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Abstract—Any safety issues or cyber attacks on an Industrial
Control Systems (ICS) may have catastrophic consequences on
human lives and the environment. Hence, it is imperative to
have resilient tools and mechanisms to protect ICS. To verify the
safety and security of the control logic, complete and consistent
specifications should be defined to guide the testing process.
Second, it is vital to ensure that those requirements are met
by the program control algorithm.

In this paper, we proposed an approach to formally define the
system specifications, safety, and security requirements to build
an ontology that is used further to verify the control logic of the
PLC software. The use of ontology allowed us to reason about
semantic concepts, check the consistency of concepts, and extract
specifications by inference. For the proof of concept, we studied
part of an industrial chemical process to implement the proposed
approach.

The experimental results in this work showed that the pro-
posed approach detects inconsistencies in the formally defined
requirements and is capable of verifying the correctness and
completeness of the control logic. The tools and algorithms
designed and developed as part of this work will help technicians
and engineers create safer and more secure control logic for ICS
processes. I. INTRODUCTION

A host of industries and public utilities use industrial control
systems (ICS), such as programmable logic controllers (PLC),
distributed control systems (DCS), supervisory control and
data acquisition (SCADA), and safety instrumented systems
(SIS) to monitor and control automation processes and their
safe operations.

The goal of this paper is to design and develop algorithms
and tools to improve the safety and security of Industrial
Control Systems (ICS), which are complex and highly in-
terconnected software and hardware systems. These systems
are considered critical and essential for the well-being of
society. Therefore, any type of issue or cybersecurity threat

This material is based upon work supported by the National Science
Foundation Computer and Information Science and Engineering (CISE)
devision, award number 1846493 of the Secure and Trustworthy Cyberspace
(SaTC) program: Formal TOols foR SafEty aNd. Security of Industrial Control
Systems (FORENSICS).

can result in significant destruction, affecting millions of
people. Considering the severity of the consequences, it is
essential to develop an understanding of how to integrate
safety and security requirements into control software. We
answer this question by developing a Knowledge Base (KB)
that can serve as a reference ontology for the requirements
of the industrial control software. The formal language-based
ontology inherently supports the automatic validation engine
called reasoner to verify the consistencies and completeness
of the specifications.

The contradictory nature of the safety/real-time properties
and security needs of the system might cause several vulnera-
bilities in the system. Detecting such conflicts early increases
both the safety and security of the system [1], [2].

Our contribution is to design and develop an ontology
that contains the essential information about the processes
that the control logic ought to manage and its safety and
security requirements. The ontology acts as a knowledge
base for the verification of requirements. Two operational
algorithms have been developed within this approach to define
safety/security concepts and consistent requirements to create
an ICS ontology. Second, a reasoner is utilized to ensure
that the requirements and specification rules are consistent
before the verification of control logic is started. For the model
checking process the control logic, which is extracted from the
PLC program and modeled as a Timed Automaton (TA), along
with the requirements from the ontology that are translated into
Timed Computational Tree Logic (TCTL), is tested to ensure
safety and security properties hold.

As part of this work, the design and development process
of the ontology is explained and implemented by performing
a detailed analysis of the chemical process using a popular
ontology editor, Protégé [3]. The DL-reasoner Pellet [4] was
utilized to check the consistency and completeness of the
safety and security requirements in the ontology. We were able
to show that OWL-DL [5] along with the Semantic Web Rule
Language (SWRL) rules [6] can be used for the formalization
of the requirements and specification of the chemical process.
We transform the rules expressed in SWRL into TCTL queries.978-1-5386-5541-2/18/$31.00 ©2022 IEEE
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The rest of the paper is organized in the following way.
Section 2 gives an overview of the related works; Section
3 describes the industrial process we are using to illustrate
our ideas and methodology; Section 4 provides the overall
methodology including the design and development of the
ontology followed by the model-checking approach; Section 5
presents the case study process to illustrate our methodology
with our observation; and finally Section 6 concludes the paper
in addition to our future work.

II. RELATED WORK

Consistency checking of requirement specifications is not
a new idea [7]. Other domains in addition to software en-
gineering have studied consistency check of specifications,
for example Kamsu-Foguem et al. [8] proposed a conceptual
graph-based framework for formally checking the compliance
of construction buildings to verify that they satisfy certain
standards or regulations.

