrating Manipulation Tasks to Robots
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Abstract— Humans use audio signals in the form of spoken
language or verbal reactions effectively when teaching new skills
or tasks to other humans. While demonstrations allow humans
to teach robots in a natural way, learning from trajectories
alone does not leverage other available modalities including
audio from human teachers. To effectively utilize audio cues
accompanying human demonstrations, first it is important to
understand what kind of information is present and conveyed
by such cues. This work characterizes audio from human
teachers demonstrating multi-step manipulation tasks to a
situated Sawyer robot using three feature types: (1) duration
of speech used, (2) expressiveness in speech or prosody, and
(3) semantic content of speech. We analyze these features along
four dimensions and find that teachers convey similar semantic
concepts via spoken words for different conditions of (1)
demonstration types, (2) audio usage instructions, (3) subtasks,
and (4) errors during demonstrations. However, differentiating
properties of speech in terms of duration and expressiveness
are present along the four dimensions, highlighting that human
audio carries rich information, potentially beneficial for tech-
nological advancement of robot learning from demonstration
methods.

I. INTRODUCTION

Human speech or audio is a natural, low-effort and rich
channel of communication [1]. Typically, robot learning from
demonstration (LfD) algorithms ignore information carried
by a human teacher’s audio cues, and only work with the
state of the environment and the human teacher’s actions
[2], [3]. Some prior works have leveraged gaze patterns
of human demonstrators [4], [5], [6], [7]. However, to the
best of our knowledge, human audio has been primarily
unexplored in the context of learning from demonstration. A
primary reason why incorporating this additional information
has been challenging is the lack of understanding about how
complex human audio signals are used and what they con-
vey during demonstrations. Recent advancements in sensor
technologies and speech processing algorithms [8] make it
possible to extract informative features from human audio.
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Now I'll cut
the fruit by

slicing here... ~—

Oooh okay,
let’s carefully
cut the fruit!

(a) Kinesthetic Demonstration

(b) Video Demonstration

Fig. 1. (a) Kinesthetic demonstrations and (b) Video demonstrations
along with unrestricted audio signals of human teachers are recorded for
two manipulation tasks.

Raw human audio carries more information than is present
in a transcribed narration of textual words produced by an
automatic speech recognition (ASR) system [8]. Audio can
contain information via spoken language, as well as out-of-
vocabulary words not part of a natural-language learning cor-
pus, disfluencies (restarts, repetitions, and self-corrections),
filled pauses (‘um’, ‘uh’), hyperarticulations such as careful
enunciation, slow speaking rate, increased pitch and loudness
[9]. This work is a first step in analyzing how humans
use unrestricted audio cues during demonstrations for multi-
step manipulation tasks —characterizing duration, prosodic
features, and spoken words.

We work in a limited-data regime with an in-house dataset
of demonstrations and accompanying human audio, collected
via a human subjects study in a laboratory setting. With the
help of human annotators, we characterize human speech
via: (1) duration of speech in a demonstration, (2) annotated
and computational prosodic features, (3) semantic content
of words spoken during speech. We analyze these features
across different dimensions: (a) type of demonstration used
(kinesthetic teaching using the robot’s arm versus the human
performing the task themselves), (b) the instruction given
to a teacher about usage of speech during demonstrations
(explicit narration instructions versus implicit indication to
use speech), (c) presence or absence of relevant subtasks
being executed, (d) presence or absence of errors during
demonstrations. We find that users convey similar semantic
concepts through spoken words across all four dimensions.
However, we observe that teachers are more expressive but
talk less densely during kinesthetic teaching compared to
demonstrating the task themselves. Moreover, teachers are
similarly expressive across audio usage instructions for a
majority of acoustic features, but overall talk more when
explicitly asked to do so. We also find that with a majority of
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(a) Box Opening (b) Fruit Cutting

Fig. 2. Start and end conditions of two manipulation tasks for which
demonstrations are provided to a Sawyer robot.

acoustic features, teachers use speech more densely and more
expressively during relevant subtask executions and in the
absence of errors. However, some interesting speech features
exist even in the absence of subtasks and in the presence of
errors.

Finally, with a proof-of-concept experiment, we show that
human acoustic features are useful to detect presence of
relevant subtasks and errors during demonstrations. Taken to-
gether, our findings highlight that human speech carries rich
information about demonstrations, which can be beneficial
for technological advancement of robot learning algorithms
in the future.

II. RELATED WORK
A. Human Audio-assisted Human-Robot Interaction

Scassellati et al. [10] showed that understanding emotion
in the context of a conversation is an essential skill for
keeping humans engaged when interacting with robots. They
developed a service that helps a robot to recognize acoustic
patterns in a human’s tone of voice by classifying approving,
neutral and prohibitive affects. Kim et al. [11] identified three
phases during which humans use affective prosody during
interactive reinforcement learning. These three phases are:
direction (before the learner acts), guidance (as the learner
indicates intent) and feedback (after the learner completes
a task-action). Short et al. [12] used ratio of variances in
raw speech features to detect contingent human responses
to robot probes for open-world human-robot interaction.
However, in comparison to the problem settings of these
prior works, we focus on the learning from demonstration
paradigm and characterize raw audio signals of human teach-
ers to better understand the information present in this modal-
ity. Work on infant-directed demonstrations [13] as well as
robotics work inspired from infant-directed speech [14] high-
lights that the way that people talk to a robot could possibly
help it learn more easily if they treat it like it is an infant, than
if they spoke to it like it is an adult. However, this may not
always be possible with a variety of commercialized robots
not exhibiting infant-like appearances or personalities. In our
work, we study how human demonstrators use unrestricted
speech to teach robots which are not infant-like in appearance
or behavior, to better inform how human audio cues could
be leveraged for learning by a variety of robots.