Functional testing of control logic modules with manu-
ally generated input test cases is the most commonly used
technique in industrial process control applications [9], [10].
Test cases are designed based on previous safety and security
failure experiences, reports, and the expertise of the tester [11].
While these types of test-case driven approaches are easy to
implement, they lack complete testing of PLC logic, and there
is a high possibility of missing crucial program flaws that have
not been discovered previously [9], [12].

To our knowledge, PLC-PROV [13] is the only work that
utilizes the provenance of the system data to detect secu-
rity and safety violations. However, the proposed provenance
graph is limited to safety components that create the causal
dependency chart between sensor inputs and actuator outputs
through the PLC program based on program execution traces.
In our proposed approach, we are designing and developing an
ontology-based knowledge base that contains the relationship
between both the security and safety components of the PLC
program elements. Furthermore, the ontology design is based
on the prior incident records. Thus, we are able to increase
testing coverage to both security and safety components, as
well as overall industrial processes.

III. CHEMICAL PROCESS UNDER STUDY

Fig. 1: Chemical Process
For the proof of concept and throughout the paper, we will

use the chemical process (CE) which is a partially modified

version of industrial processes in water utilities. The selected
process has four main components: storage tanks, intake and
outflow pumps, a mixer and a flush as shown in Figure 1. The
chemical process primarily involves an irreversible chemical
reaction of three liquid reactants producing one liquid product:

A(liq) +B(liq) + 2C(liq) = G(liq)

In this process, the mixing reactor receives materials from
three supply tanks (Tank1, Tank2 and Tank3) through the
pumps (IntakePump1, IntakePump2, IntakePump3). Each in-
take pump has a rate of 2 liters per second and the outtake
pump has a rate of 3 liters per second. First, IntakePump1
pumps 4 liters of chemical A from Tank1 to the Mixer. It
is followed by the transfer of 4 liters of chemical B from
Tank2 and 8 liters of chemical C from Tank3. The mixer
starts to run immediately with IntakePump2 and IntakePump3.
The ingredients are then mixed for 4 seconds before being
transferred to an empty product storage tank with the help
of the pump OuttakePump. The user input RunProcess starts
and stops the chemical process, whereas the EmergencyStop
switch resets the system and runs the emergency flush valve
for 5 seconds.

IV. METHODOLOGY

This section provides an overview and the motivation of
our proposed methodology to verify that the logic of the PLC
program satisfies the required safety and security properties.
The general outline of the methodology is shown in Figure 2.

In the first section of the methodology, an ontology based on
DL is designed and developed as a mathematical foundation.
The proposed ontology is designed to include 1 safety /
security concepts and requirements, 2 system components in-
volved in the control logic, 3 boundary values and conditions,
and 4 PLC program concepts. With the help of an ontology
reasoner, we check the consistency and completeness of the
requirements and specifications.

In the second part of the proposed approach, the control
logic and each of the components in the processes that
are managed by the controller are modeled using a formal
modeling language. The translated model of the control logic
is then used in the model checker.

Finally, having the formal model and ontology of the
requirements, verification is carried out. The requirements
that are consistent and complete given by the ontology are
translated into the model checker’s requirements language,
and then the model is checked against those requirements via
model checking. The details of implementation are discussed
in Sections 5 and 6.

A. Ontology

In order to build the proposed ontology in Figure 3, detailed
information is required about the industrial processes that
are under study. Domain knowledge is first formalized based
on the formal language, OWL-DL [5], and then added to a
knowledge base. OWL-DL is a rich tool set available for
creating/editing an ontology while being able to check the
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Fig. 2: Overall Methodology

Fig. 3: PLC concepts, safety and security ontology

consistency of its components. In addition to that, it is also
decidable with maximum expressiveness [14].

In OWL, the class has a similar meaning as concept in
Description Logic (DL), and the property represents role. The
first step in implementing the ontology starts with defining the
safety, security, and control logic classes and their constraints
and restrictions (Terminology Boxes (TBoxes)). Next we cre-
ate instances of those classes, which is also called Assertion
Boxes (ABoxes). Thus, the knowledge base (KB) is a pair
(T,A), where T is a TBox and A is a ABox. The rest of this
section explains the building blocks of mapping the control
logic and the safety and security requirements of the industrial
control process and how ontology provides consistency and
completeness checking via reasoning.