B. Human Audio-assisted Robot Learning

Prior research in learning from demonstration has uti-
lized human speech signals accompanying demonstrations,
however with a restricted vocabulary of words used by the
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Fig. 3. Subtasks, human utterances, and errors during demonstrations are
shown on the top, middle, and bottom rows respectively during kinesthetic
demonstrations for the fruit cutting task (each subtask category represented
with a different color, all error categories represented by the same color).

human teacher. Nicolescu et al. [15] demonstrated the role of
verbal cues both during demonstrations and as feedback from
the human teacher during the agent’s learning process, to
facilitate learning of navigation behaviors on a mobile robot.
However, they restricted human teachers to use a limited vo-
cabulary of words to indicate relevant parts of the workspace
or actions that a robot must execute. Similarly, Pardowitz et
al. [16] used a fixed set of seven vocal comments which
are mapped one-to-one with features relevant to the task
to augment subtask similarity detection and learning of the
task model from demonstrations for a simple table setting
task. Prior work in reinforcement learning has also utilized a
fixed vocabulary of words to record voice-based feedback for
reward shaping [17] and reinforcement learning [18]. Some
works have also utilized sentiment analysis using natural
language processing to aid reinforcement learning with the
semantics of spoken words [19], [20]. However, in our work,
we use raw and unrestricted speech signals accompanying
demonstrations to understand how human teachers convey
information via audio.

III. METHODOLOGY

To develop an understanding of complex audio signals
from human teachers demonstrating manipulation tasks to an
embodied robot, we aim to understand how three different
acoustic properties (duration, prosody, semantic content) are
used by human teachers across demonstration modalities,
audio-usage instructions, relevant subtask segments, and er-
rors during demonstrations. To analyze this information, we
conducted a user study (Sec. III-C) where human teachers
demonstrate two multi-step manipulation tasks (Sec. III-
A) to a Sawyer robot. We recorded audio data along with
visual state observations for two demonstration modalities
— kinesthetic teaching (KT) and video demonstrations (Sec.
III-B). Half of the participants were asked to explicitly
narrate what they were doing as they demonstrated the
task and the other half were only implictly told that the
robot can watch and listen to them (instruction type). To
characterize audio utterances of human teachers accurately,
we collected annotations for when teachers talk and what
they conveyed through it. To understand how utterances
relate to task segments and errors during demonstrations,
we also collected annotations for (1) subtask segment labels,
(2) types of demonstration errors, and (3) characterizations
of human speech accompanying subtasks and errors. Details
about our annotation procedure are explained in Sec III-D.



Finally, in light of recent LfD methods which (1) highlight
that learning a separate policy for each subtask in a multi-
step task is more efficient [21] and (2) utilize suboptimal
demonstrations [3], we analyze if human audio contains
beneficial information for two related learning problems
— detecting the presence of subtasks and detecting the
presence of demonstration errors. Through proof-of-concept
experiments, we demonstrate that random forest classifiers
can detect subtasks & errors during demonstrations (Sec. III-
F) with a varied set of human acoustic features (Sec. III-E).

A. Task Descriptions

The two household tasks relevant to personal robots that
were used in our study are: (a) box opening and (b) fruit
cutting (Fig. 2). Each task consists of multiple subtasks
performed in sequence to accomplish the overall goal. There
could be pauses and errors during and between the execution
of the subtasks. Details of the two tasks are as follows:

1) Box Opening: A transparent box contains a green
wooden object inside it. A circular button located in the
center of the lid (covered with black paper) is pressed. This
unlocks the lid from the box. The lifted circular part of the
lid is then grasped to open the box. Then, the green wooden
object is picked from inside the box and placed on the table.
The 1id is placed on top of the box. The circular button of
the lid is pressed again to lock the box. Finally, the green
object is picked from the table and placed on top of the
black circular button of the lid. The goal is to perform the
task without moving the box from its location on the table
surface (Fig. 2(a)). This is a multi-step pick-and-place task
with a challenging maneuver of lifting an object from inside
the box. This task is representative of several goal-oriented
household tasks.

2) Fruit Cutting: A flat surface contains different colored
wooden fruit pieces on it, along with an uncut wooden
banana whose three pieces are stuck together with Velcro.
A wooden knife is placed in a knife holder. The gripper of
the knife is covered with foam so it can be easily grasped
by the robot. A slit with a black marking indicates where
the robot’s gripper can firmly grasp the knife. The knife is
taken out of the knife holder, and then used to cut the banana
into three pieces by making two cuts through the two Velcro
attachments. Finally, the knife is placed back into the knife
holder. The goal is to cut the banana without moving any
other fruit on the wooden surface such that the cut pieces
also do not fall off (Fig. 2(b)). This is a task which requires
complex maneuvers to successfully cut the fruit pieces. This
is representative of complex manipulation tasks where the
trajectory path and forces applied can matter for successfully
achieving the goal.

B. Robot System

Demonstrations were provided to a 7 degree-of-freedom
Sawyer manipulator with series elastic actuators and a par-
allel gripper. We used a Movo MC1000 Conference USB
microphone to record audio during demonstrations. All par-
ticipants were told that the robot can watch and listen to

TABLE I
ORDERED SUBTASK CATEGORIES OF THE BOX OPENING TASK.

[ Index | Subtask Category

1 Move arm towards the lid on the closed box
2 Click button to open the lid of the box
3 Grasp button on the lid of the box
4 Transport the lid from the box towards table
5 Release the button of the lid on the table from the gripper
6 Move arm towards the green object that’s inside the box
7 Grasp the green object
3 Transport the green object from

inside the box towards the table
9 Release the green object from gripper
10 Move arm towards the lid on the table
11 Grasp the button of the lid placed on the table
12 Transport the lid from the table towards the box’s body
13 Release the button of the lid

on top of the box from the gripper

14 Push the button to lock lid
15 Move arm towards green object
16 Grasp green object on the table
17 Transport the green object towards lid button
18 Release the green object from gripper on top of the lid

them. We used three static camera sensors (facing the hu-
man demonstrator and workspace) to collect high resolution
video data at ~ 10 Hz for observing the demonstration.
The recorded visual and audio data were synchronized and
collected using ROS [22].

TABLE I
ORDERED SUBTASK CATEGORIES OF THE FRUIT CUTTING TASK.

[ Index | Subtask Category |

Move arm towards the knife
Grasp the knife while it’s inside the knife holder
Move the knife out from knife holder
Transport knife from the
knife holder towards the banana
Cut the first piece of the banana
Cut the second piece of the banana
Transport knife back from the
cutting board to the knife holder
Place the knife back in the knife holder
Release the knife from the gripper
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C. User Study

1) Independent Variables (IVs): We evaluated the effects
of two independent variables (demonstration type and in-
struction type) on different acoustic features. For demonstra-
tion type (within-subjects), we focus on two modalities of
LfD for robot manipulation [21]: (1) learning via kinesthetic
teaching (KT) in which the joints of a robot are moved along
a trajectory in order to accomplish the task [23], and (2)
learning from observation, specifically video demonstrations,
in which a robot passively observes a human performing the
task. For instruction type (between-subjects), we focused on
the narration and natural conditions. Half of the participants
were part of the narration condition, in which they were ex-
plicitly asked to use speech to communicate their intentions
as they demonstrate. The remaining half of the participants
were in the natural condition, in which they were only told



that the robot can listen to them but not asked to use speech
specifically. To analyze data for subtasks and errors during
demonstrations, an IV indicating their presence or absence
is used (example of presence/absence depicted in Fig. 3).

2) Data Collection Procedure: We collected demonstra-
tion data from 20 participants (8 males, 12 females) for
each of the two tasks (Fig. 2). Participants were graduate or
undergraduate students, recruited from a university campus.
All participants used English speech and were proficient at
speaking the language. Each participant was allowed one
practice round for each demonstration type on the task they
were assigned to do first. After one round of practicing,
participants completed 2 demonstrations (1 KT, 1 video) for
the box opening task and 2 demonstrations (1 KT, 1 video)
for the fruit cutting task. The order of tasks and demon-
stration types were counterbalanced across all participants.
We discarded data from two participants due to network
issues during recording and perform our analysis on the
remaining 18 participants. This amounted to a total of ~24
minutes of video demonstration data and ~119 minutes of
KT demonstration data.

3) Dependent Measures (DMs): Our dependent measures
are the (1) duration of utterances during demonstrations (also
measured as speech density, i.e. fraction of a demonstration
accompanied by speech), (2) acoustic features capturing the
prosody of speech, and (3) richness of the content conveyed
by utterances. Richness of the content refers to the diversity
of the concepts conveyed via the spoken words.

4) Research Hypotheses: Our research hypotheses are as
follows:

o H1: Prior work has shown that humans rely more
on additional channels of communicating intent, such
as audio, during challenging tasks [1]. Based on this
finding and given the complexity of our manipulation
tasks, we hypothesize that teachers would rely on using
similar amount (speech density) and kind of utterances
(expressiveness or prosody) under both the natural and
narration instruction conditions.

o H2: Following the previous motivation from [1]—since
kinesthetic demonstrations require more physical effort
from the human teacher compared to video demon-
strations [24], we hypothesize that more pronounced
acoustic features and higher density of speech would
be present during kinesthetic demonstrations.

o H3: Prior work which studied unrestricted audio sig-
nals in human tutoring from parents to children [25],
established that human speech from the demonstrator
binds to action events, with structured pauses between
events. Given these findings, we hypothesize that human
teachers’ speech would be more pronounced in terms of
density and prosodic features during relevant subtask
executions in a demonstration (presence), compared to
periods of gaps between subtasks (absence).

o H4: Human utterances have been shown to be beneficial
for improving the error prediction of ASR systems [26],
with more emphatic uses of speech when errors occur.
Thus, we hypothesize that human teachers’ speech

would be more expressive and emphatic during presence
of error segments versus in their absence.

D. Data Annotation

Automated speech detection and recognition is an active
and challenging research area [8], [27], [28]. Average word
error rates on our dataset (computed using the publicly
available Google Speech to Text API [29]) are 0.37 (video
demos) and 0.59 (KT demos). To accurately characterize
human speech, subtasks, and errors during demonstrations,
we collected detailed annotations from three different hu-
man annotators. All annotators were undergraduate students
recruited at a university campus. The following annotations
were collected for each utterance (separated by a significant
pause, as judged by the annotators.): start time, stop time,
and speech transcription. Each annotation was provided via
a GUI interface with information available from the audio
microphone and all three camera views to be played back at
any time.

TABLE III
UNORDERED ERROR CATEGORIES OF THE BOX OPENING AND FRUIT
CUTTING TASKS.

[ Index | Error Category
1 Teacher forgets to perform
a step of the task
2 Teacher struggles to move the
robot’s arm in a certain way (KT only)
3 Teacher struggles to grasp an object
4 Robot/Human arm collides with, knocks off,
or moves items from their original position

5 Teacher performs a step of

the task in the wrong order
6 Teacher unintentionally uses two hands

instead of one to perform the task (video only)
7 Teacher uses their human hand during a kinesthetic
demonstration to complete the task/help the robot (KT only)
3 Teacher accidentally drops an object
already grasped by the robot’s gripper (KT only)
9 Teacher intentionally re-strategizes
or re-attempts a step of the task
10 Unsuccessful step execution e.g. not applying
enough force with the knife to completely cut the banana

11 Other

Annotators also separately marked the start and end times
of predefined error and subtask categories for each demon-
stration (Fig. 3), along with labels of predefined speech
categories present with each identified subtask and error.
The predefined subtask categories are listed in Table I for
the box opening task and in Table II for the fruit cutting
task. Each subtask category represents a primitive step that
a robot can learn a policy for. The predefined error categories
for both tasks are listed in Table III. The predefined speech
categories that were labeled along with subtask and error
instances were: (1) frustration, (2) encouragement, (3) speech
pauses (explicit pause or filler words between two speech
utterances), (4) laughter, (5) surprise, (6) no variation in
manner of speech (normal). Annotators could also choose to
label an utterance in a ‘none’ category if it did fit well under
any of the predefined categories. All predefined categories