1) System and Processes Ontology: Using DL, components
are defined as a hierarchical class with the help of a subsump-
tion relation. For example, Table I shows the subsumption
relations between the classes of a chemical process plant.
Subsumption (⊑) and Definition or Equivalence (≡) are two
main relation operators that are used to define classes.

Similarly, after defining the required components as a class,
we need to define the relation and data properties of those
classes. Relations describe the relationship between the com-

Class Definition Formal Definition (DL)
1 Pump is a component. Pump ⊑ Component
4 PLC is a controller. PLC ⊑ Controller
5 Chemical is a material. Chemical ⊑ Material
6 IntakeTank and InputTank are

same.
IntakeTank ≡ InputTank

TABLE I: Hierarchical class definition of ICS components

ponents, and the data property explain and assign a literal
value to an entity. The relationship can be formalized by
adding them as a role that relates two individuals, which
is also called object properties in OWL. The properties of
components, i.e., speed, power, etc., can be formally defined
as data type properties. The data properties can be variables
of data type int, float, etc. These variables can have values
that are either constant, selectable, or continuous. If the value
is Constant(x), then a fixed value of x should be given.
If the value is a Selectable(x), then x is a set of values
that specify possible selection options. If the value is a
Continuous(x) then x should specify the acceptable range.
For example, ’Pumps pumps out chemicals’ is represented
as pumpsOut(Pump,Chemical), where the property of the
relationship pumpsOut describes the relationship between the
Pump and the chemical. Similarly, ”The tank has a capacity of
2500 gallons.” is represented as hasCapacity(Tank, 2500),
where hasCapacity is a data property and is related between
the class ”tank” and the literal integer value ”2500”.

2) Safety and Security Ontology: To develop a safe system,
we first need to analyze the hazards and corresponding require-
ments at the system level. In our ontology, safety concepts are
defined based on two groups of hazard analysis techniques;
failure-based and system-based [15].

Safety requirements can be added to the ontology as con-
straints. Constraints are formulated as necessary and sufficient
conditions for a member to belong to a class. In DL, these
conditions are Boolean combinations of properties required
for a class or relationships with other members and their
properties. For example, the safety property ”input tank”
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should only contain input materials.

InputTank(t1) ≡ Tank(t1) ⊓ ∀containsMaterial(t1,m1)

⊓InputMaterial(m1)
(1)

which uses the class names Tank and InputMaterial and the
object property containsMaterial as well as a class conjunction
(⊓). We can also express cardinality constraints where we can
limit the number of entities that belong to a certain class. For
example, a tank can contain only one material and can be
formalized as

Tank(t1) ⊓ ≤ 1 containsMaterial(t1,m1)⊓Material(m1)
(2)

Similarly, the security ontology contains security concepts
specific to ICS. Sources of these general concepts are the
ICS security experts, known vulnerabilities, previous reported
attacks, etc. The general security concepts could be formally
defined in DL as subsumption relations. For example, the
”input validation attack is an attack” can be formalized as
InputV alidationAttack⊑Attack. Similarly, the concept ”Buffer
overflow is an input validation attack” can be formalized
as BufferOverflow⊑InputV alidationAttack. Compound concepts
such as ”Overwrite switch can be remotely manipulated so it is
considered an attack vector” and are formalized as a collection
of logical statements,

RemoteControlSwitch(s1) ≡ Switch(s1)

⊓ ∀hasRemoteControl(s1)
(3)

RemoteControlSwitch ⊑ AttackV ector (4)

OverwriteSwitch ⊑ RemoteControlSwitch (5)

From the previous three statements, the logical statement

OverwriteSwitch ⊑ AttackV ector (6)

could be inferred. Constraints and requirements in ontology
can also be represented with another subset of predicate logic
with efficient proof systems, known as horn logic [16]. Horn
logic rules, also called horn-clauses, are used in ontology to
provide more dynamism to the DL based ontology. Semantic
Web Rule Language (SWRL) [6] is the rule language that
includes an abstract syntax for horn-like rules. For example: if
we have a requirement, ”Overwrite switch is an attack vector,
so, the user should be logged in to enable those switch”. Since
we have already shown how to formalize the first part of the
requirement in the previous paragraph, the second part can
be formalized in SWRL rules as OverwriteSwitch(?switch)
∧hasEnabled(?user, ?switch) ∧LoggedInUser(?user).