TABLE IV
PERCENTAGE OF A DEMONSTRATION DURATION ACCOMPANIED BY
UTTERANCES (SPEECH DENSITY), SUBTASKS, AND ERRORS.
AGGREGATE STATISTICS (MEAN & STANDARD ERROR) ARE REPORTED

TABLE V
MEANS AND STANDARD ERRORS OF ANNOTATED ACOUSTIC FEATURE
DENSITY (%) (AUDIO I) COMPUTED ACROSS ENTIRE DEMONSTRATIONS.

o N Speech Normal J Encourage
FOR EACH OF THE FOUR SUBSETS RESULTING FROM TWO IVs. Frustration | Surprise Pauses Speech Laughter -ment
KT 2.07£1.03 | 3.672139 | 831£2.23 | 65951692 | 1.01E1.03 | 2.94%1.62
Demo Tyne/ Video 0.00£0.00 | 0.10£0.10 | 1.80£1.33 | 62.81£7.60 | 0.00£0.00 | 0.00£0.00
> LYP %Utterances %Subtasks %Errors F(1,16) 5.01 8.59 13.08 0.63 1.00 3.74
Instruction Type ) <0.05 <001 <0.01 044 0.33 0.07
- Narration || 2.07£1.03 | 3.37£1.40 | 2.17£1.26 | 81.2243.01 | L.OILL01 | 2.83£1.62
\_/1deo/Natur_a1 57.97+14.12 | 79.56 £ 1.80 9.09 & 3.27 Natural || 0.00£0.00 | 0.40£0.34 | 7.95%2.33 | 47.54£7.97 | 0.00£0.00 | O.11F0.11
Video/Narration 89.89 + 3.26 90.67 + 2.28 4.84 + 1.87 F(1,16) 5.01 546 384 823 1.00 326
KT/Natural 2790+ 11.86 | 91.43+£2.41 | 20.01 £+ 3.87 P <0.05 <0.05 0.07 <0.05 033 0.09
KT/Narration 71.60 + 6.09 85.33+2.95 | 24.57 +2.74

were determined following the methodology of grounded
theory analysis [30], [31], [32].

E. Acoustic Feature Computation

We compute several acoustic features over the annotated
utterances to characterize prosody and content of human
speech. We first processed raw audio signals of human
demonstrators with a speech enhancement model [33] to filter
out the effect of environmental object-interaction sounds
and robot motor noises. We then compute 10 hand-crafted
prosodic features (Audio II) to capture prosody and affect
in terms of variation in the loudness or speed with which
a speaker can alter their pronouncement of an utterance
[26], [34], [18], [12], [35] — maximum pitch, energy, and
loudness; mean pitch, energy, and loudness; total energy;
pause duration between speech acts; total word count and
word rate. Pitch, loudness, and energy features represent
measures of intonation and enunciation, whereas duration,
pause, word count, word rate capture timing information.
These hand-crafted acoustic features have been shown to
enhance semantic parsing [34], understand speech recogni-
tion failures in dialogue systems [26], and widely used for
applications in human-robot interaction [11], [12] and speech
recognition [8] communities.

We also analyze annotated prosodic features (Audio I) in
the form of emotion labels present in speech (Sec. III-D). In
addition to the annotated (Audio I) and hand-crafted acoustic
features (Audio II), we also compute 256-dimensional deep
acoustic features (PASE [36]) for our learning experiments
(Sec. III-F). PASE features are obtained from the last layer
of a problem-agnostic speech encoder, trained in a self-
supervised manner, and beneficial for downstream tasks
which leverage speech features. To understand the richness
of semantic content conveyed via audio utterances, we used
variance of GloVe embeddings [37] (first principal compo-
nent from PCA analysis) for words in the annotated speech
transcriptions. GloVe embeddings are word representations
that capture fine-grained semantic and syntactic regularities
of words using vector arithmetic. The variance of such em-
beddings can quantify the variety of concepts communicated.

F. Learning Classifiers for Subtask and Error Detection

To further understand if different acoustic features in hu-
man speech can identify subtasks and errors during demon-
strations, we use random forest classifiers [38] for two

binary classification tasks: (1) subtask detection and (2) error
detection. The default implementation from the scikit-learn
Python library [38] is used for our experiments. We use 100
trees for each experiment. From the human facing camera,
we also sample every 16" frame to compute video features
(penultimate layer output of I3D [39] pretrained on the
Kinetics activity recognition dataset [40]) and corresponding
audio features (Sec. III-E) for a 1 second window around this
frame. This provides about 2000 (cutting) and 2500 (box)
samples for kinesthetic demonstrations; and 370 (cutting)
and 510 (box) samples for video demonstrations. Audio
features consist of annotated speech labels encoded as one-
hot vectors (Audio I) described in Sec. III-D, hand-crafted
prosodic features (Audio II) described in Sec. III-E, as well
as deep acoustic features (PASE [36]).

IV. RESULTS AND DISCUSSION

We tested the reliability across annotators for consistency
of timing and content they labeled. The Interclass Correlation
(ICC) test shows high agreement on timing information
between the annotators for utterances, segments and mistakes
with ICC(1) = 0.94, F(35,10) = 41.6,p < 0.001 (utter-
ances); ICC(1) = 0.82, F(971,971) = 10.1,p < 0.001
(segments); ICC(1) = 0.89, F(35,33) = 18.4,p < 0.001
(mistakes). Annotations for the error categories, subtask
categories, and speech categories also have good reliability
with Cohen’s £ > 0.72. Due to the high agreement among
annotators, we used data from a single annotator to present
the results going forward.

We report various findings about utterances (Sec. IV-A),
subtasks and errors (Sec. IV-B), and along the way address if
our hypotheses are supported by the results. Unless otherwise
noted, a statistical model based on a 2 x 2 mixed design
with instruction type as the between-subjects factor and
demonstration type as the within-subjects factor was used in
the analyses of variance (ANOVA). We also report findings
from our learning experiments in Sec. IV-C.

A. Human Audio Analysis during Demonstrations (H1, H2)

1) Quantification of Utterances: The total duration of the
demonstrations are 4069.37 sec (Narration/KT), 3080.34 sec
(Natural/KT), 893.95 sec (Narration/Video), 521.86 (Natu-
ral/Video). The total human audio duration are 2910.15 sec
(Narration/KT), 885.30 sec (Natural/KT), 811.11 sec (Narra-
tion/Video), 306.56 sec (Natural/Video). The ANOVA results



TABLE VI
MEANS AND STANDARD ERRORS OF SPEECH DENSITY, HAND-CRAFTED ACOUSTIC FEATURES (AUDIO II), AND VARIANCE OF GLOVE EMBEDDINGS
COMPUTED ACROSS ENTIRE DEMONSTRATIONS.

Speech Mean Max Mean Max Total Mean Max Word Word Pause GloVe
Density (%) Pitch Pitch Energy(1E-4) Energy Energy Loudness(1E-4) Loudness Count Rate Density (%) (PC Variance)
KT 48.61 £7.98 120.18 £ 14.61 | 264.48 = 41.56 2.92 £0.58 0.21 £0.07 | 983.52 & 305.05 56.50 £ 9.06 0.37 £0.07 154.81 £ 40.97 1.10+0.16 25.69 £ 3.99 2.85£0.39
Video 64.76 £ 8.68 121.18 £17.9 227.33 £39.73 3.65 £ 0.69 0.08 £0.02 | 374.50 & 138.83 73.09 £ 11.45 0.24 £0.04 68.78 £ 21.44 1.75 £ 0.25 17.62 +4.34 2.77+0.39
F (1,16) 10.86 0.03 3.75 6.91 5.40 7.15 19.39 8.62 8.52 45.21 10.86 0.28
P <0.01 0.87 0.07 <0.05 <0.05 <0.05 <0.01 <0.01 <0.05 <0.01 <0.01 0.60
Narration 76.02 +16.49 145.16 = 8.61 312.25 £32.93 3.95 £ 0.55 0.23 £0.06 | 941.22 & 281.56 77.69 £ 7.00 0.43 £0.06 | 160.53 £167.14 | 1.73 £0.15 11.99 £8.25 3.49£0.1
Natural 37.35 £ 39.70 96.21 £ 19.73 179.56 £ 41.76 2.62 £0.69 0.06 £ 0.02 416.80 £ 189.4 51.91 £12.36 0.19 £0.04 63.06 £ 97.12 1.114+0.26 | 31.33£19.85 2.13+0.49
F (1,16) 8.41 2.54 3.18 1.20 7.81 1.65 1.73 9.87 3.23 2.69 8.41 3.62
P <0.05 0.13 0.09 0.29 0.01 0.22 0.21 <0.01 0.09 0.12 <0.05 0.08

reveal that the percent duration of a demonstration accom-
panied by utterances (speech density) has a significant main
effect along both IVs: instruction type (F(1,16) = 8.41,p <
0.05) and demonstration type (F(1,16) = 10.86,p < 0.01)
(column 2 of Table IV). Speech density is significantly more
in the narration instruction conditions (M = 76.02,SD =
16.49) in comparison to the natural instruction conditions
(M = 37.35,SD = 39.70). Thus, the results for speech
density do not provide support for HI1. Speech density
is significantly more during video demonstrations (M =
64.76,SD = 36.81) compared to KT demonstrations (M =
48.61, SD = 33.87). This result can be explained by the fact
that there are longer pauses between utterances (normalized
by demonstration duration) during KT (M = 25.69%, SD =
16.93) compared to video (M = 17.62%,SD = 18.40)
demonstrations (F'(1,16) = 26.89,p < 0.01). Often users
struggle with moving the robot arm in the right configuration
during KT demos, and focus on executing subtasks instead
of simultaneously talking during such periods. Thus, speech
density does not provide support for H2.

2) Speech Prosody: The annotated (Audio I) and hand-
crafted (Audio II) prosodic feature values are listed in Ta-
ble V and columns 3-12 of Table VI respectively. The feature
values are accumulated for utterances in a single demon-
stration and these accumulated values are averaged across
demonstrations. For Audio I features (Table V), we ob-
serve that most demonstrations are accompanied with normal
speech (without much expressivity via emotions). Frustration
(F(1,16) = 5.01,p < 0.05), surprise (F'(1,16) = 8.59,p <
0.01), and speech pauses (F'(1,16) = 13.08,p < 0.01) are
conveyed significantly more during KT versus video demos.
Since more errors occur during KT demos (column 4 of
Table IV, Sec. IV-B.2), the presence of frustration, surprise,
and pauses also indicated that most errors are unintentional
as the users maneuver the robot arm (often getting stuck in
singular configurations) and the light-weight gripper (objects
often fall from the grasp of the gripper). This finding partially
supports H2. Frustration (F'(1,16) = 5.01,p < 0.05),
surprise (F'(1,16) = 3.37,p < 0.05), and normal speech
(F(1,16) = 8.23,p < 0.05) are conveyed significantly more
during narration versus the natural instruction condition. This
implies that when users are asked to narrate, they tend
to be more expressive, but otherwise do not express their
frustration or surprise as emphatically, even during errors.
Thus, this finding does not support H1.

For Audio II features (Table VI), we find only max

loudness (F'(1,16) = 9.87,p < 0.01) and pause density
(F(1,16) = 8.41,p < 0.05) to be significantly higher for
the narration versus natural condition. The other 8 features
are not significantly different across instruction types, thus
providing partial support for HI. For demonstration types,
KT comprised of more errors and pauses compared to
video demos. Thus, the behavior and speech patterns of
teachers are different across demonstration types. 8 out of 10
features are significantly higher for KT versus video demos
(mean energy, max energy, total energy, mean loudness, max
loudness, word count, word rate, pause density), providing
partial support for H2.