B. Reasoning in Ontology

1) Consistency Checking: An ontology is inconsistent if
there exists an instance of either class or a property that
contradicts the axioms of the ontology. If there is a logical
contradiction in an ontology, the ontology becomes mean-
ingless, since any form of statement could be derive from

a set of logical axioms that contradict each other [17]. For-
mally, an ontology is said to be inconsistent if an axiom in
the ontology is unsatisfiable. For example, assertions such
as EmergencyFlush: Pump, EmergencyFlush: Variable causes
inconsistency in the ontology, because the name is considered
unique in the ontology. Hence, an ontology model,

M ⊭ (EmergencyF lush : Pump∧
EmergencyF lush : V ariable).

(7)

Moreover, lets consider the clauses, ”OuttakePump is running”
i.e. s1 = isRunning(OuttakePump, 1) and ”OuttakePump is not
running” i.e. s2 = isRunning(OuttakePump, 0),

M ⊭ (s1 ∧ s2). (8)

2) Specification Completeness: This can be achieved by
checking the completeness of the ontology. The ontology
is complete if every clause belongs to some statements
and if every instance of the lexical elements has related
links to some statements. For example: The following se-
curity requirement ”To enable overwrite switch, the user
should be logged in.” that is, LoggedInUser(user1) ∧
switchAccess(user1, true) ∧ enableSwitch(true, user1).
This cannot be complete if there are assertions User(user1),
and axiom LoggedInUser ⊑ User not present in the ontol-
ogy.

C. Model Checking

In model checking, systems are modeled by finite-state
machines, and properties are written in propositional temporal
logic. The verification procedure is an exhaustive search of the
state space of the design model. The model-checking frame-
work we are exploring is [18] in which system descriptions are
specified in Timed Automaton (TA), while requirements are
expressed based on Timed Computational Tree Logic (TCTL)
formulas. The TCTL model checking problem is P-SPACE
complete [19]. In the following section, we give the formal
definitions of the TA and TCTL.

1) Timed Automaton: TA [18] is an extension of a finite
automaton with a finite set of real-valued variables called
clocks to specify constraints of time between two events.
If X = {x1, x2, ... , xn} is a finite set of clocks, then
a clock valuation is a mapping v: X ∈ RX and ϕ(X)
represent the set of formulas called clock constraints. For
example, Figure 4 shows a basic timed automaton with clock
variables x and y. One of the possible runs of this automa-
ton is (l0, (0, 0))

4.1−−→ (l0, (4.1, 4.1)) −→ (l1, (4.1, 0))
3.7−−→

(l1, (5.3, 3.7)) −→ (l2, (5.3, 3.7))
where (l2, (5.3, 3.7)) means that the value of the clock

variable x is 5.3 and y is 3.7 at the location l2.

Fig. 4: Timed Automaton

A TA is a tuple A(L,L0,Σ, X, I, E), where L is a finite set
of locations, L0 ∈ L is a set of initial locations, Σ is a finite
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set of labels, X is a finite set of clocks, I is a mapping that
labels each location l with some clock constraint in ϕ(X) and
E is a finite set of the edges of form e = (l, γ, α, x, l′), with
l, l′ ∈ L the source and target states, γ is a conjunction of
atomic constraints on X, called guard, α is a label for discrete
actions or a time delay, and x ∈ X is a set of clocks to be
reset upon crossing the edge.

2) Timed Computational Tree Logic: TCTL is a timed
extension of the CTL logic, which is branching-time logic,
where the bound of a temporal operator is given as a pair of
a lower bound and an upper bound.

TCTL formulas can be defined inductively via the following
production rule.

ϕ := true | p | ¬p | ϕ | ϕ ∨ ϕ | E[ϕUIϕ] | A[ϕUIϕ]

where, p is a set of atomic formulas, A and E are the uni-
versal and existential path quantifiers, respectively. U (Until) is
a temporal operator, and I represents any one of the relational
operators (=, <, ≤). We can define many properties that
use ”Always” (□ or G), or ”Eventually” (♢ or F) temporal
operators based on the set of operators presented by the
production rule. Given the finite-state model M with an initial
state s0, the TCTL formula ϕ is satisfied by the model and
can be formally expressed as (M , s0) ⊨ ϕ. For example: If p
and q are the local atomic formulas, then

Invariance: s0 ⊨ A G[2,3] p, implies that p is true for all
possible future paths between states s0+2 and s0+3, shown in
Figure 5a.