3) Information Conveyed via Spoken Words: We analyzed
the word distributions used in teachers’ utterances via vari-
ance of GloVe vectors across the first principal component
(Table VI). The semantic concepts conveyed via spoken
words are not significantly different for either demonstration
type (F(1,16) = 0.28,p = 0.60) or instruction type
(F(1,16) = 3.62,p = 0.08). PCA projections of GloVe word
embeddings for the box opening and fruit cutting tasks are
shown in Fig. 4. The overall word count for KT is higher than
video demos (F'(1,16) = 8.52,p < 0.05) as shown in Ta-
ble VI, with a lot more paraphrasing, prepositions, gerunds,
and noun modifiers, and words specific to robot parts (such
as ‘closing’, ‘closed‘, ‘kind of’, ‘picking’, ‘picked’, ‘grip’,

[l

‘gripper’,‘grasp’, ‘keyframe’ etc.) compared to video demos.

B. Human Audio Analysis in relation with Subtasks and
Errors during Demonstrations (H3, H4)

The percentage of demonstrations that consist of subtask
segments and errors for both IVs are shown in the last
2 columns of Table IV. The percentage for subtasks is
significantly different across demonstration type (KT: M =
89.43,SD = 8.81; video: M = 83.09,SD = 7.17;
F(1,16) = 6.78,p < 0.05) but not across instruction
type (Narration: M = 87.06,SD = 7.84; Natural: M =
85.55,5D = 9.36; F'(1,16) = 0.36,p = 0.55). The former
effect can be explained by the presence of more errors,
pauses, and gaps during KT demonstrations (Sec. IV-A.2).
The latter effect indicates that the execution of subtasks
does not vary based on the instruction for using audio. The
percentage of errors is very low for video demonstrations
(M = 4.85,5D = 6.10), resulting in a negligible sample
size of errors. Hence, we didn’t analyze errors for video
demonstrations any further. For KT, the percentage of errors
(M=19.50, SD=9.23) are not significantly different across
instruction types (Narration: M = 22.30,SD = 16.98;



TABLE VII
MEANS AND STANDARD ERRORS OF SPEECH DENSITY, HAND-CRAFTED ACOUSTIC FEATURES (AUDIO II), GLOVE EMBEDDINGS IN THE PRESENCE
AND ABSENCE OF SUBTASKS.

Speech Mean Max Mean Max Total Mean Max Word Word Pause GloVe
Density (%) Pitch Pitch Energy(1E-4) Energy Energy Loudness(1E-4) Loudness Count Rate Density (%) (PC Variance)
KT/Narration
Presence 68.24£5.55 141.21£11.90 | 321.51£43.73 3.0410.60 0.23+0.06 | 1163.38+419.53 61.78£7.29 0.4410.06 | 195.44%51.91 | 1.2940.13 | 31.16%5.14 3.52+0.20
Absence 62.10+£7.70 145.17£11.61 | 277.864+37.23 3.4140.99 0.17£0.10 193.24£79.92 59.43£12.51 0.31+0.09 28.89+12.11 1.1740.10 | 25.60+5.25 3.44+40.69
F (1,8) 2.06 0.42 4.69 0.35 0.18 5.48 0.10 1.10 11.8 4.32 0.70 0.02
P 0.19 0.54 0.06 0.57 0.68 0.05 0.75 032 <0.05 0.07 0.43 0.90
KT/Natural
Presence 30.52+11.72 98.52424.13 207.45+£62.36 2.79+0.96 0.08+0.03 510.04£254.49 52.54+16.01 0.22+0.06 68.56+29.79 0.90+0.26 | 32.89+9.29 2.29+0.74
Absence 23.024+9.5 78.75428.25 110.45+40.67 1.83+1.0 0.03£0.01 100.37+81.72 33.49£17.02 0.09+0.04 9.56+7.1 0.57£0.28 18.96+5.9 1.08+0.52
F(1.8) 2.75 0.88 525 387 4.02 435 4.11 6.13 529 2.13 217 226
p 0.14 0.38 0.05 0.08 0.08 0.07 0.08 <0.05 0.05 0.18 0.18 0.17
Video/Narration
Presence 90.414+2.55 149.27£12.35 | 302.99446.52 4.96+0.79 0.12£0.03 497.484217.64 96.71+8.58 0.33£0.04 89.064+34.77 2.15+0.14 9.66+2.52 3.52+0.23
Absence 41.59£7.93 73.4£17.97 129.66+32.53 2.01+1.34 0.03+0.01 28.34£24.32 36.74£16.91 0.13+0.03 2.0630.61 1.13£0.24 | 36.22+7.64 2.8240.77
F (1,8) 28.81 11.06 10.87 6.4 29.27 4.18 16.74 71.08 5.55 19.47 7.26 0.66
P <0.01 <0.05 <0.05 <0.05 <0.01 0.08 <0.01 <0.01 0.05 <0.01 <0.05 0.44
Video/Natural
Presence 50.0£15.04 92.71£29.52 | 151.67£50.26 2.471+0.94 0.04£0.01 178.38£100.9 52.64£18.06 0.141+0.04 | 35.94£14.71 1.2940.39 | 5.56£2.60 2.09+0.67
Absence 21.2949.09 78.094+31.71 109.48+44.84 2.61+£1.21 0.02+0.01 44.8+36.69 44.41+19.69 0.10+0.04 1.94+1.05 0.614-0.33 26.0+9.20 1.544-0.79
F (1.8) 7.11 1.08 4.00 0.02 1.55 3.56 0.33 1.49 5.31 322 6.53 0.62
P <0.05 0.33 0.08 0.88 0.25 0.10 0.58 0.26 0.05 0.11 <0.05 0.45
TABLE VIII

MEANS AND STANDARD ERRORS OF SPEECH DENSITY, HAND-CRAFTED ACOUSTIC FEATURES (AUDIO II), GLOVE EMBEDDINGS IN THE PRESENCE
AND ABSENCE OF ERRORS.