The bounded response time: s0 ⊨ A G (p −→ A F≤4 q),
implies that for all paths, it is always a case that once p holds,
q eventually holds within 4 time units, shown in Figure 5b.

(a) s0 ⊨ A G[2,3] p (b) A G (p −→ A F≤4 q)

Fig. 5: TCTL Properties
3) Transformation to TCTL: There has been some work

in translating specifications in ontology into TCTL using the
Specification Pattern System (SPS), which is a set of recurring
patterns of functional and time requirements [20]. In this work,
for simplicity, we only consider the conversion of requirements
represented in the SWRL rules. The main reason for this
conversion is that we need to verify the requirements using a
model checker that only supports temporal logic. The advan-
tages of this conversion are that the requirements/properties
that are generated for checking are consistent with the overall
specifications and other requirements. It is important because
model checking can be time- and resource-consuming, so the
properties we are checking should be consistent and complete,
which in this case is ensured by the ontology and the reasoner.

Algorithm 1 shows the generation of a temporal formula
in TCTL. The inputs to these algorithms are the collections

of requirements and constraints from the ontology, i.e. horn
clauses of DL concepts. For example: ”A maximum overflow
of chemicals, can cause pipe burst. So, we need to always
ensure that the material flowing through the pipe is less than
the threshold”, this can be represented in horn-like clauses as
hasF lowrate(p1, fr) ∧ flowThreshold(p1, th) ∧ fr < th,
where hasFlowrate and flowThreshold are data properties
in the ontology that relates pipe1(p1) with certain integer
literal value fr and th respectively. The algorithm first splits
the clause into a collection of literals. Then, each literal is
looked at in a mapping file that contains the relation between
data/object properties in ontology and the model template
of the model checker (MapOntologyToModelChecker). For
example: in the above example, the hasFlowRate(p1, fr) would
be p1.flowrate=fr in the model checker. Then, the final task
is to add temporal operators ( A,E,□,♢ ). In our case, for
simplicity, we have limited the number of temporal operators
to use, but the algorithm can be extended to support more
temporal operators. The output of this algorithm is a set of
TCTL formulas. i.e., E♢ (p −→ q).

Algorithm 1 Translation of horn-like clauses to TCTL

1: Get all rules
2: for rule in rules(r1, r2, ..., rn) do
3: literals ←− getLiterals(rule);
4: q ←− getHead(rule);
5: for l in literals do
6: pArr ←− MapOntologyToModelChecker(l);
7: end for
8: p ←− joinLiterals(pArr);
9: tctl ←− addTemporalOperators(tctl);

10: tctls[0, 1, ..i] ←− E♢ (p −→ q);
11: end for

V. CASE STUDY

For the proof of concept, we take an industrial operational
technology (OT) process as we have discussed in Section 3.
We used Velocio PLC to implement the control logic of the
chemical process. Velocio uses ladder logic and flow chart lan-
guage for programming. We use Protégé to create an ontology
with essential classes, individuals, properties, and relationship
axioms. Protégé uses the Web Ontology Language (OWL) to
create an ontology. For the requirements and constraints, the
SWRL rules are added to the ontology. Pellet [4] reasoner
that works with the ontology is used to infer knowledge based
on the existing information on the ontology and to verify the
consistency of the ontology. The logic of the PLC program is
modeled in timed automata of the UPPAAL model checker.
Then, the requirements from the ontology are translated into
UPPAAL queries for further model verification.

The rest of this section provides a brief introduction on how
we built the ontology to detect the conflict in requirements,
the UPPAAL model of the PLC program control logic, and the
verification of the properties done using the UPPAAL Verifier.
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A. Ontology with Protégé and OWL-API

Due to the popularity of OWL in the semantic web, many
tools are available to edit and build an ontology. Prot’eg’e is
one of the tools that is open source and contains a reasoning
and inference engine that supports the validation and verifica-
tion of DL queries. To build an ontology, we used Prot’eg’e as
a GUI tool and OWL-API for automating ontology access, i.e.,
update, and delete. OWL-API is a Java API implementation
that can be used to create, manipulate, and serialize OWL
ontologies.

In Prot’eg’e, we can create hierarchical classes, define
object properties and their relationship with individual classes,
and add data properties that assign a literal value to class
individuals. At first, we built an ontology of the components
and properties involved in the chemical process. Table II shows
examples of information that are used to build the ontology. In
addition, the requirements and constraints are added through
the SWRL queries in Protégé.

1) Safety and Security Ontology: To create the safety
and security ontology, we review previous work and identify
some important security / safety concepts pertinent to PLC
and ICS in general. The remainder of this section provides
the formalism of some of the examples of safety/security
requirements and concepts we have used.

Security Requirements: If there are instantiated objects or
variables in the PLC program, an attacker can gain access
to the system with minimal effort by immediately insertion
[21]. Therefore, the security requirement for this case would
be ”Do not leave unused variable in the PLC program.”. In
PLC program, each variable is either assigned to input/output
components or used in the program for temporary program
operation, if the variable does not affect on the control logic,
they are unused variables and are vulnerable to attack. These
types of inference are automatically done by the DL-reasoner
based on the already added information.

Similarly, hard-coded numeric values in PLC programs
can be vulnerable to attack by allowing the number to be
changed directly [21]. The security requirement for this case
could be ”Avoid using hardcoded numeric values in PLC
programs.”. This requirement is added to the ontology as
follows. hasValue(Variable, Value), HardcodedValue ⊑ Value,
isVulnerableTo(HardcodedValue, InputValidationAttack), In-
putValidationAttack ⊑ SecurityAttack.

Safety Requirements: One of the safety requirements for
the chemical process is ”All three input tanks should not be
running at the same time.”. The main reason is that P4 1
has a threshold flow rate of 6 liters per second, so running all
together will exceed the threshold, which might cause a serious
pipe burst accident. Another important safety constraint is
that if the mixer is running empty, it abruptly increases the
temperature of the mixer, which could eventually lead to an
explosion. This can be written as ”The mixer should not run
if the chemicals are not present.”.

Detecting Inconsistencies: One of the main reasons for
formalizing specifications and requirements in the DL-based

ontology is that it provides automatic classification and incon-
sistency verification. For example, in the chemical process,
we have the following set of requirements: (1) ”Users must
be logged in to enable/disable switch.” (security) (2) ”Login
requires at least a minute to complete.” (specification) (3)
”In case of emergency, EmergencyStop switch should be
enabled within 30 seconds.” (safety). Here, we can see that
the requirements are clearly inconsistent, because the logged-
in user requires more than 30 seconds to disable the emergency
stop switch, which needs to be disabled within 30 seconds. The
above requirements are added to the ontology as:

LoggedInUser⊑isLoggedIn value true

canEnableSwitch(Domain:LoggedInUser,Range:LRSwitch)

timeRequiredToLogin(?u,?t)∧t>=60−→LoggedInUser(?u)

LRSwitch(?s)∧enableSwitchWithin(?s,?t1)∧LoggedInUser(?u)

∧timeRequiredToLogin(?u,?t2)∧t1<=t2−→V iolation(R1)

After adding these rules and specifications, the reasoner is
synchronized in Protégé to see if there are inconsistencies or
violations. We can see (Figure 6) that there is a violation
caused by the rules we have added. We can notice that the
reasoner also provides the reason for the violation.

Fig. 6: Checking requirement inconsistency (Protégé)

B. Model Checking with UPPAAL

UPPAAL is a toolbox for real-time system verification.
In UPPAAL, the system is modeled in the network of TA,
while the requirements are formalized into UPPAAL’s query
language, which is a subset of TCTL. UPPAAL extends
timed automata with various other features, such as templates,
synchronizations, urgent locations, and expressions such as
guard and invariant [22].