Speech Mean Max Mean Max Total Mean Max Word ‘Word Pause GloVe
Density (%) Pitch Pitch Energy(1E-4) Energy Energy Loudness(1E-4) Loudness Count Rate Density (%) (PC Variance)
KT/Narration
Presence 57.33+£7.58 135.44+12.44 | 284.46+36.31 2.58+0.62 0.25+0.11 217.14+76.44 45.12+6.57 0.41£0.09 36.89+13.57 0.94+0.13 38.26+5.78 4.4440.7
Absence 70.12+£5.32 139.82+10.66 | 317.04+44.02 3.284+0.65 0.17£0.04 1139.48+391.22 65.83+£8.21 0.38+0.05 177.61+46.27 1.27+0.13 27.98+4.37 3.77+0.23
F (1.8) 6.74 0.28 2.07 2.89 0.39 7.15 22.04 0.05 13.49 14.63 5.55 1.31
P <0.05 0.61 0.19 0.13 0.55 <0.05 <0.01 0.82 <0.05 <0.05 0.05 0.29
KT/Natural
Presence 20.88+10.42 81.7+28.96 125.3+46.47 1.661+0.68 0.02+0.01 64.77+£55.97 36.14+13.44 0.11£0.04 7.61£6.13 0.63£0.22 16.54+8.26 2.1£1.06
Absence 31.77+11.80 98.38+24.00 207.45+62.36 2.71+0.97 0.08+0.03 545.64+280.75 50.4+16.28 0.21£0.06 71.89+32.11 0.86+£0.26 | 27.38+7.45 2.41+0.8
F (1.8) 2.64 1.99 5.95 1.74 5.11 3.71 1.14 5.64 4.80 1.58 0.96 0.15
p 0.14 0.20 <0.05 0.22 0.05 0.09 0.32 <0.05 0.06 0.24 0.36 0.71
Natural: M = 16.70,SD = 6.16; F'(1,16) = 0.6,p = 0.45).  ence versus absence (Table VII), with most being statistically
For further analysis, we perform 1-way ANOVA analyses significant for video demonstrations under the narration
using four subsets of our data independently. The four condition. However, as shown in Table VII, teachers still

subsets are the conditions that result from combinations of
demonstration type and instruction type. For each subset,
a single IV is a binary category depicting the presence or
absence of subtasks/errors. The DMs are same as before
(Sec. III-C.3).

1) Quantification of Utterances: As shown in Table VIII,
for each subset of the data, the density of speech is higher
during absence of errors, significantly more (F(1,8)
6.74,p < 0.05) during kinesthetic demonstrations versus
video demonstrations under the narration condition. This
finding does not provide support for H4. Talking more
during absence of errors can be explained by the fact that
majority of the demonstration data does not comprise of
errors (Table IV). However, there are still interesting acoustic
cues present during errors as shown in Table X.

A similar trend of higher speech density is observed
during subtasks in comparison to in their absence, with
significant results under subsets of video demonstrations
(Video/Narration: F(1,8) = 28.81,p < 0.01; Video/Natural:
F(1,8) 7.11,p < 0.05) as shown in Table VII. For
kinesthetic demonstrations, users talk roughly as much in
the presence of subtasks as in their absence. These findings
provide partial support for H3.

2) Speech Prosody: For analysis of subtasks, we observe
that most acoustic features are higher during subtask pres-

exhibit more expressive speech during gaps between subtask
executions (such as surprise and laughter during KT demon-
strations in the narration condition). This result is similar
to Nagai et al. [13], where demonstrators use expressive
infant-directed speech before they begin the execution of a
subtask. As a few of the results in Table VII and Table IX
are statistically significant (more so during the narration
condition), they only provide partial support for H3.

For analysis of errors (Table VIII), we observe that most
prosodic features are higher in the absence of errors, since
the majority of demonstrations comprise of non-erroneous
segments (Table IV). However, there are still interesting
acoustic cues such as frustration, surprise, pauses, laugh-
ter, and encouragement present during errors as shown in
Table X. This indicates that teachers convey some of their
reactions with emphasis when a mistake happens. This
finding provides only partial support for H4.

3) Information Conveyed via Spoken Words: We do not
observe a significant difference in the variance of GloVe
features under any of the data subsets for subtask analysis
(KT/Narration: F'(1,8) 0.02,p 0.90; KT/Natural:
F(1,8) 2.26,p 0.17; Video/Narration: F'(1,8)
0.66,p = 0.44; Video/Natural: F(1,8) = 0.62,p = 0.45)
or error analysis (KT/Narration: F'(1,8) = 1.31,p = 0.29,
KT/Natural F'(1,8) = 0.15,p = 0.71). This implies that the
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Fig. 4. PCA projections of GloVe word embeddings for speech accompanying demonstrations from all participants. Human teachers used semantically
similar words for both kinesthetic and video demonstrations, though a larger vocabulary of words was used during the longer and more challenging

kinesthetic demonstrations.

concepts being communicated in the presence or absence of
subtasks and errors are quite similar. However, a few words
are specifically spoken under certain conditions (such as the
use of ‘oops!’, ‘oh oh’ etc. when errors occur).

C. Learning Experiments

From results of Sec. IV-B.1 and Sec. IV-B.2, we observe
that the narration condition has more significant results for
acoustic feature differences in relation to subtasks and errors.
Thus, we use acoustic features from the narration condition
to evaluate performance on two binary classification tasks:
subtask detection and error detection. Random 80% — 20%
splits are used to respectively train and test random forest
classifiers. We use a combination of acoustic and video
features as input to the model. Two baseline models (ran-
dom prediction and best constant class prediction) are also
evaluated. We train three random forests per experiment, and
report the average F1 score on the test data for best of three
runs in Table XI. Our results show that acoustic features
perform better than random and constant class prediction

baselines. Combining both annotated (Audio I) and hand-
crafted (Audio II) acoustic features is better than using
either one alone (for both subtask detection and error detec-
tion). Pretrained PASE features (no finetuning) perform only
slightly better than the baselines, and are unable to match the
performance of Audio I and Audio II features. In addition,
pretrained video features (no finetuning) are also not as effec-
tive alone as the acoustic features for either detection task.
However, combining acoustic and video features performs
better at error detection than using acoustic or video features
alone. For subtask detection, we find that concatenating the
annotated and hand-crafted acoustic features gives the best
performance. These results highlight that acoustic features
contain rich information about demonstration quality and
task segments, with the potential to enhance the performance
of other LfD approaches.

V. CONCLUSION

Our work highlights several characteristics of audio sig-
nals exhibited by human teachers providing demonstrations



TABLE IX
MEANS AND STANDARD ERRORS OF ANNOTATED ACOUSTIC FEATURE
DENSITY (%) (AUDIO I) IN THE PRESENCE AND ABSENCE OF SUBTASKS.

Speech Normal Encourage

Frustration Surprise Pauses Speech Laughter —ment
KT/Narration
Presence 4.76£1.88 | 6.71£233 | 4.024+1.93 | 90.894+4.12 1.86£1.75 | 6.2743.01
Absence 0.00+£0.00 | 10.49£7.76 | 0.3£0.29 14.17£10.07 | 2.694+2.53 | 0.03£0.03
F(1.8) 5.70 0.24 311 50.09 1.00 3.83
P <0.05 0.64 0.12 <0.01 0.35 0.09
KT/Natural
Presence 0.00£0.00 | 0.86+0.69 | 5.644+2.31 | 46.72413.79 | 0.00£0.00 | 0.3£0.28
Absence 0.00£0.00 | 0.00£0.00 1.72£1.62 5.62£5.20 0.00£0.00 | 0.0040.00
F(1.8) NA 1.38 241 9.96 NA 1.00
P NA 0.27 0.16 <0.05 NA 0.35
Video/Narration
Presence 0.00£0.00 | 0.20£0.19 | 0.0040.00 | 91.714+3.73 [ 0.00£0.00 | 0.0040.00
Absence 0.00£0.00 | 0.00£0.00 | 0.0040.00 0.48+0.46 0.00£0.00 | 0.0040.00
F(1.8) NA 1.00 NA 556.53 NA NA
P NA 0.35 NA <0.01 NA NA
Video/Natural
Presence 0.00£0.00 | 0.00£0.00 | 0.0040.00 | 52.12415.59 | 0.00£0.00 | 0.004:0.00
Absence 0.00£0.00 | 0.00£0.00 | 0.0040.00 0.004£0.00 0.00£0.00 | 0.0040.00
F(1,8) NA NA NA 9.94 NA NA
P NA NA NA <0.05 NA NA
TABLE X

MEANS AND STANDARD ERRORS OF ANNOTATED ACOUSTIC FEATURE
DENSITY (%) (AUDIO I) IN THE PRESENCE AND ABSENCE OF ERRORS.

Frustration Surprise i‘:‘izg I;;:z;l Laughter El]f:;z:l::ge
KT/Narration
Presence 15.1£7.18 [ 19.04£9.29 | 15.51£6.6 84.68+5.2 5.6945.37 | 10.234+6.71
Absence 1.15£0.44 | 3.68+1.93 0.0£0.0 78.4£6.03 0.234£0.22 | 4.1242.56
F(1,8) 3.62 2.34 4.91 0.70 1.00 0.81
P 0.09 0.16 0.06 0.43 0.35 0.39
KT/Natural
Presence 0.00£0.00 1.25+1.18 | 9.86+£8.78 | 35.05£13.96 | 0.00+£0.00 | 0.27£0.26
Absence 0.00£0.00 1.07£0.99 | 0.01£0.01 37.9+12.83 | 0.00+0.00 | 0.19£0.18
F(1.3) NA 0.01 1.12 0.21 NA 1.00
p NA 0.92 0.32 0.66 NA 0.35

for multi-step manipulation tasks to a situated robot. Our
findings indicate that human audio cues carry rich informa-
tion, potentially beneficial for further technological advance-
ment in robot learning. While several human demonstra-
tion datasets leverage environment and object sounds [41],
[42], [43], [44], often human audio of demonstrators is not
recorded. Since speech data can be recorded easily with
light-weight and cheap sensors, we propose that collection of
human audio data, as part of future demonstration datasets,
can be beneficial for algorithm development. Integrating
information from (1) environmental and object sounds along
with (2) information from human audio is a topic for future
work. Our analysis is done on a small in-house dataset
collected in a laboratory setting. Leveraging human audio

TABLE XI
AVERAGE F1 SCORES OF SUBTASK DETECTION AND ERROR DETECTION
FOR USERS IN THE ‘NARRATION’ INSTRUCTION CONDITION.

Subtask Detection Error Detection

Feat Box Box | Cutting | Cutting Box | Cutting
catures Video | KT | Video KT KT KT
Random 0.44 0.4 0.44 0.43 0.43 0.47
Constant 0.46 0.47 0.46 0.46 0.46 0.42
Audio I 0.86 0.84 0.76 0.78 0.89 0.80
Audio 1T 0.71 0.60 0.72 0.70 0.56 0.55
Audio (I+I) 0.91 0.87 0.79 0.89 0.89 0.82
PASE 0.59 0.49 0.71 0.50 0.46 0.46
Video 0.82 0.80 0.66 0.74 0.72 0.67
Audio I+Video 0.78 0.84 0.77 0.80 0.90 0.84
Audio I1+Video 0.80 0.82 0.53 0.77 0.69 0.66
Audio (I+II)+Video 0.82 0.83 0.76 0.78 0.90 0.84

for larger datasets with larger, data-driven feature encoders,
such as neural networks, is also a topic for future work.
Furthermore, several recent LfD approaches use suboptimal
demonstrations [45], [46] as input. Real-world demonstration
data can contain partial errors and gaps in between execu-
tion steps of a task. Instead of discarding suboptimal data,
leveraging an additional modality like audio can provide ad-
ditional information about errors and subtasks to aid learning.
We take the key first step in leveraging human audio for robot
learning—understanding the information present in speech
and highlighting that it is possible for automated methods to
extract it.
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