In our case study, that is, in a chemical process, the
intake pumps, outtake pump, mixer, and flush can be
modeled as a similar timed automaton model. Thus, we
created a template that is called component as shown in
Figure 7a. The component template has two states {idle,
running}. These states can be changed using the variables
that are parameters of the template. This template can
be initialized to create each component by creating an
object in UPPAAL’s system declarations as: intakePump1
= Component(RunIntakePump1, StopIntakePump1),
intakePump2 = Component(RunIntakePump2, StopIn-
takePump2), intakePump3 = Component(RunIntakePump3,
StopIntakePump3), mixer = Component(RunMixer,
StopMixer), outtakePump = Component(RunOuttakePump,
StopOuttakePump), emergencyFlush = Compo-
nent(RunEmergencyFlush, StopEmergencyFlush). One of
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Information and Specifications DL Equivalent (Ontology)
1 OuttakePump is a Pump OuttakePump ⊑ Pump
2 Pump is a Component Pump ⊑ Component
3 Mixer should run for 11 seconds MixerO ⊓ ∃ shouldRunFor.11
4 IntakePump1 should run before Mixer IntakePump1 ⊑ ∃ shouldRunBefore.Mixer
5 IntakePump2 is running IntakePump2 ⊑ isRunning.True

TABLE II: Class and Property definitions

(a) Component Model

(b) Tank Refill Model

(c) User Input Model

Fig. 7: UPPAAL model template

Fig. 8: Overall chemical process (UPPAAL)

the specifications of the chemical process is that if the
chemicals in all chemical tanks are less than 100 gallons,
then it needs to be refilled soon. It is modeled in UPPAAL
as shown in Figure 7b.

As mentioned in the previous section, the requirement ”All
three pumps should not run at the same time.” is formal-
ized in the SWRL rules as isRunning(intakePump1, true)
∧ isRunning(intakePump2, true) ∧ isRunning(intakePump3,

Fig. 9: Emergency case (UPPAAL)

Fig. 10: Requirement verification on UPPAAL (R2)

Fig. 11: Requirement verification on UPPAAL (R3)

true) −→ Violation(R2). If there is a case where these three
pumps are running simultaneously, then this is a violation
of the rule. This rule is translated into TCTL queries with
the algorithm (1) implemented in Java. The translation gives
us the TCTL formula as for the UPPAAL model checker.
The translated formula is E <> intakePump1.running and
intakePump2.running and intakePump3.running. This
formula asks the model checker if there exists a path where
all three pumps are running. We ran this query on our model
in UPPAAL Verifier and this property is not satisfied (Figure
10).

Similarly, the SWRL rule
containsAmount(Chemical A, ?am) ∧ am < 0 ∧
isRunning(intakepump1, true) −→ V iolation(R3),
explains that the intakepump1 should not run in an
empty condition. There should be some chemicals
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in the corresponding input tank. This requirement is
translated into the TCTL query as E <> A <= 0 and
intakePump1.running. The model in UPPAAL is then
checked (Figure 11). The property is not satisfied, that means
there are no path in the state model, where the intakepump1
will be running in an empty condition. In this way, we can
guarantee that the safety and security policies are not violated
by the PLC control program. The policies that are being
checked are ensured to be consistent and complete by the
reasoner.

For this experiment, an ontology with a total of 313 logical
axioms was built. The total time to check consistency was on
average 80 ms. The transformation of the five SWRL rules
took 780 ms on average, and then the model checking took
nearly 3 seconds for each of our specific requirements. This
experiment was carried out on a 2.4 GHz quad-core Intel Core
i5 MacBook Pro with 16 GB of RAM. The total time taken for
the process increases as we increase the size of the ontology
and the complications in the TA model. If we increase the size
of the ontology with a larger number of logical axioms, the
reasoner will take more time for automatic classification and
detecting inconsistencies. The time taken increases linearly
with the increase in the number of axioms. We can find a
detailed empirical analysis by Dalwadi et al. on [23]. Similarly,
model checking can also run into undefined states because
of its state-space explosion problem as the model becomes
complicated.

VI. CONCLUSION AND FUTURE WORK

This paper presented an approach to verify the PLC control
logic using an ontology. The ontological knowledge base
is built using OWL with the help of OWL-API. A DL-
based reasoner is used to check the consistency between the
requirements added to the ontology. The created ontology is
then used to verify the control logic whether it violates the
requirements or not.

Future work will include automatic translation of control
logic into formal language. Furthermore, the algorithm pre-
sented in this paper to translate requirements from DL or
SWRL rules to TCTL queries only works for some limited
rules and temporal operators, i.e. SWRL query and E <>.
In our future work, we will extend the element of concept
to represent hazard scenarios, and security gaps that will
result in loss, denial and manipulation. Instances are elements
belonging to a concept, and roles are binary relations between
two concepts.
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